[go: up one dir, main page]

WO2002060090A1 - Particulate receiver for joint optimal estimation of discrete and continuous information in pulse-modulated signals - Google Patents

Particulate receiver for joint optimal estimation of discrete and continuous information in pulse-modulated signals Download PDF

Info

Publication number
WO2002060090A1
WO2002060090A1 PCT/FR2002/000284 FR0200284W WO02060090A1 WO 2002060090 A1 WO2002060090 A1 WO 2002060090A1 FR 0200284 W FR0200284 W FR 0200284W WO 02060090 A1 WO02060090 A1 WO 02060090A1
Authority
WO
WIPO (PCT)
Prior art keywords
discrete
particulate
continuous
receiver
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/FR2002/000284
Other languages
French (fr)
Inventor
Gérard SALUT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of WO2002060090A1 publication Critical patent/WO2002060090A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/005Control of transmission; Equalising
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03178Arrangements involving sequence estimation techniques
    • H04L25/03331Arrangements for the joint estimation of multiple sequences

Definitions

  • Particulate receiver for optimal joint estimation of discrete and continuous information in pulsed modulation signals
  • the object of the present invention is to jointly restore in an optimal probabilistic manner all of the information both discrete (pulses and their synchronizations) and continuous (wave and motion parameters) transmitted by pulsed modulation signals, with possible codes. access and channel, received in the form of noisy sampled measurements through a transmission channel comprising Doppler effects and possible multipaths.
  • the receiver according to the invention is based on the long coherent integration which allows the relevant exploration and memorization, by virtual or real digital processors known as particulate, of the global state space and its probabilities.
  • This relates more particularly to the probability of continuous parameters in the form of sums of multinormal local densities over their tangent linear space, called extended Gaussian particles and subject to dynamic redistribution, as well as the tree of sequences of discrete variables present in the source signal , in the form of discrete states in reduced number.
  • This receiver has the particularity of being able to discriminate by calculating different Doppler effects as well as multi-paths whose time offset is less than the sampling period of the input measurements. Its implementation, recurrent by its very principle, allows operation and application in real time and ensures, for a given computing capacity (number of parallel real processors, or sequential virtual equivalents), the optimal estimate of 1 most likely source of information (maximum likelihood).
  • the technical sector of the invention is that of digital reception of information transmitted under pulsed modulation, through the global transmission channel including filters, Doppler effects and the possible multi-paths between transmitter, reflectors and receiver equipped with relative mobility.
  • the applications of this invention are:
  • - optimal reception of telecommunications messages especially in cellular telephony for mobile use such as UMTS, EDGE, OR GSM systems.
  • the optimal estimation of the remote positioning signals either by passive satellite way such as GPS, GNSS Galileo, or terrestrial like LORAN-C, or by both active and passive way like RADAR, or according to the acoustic mode of SONAR.
  • a modulating envelope which can be the subject of nested codes (access code, channel code) whose respective pulses of width ⁇ and ⁇ are the discrete symbols ⁇ b 1 ⁇ of an alphabet of complex numbers or constellation (phase-amplitude) and form source sequences comprising in particular the free symbols of the useful message in the channel code.
  • an additive disturbing noise assumed to be Gaussian white noise in the base frequency band.
  • an analog-digital converter (3/3 'in Figure 2) producing data indexed by their time order t, the input filter of which provides either anti-aliasing (telepositioning) or adaptation to the pulse elementary (telecommunications) by preserving the whiteness of additive noise in discrete time.
  • C t k (s t ) is the complex value of the symbol at time t, before convolution by the response input filter f (.),
  • a source sequence s t indexed m among M possible in the form of output:
  • the delays ⁇ r / V d are related to the speed v a , and to the accelerations a a , by the sampled dynamic equations:
  • a x (t) is the Gaussian particle value of the source acceleration among the ⁇ i ⁇ discretizations necessary for its local linearization
  • w (t) its Gaussian additive noise of covariance Q
  • v is the additive noise at discrete time after sampling, including possible interference and coloring.
  • the raw sampled data, after input filter, are additive noise colored by multi-code interference (in communications) as well as due to oversampling (in telepositioning).
  • This coloring of the reception noise v t known for each of the two concerned cases mentioned above, is easily included in the previous model in the form of the correlation matrix ⁇ t / t , expressing the mathematical expectation than E [v t , v t .].
  • the colored reception noise whose Gaussian character is preserved by the central limit theorem, is thus characterized by a parametric increase according to known methods, and allows the operation of the particulate receiver described below, without any other procedure than that of 'an increase in size of its particulate state.
  • Reception consists in solving the opposite problem, which is precisely that which the solution of the present invention has as its subject:
  • the content of the source information being unknown, as well as that of the channel and reception disturbances, it s 'is to make an estimate at all times that best reflects the data received so far, in an optimal sense from a probabilistic point of view.
  • This estimate relates to the value of a set of state variables or parameters, of a discrete and / or continuous nature, necessary and sufficient to restore useful information-source. More precisely, to obtain such an optimal solution, it is a question of constructing the probability distribution of these variables, conditionally on the set of observations accumulated over the time elapsed since a certain initial instant.
  • the problem posed, for the general situation described by the above model, has no exact solution achievable by the currently known reception methods, nor a satisfactory approximate solution by those currently implemented when dealing with situations common reviews such as close multipath and multi-Doppler.
  • the difficulty lies both in the discrete-continuous joint nature of the dynamic estimation problem and in the presence of non-linearities on the continuous variables, leading to a combinatorial and dimensional double explosion beyond the reach of the computational structures considered up to 'now.
  • the present invention of a particulate receiver firstly comprises two general innovations, absent from the previous one, essential in the performance of said receiver both in terms of precision and of calculation time:
  • Gauss the continuous variables of the local diffuse particles
  • the particulate receiver according to the invention for the optimal joint estimation of digital and continuous information in pulsed modulation, intervenes according to FIG. 2 on the data 5 originating from the antenna signal 1 after the descent in base frequency by a demodulator 2 and the digital conversion ensured by the sampler 3 'provided with its input filter 3, either adapted to the frequency of (over) sampling (telepositioning), or adapted to the elementary pulse (telecommunications) and, possibly after the correlator 4, to the access code; it includes a calculation unit 6 consisting of KXLxMXN initial processors ⁇ OO ⁇ 1 real or virtual, called particulate, receiving said data in parallel; each of these processors carries, in the associated memories, a local particulate representation called klmn of the composite state (k, l, m, x) of the signal to be estimated, according to the following structure illustrated in FIG. 1.
  • x t f (x t - ⁇ k, m t (a t , b t ))
  • y t h (x t , k, l, m t (a t , b t )) 4- ⁇ t
  • the pair (k, l) represents the possible state of synchronization of access code and channel code among the possible K XLs.
  • the integer index m identifies one of the sequences of discrete source variables (a, b) among the most likely M retained until time t, according to the finite storage capacity imposed by construction.
  • the integer index n identifies, for each preceding triplet (k, l, m), the local multinormal distribution G mn kl (x) that the probabilization of the state x of the continuous parameters previously contains in each point of its tangent space defined ( ⁇ d , A r , v d , ⁇ r , v d or û d / -i , r d depending on the two cases) in a global sum of the form:
  • Each particle klmn therefore represents a local density, gaussian with respect to x, stored digitally by the composite state (k, l, m, ⁇ n , P n ), the last two components of which are respectively the mean and the covariance of the associated Gaussian density, and by the real scalar p (k, l, m, n) which represents the probability or associated weight of the particle klmn, the whole forming the particulate state.
  • Each of the 600 mn kl processors comprises a generator 604 tnn kl of state transition of said particles between two sampling instants t-1 and t which, taking into account the dynamics of the sequences imposed by the access code and / or of those possible in the message of the channel code, as well as the kinematics of the relative movement transmitter-receiver, delivers the new values 612 min kl of the particulate state at time t.
  • a corrector ôOS, ⁇ 1 calculates, from said values 612 mn kl and sampled data 5, the new values ⁇ lS ron ⁇ of this particulate state.
  • Each particle processor is therefore characterized by information which it is responsible for calculating recurrently and keeping in memory permanently: the state (k, l, m, ⁇ ⁇ , P n ) of the gaussian particle klmn, thus than its weight p (k, l, m, n).
  • the components k, l represent, remember, the discrete synchronization states (channel code and access code);
  • the component m designates the branch considered in the tree of source sequences of discrete variables (a, b);
  • the components ⁇ n and P n are the mean and the covariance of the n-th Gaussian necessary for the representation of the probability density of the continuous parameter x, knowing k, l, m, n.
  • the weight of each Gaussian particle and its location in the state space thus collectively reconstruct the probability over the entire state space. This probability, as announced in the previous paragraph, evolves by conditional prediction-correction to the data, which is the subject of the particle estimation introduced.
  • the switch 607 ⁇ ffl kl delivers to the evolution generator 604 mn kl the components ⁇ lO ⁇ 1 of the initial state of the particle klmn, supplied by the initial state generator ⁇ QS m P 1 according to an a priori probability law representative of the uncertainty over the entire state space.
  • the switch 607 ran kl delivers to the evolution generator 604 ran kl the components of the particulate state ôlS mn 1 * 1 after redistribution at the instant t-1.
  • the evolution generator 604 min kl then calculates the new particle state components 612 ⁇ ra ⁇ kl at the instant t in accordance with the state transitions between t and t-1.
  • the discrete state (k, l) of the particle denoted klmn remains invariant as long as it is not concerned by the redistribution member 606.
  • the discrete state m of the particle klmn which represents the sequence m among M retained since the previous instant, is temporarily increased by branches representing each of the following symbol possibilities (m 'among M') in the alphabet considered, before it is redistributed by 606 after the measurement.
  • the continuous state x evolves on its tangent space according to the doubly linear kinematics (in x and w), with Gaussian fluctuation centered around a 1 and of covariance Q, and its prediction provides the new means ⁇ n and local covariances P n of the Gaussian particle klmn, for each (k, l, m), according to:
  • -- ⁇ JW-I
  • * -U k > TM * ( ⁇ h> h)) p % t- ⁇ m - 1)? ⁇ wj (* - 1) r +) QV ⁇ r
  • J x f (t-1) designates the Jacobian of f with respect to x t . x in ⁇ n t - ⁇
  • J w f (t) designates the Jacobian of f with respect to w, taken in the argument (a t , b t ) of each m.
  • the weighter From the components of the particulate state 612 min kl and of the measurement 5 at time t, the weighter supplies the new weighted particle conditionally to this new datum by application of the Bayes formula, in the form:
  • J x h (t) designates the Jacobian of h with respect to x in ⁇ n t
  • the Gaussian particles After weighting by the data at time t, the Gaussian particles are all given new weights, depending on their location.
  • the redistribution procedure uses them to redistribute on these locations the (KxLxM'xN) renormalized particles by affecting the (KxLxMxN) which have the maximum likelihood (i.e. at maximum weight).
  • This redistribution procedure introduces a coupling between all the processors ôûO ⁇ , ⁇ 1 of the unit 6 via the redistribution unit. This being activated, it redistributes all the particulate states 612 ⁇ ra l into ⁇ lS, TM 1 .
  • the function of the terminal member 609 is to deliver the recurrent estimate 7 with maximum likelihood.
  • the maximum joint likelihood corresponds to the argument (k *, l *, m *, x *) of the maximum of the densities p (k, l, m, x).
  • the marginal likelihood maxima correspond to:
  • the result is a new type of digital receiver. Its particle calculation method is adapted to the non-linear and combinatorial difficulties of joint estimation of continuous and discrete variables and allows a coherent integration preserving as long as possible, for a given calculation capacity, all the states of probability sufficient to contribute to the final estimate, this for an optimal extraction of information in critical situations commonly encountered (multiple close ti-paths, Doppler at blind speeds, low signal / noise ratios).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

The invention concerns an optimal particulate receiver recurrently delivering maximum likelihood joint estimation of source information (discrete variables and their synchronisation, as well as continuous parameters) transmitted by pulsed modulation, with possible access and channel codes for communications, and picked up in the form of noisy sampled data after Doppler effect and optional multipath effect and input filter and adapted correlator. The invention is characterised by K x L x M x N initial digital processors, virtual or real, said to be particulate, receiving in parallel said data and calculating the global probability measurement. The maximum likelihood delivered comprises in particular the maximum values of probabilities corresponding to the most likely message useful in telecommunications, and to the most likely state of continuous parameters useful in remote positioning with possibility of modularity of two functions and, for the latter, possible discrimination of multipath effects less than the (over)sampling period.

Description

Récepteur particulaire pour l'estimation optimale conjointe de 1 ' information discrète et continue dans les signaux à modulation puisée Particulate receiver for optimal joint estimation of discrete and continuous information in pulsed modulation signals

La présente invention a pour objet de restituer conjointement de manière probabiliste optimale la totalité de l'information à la fois discrète (impulsions et leurs synchronisations) et continue (paramètres d'onde et de mouvement) transmise par signaux à modulation puisée, avec codes possibles d'accès et de canal, reçus sous forme de mesures échantillonnées bruitées à travers un canal de transmission comportant effets Doppler et multi-trajets éventuels .The object of the present invention is to jointly restore in an optimal probabilistic manner all of the information both discrete (pulses and their synchronizations) and continuous (wave and motion parameters) transmitted by pulsed modulation signals, with possible codes. access and channel, received in the form of noisy sampled measurements through a transmission channel comprising Doppler effects and possible multipaths.

Le récepteur suivant l'invention est fondé sur l'intégration cohérente longue que permet l'exploration et la mémorisation per- tinentes, par processeurs numériques virtuels ou réels dits particulaires, de l'espace d'état global et de ses probabilités. Cela concerne plus particulièrement la probabilisation des paramètres continus sous forme de sommes de densités locales multinormales sur leur espace linéaire tangent, dites particules étendues gaus- siennes et sujettes à redistribution dynamique, ainsi que l'arborescence des séquences de variables discrètes présentes dans le signal source, sous forme d'états discrets en nombre réduit. Ce récepteur a la particularité de pouvoir discriminer par le calcul des effets Doppler différents ainsi que des multi-trajets dont le décalage temporel est inférieur à la période d'échantillonnage des mesures d'entrée. Sa mise en œuvre, récurrente par son principe même, permet le fonctionnement et l'application en temps réel et assure, pour une capacité de calcul donnée (nombre de processeurs réels parallèles, ou équivalents virtuels séquentiels), l' estima- tion optimale de 1 ' information-source la plus vraisemblable (à maximum de probabilité) .The receiver according to the invention is based on the long coherent integration which allows the relevant exploration and memorization, by virtual or real digital processors known as particulate, of the global state space and its probabilities. This relates more particularly to the probability of continuous parameters in the form of sums of multinormal local densities over their tangent linear space, called extended Gaussian particles and subject to dynamic redistribution, as well as the tree of sequences of discrete variables present in the source signal , in the form of discrete states in reduced number. This receiver has the particularity of being able to discriminate by calculating different Doppler effects as well as multi-paths whose time offset is less than the sampling period of the input measurements. Its implementation, recurrent by its very principle, allows operation and application in real time and ensures, for a given computing capacity (number of parallel real processors, or sequential virtual equivalents), the optimal estimate of 1 most likely source of information (maximum likelihood).

Le secteur technique de 1 ' invention est celui de la réception numérique de l'information transmise sous modulation puisée, à travers le canal global de transmission incluant les filtres, les effets Doppler et les multi-trajets possibles entre émetteur, réflecteurs et récepteur dotés de mobilité relative. Parmi les applications de cette invention figurent:The technical sector of the invention is that of digital reception of information transmitted under pulsed modulation, through the global transmission channel including filters, Doppler effects and the possible multi-paths between transmitter, reflectors and receiver equipped with relative mobility. Among the applications of this invention are:

- la réception optimale des messages de télécommunication, notamment en téléphonie cellulaire pour usage mobile tels les systèmes UMTS, EDGE, OU GSM. - l'estimation optimale des signaux de télêpositionnement, soit par voie passive satellitaire tels GPS, GNSS Galileo, ou terrestre tels LORAN-C, soit par voie aussi bien active que passive tel le RADAR, ou encore selon le mode acoustique du SONAR.- optimal reception of telecommunications messages, especially in cellular telephony for mobile use such as UMTS, EDGE, OR GSM systems. - the optimal estimation of the remote positioning signals, either by passive satellite way such as GPS, GNSS Galileo, or terrestrial like LORAN-C, or by both active and passive way like RADAR, or according to the acoustic mode of SONAR.

Le contexte précis est celui des signaux de transmission com- portant les éléments suivants, inclus dans la figure 2:The precise context is that of the transmission signals comprising the following elements, included in FIG. 2:

- une pulsation porteuse ω0 qui peut être annulée ou déplacée à la réception au moyen d'un démodulateur 2, par descente de la fréquence jusqu'en bande utile dite de base.- a carrier pulse ω 0 which can be canceled or moved upon reception by means of a demodulator 2, by lowering the frequency to the useful band called base.

- une enveloppe modulatrice, pouvant faire l'objet de codes emboî- tés (code d'accès, code de canal) dont les impulsions respectives de largeur δ et Δ sont les symboles discrets {b1} d'un alphabet de nombres complexes ou constellation (de phase-amplitude) et forment des séquences-sources comportant notamment les symboles libres du message utile dans le code canal. - un bruit perturbateur additif supposé être du bruit blanc gaus- sien dans la bande fréquentielle de base.- a modulating envelope, which can be the subject of nested codes (access code, channel code) whose respective pulses of width δ and Δ are the discrete symbols {b 1 } of an alphabet of complex numbers or constellation (phase-amplitude) and form source sequences comprising in particular the free symbols of the useful message in the channel code. - an additive disturbing noise assumed to be Gaussian white noise in the base frequency band.

- un convertisseur analogique-numérique (3/3' sur la figure 2) produisant des données indicées par leur ordre temporel t, dont le filtre d'entrée assure soit 1 ' anti-repliement (télépositionnement) soit l'adaptation à l'impulsion élémentaire (télécommunications) en préservant la blancheur du bruit additif en temps discret.- an analog-digital converter (3/3 'in Figure 2) producing data indexed by their time order t, the input filter of which provides either anti-aliasing (telepositioning) or adaptation to the pulse elementary (telecommunications) by preserving the whiteness of additive noise in discrete time.

- une déformation linéaire par superposition de multi-trajets constituée, après échantillonnage, d'une somme de retards indicés de 0 à R, ordre maximum, et pondérés chacun par leur amplitude à valeur complexe .a linear deformation by superposition of multi-paths consisting, after sampling, of a sum of delays indexed from 0 to R, maximum order, and weighted each by their amplitude with complex value.

- une déformation non-linéaire de décalage fréquentiel, due aux vitesses relatives possibles entre émetteur, réflecteurs et récepteur ainsi qu'à l'erreur résiduelle dans la descente en fréquence, le tout constituant l'oscillation à la fréquence dite Doppler. Après passage par le corrélateur 4 avec le possible code d'entrée, les données à traiter 5, notées y, ont pour modèle:- a non-linear deformation of frequency shift, due to the possible relative speeds between transmitter, reflectors and receiver as well as to the residual error in the descent in frequency, the whole constituting the oscillation at the so-called Doppler frequency. After passing through the correlator 4 with the possible entry code, the data to be processed 5, denoted y, have the model:

Figure imgf000005_0001
*-< c < (*(*' ' m)) + υ*
Figure imgf000005_0001
* - < c <( * ( * '' m)) + υ *

où U désigne l'union exclusive, ∑ la sommation numérique, j le nombre imaginaire pur (j2 = -1) ,where U designates the exclusive union, ∑ the numerical summation, j the pure imaginary number (j 2 = -1),

Ct k(st) est la valeur complexe du symbole à l'instant t, avant convolution par le filtre d'entrée de réponse f(.), du message produit au moyen du code canal modulant le code d'accès C1, dans leurs états respectifs (k,l) de synchronisation, par une séquence- source st indicée m parmi M possibles, sous forme de sortie:C t k (s t ) is the complex value of the symbol at time t, before convolution by the response input filter f (.), Of the message produced by means of the channel code modulating the access code C 1 , in their respective states (k, l) of synchronization, by a source sequence s t indexed m among M possible, in the form of output:

Ct k(st)=h(φt k(st)) d'une machine séquentielle à coder dont l'état interne φ obéit à l'équation dynamique de transition à valeurs discrètes notée: φt = Fk,:Lt-i/bt) , d'état initial φ0=k, bt étant le symbole discret à l'instant t, actualisant la séquence-source correspondante notée st, i.e. jusqu'à l'instant t. r est la partie entière des retards en unités d'échantillonnage δ, τr,v d leur reste réel, vr étant l'indice de multiplicité de ces retards pour une même partie entière. Les coefficients Ar d constituent les amplitudes complexes des trajets indexés de r=0 (trajet direct) à R correspondant au retard maximum, pour un décalage Doppler ωd numérotée d de 0 à 1 ' entier maximum D. Le Doppler inconnu ωd est liée à la vitesse relative inconnue vd entre émetteur ou réflecteur et récepteur par la rela- tion connue ωd = co0vd/c. Les retards τr/V d sont liés à la vitesse va, et aux accélérations aa, par les équations dynamiques échantillonnées :C t k (s t ) = h (φ t k (s t )) of a sequential coding machine whose internal state φ obeys the dynamic transition equation with discrete values noted: φ t = F k, : Lt -i / b t ), initial state φ 0 = k, b t being the discrete symbol at time t, updating the corresponding source sequence noted s t , ie until time t. r is the integer part of the delays in sampling units δ, τ r, v d their real remainder, v r being the multiplicity index of these delays for the same whole part. The coefficients A r d constitute the complex amplitudes of the indexed paths from r = 0 (direct path) to R corresponding to the maximum delay, for a Doppler shift ω d numbered d from 0 to the maximum integer D. The unknown Doppler ω d is linked to the unknown relative speed v d between transmitter or reflector and receiver by the known relation ω d = co 0 v d / c. The delays τ r / V d are related to the speed v a , and to the accelerations a a , by the sampled dynamic equations:

e0τ*u t) = - 1) + 6{a{t) + w(t))

Figure imgf000005_0002
où ax(t) est la valeur particulaire gaussienne de l'accélération- source parmi les {i} discrétisations nécessaires à sa linéarisation locale, w(t) son bruit additif gaussien de covariance Q. v est le bruit additif à temps discret après échantillonnage, comprenant interférences et colorations possibles. e0 τ * u t) = - 1) + 6 {a {t) + w (t))
Figure imgf000005_0002
where a x (t) is the Gaussian particle value of the source acceleration among the {i} discretizations necessary for its local linearization, w (t) its Gaussian additive noise of covariance Q. v is the additive noise at discrete time after sampling, including possible interference and coloring.

Trois remarques sont à noter: i) Lorsque les variables de retard τr,v d ne sont pas recherchées, comme c'est le cas en télécommunications, un changement de varia- ble dans 1 ' équation cohérente de y les absorbe de deux façons : soit sous la formeThree remarks should be noted: i) When the delay variables τ r , v d are not sought, as is the case in telecommunications, a change of variable in the coherent equation of y absorbs them in two ways : either in the form

Figure imgf000006_0001
αi/r d étant les amplitudes des réflexions retardées de r unités, soit sous la forme
Figure imgf000006_0001
α i / r d being the amplitudes of the delayed reflections of r units, ie in the form

R VrR Vr

r=0 v=\ o.id étant les amplitudes du canal global des réflexions. ii) Lorsque le filtre d'entrée approche le passe-bas idéal, l'influence des symboles passés s'éteint lentement (en 1/t). Il en résulte un canal réverbérant de mémoire longue, rendant observables de faibles écarts entre retards, et facilitant la discrimination des multi-trajets proches du trajet direct, notamment de moins d'une période d'échantillonnage. Cet avantage, utile en télépositionnement, se manifeste dans le Jacobien de la paramétrisa- tion non-linéaire en amplitudes et retards, qu'utilise l'estimation particulaire ci-après au moyen de particules locales Gaus- siennes dans le plan tangent associé à ce Jacobien. iii) On note que les données échantillonnées brutes, après filtre d'entrée, sont à bruit additif coloré par l'interférence mul- ti-codes (en communications) ainsi qu'en raison du suréchantilon- nage (en télépositionnement) . Cette coloration du bruit de réception vt, connue pour chacun des deux cas concernés évoqués ci- dessus, s'inclue aisément dans le modèle précédent sous la forme de la matrice de corrélation Λt/t, exprimant l'espérance mathémati- que E[vt,vt.] . Le bruit coloré de réception, dont le caractère gaussien est préservé par le théorème central limite, est ainsi caractérisé par une augmentation paramétrique selon des procédés connus, et permet le fonctionnement du récepteur particulaire dé- crit ci-après, sans autre procédure que celle d'une augmentation de dimension de son état particulaire.r = 0 v = \ oi d being the amplitudes of the global channel of reflections. ii) When the input filter approaches the ideal low-pass, the influence of past symbols is slowly extinguished (in 1 / t). This results in a reverberating channel of long memory, making observable small differences between delays, and facilitating the discrimination of multi-paths close to the direct path, in particular of less than a sampling period. This advantage, useful in telepositioning, manifests itself in the Jacobian of the non-linear parametrization in amplitudes and delays, which the following particle estimate uses by means of local Gausian particles in the tangent plane associated with this Jacobian. iii) Note that the raw sampled data, after input filter, are additive noise colored by multi-code interference (in communications) as well as due to oversampling (in telepositioning). This coloring of the reception noise v t , known for each of the two concerned cases mentioned above, is easily included in the previous model in the form of the correlation matrix Λ t / t , expressing the mathematical expectation than E [v t , v t .]. The colored reception noise, whose Gaussian character is preserved by the central limit theorem, is thus characterized by a parametric increase according to known methods, and allows the operation of the particulate receiver described below, without any other procedure than that of 'an increase in size of its particulate state.

Rappelons le problème posé par la réception:Recall the problem posed by reception:

Si l'on connaît 1 ' information-source à transmettre, ainsi que les éléments constitutifs du canal de transmission (réflexions et effets Doppler inclus) , on sait en déduire au moyen d'un modèle cohérent le signal qui sera capté. La réception consiste à résoudre le problème inverse, qui est précisément celui que la solution de la présente invention a pour propos : Le contenu de 1 ' informa- tion-source étant inconnu, ainsi que celui des perturbations de canal et de réception, il s'agit d'en faire à chaque instant une estimation qui rende compte au mieux des données reçues jusque là, en un sens optimal du point de vue probabiliste. Cette estimation concerne la valeur d'un jeu de variables d'état ou paramètres, de nature discrète et/ou continue, nécessaire et suffisant pour restituer 1 ' information-source utile. Plus précisément, pour obtenir une telle solution optimale, il s'agit de construire la distribution de probabilité de ces variables, conditionnellement à l'ensemble des observations accumulées au cours du temps écoulé depuis un certain instant initial .If one knows the source information to be transmitted, as well as the constituent elements of the transmission channel (reflections and Doppler effects included), one can deduce by means of a coherent model the signal which will be captured. Reception consists in solving the opposite problem, which is precisely that which the solution of the present invention has as its subject: The content of the source information being unknown, as well as that of the channel and reception disturbances, it s 'is to make an estimate at all times that best reflects the data received so far, in an optimal sense from a probabilistic point of view. This estimate relates to the value of a set of state variables or parameters, of a discrete and / or continuous nature, necessary and sufficient to restore useful information-source. More precisely, to obtain such an optimal solution, it is a question of constructing the probability distribution of these variables, conditionally on the set of observations accumulated over the time elapsed since a certain initial instant.

Le problème posé, pour la situation générale que décrit le modèle ci-dessus, n'a pas de solution exacte réalisable par les procédés de réception actuellement connus, ni de solution approchée satisfaisante par ceux actuellement mis en œuvre lorsque 1 ' on aborde des situations critiques courantes telles que multi-trajets rapprochés et multi-Doppler . La difficulté réside à la fois dans la nature conjointe discrète-continue du problème dynamique d'estimation et dans la présence de non-linéarités sur les variables continues, conduisant à une double explosion combinatoire et di- mensionnelle hors de portée des structures calculatoires envisagées jusqu'à présent. Ainsi, pour un jeu de variables discrètes fixées, il existe bien une estimation constructive des paramètres continus au moyen de l'algorithme connu de Kalman, en utilisant une approximation linéaire globale, mais celle-ci présente deux écueils: d'une part, elle ne rend pas compte fidèlement des non-linéarités qui font obstacle à la validité de cette approximation en situation exi- gente (télépositionnement dynamique à faible rapport signal/bruit et/ou à fort Doppler); d'autre part, son caractère réalisable en dimension finie n'est plus préservé avec l'évolution conjointe des séquences possibles libres que présente le problème réel (télécommunications mobiles) .The problem posed, for the general situation described by the above model, has no exact solution achievable by the currently known reception methods, nor a satisfactory approximate solution by those currently implemented when dealing with situations common reviews such as close multipath and multi-Doppler. The difficulty lies both in the discrete-continuous joint nature of the dynamic estimation problem and in the presence of non-linearities on the continuous variables, leading to a combinatorial and dimensional double explosion beyond the reach of the computational structures considered up to 'now. Thus, for a set of fixed discrete variables, there is indeed a constructive estimate of the continuous parameters by means of the known Kalman algorithm, using a global linear approximation, but this presents two pitfalls: on the one hand, it does not accurately reflect the non-linearities which hinder the validity of this approximation in demanding situations (dynamic telepositioning with low signal / noise ratio and / or high Doppler); on the other hand, its feasible character in finite dimension is no longer preserved with the joint evolution of the possible free sequences presented by the real problem (mobile telecommunications).

Inversement, pour des paramètres continus fixés, il existe bien un estimateur optimal de séquences libres du message, au moyen de l'algorithme connu de Viterbi, en utilisant le modèle à états dis- crets correspondant. Mais celui-ci perd sa réalisabilité en dimension finie lorsque les variables continues deviennent inconnues et doivent elles-mêmes être estimées conjointement.Conversely, for fixed continuous parameters, there is indeed an optimal estimator of free message sequences, using the known Viterbi algorithm, using the corresponding discrete state model. But it loses its feasibility in finite dimension when the continuous variables become unknown and must themselves be estimated jointly.

Le procédé le plus proche du présent propos, et visant à résou- dre le problème d'optimisation conjointe évoqué est celui connu sous le nom de PSP ("Per Survivor Processing"), faisant l'objet de publications et d'un brevet déposé aux Etats-Unis d'Amérique en 1995. Ce procédé aborde la difficulté d'estimation optimale conjointe discrète-continue décrite ci-dessus, en appliquant conjointement l'algorithme de Viterbi pour les états discrets du problème d'une part, et l'algorithme d'estimation linéaire des paramètres continus ' restreint aux séquences optimales retenues pour chaque état discret, d'autre part. Or, cette séparation arbitraire par juxtaposition des deux aspects du problème ne rend pas compte de leur interdépendance créant l'explosion combinatoire et dimen- sionnelle sus-dites. L'impossibilité d'atteindre l'optimalité par cette voie a été confirmée par preuves mathématiques dans des articles scientifiques antécédents tels que celui de Z.S. Roth et K.A. Loparo "Nonlinear filtering problems with finite dimensional algebras", paru dans la revue Systems & Control Letters, N.7, La solution originale au problème technique exposé ci-dessus, qui est l'objet de la présente invention, étend et complète les principes généraux d'estimation particulaire introduits par une invention antécédente du même auteur intitulée "Procédé et système d'estimation optimale non-linéaire des processus dynamiques en temps réel", dont le brevet a été déposé en France sous le numéro 94/07274, en Europe sous le numéro 9595256.5-2206, et aux Etats- Unis d'Amérique comme US Patent 5933352. Cette invention antécédente fait usage de particules ponctuelles de Dirac en grand nom- bre, dont les supports reproduisent l'évolution stochastique a priori des variables d'état par tirages aléatoires, pour être ensuite pondérées conditionnellement aux données suivant la formule de Bayes, et éventuellement redistribuées en conséquence.The process closest to this, and aimed at solving the joint optimization problem mentioned, is that known under the name of PSP ("Per Survivor Processing"), the subject of publications and a patent pending in the United States of America in 1995. This method addresses the difficulty of optimal discrete-continuous joint estimation described above, by jointly applying the Viterbi algorithm for the discrete states of the problem on the one hand, and the algorithm for linear estimation of continuous parameters ' restricted to the optimal sequences retained for each discrete state, on the other hand. However, this arbitrary separation by juxtaposition of the two aspects of the problem does not account for their interdependence creating the aforementioned combinatorial and dimensional explosion. The impossibility of achieving optimality by this route has been confirmed by mathematical proofs in previous scientific articles such as that of ZS Roth and KA Loparo "Nonlinear filtering problems with finite dimensional algebras", published in the journal Systems & Control Letters , N.7, The original solution to the technical problem exposed above, which is the object of the present invention, extends and completes the general principles of particle estimation introduced by a previous invention of the same author entitled "Method and system of optimal estimation no linear dynamic processes in real time ", whose patent was filed in France under number 94/07274, in Europe under number 9595256.5-2206, and in the United States of America as US Patent 5933352. This prior invention use of Dirac point particles in large numbers, whose supports reproduce the a priori stochastic evolution of state variables by random draws, to then be weighted conditionally to the data according to the Bayes formula, and possibly redistributed accordingly.

La présente invention de récepteur particulaire comporte en premier lieu deux innovations générales, absentes de la précédente, essentielles dans les performances du dit récepteur tant en précision qu'en temps de calcul:The present invention of a particulate receiver firstly comprises two general innovations, absent from the previous one, essential in the performance of said receiver both in terms of precision and of calculation time:

- elle introduit pour estimer les variables continues des particules locales diffuses dites de Gauss, c'est à dire à support non ponctuel, localisées par leurs moyennes et d'étendue caractérisée par leurs covariances . L'intérêt de sommes de telles particules, outre une capacité d'approximation universelle des mesures de probabilité, tout comme les mesures de Dirac, est de permettre cela avec un nombre réduit d'entre elles dû à leur caractère étendu et leur déplacement automatique conditionnellement aux données.- it introduces to estimate the continuous variables of the local diffuse particles called Gauss, that is to say with non-point support, localized by their means and extent characterized by their covariances. The interest of sums of such particles, in addition to a capacity of universal approximation of the measures of probability, just like the measures of Dirac, is to allow that with a reduced number of them due to their extended character and their automatic displacement conditionally to the data.

- elle introduit dans l'exploration-sélection combinatoire des séquences de variables-sources discrètes (a,b) une exploration arborescente déterministe ainsi qu'une redistribution, également déterministe. Cette dernière est fondée sur la mémorisation d'un nombre fixé d'entre elles, particules aux probabilités les plus élevées conditionnellement aux données recueillies, réalisant ainsi l'affectation probabiliste optimale des capacités calculatoires imposées .- it introduces into combinatorial exploration-selection of sequences of discrete source variables (a, b) a deterministic tree exploration as well as a redistribution, also deterministic. The latter is based on the memorization of a fixed number of them, particles with the highest probabilities conditional on the data collected, thus achieving the optimal probabilistic allocation of the computed computational capacities.

D'autres innovations, plus spécifiques au problème de rêcep- tion, apparaissent dans l'exposé technique ci-après, et sont rappelées en revendications . Le récepteur particulaire suivant l'invention, pour l'estimation optimale conjointe de l'information digitale et continue en modulation puisée, intervient selon la figure 2 sur les données 5 issues du signal d'antenne 1 après la descente en fréquence de base par un démodulateur 2 et la conversion numérique assurée par l 'échantiHonneur 3' muni de son filtre d'entrée 3, soit adapté à la fréquence de (sur) échantillonnage (télépositionnement), soit adapté à l'impulsion élémentaire (télécommunications) et, éventuellement après le corrélateur 4, au code d'accès; il comporte une unité de calcul 6 constituée de KXLxMXN processeurs initiaux δOO^1 réels ou virtuels, dits particulaires, recevant en parallèle les dites données; chacun de ces processeurs est porteur, dans les mémoires associées, d'une représentation particulaire locale nommée klmn de l'état composite (k,l,m,x) du signal à estimer, selon la structure suivante qu'illustre la figure 1.Other innovations, more specific to the dreaming problem, appear in the technical description below, and are recalled in the claims. The particulate receiver according to the invention, for the optimal joint estimation of digital and continuous information in pulsed modulation, intervenes according to FIG. 2 on the data 5 originating from the antenna signal 1 after the descent in base frequency by a demodulator 2 and the digital conversion ensured by the sampler 3 'provided with its input filter 3, either adapted to the frequency of (over) sampling (telepositioning), or adapted to the elementary pulse (telecommunications) and, possibly after the correlator 4, to the access code; it includes a calculation unit 6 consisting of KXLxMXN initial processors δOO ^ 1 real or virtual, called particulate, receiving said data in parallel; each of these processors carries, in the associated memories, a local particulate representation called klmn of the composite state (k, l, m, x) of the signal to be estimated, according to the following structure illustrated in FIG. 1.

- x=(ωd, Ar,v d, τr,v d) résume le vecteur du paramétrage continu régi par le système dynamique non linéaire (f,h) :- x = (ω d , A r , v d , τ r , v d ) summarizes the vector of continuous parameterization governed by the non-linear dynamic system (f, h):

xt = f(xt-ι k , mt(at, bt)) yt = h(xt, k, l, mt(at, bt)) 4- υt x t = f (x t -ι k, m t (a t , b t )) y t = h (x t , k, l, m t (a t , b t )) 4- υ t

- le couple (k,l) représente l'état possible des synchronisations de code d'accès et de code canal parmi les K XL possibles.- the pair (k, l) represents the possible state of synchronization of access code and channel code among the possible K XLs.

- l'indice entier m identifie une des séquences de variables- sources discrètes (a,b) parmi les M plus vraisemblables retenues jusqu'à l'instant t, selon la capacité de mémorisation finie imposée par construction. - l'indice entier n identifie, pour chaque triplet (k,l,m) précédent, la distribution multinormale locale Gmn kl (x) que comporte en chaque point de son espace tangent la probabilisation de l'état x des paramètres continus précédemment définis (ωd,Ar,v d, τr,v d ou ûd/ -i,r d suivant les deux cas) dans une somme globale de la forme:- the integer index m identifies one of the sequences of discrete source variables (a, b) among the most likely M retained until time t, according to the finite storage capacity imposed by construction. - the integer index n identifies, for each preceding triplet (k, l, m), the local multinormal distribution G mn kl (x) that the probabilization of the state x of the continuous parameters previously contains in each point of its tangent space defined (ω d , A r , v d , τ r , v d or û d / -i , r d depending on the two cases) in a global sum of the form:

NNOT

Figure imgf000010_0001
avec
Figure imgf000010_0001
with

Figure imgf000011_0001
Figure imgf000011_0001

cette somme ayant la propriété de représentation probabiliste uni- verselle par rapport à x, convergente lorsque N augmente.this sum having the property of universal probabilistic representation with respect to x, convergent when N increases.

Chaque particule klmn représente donc une densité locale, gaussienne par rapport à x, mémorisée numériquement par l'état composite (k, l,m,μn, Pn) , dont les deux dernières composantes sont respectivement la moyenne et la covariance de la densité Gaussienne associée, et par le réel scalaire p(k,l,m,n) qui représente la probabilité ou poids associé de la particule klmn, le tout formant l'état particulaire.Each particle klmn therefore represents a local density, gaussian with respect to x, stored digitally by the composite state (k, l, m, μ n , P n ), the last two components of which are respectively the mean and the covariance of the associated Gaussian density, and by the real scalar p (k, l, m, n) which represents the probability or associated weight of the particle klmn, the whole forming the particulate state.

Chacun des processeurs 600mn kl comporte un générateur 604tnn kl de transition d'état des dites particules entre deux instants d'échantillonnage t-1 et t qui, tenant compte de la dynamique des séquences imposés par le code d'accès et/ou de celles possibles dans le message du code canal, ainsi que de la cinématique du mouvement relatif émetteur-récepteur, délivre les nouvelles valeurs 612mn kl de l'état particulaire à l'instant t. Dans chaque processeur δOOmn 111, un correcteur ôOS,^1 calcule, à partir des dites valeurs 612mn kl et des données échantillonnées 5, les nouvelles valeurs δlSron^ de cet état particulaire. Chaque processeur particulaire est donc caractérisé par des informations qu'il est chargé de calculer de façon récurrente et de garder en mémoire en permanence : 1 ' état (k, l,m, μπ, Pn) de la particule gaussienne klmn, ainsi que son poids p(k,l,m,n). Les composantes k,l représentent, rappelons-le, les états discrets de synchronisation (code canal et code d'accès); la composante m désigne la branche considérée dans 1 ' arborescence des séquences-sources de variables discrètes (a,b) ; les composantes μn et Pn sont la moyenne et la covariance de la n-ième gaussienne nécessaire à la représentation de la densité de probabilité du paramètre continu x, sachant k,l,m,n. Le poids de chaque particule Gaussienne et sa localisation dans l'espace d'état reconstituent ainsi collectivement la probabilité sur tout l'espace d'état. Cette probabilité, comme annoncé au paragraphe précédent, évolue par prédiction-correction conditionnelle aux données, ce qui est l'objet de l'estimation particulaire introduite.Each of the 600 mn kl processors comprises a generator 604 tnn kl of state transition of said particles between two sampling instants t-1 and t which, taking into account the dynamics of the sequences imposed by the access code and / or of those possible in the message of the channel code, as well as the kinematics of the relative movement transmitter-receiver, delivers the new values 612 min kl of the particulate state at time t. In each processor δOO mn 111 , a corrector ôOS, ^ 1 calculates, from said values 612 mn kl and sampled data 5, the new values δlS ron ^ of this particulate state. Each particle processor is therefore characterized by information which it is responsible for calculating recurrently and keeping in memory permanently: the state (k, l, m, μ π , P n ) of the gaussian particle klmn, thus than its weight p (k, l, m, n). The components k, l represent, remember, the discrete synchronization states (channel code and access code); the component m designates the branch considered in the tree of source sequences of discrete variables (a, b); the components μ n and P n are the mean and the covariance of the n-th Gaussian necessary for the representation of the probability density of the continuous parameter x, knowing k, l, m, n. The weight of each Gaussian particle and its location in the state space thus collectively reconstruct the probability over the entire state space. This probability, as announced in the previous paragraph, evolves by conditional prediction-correction to the data, which is the subject of the particle estimation introduced.

La description détaillée du fonctionnement séquentiel d'un pro- cesseur particulaire δOOtnn 11 est la suivante:The detailed description of the sequential functioning of a particle processor δOO tnn 11 is as follows:

- L'initialisation:- Initialization:

A l'instant initial t=0, le commutateur 607πffl kl délivre au générateur d'évolution 604mn kl les composantes δlO^1 de l'état initial de la particule klmn, fournies par le générateur d'état initial βQSmP1 selon une loi de probabilité a priori représentative de l'incertitude sur tout l'espace d'état.At the initial instant t = 0, the switch 607 πffl kl delivers to the evolution generator 604 mn kl the components δlO ^ 1 of the initial state of the particle klmn, supplied by the initial state generator βQS m P 1 according to an a priori probability law representative of the uncertainty over the entire state space.

Concernant (k,l), les K X L états sont équiprobables et tous initialement retenus . Concernant m, 1 ' état initial se réduit à l'alphabet des variables discrètes (a,b) . Concernant x, les n gaussiennes initiales doivent au moins couvrir les possibilités multi-modales dues à la non linéarité (multiplicité des vitesses Doppler aveugles, par exemple) .Concerning (k, l), the K X L states are equiprobable and all initially retained. Concerning m, the initial state is reduced to the alphabet of discrete variables (a, b). Concerning x, the initial Gaussian n must at least cover the multimodal possibilities due to nonlinearity (multiplicity of blind Doppler speeds, for example).

Aux instants t suivants, le commutateur 607ran kl délivre au générateur d'évolution 604ran kl les composantes de l'état particulaire ôlSmn 1*1 après redistribution à l'instant t-1.At the following moments t, the switch 607 ran kl delivers to the evolution generator 604 ran kl the components of the particulate state ôlS mn 1 * 1 after redistribution at the instant t-1.

- La prédiction :- The prediction :

Le générateur d'évolution 604mn kl calcule alors les nouvelles composantes d'état particulaires 612ιraι kl à l'instant t conformément aux transitions d'état entre t et t-1. L'état discret (k,l) de la particule notée klmn reste invariant tant qu'il n'est pas concerné par l'organe de redistribution 606. L'état discret m de la particule klmn, qui représente la séquence m parmi M retenues depuis l'instant précédent, est momentanément augmenté des branches représentant chacune des possibilités de symbole suivant (m' parmi M') dans l'alphabet considéré, avant qu'il ne soit redistribué par 606 après la mesure. L'état continu x évolue sur son espace tangent suivant la cinématique doublement linéaire (en x et w) , à fluctuation gaussienne centrée autour des a1 et de covariance Q, et sa prédiction fournit les nouvelles moyennes μn et covariances Pn locales de la particule Gaussienne klmn, pour chaque (k,l,m), selon : |--ι = JW-I|*-U k> ™*(<h> h)) p%t-ι = m - 1) ? ι wj(* - 1) r + ) QVÙ rThe evolution generator 604 min kl then calculates the new particle state components 612 ιraι kl at the instant t in accordance with the state transitions between t and t-1. The discrete state (k, l) of the particle denoted klmn remains invariant as long as it is not concerned by the redistribution member 606. The discrete state m of the particle klmn, which represents the sequence m among M retained since the previous instant, is temporarily increased by branches representing each of the following symbol possibilities (m 'among M') in the alphabet considered, before it is redistributed by 606 after the measurement. The continuous state x evolves on its tangent space according to the doubly linear kinematics (in x and w), with Gaussian fluctuation centered around a 1 and of covariance Q, and its prediction provides the new means μ n and local covariances P n of the Gaussian particle klmn, for each (k, l, m), according to: | --ι = JW-I | * -U k > ™ * (<h> h)) p % t-ι = m - 1)? ι wj (* - 1) r +) QVÙ r

où : Jx f(t-1) désigne le Jacobien de f par rapport à xt.x en μn t-ι|t-ι, Jw f(t) désigne le Jacobien de f par rapport à w, pris en l'argument (at,bt) de chaque m.where: J x f (t-1) designates the Jacobian of f with respect to x t . x in μ n t - ι | t - ι , J w f (t) designates the Jacobian of f with respect to w, taken in the argument (a t , b t ) of each m.

Si l'on désigne par G'^1 (x, 111-1) la distribution localementIf we denote by G '^ 1 (x, 111-1) the distribution locally

Gaussienne obtenue après la prédiction et par p (k, l,m' ,n, t j t-1) son poids, on peut suivre ci-dessous sa transformation après cha- que nouvelle donnée 5, sous la notation conventionnelleGaussian obtained after the prediction and by p (k, l, m ', n, t j t-1) its weight, we can follow below its transformation after each new datum 5, under the conventional notation

111-1 (prédiction) —»t 11 (correction) :111-1 (prediction) - »t 11 (correction):

- La correction:- The correction:

A partir des composantes de l'état particulaire 612mn kl et de la mesure 5 à l'instant t, le pondérateur fournit la nouvelle parti- cule pondérée conditionnellement à cette nouvelle donnée par application de la formule de Bayes, sous la forme:From the components of the particulate state 612 min kl and of the measurement 5 at time t, the weighter supplies the new weighted particle conditionally to this new datum by application of the Bayes formula, in the form:

«ffc / ' « «• + I A - P(fc' l> m'> n^ 1 l ~ ) G™n(x- t \ t ~ 1) PJVt 1 kι l. m'. n. xt = x) p(yt \ t - i)«Ffc / '« «• + IA - P ( fc ' l > m '> n ^ 1 l ~ ) G ™ n ( x - t \ t ~ 1 ) PJV t 1 k ι l . me . n . x t = x) p (yt \ t - i)

Le caractère local des particules Gaussiennes considérées per- met la linéarisation par rapport à x de l'expression des mesures y ; on obtient ainsi la multiplication de deux Gaussiennes locales qui fournit après normalisation une nouvelle particule Gaussienne locale représentée avec son poids par: p(k, l, m', n, x, t\t) = p(k, l, m' , n, t \ t).G n(x, t\t), avec les moyennes μ11 et covariances locales Pn corrigées pour cha- que (k,l,m), selon :The local character of the Gaussian particles considered allows linearization with respect to x of the expression of the measures y; we thus obtain the multiplication of two local Gaussians which provides after normalization a new local Gaussian particle represented with its weight by: p (k, l, m ', n, x, t \ t) = p (k, l, m' , n, t \ t) .G n (x, t \ t), with the means μ 11 and local covariances P n corrected for each (k, l, m), according to:

Figure imgf000013_0001
Figure imgf000013_0001

où Jx h(t) désigne le Jacobien de h par rapport à x en μn t|t-ι- - La Redistribution:where J x h (t) designates the Jacobian of h with respect to x in μ n t | t - ι - - Redistribution:

Après pondération par la donnée à l'instant t, les particules Gaussiennes se trouvent toutes dotées de nouveaux poids, fonction de leurs lieux de localisation. La procédure de redistribution les utilise pour redistribuer sur ces lieux de localisation les (KxLxM'xN) particules renormalisées en y affectant les (KxLxMxN) qui ont le maximum de vraisemblance (i.e. à poids maximum) .After weighting by the data at time t, the Gaussian particles are all given new weights, depending on their location. The redistribution procedure uses them to redistribute on these locations the (KxLxM'xN) renormalized particles by affecting the (KxLxMxN) which have the maximum likelihood (i.e. at maximum weight).

Cette procédure de redistribution introduit un couplage entre tous les processeurs ôûOπ,^1 de l'unité 6 via l'organe de redistri- bution. Celui-ci étant activé, il redistribue tous les états particulaires 612πra l en βlS,™1.This redistribution procedure introduces a coupling between all the processors ôûO π , ^ 1 of the unit 6 via the redistribution unit. This being activated, it redistributes all the particulate states 612 πra l into βlS, ™ 1 .

Ainsi disparaissent très rapidement les états discrets de synchronisation (k,l) peu probables, abaissant leur cardinalité initiale KXL à celle des états rémanents de probabilité p(k,l) non négligeable, comme indiqué en figure 1, libérant la capacité de calcul correspondante sur M,N pour la poursuite en temps réel.Thus very unlikely discrete synchronization states (k, l) disappear very quickly, lowering their initial cardinality KXL to that of the non-negligible residual states p (k, l), as shown in Figure 1, freeing up the corresponding computing capacity on M, N for real-time tracking.

- L'estimation:- The estimate:

L'organe terminal 609 a pour fonction de délivrer l'estimation récurrente 7 à maximum de vraisemblance. Le maximum de vraisem- blance conjoint correspond à l'argument (k*, l*,m*,x*) du maximum des densités p(k,l,m,x). Les maxima de vraisemblance marginaux correspondent à :The function of the terminal member 609 is to deliver the recurrent estimate 7 with maximum likelihood. The maximum joint likelihood corresponds to the argument (k *, l *, m *, x *) of the maximum of the densities p (k, l, m, x). The marginal likelihood maxima correspond to:

- 1 ' argument m du maximum de la marginale p (m) , désignant le message le plus vraisemblable, à usage des télécommunications. - 1 ' argument du maximum de la marginale p (x) , désignant la valeur la plus vraisemblable des variables dynamiques x, à usage du télépositionnement .- the argument m of the maximum of the marginal p (m), designating the most likely message, for telecommunications use. - the argument of the maximum of the marginal p (x), designating the most likely value of the dynamic variables x, for the use of telepositioning.

Le résultat est un nouveau type de récepteur numérique . Son procédé de calcul particulaire est adapté aux difficultés non- linéaires et combinatoires d'estimation conjointe des variables continues et discrètes et permet une intégration cohérente préservant le plus longtemps possible, pour une capacité de calcul donnée, tous les états de probabilité suffisante pour contribuer à l'estimation finale, ceci pour une extraction optimale de l'information dans les situations critiques rencontrées couramment (mul- ti-trajets rapprochés, Doppler à vitesses aveugles, faibles rapports signal/bruit) . The result is a new type of digital receiver. Its particle calculation method is adapted to the non-linear and combinatorial difficulties of joint estimation of continuous and discrete variables and allows a coherent integration preserving as long as possible, for a given calculation capacity, all the states of probability sufficient to contribute to the final estimate, this for an optimal extraction of information in critical situations commonly encountered (multiple close ti-paths, Doppler at blind speeds, low signal / noise ratios).

Claims

REVENDICATIONS 1. Récepteur particulaire pour l'estimation optimale conjointe de l'information discrète (impulsions et leurs synchronisations) et continue (paramètres d'onde et de mouvement) dans les signaux (1) à modulation puisée avec codes possibles d'accès et de canal, après démodulation (2) , à travers le canal global incluant multi-trajets et effets Doppler, filtre d'entrée (3), échantiHonneur (3') ainsi que corrélateur adapté (4) , et caractérisé en ce que : - K X L X M X N processeurs numériques initiaux (600ιraι kl) , réels ou virtuels, dits particulaires représentent chacun un état (k,l) de la synchronisation des codes possibles, une séquence m de la combi- natoire des variables discrètes-sources, un état vectoriel réel x des paramètres continus probabilisé en somme de N mesures locales multinormales sur leur espace tangent par des particules gaussiennes klmn à distributions de probabilité Gtnπ kl(x,t|t) conditionnelles aux données, de poids associé p (k, l,m,n, 111) , nouveau type de particules de portée générale.1. Particulate receiver for the optimal joint estimation of discrete (pulses and their synchronizations) and continuous (wave and motion parameters) information in pulsed modulation signals (1) with possible access and channel codes , after demodulation (2), through the global channel including multipath and Doppler effects, input filter (3), sampler (3 ') as well as adapted correlator (4), and characterized in that: - KXLXMXN processors initial numerical (600 ιraι kl ), real or virtual, called particulate each represent a state (k, l) of the synchronization of possible codes, a sequence m of the combinatorics of discrete-source variables, a real vector state x of continuous parameters probabilized in sum of N multinormal local measures on their tangent space by Gaussian particles klmn with probability distributions G tnπ kl (x, t | t) conditional on the data, of associated weight p (k, l, m, n , 111), a new type of general purpose particle. - Un générateur (604ran kl) , initialisé par
Figure imgf000016_0001
, calcule à chaque instant t la densité multinormale d'évolution a priori G^1 (x, 111-1) de chaque particule klmn, en tenant compte de la combinatoire des séquences augmentées des variables discrètes possibles à 1 ' instant t courant et de la dynamique de la variable d'état continue x.
- A generator (604 ran kl ), initialized by
Figure imgf000016_0001
, calculates at each instant t the multinormal density of evolution a priori G ^ 1 (x, 111-1) of each particle klmn, taking into account the combinatorics of the augmented sequences of the discrete variables possible at the instant t current and of the dynamics of the continuous state variable x.
- Un correcteur (eos^1) calcule après chaque instant t l'état par- ticulaire ( βlB^1) a posteriori à partir de sa valeur à l'instant précédent t-1 et des nouvelles données yt (5) , au moyen de la formule de Bayes utilisant la densité de probabilité du bruit additif.- A corrector (eos ^ 1 ) calculates after each instant t the particular state (βlB ^ 1 ) a posteriori from its value at the previous instant t-1 and new data y t (5), at using Bayes' formula using the probability density of the additive noise. - L'organe de redistribution (606) couplé à tous les processeurs (δOOmn 1*1) redistribue tous les états particulaires
Figure imgf000016_0002
en (eiδran 111) , en retenant les particules de poids les plus élevés.
- The redistribution unit (606) coupled to all the processors (δOO mn 1 * 1 ) redistributes all the particulate states
Figure imgf000016_0002
in (eiδ ran 111 ), retaining the particles of the highest weight.
L'organe terminal (609) délivre l'estimation récurrente (7) du maximum de vraisemblance conjoint p (k*, l*,m*,x*) des variables discrètes et continues, ainsi que les maxima de vraisemblance marginaux respectifs p(mf) et p(x) du message m utile en télécommunica- tions et des paramètres x utiles en télépositionnement. The terminal organ (609) delivers the recurrent estimate (7) of the joint maximum likelihood p (k *, l *, m *, x *) of the discrete and continuous variables, as well as the respective marginal likelihood maxima p ( m f ) and p (x) of the message m useful in telecommunications and parameters x useful in telepositioning.
2. Récepteur selon la revendication 1, caractérisé en ce que l'organe de redistribution (606) réduit automatiquement la cardinalité K X L des états de synchronisation (k,l) après la période initiale d'acquisition, en ne laissant subsister que les seules particules de poids non négligeable.2. Receiver according to claim 1, characterized in that the redistribution member (606) automatically reduces the cardinality KXL of the synchronization states (k, l) after the initial acquisition period, leaving only the particles remaining of significant weight. 3. Récepteur selon les revendications 1 et 2, caractérisé en ce que le générateur (604mn kl) augmente après chaque donnée la cardinalité de la variable m par les possibilités des variables discrètes libres (a,b) à cet instant, cette cardinalité reprenant sa valeur no- minale après redistribution par l'organe (606), pour mémoriser les séquences les plus vraisemblables de la combinatoire possible.3. Receiver according to claims 1 and 2, characterized in that the generator (604 min kl ) increases after each data the cardinality of the variable m by the possibilities of the free discrete variables (a, b) at this instant, this cardinality taking over its nominal value after redistribution by the organ (606), in order to memorize the most likely sequences of the possible combinatorics. 4. Récepteur selon les revendications 1, 2, 3, caractérisé en ce que le traitement optimal effectué repose sur la probabilité conditionnelle aux données (5) pouvant comporter un bruit d'interférence coloré (télécommunications) ou un suréchantillonnage du code d'accès qui colore le bruit additif résultant (télépositionnement) .4. Receiver according to claims 1, 2, 3, characterized in that the optimal processing carried out is based on the conditional probability of the data (5) which may include colored interference noise (telecommunications) or oversampling of the access code which colors the resulting additive noise (telepositioning). 5. Récepteur selon les revendications 1, 2, 3, 4, caractérisé en ce qu'en télépositionnement, il utilise la réponse impulsionnelle longue du filtre d'entrée approchant le passe-bas idéal pour discrimi- ner par le calcul les multi-trajets proches du trajet direct de moins qu'une période de (sur) échantillonnage.5. Receiver according to claims 1, 2, 3, 4, characterized in that in telepositioning, it uses the long impulse response of the input filter approaching the ideal low-pass to discriminate by calculation the multi-paths close to the direct path of less than a period of (over) sampling. 6. Récepteur selon les revendications 1, 2, 3, 4, caractérisé en ce qu'en l'absence d'estimation explicite du retard (cas des télécommunications) , un changement de variable absorbe la multiplicité des retards entiers ou non tout en laissant inchangés les autres éléments du récepteur, et permet ainsi la modularité des deux fonctions de télécommunication et de télépositionnement.6. Receiver according to claims 1, 2, 3, 4, characterized in that in the absence of an explicit estimate of the delay (case of telecommunications), a change of variable absorbs the multiplicity of whole delays or not while leaving unchanged the other elements of the receiver, and thus allows the modularity of the two telecommunication and telepositioning functions. 7. Récepteur selon les revendications 1,2,4, caractérisé en ce qu'en l'absence de code canal (cas RADAR, SONAR et LORAN) , l'indice k disparait en donnant des particules gaussiennes indicées par mn, 1 représentant la synchronisation des impulsions (éventuellement codées), et en ce qu'en l'absence de dynamique rapide des mouvements (cas SONAR et LORAN), la discrétisation {a1} se réduit à {θ}. 7. Receiver according to claims 1,2,4, characterized in that in the absence of a channel code (RADAR, SONAR and LORAN case), the index k disappears, giving Gaussian particles indexed by min, 1 representing the synchronization of the pulses (possibly coded), and in that in the absence of fast dynamics of the movements (case SONAR and LORAN), the discretization {a 1 } is reduced to {θ}.
PCT/FR2002/000284 2001-01-23 2002-01-23 Particulate receiver for joint optimal estimation of discrete and continuous information in pulse-modulated signals Ceased WO2002060090A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0100849A FR2819963B1 (en) 2001-01-23 2001-01-23 PARTICULATE RECEIVER FOR THE JOINT OPTIMAL ESTIMATION OF DIGITAL AND CONTINUOUS INFORMATION IN PULSED MODULATION SIGNALS
FR01/00849 2001-01-23

Publications (1)

Publication Number Publication Date
WO2002060090A1 true WO2002060090A1 (en) 2002-08-01

Family

ID=8859112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/000284 Ceased WO2002060090A1 (en) 2001-01-23 2002-01-23 Particulate receiver for joint optimal estimation of discrete and continuous information in pulse-modulated signals

Country Status (2)

Country Link
FR (1) FR2819963B1 (en)
WO (1) WO2002060090A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2255342C2 (en) * 2003-10-16 2005-06-27 Аванесян Гарри Романович Non-linear distortions estimation calculator
CN110135291A (en) * 2019-04-29 2019-08-16 西北工业大学 A kind of method for parameter estimation of Low SNR signal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116594006A (en) * 2023-02-27 2023-08-15 杭州电子科技大学 An Advanced Posterior Cramerot Lower Bound Considering Uncertainty-State Correlation of Target Measurements

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5142551A (en) * 1991-02-28 1992-08-25 Motorola, Inc. Signal weighting system for digital receiver
US5231648A (en) * 1991-03-21 1993-07-27 Northern Telecom Limited Adaptive equalizer for digital cellular radio
WO1999012290A2 (en) * 1997-08-29 1999-03-11 Nokia Networks Oy Method for parameter estimation and receiver
US5933352A (en) * 1994-06-08 1999-08-03 Salut; Gerard Method and a system for non-linear optimal estimation of dynamic processes in real time

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5142551A (en) * 1991-02-28 1992-08-25 Motorola, Inc. Signal weighting system for digital receiver
US5231648A (en) * 1991-03-21 1993-07-27 Northern Telecom Limited Adaptive equalizer for digital cellular radio
US5933352A (en) * 1994-06-08 1999-08-03 Salut; Gerard Method and a system for non-linear optimal estimation of dynamic processes in real time
WO1999012290A2 (en) * 1997-08-29 1999-03-11 Nokia Networks Oy Method for parameter estimation and receiver

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2255342C2 (en) * 2003-10-16 2005-06-27 Аванесян Гарри Романович Non-linear distortions estimation calculator
CN110135291A (en) * 2019-04-29 2019-08-16 西北工业大学 A kind of method for parameter estimation of Low SNR signal
CN110135291B (en) * 2019-04-29 2023-03-24 西北工业大学 Parameter estimation method for low signal-to-noise ratio signal

Also Published As

Publication number Publication date
FR2819963B1 (en) 2004-07-16
FR2819963A1 (en) 2002-07-26

Similar Documents

Publication Publication Date Title
EP0291979B1 (en) Method for demodulating digitally modulated signals, and device for carrying out the method
EP0665665B1 (en) Method and device enabling a modem to synchronize on a transmitter of digital data via a radio channel in the presence of interferences
EP0036348B1 (en) Active detection system by means of simultaneous emission of pulsed frequencies
EP0932836B1 (en) Method for pulse compression with a stepped frequency waveform
EP0991952B1 (en) Radiogoniometry method and device co-operating in transmission
WO2001065272A1 (en) Method for locating radioelectric sources using two-channel high resolution radiogoniometer
FR3103339A1 (en) METHOD AND SYSTEM FOR LOCATING AND SATELLITE COMMUNICATION OF A RADIOELECTRIC TERMINAL FIXED TO THE GROUND USING AT LEAST ONE RUNNING SATELLITE
FR2992070A1 (en) SATELLITE SIGNAL RECEIVER FOR LOCALIZATION
EP0681190A1 (en) Method and systemfor discrete radar detection
EP3252423B1 (en) Adaptive method for detecting a target with a radar device in the presence of stationary interference, and radar and missile seeker implementing such a method
FR2749398A1 (en) Geodesy and/or terrestrial imagery processing method
WO2002060090A1 (en) Particulate receiver for joint optimal estimation of discrete and continuous information in pulse-modulated signals
EP0147305A2 (en) Discrimination apparatus for radar echos
EP0729589B1 (en) Channel sounding method
EP2725722A1 (en) Method and system for detecting broadcast signals transmitted by terrestrial sources and received by a satellite
FR2882479A1 (en) METHOD AND DEVICE FOR SYNCHRONIZING STRAIGHT OR QUASI-STRAIGHT LINKS IN THE PRESENCE OF INTERFERENCE
EP1477004B1 (en) Frequency modulator for digital transmissions
EP1756612A1 (en) Method of detecting and viewing low-power moving acoustic sources
FR3111435A1 (en) Radio navigation signal receiver including a correlation power indicator calculator
EP3259606A1 (en) Method and system for detecting useful signals, with respective non-negligible frequency drift, in a total signal
FR2745390A1 (en) Counter measure device for receiving coherent radar signals
WO2015144649A1 (en) Method for detection of a target signal in a measurement signal of an instrument installed on a spacecraft engine, and measurement system
CA2250367A1 (en) Device for measuring the distance between a mobile station and a base station in a mobile radiocommunication system
FR2875912A1 (en) Signal`s non-ambiguous sampling reconstruction method for non-ambiguous spatial sampling reconstruction device, involves reconstructing non-ambiguous sampling of signal by interlacing measured and reconstituted samples
FR3161037A1 (en) Electronic part of CRPA antenna of an anti-jamming device for a GNSS receiver, associated anti-jamming processing method and navigation system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP