WO2002052523A1 - Method and apparatus for monitoring vehicle - Google Patents
Method and apparatus for monitoring vehicle Download PDFInfo
- Publication number
- WO2002052523A1 WO2002052523A1 PCT/JP2001/008490 JP0108490W WO02052523A1 WO 2002052523 A1 WO2002052523 A1 WO 2002052523A1 JP 0108490 W JP0108490 W JP 0108490W WO 02052523 A1 WO02052523 A1 WO 02052523A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle
- image
- type
- tire
- determined
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/015—Detecting movement of traffic to be counted or controlled with provision for distinguishing between two or more types of vehicles, e.g. between motor-cars and cycles
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/04—Detecting movement of traffic to be counted or controlled using optical or ultrasonic detectors
Definitions
- the present invention relates to a method and apparatus for monitoring a vehicle that determines the type of a vehicle running on a road by performing image processing on an image captured by a camera installed on the side of a road, and particularly relates to a tire from a moving image of the vehicle.
- the present invention relates to a method and an apparatus for monitoring a vehicle for determining a vehicle type through a type. Background art
- a vehicle type traffic volume measurement device employing a loop'sonic method.
- This device uses a loop coil and an ultrasonic head together as a vehicle sensing element. That is, the height of the vehicle is measured by the ultrasonic head, the length of the vehicle is measured by using the loop coil and the ultrasonic head together, and arithmetic processing is performed to classify passing vehicles. .
- a vehicle monitoring method and apparatus for collecting vehicle type data that is easily installed at an arbitrary location and that passes by unmanned.
- the present invention relates to a method for monitoring a vehicle traveling on a road, wherein a camera provided in a movable and installable casing installed on the side of a roadway is imaged at a predetermined frame cycle by a camera and a camera is used. It is characterized by measuring the diameter of the wheels and the total length of the vehicle by performing image processing on the acquired video, and discriminating and recording the type of vehicle from the measured diameters of the wheels and the total length of the vehicle.
- the camera, image processing unit, vehicle type discrimination unit and vehicle type recording unit are housed in a movable housing that is installed on the side of the road, making it easy to carry and install. Is possible.
- the method of the present invention when an axis number counter for counting the number of axes of a passing vehicle is installed on a road, the number of axes counted by the axis number counter is acquired during the passage of the vehicle whose vehicle type is determined. Record according to the discriminating vehicle type. Further, the method of the present invention, when a wheel load meter that measures the wheel load of a passing vehicle is installed on a road, the axle load measured by the wheel load meter during the passage of the vehicle whose vehicle type has been determined. The system is characterized in that the number of axles, axle weight, and gross weight are obtained and the wheel load, the number of axles, axle weight, and the gross weight are recorded according to the discriminated vehicle type.
- the method of the present invention records vehicle type data and other weight data by simultaneously recording the measurement results of the number of axes and the weighing scale installed on the road along with the determined vehicle type. Etc. can be properly combined.
- the vehicle monitoring device of the present invention includes a camera that captures a passing vehicle at a predetermined frame period in a movable housing that is installed on the side of a road, and a wheel diameter that is obtained by performing image processing on an image obtained by the camera.
- An image processing unit that measures the overall length of the vehicle, a vehicle type determining unit that determines the vehicle type based on the wheel diameter measured by the image processing unit and the vehicle overall length, and a vehicle type recording unit that records the vehicle type determined by the vehicle type determining unit. It is characterized by having.
- the present invention provides a vehicle monitoring method for determining a tire type of a traveling vehicle on a road.
- This type of tire type discrimination method processes a moving image obtained by capturing the side of a running car with a CCD camera on a frame-by-frame basis, and uses a vector generated by the movement of many feature points in the image to control the vehicle.
- a standard template with the least amount of deviation is detected by performing a correlation operation on the tire image of the vehicle and a standard template of various tires corresponding to the shape and size of each vehicle type prepared in advance, And generating a discrimination output of the tire type of the vehicle having the detected standard template.
- the present invention determines a tire diameter (type of tire) by preparing a standard template of a tire in advance from a moving image captured by a CCD camera and performing matching, thereby determining the type of vehicle. Can be identified. Also, by identifying the length of the vehicle from the time at which the image of the moving vehicle exists in the moving image, the type of the vehicle can be identified by combining the vehicle length with the tire of the vehicle.
- the tire type is determined by filling the tire search image and the standard template together, and then comparing the outline of the tire with the change point in the direction opposite to the change point from white pixels to black pixels. By doing so, the tire type is determined.
- This filter uses a LaBrazian filter. Also, a contour extraction filter such as a Sobel may be used as a filter.
- the density distribution is flattened for the frequency distribution of the low-contrast part of the survey image to enhance the contrast of dark parts such as around the tire. And perform a correlation operation.
- the density conversion is performed so as to emphasize only the contrast in the dark part of the search image, and the correlation operation is performed.
- the present invention relates to a method for monitoring a vehicle traveling on a road, which process is performed on a frame-by-frame basis for a moving image obtained by imaging a side surface of a traveling automobile with a CCD camera, and is generated by moving a number of feature points in the image.
- the tire image of the vehicle is displayed on the tire image of the vehicle, and the tire markers of various types corresponding to the shape and size of each vehicle model prepared in advance.
- a discrimination output of the tire type having the detected standard template is generated for the vehicle, and the vehicle is included in the captured moving image.
- the speed of the vehicle at the time of detection is calculated based on the distance traveled between frames, and the length of the vehicle is determined using the vehicle transit time from when the vehicle is detected until the image of the vehicle disappears and the speed of the vehicle,
- the vehicle type is determined using the determined vehicle length and the tire type determination output.
- the moving amount of each frame of the moving image of the vehicle is integrated, and the vehicle length is calculated in real time in accordance with the speed change of the vehicle based on the integrated value until the image of the vehicle disappears.
- the vehicle type is determined using the result of the classification.
- the present invention relates to a monitoring device for a vehicle traveling on a road, which stores a CCD camera that captures an image of a side surface of a traveling vehicle, and a standard template of various tires corresponding to the shape and size of each vehicle type. And detecting a vehicle from a motion vector generated by movement of a number of feature points in an image for each frame from a moving image captured by a CCD camera, and detecting an image of a tire of the vehicle and a standard template of the storage unit.
- a tire discriminator that determines a tire type by performing matching; a speed detector that calculates a speed of the vehicle when the vehicle is detected in the captured moving image based on a moving distance between frames; and a vehicle is detected.
- a vehicle length determining unit that obtains a vehicle length using the vehicle passing time from when the vehicle image disappears and the vehicle speed, and a vehicle type using the tire type determination output and the determined vehicle length. Characterized in that a vehicle type discriminator for. BRIEF DESCRIPTION OF THE FIGURES
- FIG. 1 is an explanatory view of a use state of the present invention
- Figure 2 is an explanatory view of the device configuration of the present invention.
- FIG. 3 is a block diagram of the image processing pod of Figure 2;
- Fig. 4 is an illustration of the processed image when the head of the vehicle enters the center of the screen
- Fig. 5 is a characteristic diagram of the gain [m / dot] with respect to the position above and below the screen used for calculating the front wheel diameter
- Figure 6 is an illustration of the processed image when the vehicle rear edge passes through the center of the screen
- FIG. 7 is a flowchart of the vehicle type measurement processing according to the present invention
- FIG. 8 is a diagram for explaining another embodiment of the present invention in which detection data of the number of axes are combined;
- FIG. 9 is an explanatory view of the discrimination of the vehicle type and the timing of taking in the number of axis count data in the embodiment of FIG.
- FIG. 10 is a block diagram of an image processing board used in the embodiment of FIG. 8;
- FIG. 11 is a flowchart of a vehicle type measurement process according to the embodiment of FIG. 8;
- FIG. 12 is an explanatory diagram of another embodiment of the present invention in which detection data of a weighing scale is combined;
- FIG. 14 is an explanatory diagram of vehicle type discrimination and a loading timing of vehicle weight data in the embodiment of FIG. ;
- FIG. 13 is a block diagram of an image processing pod used in the embodiment of FIG. 12;
- FIG. 15 is a flowchart of a vehicle type measurement process according to the embodiment of FIG. 12;
- FIG. 17 is an explanatory diagram showing a screen including a vehicle approach scene;
- FIG. 18 is a flowchart of a process for determining a tire in a vehicle image
- Figure 19 is an illustration of tire detection using a standard template
- FIG. 20 is an explanatory diagram of the filtering process
- FIG. 21 is a flowchart of a tire discrimination process when the contrast of an image is low
- FIG. 22 is a flowchart of a process for accurately obtaining a tire upper end
- FIG. 23 is an explanatory view showing a specific example of a method of obtaining the upper end of a tire
- FIG. 24 is a block diagram of an image processing unit for determining a vehicle type from a tire type and a vehicle length according to the present invention.
- FIG. 25 is a flowchart of a first process for determining a vehicle length
- FIG. 26 is a flowchart of a second process for determining a vehicle length
- FIG. 1 is an explanatory diagram of an installation state of a monitoring device according to the present invention.
- a monitoring device 10 of the present invention is installed on a road shoulder 14 of a roadway 12 and is set so that a field of view 18 of a built-in camera looks down on a road surface.
- the roadside 14 In order to be able to always acquire images under the same conditions with such a monitoring device 10 installed, the roadside 14 must be For example, two white lines are drawn in parallel with the shoulder 14 on the road surface 2 meters and 3 meters away, and the two white lines drawn on the road surface are the marks on the camera monitor provided on the monitoring device 10 Install so that they overlap.
- FIG. 2 is an explanatory diagram of the internal configuration of the monitoring device 10 of FIG.
- a monochromatic CCD camera 20 is provided in the monitoring device 10 of the present invention.
- the monochromatic CCD camera 20 uses an ultra-wide-angle lens 22 so that the roadway 12 as shown in FIG.
- the camera has a camera field of view 18 that can sufficiently cover the width of the lane.
- a visible light power filter 24 is provided in front of the ultra-wide-angle lens 22, and a near-infrared illumination 26 is further provided.
- the monochrome aperture CCD camera 20 captures an image of a wavelength in the near infrared region in which visible light is reduced by the visible light filter 24.
- the monitoring device 10 is provided with a power supply unit 28, an image processing pod 30 and an LCD monitor 32.
- the image processing board 30 has a digital output connector 34 and a serial in connector. 36 are provided.
- FIG. 3 is a block diagram of a circuit configuration of the image processing port 30 provided in the monitoring device 10 of FIG.
- the image processing port 30 includes an AD converter 38, an image processor 40, an image memory 42, a vehicle type discriminator 44, and a vehicle type recorder 46.
- the AD converter 38 converts the analog image signal of the near-infrared image captured by the monochrome CCD camera 20 of FIG. 2 into digital gradation data, and stores it in the image memory 42 at predetermined frame periods. To be stored.
- the image processing unit 40 measures the diameter D of the wheel and the total length L of the vehicle by performing image processing on the image acquired by the monochrome CCD camera.
- the measurement results of the wheel diameter D and the total length L of the vehicle measured by the image processing unit 40 are given to the vehicle type discriminating unit 44 and compared with predetermined values, for example, for ordinary passenger cars, light trucks, and large vehicles.
- the vehicle type such as a truck is determined, and the determination result is recorded in the vehicle type recording unit 46.
- FIG. 4 is an explanatory diagram of a processing screen for measuring a diameter D of a front wheel of a vehicle.
- this is an image when the leading F of the vehicle 50 enters the center of the screen, and the leading F of the vehicle enters the center of the screen.
- the time T 1 and the processed image 48 are recorded in the image memory 42.
- the tire diameter D of the front wheel 52 in the processed image 48 the tire diameter D is measured based on the number of dots in the height direction of the front wheel 52 on the screen, for example, ⁇ dot.
- the camera view 18 is set so that the roadway 12 looks down on the road surface from the shoulder 14 as shown in FIG.
- the lower the screen above the closer the distance to the monitoring device 10, and the higher the position above the screen, the farther the distance from the monitoring device 10.
- the number of dots in the height direction corresponding to the tire diameter D of the front wheels 52 increases even if the tire diameter D does not change.
- the closer to the centerline the farther the tires appear, the smaller the number of dots. Therefore, it is necessary to change the sensitivity for determining the actual dimensions around one dot according to the vertical position of the front wheel 52 on this screen.
- FIG. 5 is a characteristic diagram showing a relationship between the number of dots i from the upper side of the image to the lower side on the processing screen 48 of FIG. 4 and a gain G [m / dot] indicating an actual length per dot with respect to the number of dots i. .
- the gain G becomes smaller. Therefore, in the processed image 48 of FIG.
- the gain G i is plotted by plotting the number i of dots as shown in FIG. You can ask. Once the gain G i is obtained in this way, the tire diameter D can be calculated by multiplying the gain by the N dot indicating the height of the tire in the theoretical image 48 in FIG.
- the gain G i in this case is obtained from i dots, which is the number of dots from the upper end of the image to the lower end of the front wheel 52, but the tire is in the region from i dot to (i—N) dots.
- i dots which is the number of dots from the upper end of the image to the lower end of the front wheel 52
- the tire is in the region from i dot to (i—N) dots.
- the tire diameter can be obtained with higher accuracy.
- the tire diameter D of the front wheels 52 can be calculated from the image when the head F of the vehicle comes to the center of the screen, then the vehicle passes and the rear end R of the vehicle is processed as shown in Fig. 6.
- the time T2 and the image when passing through the center of the vehicle are stored, and the vehicle is traveling from the image of the front part F of the vehicle at the time T1 in FIG. 4 to the image of the vehicle rear end R in the processed image 48 in FIG.
- the vehicle length L is obtained by integrating the movement of the vehicle for each frame.
- a difference image is obtained by subtracting the image of the current frame from the image of the previous frame, and the number of dots indicating the width of the movement in the traveling direction of the vehicle appearing in the difference image is determined for each frame.
- the number of pixels indicating the movement of the vehicle in each frame can be calculated by calculating the gain G in Fig. 5 corresponding to the number of dots i from the upper side of the image.
- FIG. 7 is a flow chart of the vehicle type measurement processing of the present invention using the image processing port 30 of FIG.
- step S1 it is checked whether or not the head F of the vehicle enters the center of the screen as shown in the processing image 48 of FIG.
- step S2 the process proceeds to step S2, and the time T1 and the image are recorded.
- step S3 the diameter D of the front wheel 52 is calculated from the recorded image.
- step S4 it is checked whether or not the rear end R of the vehicle passes through the center of the screen as shown in a processed image 48 of FIG. Until the rear end R of the vehicle passes through the center of the screen, a frame image is recorded in step S5.
- the process proceeds to step S6, and the time T2 and the image are stored.
- step S7 the vehicle length L is calculated by integrating the motion amount of each frame during the passage of the vehicle. After the front wheel diameter D and vehicle length L of the passing vehicle are calculated in this way, the type of vehicle is determined from the front wheel diameter D and vehicle length L in step S8.
- a normal passenger car in step S9, a normal truck in step S10, or a large truck in step S11 is determined by using a predetermined determination value. If the determination result in step S9 or step S11 is obtained, the vehicle type determination result is recorded in step S12, and the vehicle type measurement for the passing vehicle is completed. Subsequently, in step S13, the presence or absence of a stop instruction is checked. If there is no stop instruction, the flow returns to step S1 again, and the same processing is performed for the next passing vehicle. Repeat the process.
- FIG. 8 shows another embodiment of the monitoring device according to the present invention.
- the measurement results of the axis number counter 54 separately installed in the monitoring device 10 of the present invention are combined. It is characterized by the following.
- a monitoring device 10 of the present invention is installed on the shoulder of the road in the same manner as shown in FIG.
- an axis number counter 54 is provided in addition to the monitoring device 10 according to the present invention.
- the number-of-axes counter 54 is provided with, for example, a pressure-sensitive mat 56 on the roadway 12, and is installed so that the left wheel of the vehicle 17 passes over the pressure-sensitive mat 56.
- the axis number counter 54 receives an axis number count-up input each time a wheel passes through the pressure-sensitive mat 56 and counts up the counter.
- the monitoring device 10 of the present invention when determining the vehicle type of the passing vehicle, captures the axis count-up input measured by the axis counter 54 during the passage of the vehicle, so that the passing vehicle that has performed the vehicle type determination is obtained. Determine the number of axis data and record it along with the vehicle type data.
- FIG. 9 is a timing chart of data acquisition from the axis number counter 54 in the monitoring apparatus 10 of FIG. For the number of axes counter 54, the pressure-sensitive mat
- the axis count-up input 58a, 58b, 58c is obtained. Specifically, the axis number count-up inputs 58a to 58c and the input times are stored.
- the monitoring device 10 records the vehicle entry time T1 and the vehicle rear end passage time T2 for the image captured by the camera when the vehicle 17 passes. Therefore, of the axis count-up input 58-58c taken from the axis count counter 54, the axis count-up input existing between the vehicle entry time T1 and the vehicle rear end time T2 Based on 58b and 58c, it detects that the number of passing vehicle axes is two, and combines and records the data for the discriminating vehicle type.
- FIG. 10 is a block diagram of the image processing board 30 provided in the monitoring device 10 of the embodiment in FIG. In this image processing port 30, the AZD conversion section 38, image processing section 40, image memory 42, vehicle type discriminating section 44, and vehicle type recording section provided on the image processing board 30 of FIG. 4 In addition to 6, new axis number data processing section
- the number-of-axes data processing unit 60 determines the type of passing vehicle When the vehicle type is determined, the count information from the number-of-axes counter 54 at that time is taken in, and as shown in FIG. 9, the axis input between the vehicle entry time T1 and the vehicle rear end passage time T2 is obtained. The number of axes of passing vehicles is obtained from the number of the number count-up inputs, and the number of axes data is recorded in the vehicle type recording section 46 together with the data of the discriminated vehicle type by the vehicle type discriminating section 44.
- FIG. 11 is a flowchart showing the processing of the monitoring apparatus 10 that combines the data of the axis number counter 54 of FIG.
- the vehicle type discriminating process in step S1 has the processing contents of steps S1 to S12 in FIG. 7, and the vehicle type is discriminated by image processing and recorded. Subsequently, in step S2, the number of axes counted while passing through the vehicle is fetched, and in step S3, the result of the vehicle type determination and the measured number of axes are recorded. Then, the processing from step S1 is repeated until a stop instruction is issued in step S4.
- FIG. 12 shows another embodiment of the monitoring device according to the present invention. In this embodiment, the vehicle weight data of the wheel load meter 62 separately installed in the monitoring device 10 of the present invention is taken.
- a weighing machine 62 is separately installed in addition to the monitoring device 10 according to the present invention.
- the weighing machine 6 2 is provided with a sheet-shaped load sensor 6 4 at a position where the left wheel of the vehicle 17 passing through the roadway 12 passes, and the load sensor 6 4 when the wheel of the passing vehicle passes. The wheel weight added to the is measured.
- the monitoring device 10 captures the data of the wheel load meter 62, obtains the number of axles, wheel loads, axle loads, and gross weight, and records the data together with the vehicle type data.
- FIG. 13 is a time chart of the timing of capturing the vehicle weight data of the wheel weighing machine 62 by the monitoring device 10 of FIG.
- the monitoring device 10 determines the type of the passing vehicle
- the monitoring device 10 takes in the measurement data of the weighing machine 62 and obtains and records the data concerning the weight of the vehicle.
- the monitoring device 10 measures the vehicle entry time T1 and the vehicle rear end time T2 as shown in the timing chart of Fig. 13 by image processing of passing vehicles.
- Weight data input 6 8b and 6 8c are taken in, and the number of axes, axle weight, and total weight are calculated. That is, the number of axes is the number of vehicle weight data inputs 68b and 68c between T1 and T2, that is, the number of axes is 2.
- the axle weight was doubled for each wheel weight based on vehicle data input of 68b and 68c.
- the total weight of the vehicle is the sum of the front wheel axle weight and the rear wheel axle weight
- Gross vehicle weight front wheel axle weight + rear wheel axle weight
- FIG. 14 is a block diagram of the image processing port 30 provided in the monitoring device 10 in the embodiment of FIG.
- an A / D conversion section 38 an image processing section 40, an image memory 42, and a vehicle type discriminating section 4 provided in the image processing port 30 of FIG. 4 and a vehicle type recording unit 46, and a vehicle weight data processing unit 70 is provided.
- the vehicle weight data processing unit 70 captures the vehicle weight data input from the wheel load meter 62 in Fig. 12 as shown in the timing chart of Fig. 3 when the vehicle type discriminating unit 44 determines the vehicle type of the passing vehicle.
- the number of axles, wheel weights, axle weights, and gross weights are determined based on the vehicle weight data input between the time of entry T1 at the head of the vehicle and the time of passage T2 at the rear end of the vehicle.
- the data is combined with the vehicle type data recorded.
- the vehicle data processing unit 70 the number of axles, wheel loads, axle loads, and gross vehicle weight obtained from the measurement results of the weighing scale are compared with predetermined values, and an alarm is issued if the values exceed the predetermined values. It will output a signal to trigger an alarm.
- FIG. 15 is a flowchart of the processing by the monitoring apparatus 10 of the present invention in the embodiment of FIG.
- the vehicle type determination processing in step S1 is the same as the vehicle type determination by the image processing in steps S1 to S12 shown in FIG.
- the data measured during the passage of the vehicle from the weighing machine 62 in step S2 is obtained. And calculate the number of axles, wheel loads, axle loads, and total weight.
- step S3 it is checked whether any of the number of axles, wheel load, axle load, and gross weight exceeds a predetermined value, and if so, an alarm signal is output in step S4, An alarm is issued by an alarm.
- the process returns to step S1 again, and the same processing is repeated.
- FIG. 16 is a block diagram of a processing function for the tire type determination of the present invention by the image processing unit in FIG.
- the image processing unit 40 includes a vehicle image detection unit 72, a tire determination unit 74, and a standard template storage unit 76.
- the standard template storage section 76 stores standard templates for tires having diameters corresponding to the types of vehicles such as large vehicles, medium vehicles, small vehicles and ordinary vehicles.
- the diameter of the tire is about 100 Omm for the large model, about 900 mm for the medium model, and about 600 mm to 700 mm for the small model. It stores a standard tire template using the captured image.
- a vehicle passing through the roadway is photographed by the CCD camera 20 which is also received by the monitoring device 10 installed on the shoulder 14 near the roadway 12 and a moving image is shown.
- the vehicle is detected as a vehicle by detecting a vector based on the movement of a feature point in each frame period captured by the vehicle image detecting unit 72.
- the tire discriminating unit 74 is driven, the standard templates are taken out one by one from the tire standard template storage unit 76, matched with the tire image in the vehicle image, and the degree of mismatch is detected.
- the tire type evening diameter
- FIG. 17 shows a frame image including a vehicle image of a vehicle approach scene.
- the frame image 78 taken by the CCD camera 20 is subjected to processing such as correlation calculation in the image processing unit 40.
- the frame period of the frame image 78 captured by the CCD camera 20 is 1Z30 seconds, and the current frame and the image of the previous frame are compared. Find the momentum.
- the movement amount that is, the movement is detected from each correlation calculation result, and the vehicle entry can be detected.
- Correlation calculation area 80 0-11 to 8 0-56 The contents of the correlation calculation are performed for each frame, and the characteristic points of the vehicle, such as car window frames, doors, mirrors, and tires, are continuously parallel for each frame. It is detected as a vector that moves to the vehicle, and it is possible to identify the approach of the vehicle. Garbage other than cars is excluded because the vector cannot be detected continuously over a wide range by the correlation operation.
- FIG. 18 is a flowchart of a process for determining a tire in a vehicle image.
- step S1 a vehicle image is obtained by performing a correlation operation on the image of the correlation calculation area 80-11 to 80-56 set in the frame image 78 input as shown in Fig. 17 Is done.
- step S2 it is determined whether or not the matching ratio of the tire image of the vehicle image with the previously prepared standard template is equal to or greater than a predetermined value.
- the matching rate is high when the degree of mismatch (area) between the tire image (search image) of the vehicle image and the standard template is small. Therefore, if the matching ratio is equal to or greater than a predetermined value, the size (type) of the tire is specified in step S3. If the matching ratio is less than the predetermined value, it is determined in step S4 that no evening is detected.
- FIG. 19 is an explanatory diagram of a tire detection method.
- the frame images are changed in the order of 78-1, 78-2, and 78-3, showing that the vehicle is moving from right to left on the screen, several frames from the time of entering the vehicle. Save the frame image of.
- the tires are searched for using the standard templates corresponding to a plurality of types classified according to the shapes and sizes prepared in advance.
- a circular pattern 841-1 to 84-3 in which all tires and wheels are composed of black pixels, as shown in pattern group 84, and a pattern group A pattern with a white pixel on the wheel at the center of the circle, which is a tire taken with a standard lens as shown in Figure 86, and a wide-angle lens as shown in Pattern Group 88 with a white pixel on the wheel.
- the patterns 88-1 to 88-3 in which the white pixel of the wheel is provided at the center of the oval shape of the tire, are prepared. This example shows only three sizes for three patterns, but in practice more Many patterns and many sizes are available.
- the tire image 75 of the frame image 78-3 is matched with the pattern 84-1 of the standard template. Since this standard template corresponds to the actual tire, the diameter of the tire in the image can be known from the matched standard template.
- the conversion from the image coordinates to the actual dimensions uses a conversion formula determined according to the coordinates of the ground contact point of the tire.
- the standard template may be an actual tire image or an image after filtering such as Laplacian. In other words, by applying a filter to both the tire search image on the screen and the standard template tires, the contours that represent the characteristics of the car, that is, changes from white pixels to black pixels and vice versa, are noticed. Processing, so it is not easily affected by the brightness of the image. In addition, the possibility of matching can be increased by blurring the contour with a filter.
- FIG. 20 is an explanatory diagram of the filtering process.
- Figure 20 (A) shows the tire image
- Figure 20 (B) shows the pixel distribution when the center point of the tire image is scanned horizontally
- Figure 20 (C) shows an example of the Laplacian transform of the tire image. It has peaks of positive and negative polarities indicating the boundary of the contour line, and can identify a change from a white pixel to a black pixel and a change from a black pixel to a white pixel.
- FIG. 20 (D) shows an example of the Sobel transform of a tire image, in which only peaks representing contours are shown.
- the image density distribution is flattened and darkened. Performs image conversion processing that emphasizes the contrast of the part, and performs correlation calculation with the standard template. Further, when the contrast is low at night or the like, the dark area data may be expanded so as to emphasize only the contrast of the dark area, and the tire in the image may be extracted by performing the correlation operation.
- FIG. 21 is a flowchart of the tire discriminating process for the case where the contrast of the image is low.
- step S2 it is determined in step S2 whether the contrast of the image is equal to or less than a threshold. If the contrast is equal to or less than the threshold, flattening processing of image density or extension of dark area data is performed in step S3. Subsequently, in step S4, it is determined whether the matching rate with the standard template is equal to or greater than a predetermined value. Judge that there is no tire and return to step SI. If the matching ratio is equal to or larger than the predetermined value in step S4, the size of the tire is specified in step S6 from the standard template at that time.
- the present invention uses a method of creating an upper half template using an image of a lower half of a tire whose contour can be relatively clearly identified.
- FIG. 22 is a flowchart of a process for accurately obtaining the upper end of the tire
- FIG. 23 is a specific example of a method for obtaining the upper end of the tire. Note that the image 90 in FIG. 23 represents the whole of the taken tire, in which the upper half is clearly shown, and the outline is actually not clear due to the fender.
- a vehicle image is acquired in step S1, and it is determined in step S2 whether the matching ratio with the standard template is equal to or greater than a predetermined value. If the matching ratio is not equal to or more than the predetermined value, the process proceeds to step S3, where it is determined that there is no tire, and the process returns to step S1. If the matching ratio is equal to or more than the predetermined value, the lower end of the tire is found in step S4. In this case, the lower end of the evening is detected based on the difference in color between the pixels on the road and the pixels on the tire contact portion. In the example of Fig. 23, the lower half of the lower end side of the tile image 90 composed of the upper half image 90-1 and the lower half image 90-2 is detected and cut out as the image 90-3. You.
- step S5 the image of the lower half of the tire is turned upside down to create a template.
- an upside down template 90-4 is obtained by inverting the lower half image 90-3.
- step S6 the upper end of the tire is found using the upside down template.
- matching is performed between the upside down template 90-4 and the upper half image 90-1 of the original tire image 90, and the matching ratio is equal to or higher than a predetermined value. Is obtained, it means that the upper end of the tire has been found.
- a process of specifying the size of the tire by matching the tire image having the upper end found in step S7 with the standard template of each tire is performed.
- FIG. 4 is a block diagram of a functional configuration of an image processing unit according to the present invention for determining a type.
- the image processing unit 40 includes a vehicle length detection unit 92 and a vehicle type determination unit 94 in addition to the vehicle image detection unit 72, the tire determination unit 74, and the standard template storage unit 76 shown in FIG. Is provided.
- the tire discriminating unit 74 is driven when the vehicle image is detected by the vehicle image detecting unit 72 for a moving image captured by the CCD camera 20 at each frame period by detecting a vector by moving a feature point. Then, the standard templates are taken out one by one from the tire standard template storage unit 76 and matched with the tire image in the vehicle image, the degree of mismatch is detected, and as a result of matching with all standard templates, By identifying the standard template with the least degree of mismatch, the tire diameter (type) corresponding to the standard template is output as the identification result. In some cases, the vehicle type cannot be accurately determined only by the discrimination result of the evening diameter, and the vehicle length determining unit 92 is driven to accurately determine the vehicle type.
- vehicle length discrimination There are several principles of vehicle length discrimination, one of which can be determined by the product of the speed at which a video of a vehicle is detected and moving on the screen and the time from when the vehicle enters to when it disappears.
- the vehicle type can be determined by the vehicle type determining section 94 based on the identification result of the tire diameter (type of tire) and the vehicle length.
- the processing flow for implementing each method will be described with reference to FIGS. 25 and 26.
- FIG. 25 is a flowchart of a first process for detecting a vehicle length. This process is started for each frame of the image. In step S1, it is first determined whether or not there is a motion vector equal to or larger than the threshold in the screen. If there is motion, the process proceeds to step S2, and the car is moved one frame earlier. Determine if there is nothing. Here, if it is found that there was no vehicle one frame before, the process returns to step S1, but if there is a vehicle, it is determined that the vehicle has entered and the process proceeds to step S3, where the speed at the time of entry is reduced by the movement per frame. Calculate and acquire based on the number of pixels, and return to step S1.
- step S1 After the vehicle has been detected and its speed has been detected in this way, when the vehicle passes in front of the CCD camera, it is determined in step S1 that there is no motion vector above the threshold in the screen, and step S4 Move to Here, it is determined whether or not there is a vehicle one frame before.If there is no vehicle, the process returns to step S1.If there is, the process goes to step S6 after recognizing completion of the vehicle in step S5, and proceeds to step S6. The time from when the vehicle enters the vehicle image until the vehicle disappears The length of the vehicle is determined from the product of the speed at the time of approach.
- FIG. 26 is a flowchart of the second process for determining the vehicle length. This process is also started for each frame as in FIG. 25, and steps S1 and S2 are executed similarly.
- step S2 when it is determined that the vehicle is present one frame before, the speed at that time, that is, the movement amount for each frame is integrated in step S4. By this integration, the movement amount up to that point, that is, the length, is obtained for each frame. If it is determined in step S2 that there is no vehicle one frame before, it is determined that the vehicle is approaching as in step S3 in FIG. 25, the speed at that time is obtained, and the process returns to step S1.
- steps S5 and S6 which are the same processes as steps S4 and S5 in FIG. 25, are executed. That is, when it is determined in step S1 that there is no motion vector, the process proceeds to step S5, and if there is a vehicle one frame before, it is recognized that the vehicle has passed in step S6, and in step S7 The accumulated amount up to now is defined as the vehicle length. In the second process of FIG. 26, a relatively accurate vehicle length can be obtained, for example, even when the driver of the car applies a brake.
- step S1 in Figs. 25 and 26 when detecting the motion vector of the vehicle, the result of detecting the vector of a featureless place such as a door has low reliability. It is desirable to use only the peak of the contour whose difference from the peak of the large contour is equal to or larger than a predetermined value. If there is no feature point during the passage of the vehicle and a valid vector cannot be obtained, interpolation is performed using the values of the preceding and following frames or the average value. In addition, the length of the vehicle thus obtained can be actually obtained by using a conversion formula corresponding to the coordinates of the ground contact point.
- the monitoring device 10 of the present invention alone measures and records the type of passing vehicle by image processing, as shown in FIG.
- the monitoring device 10 is provided with a digital output connector 34 and a serial interface connector 36, the measurement results can be recorded and monitored remotely using these output units and the interface. You can also.
- the present invention is not limited to the above embodiment, and includes appropriate modifications that do not impair the objects and advantages thereof. Industrial applicability
- the present invention it is possible to continuously and accurately determine the type of a vehicle traveling on a road surface at an arbitrary road shoulder, and it is possible to collect vehicle type data without any person. Further, a vehicle type discrimination system using image processing can be realized.
- the camera image processing unit, vehicle type discrimination unit, and vehicle type recording unit are housed in a movable housing installed on the side of the road, making it easy to carry and install, and classifying and counting vehicle types at any location. Can be done unattended.
- the measurement data of the axis counter and weight meter installed at the same location can be taken and stored together with the discriminated vehicle type, and if necessary, an alarm can be issued when the weight data exceeds the specified value.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Traffic Control Systems (AREA)
- Image Processing (AREA)
- Image Analysis (AREA)
Abstract
Description
明 細 書 車両の監視方法及び装置 技術分野 Description Vehicle monitoring method and device
本発明は、車道脇に設置したカメラで撮像した映像を画像処理することに よって道路上を走行している車両の車種を判別する車両の監視方法及び装 置に関し、特に車両の動画像からタイヤ種別を経て車種を判別する車両の監 視方法及び装置に関する。 背景技術 The present invention relates to a method and apparatus for monitoring a vehicle that determines the type of a vehicle running on a road by performing image processing on an image captured by a camera installed on the side of a road, and particularly relates to a tire from a moving image of the vehicle. The present invention relates to a method and an apparatus for monitoring a vehicle for determining a vehicle type through a type. Background art
道路上を走行する車両についての統計資料を得ることは、 道路の運営管理、 交 通管理等を行う上で重要であり、 そのために一定期間 (例えば 2 4時間) に渡つ て任意の場所でどのような車両がいつ通過したかを連続的に計数して調査する作 業が行われている。 この場合、 人手による調査では長時間の作業による疲労や、 夜間における見分けが難しいといったことから、 ある程度の精度で車種 (大型の バスやトラック、 中型の貨物車、 小型車の区別) を識別して調査をすることが困 難であり、 これを自動化することが望まれている。 Obtaining statistical data on vehicles traveling on the road is important for the operation and management of roads, traffic management, and so on. Work is being conducted to continuously count and investigate what vehicles have passed when. In this case, manual surveys are used to identify the vehicle types (large buses and trucks, medium-sized freight vehicles, and small vehicles) with a certain degree of accuracy due to fatigue caused by long hours of work and difficulty in distinguishing at night. It is difficult to do this, and it is desired to automate this.
従来、 走行車両の種類を判別する装置としては、 例えばループ'ソニック 方式を採用した車種別交通量計測装置がある。 この装置は、 車両感知素子と して、 ループコイルと超音波へッドを併用する。 即ち、 超音波へッドによつ て車両の高さを計測し、ループコイルと超音波へッドの併用で車の長さを計 測し、 通過車両を分類する演算処理を行っている。 2. Description of the Related Art Conventionally, as a device for determining the type of a traveling vehicle, there is, for example, a vehicle type traffic volume measurement device employing a loop'sonic method. This device uses a loop coil and an ultrasonic head together as a vehicle sensing element. That is, the height of the vehicle is measured by the ultrasonic head, the length of the vehicle is measured by using the loop coil and the ultrasonic head together, and arithmetic processing is performed to classify passing vehicles. .
しかしながら、 ループ'ソニック方式を採用した従来装置にあっては、 ル ープアンテナを道路に埋め込む必要があるため、任意の場所に設置して例え ば一日の通過車種を計測するというような使い方ができない。そこで、現在、 任意の場所での通行車両を判別する計測は、人手によって行われているが、 2 4時間安定した精度で計数することは困難であり、更に別途計測した車重 データ等との結合もできないという問題がある。 発明の開示 However, conventional devices that use the loop sonic method require that the loop antenna be embedded in the road, so that it cannot be used anywhere, for example, to measure the number of vehicles passing a day. . Therefore, at present, measurements for discriminating vehicles passing through an arbitrary location are performed manually, but it is difficult to perform counting with stable accuracy for 24 hours. There is a problem that it cannot be combined. Disclosure of the invention
本発明に従えば、任意の場所に簡単に設置して通行する車種別データを無 人で収集する車両監視方法及び装置が提供される。 According to the present invention, there is provided a vehicle monitoring method and apparatus for collecting vehicle type data that is easily installed at an arbitrary location and that passes by unmanned.
本発明は、道路上を走行する車両の監視方法であって、車道脇に設置され る移動設置可能な筐体内に設けたカメラにより通行する車両を所定のフレ ーム周期で撮像し、カメラにより取得した映像を画像処理することで車輪の 直径と車両の全長を計測し、計測した車輪の直径と車両全長から車種を判別 して記録することを特徴とする。 このように車道脇に設置される移動設置 可能な筐体内に、 カメラ、 画像処理部、 車種判別部及び車種記録部を収める ことで、持ち運びと設置を容易にし、任意の場所で車種分類と集計が可能と なる。 The present invention relates to a method for monitoring a vehicle traveling on a road, wherein a camera provided in a movable and installable casing installed on the side of a roadway is imaged at a predetermined frame cycle by a camera and a camera is used. It is characterized by measuring the diameter of the wheels and the total length of the vehicle by performing image processing on the acquired video, and discriminating and recording the type of vehicle from the measured diameters of the wheels and the total length of the vehicle. In this way, the camera, image processing unit, vehicle type discrimination unit and vehicle type recording unit are housed in a movable housing that is installed on the side of the road, making it easy to carry and install. Is possible.
本発明の方法は、 通過する車両の軸数をカウントする軸数カウンタを道路 上に設置していた場合、車種判別された車両の通過中に軸数カウンタでカウ ントされた軸数を取込んで判別車種に合せて記録する。また本発明の方法は、 通過する車両の輪重を計測する輪重計を道路上に設置していた場合、車種判 別された車両の通過中に前記輪重計で計測された軸重を取込んで軸数、軸重 量及び総重量を求め、 輪重、 軸数、 軸重量及び総重量を判別車種に合わせて 記録することを特徴とする。 この場合、 判別車両の一輪当たりの重量、一軸 当たりの重量、または総重量が設定した値を越えた場合にアラームを発生す る。 このように本発明の方法は、 同時に道路上に設置している軸数カウン 夕や重量計の計測結果を、判別した車種に併せて記録することで、 車種デ一 タとそれ以外の重量データ等との結合が適切にできる。 According to the method of the present invention, when an axis number counter for counting the number of axes of a passing vehicle is installed on a road, the number of axes counted by the axis number counter is acquired during the passage of the vehicle whose vehicle type is determined. Record according to the discriminating vehicle type. Further, the method of the present invention, when a wheel load meter that measures the wheel load of a passing vehicle is installed on a road, the axle load measured by the wheel load meter during the passage of the vehicle whose vehicle type has been determined. The system is characterized in that the number of axles, axle weight, and gross weight are obtained and the wheel load, the number of axles, axle weight, and the gross weight are recorded according to the discriminated vehicle type. In this case, an alarm is generated when the weight per wheel, per axis, or total weight of the discriminated vehicle exceeds the set value. As described above, the method of the present invention records vehicle type data and other weight data by simultaneously recording the measurement results of the number of axes and the weighing scale installed on the road along with the determined vehicle type. Etc. can be properly combined.
本発明の車両監視装置は、車道脇に設置される移動設置可能な筐体内に、 通行する車両を所定のフレーム周期で撮像するカメラと、カメラにより取得 した映像を画像処理することで車輪の直径と車両の全長を計測する画像処 理部と、画像処理部で計測した車輪の直径と車両全長から車種を判別する車 種判別部と、車種判別部により判別した車種を記録する車種記録部とを備え たことを特徴とする。 本発明は、 道路上の走行車両のタイヤ種判別する車両監視方法を提供する。 こ のタイャ種判別ための方法は、 走行する自動車の側面を C C Dカメラで撮像した 動画像をフレ一ム毎に処理し、 画像中の多数の特徴点の移動により発生するべク トルにより車両を検出すると、 当該車両のタイヤ画像について、 予め用意した各 車種別の形状、 サイズに対応した各種別のタイヤの標準テンプレートとの相関演 算をすることによりずれの量が最も少ない標準テンプレートを検出すると、 当該 車両を前記検出された標準テンプレートを持つタイヤ種別の判別出力を発生する ことを特徵とする。 このように本発明は、 C C Dカメラで撮影した動画像から夕 ィャについて予めタイヤの標準テンプレートを用意してマッチングをとることに よりタイヤの直径 (タイヤの種別) を判別し、 車両の種別を識別できる。 また、 動画像の中の移動する車両の画像が存在する時間から車両の長さを識別すること で、 車両のタイヤと車長を合わせて車両の種別を識別できる。 The vehicle monitoring device of the present invention includes a camera that captures a passing vehicle at a predetermined frame period in a movable housing that is installed on the side of a road, and a wheel diameter that is obtained by performing image processing on an image obtained by the camera. An image processing unit that measures the overall length of the vehicle, a vehicle type determining unit that determines the vehicle type based on the wheel diameter measured by the image processing unit and the vehicle overall length, and a vehicle type recording unit that records the vehicle type determined by the vehicle type determining unit. It is characterized by having. The present invention provides a vehicle monitoring method for determining a tire type of a traveling vehicle on a road. This type of tire type discrimination method processes a moving image obtained by capturing the side of a running car with a CCD camera on a frame-by-frame basis, and uses a vector generated by the movement of many feature points in the image to control the vehicle. When a standard template with the least amount of deviation is detected by performing a correlation operation on the tire image of the vehicle and a standard template of various tires corresponding to the shape and size of each vehicle type prepared in advance, And generating a discrimination output of the tire type of the vehicle having the detected standard template. As described above, the present invention determines a tire diameter (type of tire) by preparing a standard template of a tire in advance from a moving image captured by a CCD camera and performing matching, thereby determining the type of vehicle. Can be identified. Also, by identifying the length of the vehicle from the time at which the image of the moving vehicle exists in the moving image, the type of the vehicle can be identified by combining the vehicle length with the tire of the vehicle.
ここでタイヤ種別の判別は、 タイヤの探査画像と、 標準テンプレートとを共に フィル夕をかけた後、 白画素から黒画素への変化点と逆の方向の変化点により夕 ィャの輪郭を比較することで、 タイヤ種別を判別する。 このフィルタとしてはラ ブラシアンフィルタを使用する。 またフィルタとしてソ一ベル等の輪郭抽出フィ ルタを使用しても良い。 In this case, the tire type is determined by filling the tire search image and the standard template together, and then comparing the outline of the tire with the change point in the direction opposite to the change point from white pixels to black pixels. By doing so, the tire type is determined. This filter uses a LaBrazian filter. Also, a contour extraction filter such as a Sobel may be used as a filter.
夜間等において撮像した画像のコントラストが低くて一定範囲の変化である場 合、 探査画像のコントラストが低い部分の度数分布について濃度の平坦化を行つ てタイヤ周辺等の暗い部分のコントラストを強調して、相関演算を行う。同様に、 夜間等において撮像した画像のコントラス卜が低い場合、 探査画像の暗部のコン トラストだけを強調するように濃度変換を行つて、 相関演算を行う。 If the contrast of the image captured at night or the like is low and changes within a certain range, the density distribution is flattened for the frequency distribution of the low-contrast part of the survey image to enhance the contrast of dark parts such as around the tire. And perform a correlation operation. Similarly, when the contrast of an image captured at night or the like is low, the density conversion is performed so as to emphasize only the contrast in the dark part of the search image, and the correlation operation is performed.
タイヤ種別を正確に判別するためには、 車両のタイヤ画像から接地点座標を求 めてタイヤの下半分の画像を切り出し、 これを上下反転してテンプレートを作成 して、 タイヤ画像の上端と相関をとることで探索画像のタイヤ種別を判別する。 本発明は、 道路上を走行する車両の監視方法であって、 走行する自動車の側面 を C C Dカメラで撮像した動画像をフレーム毎に処理し、 画像中の多数の特徴点 の移動により発生するべクトルにより車両を検出すると、 当該車両のタイヤ画像 について、 予め用意した各車種別の形状、 サイズに対応した各種別のタイヤの標 準テンプレートとの相関演算をすることによりずれの量が最も少ない標準テンプ レートを検出すると、 当該車両を前記検出された標準テンプレートを持つタイヤ 種別の判別出力を発生し、 撮像した動画像に車両が検出された時の車両の速度を フレーム間の移動距離に基づいて算出し、 車両が検出されてから車両の映像が消 えるまでの車両通過時間と前記車両の速度を用いて車長を求め、 求められた車長 とタイヤ種別の判別出力とを用いて車種を判別することを特徴とする。 ここで、 車両の動画像についてフレーム毎の移動量を積算し、 車両の画像がなくなるまで の積算値に基づいて車両の速度変化に対応してリアルタイムに車長を求め、 求め た車長とタイヤの種別結果とを用いて車種を判別する。 In order to accurately determine the tire type, the coordinates of the ground contact point are obtained from the tire image of the vehicle, the lower half image of the tire is cut out, and this is turned upside down to create a template, which is correlated with the upper end of the tire image. To determine the tire type of the search image. The present invention relates to a method for monitoring a vehicle traveling on a road, which process is performed on a frame-by-frame basis for a moving image obtained by imaging a side surface of a traveling automobile with a CCD camera, and is generated by moving a number of feature points in the image. When the vehicle is detected by the vehicle, the tire image of the vehicle is displayed on the tire image of the vehicle, and the tire markers of various types corresponding to the shape and size of each vehicle model prepared in advance. When a standard template with the smallest amount of deviation is detected by performing a correlation operation with the quasi template, a discrimination output of the tire type having the detected standard template is generated for the vehicle, and the vehicle is included in the captured moving image. The speed of the vehicle at the time of detection is calculated based on the distance traveled between frames, and the length of the vehicle is determined using the vehicle transit time from when the vehicle is detected until the image of the vehicle disappears and the speed of the vehicle, The vehicle type is determined using the determined vehicle length and the tire type determination output. Here, the moving amount of each frame of the moving image of the vehicle is integrated, and the vehicle length is calculated in real time in accordance with the speed change of the vehicle based on the integrated value until the image of the vehicle disappears. The vehicle type is determined using the result of the classification.
本発明は、 道路上を走行する車両の監視装置であって、 走行する自動車の側面 を撮像する C C Dカメラと、 各車種別の形状、 サイズに対応した各種別のタイヤ の標準テンプレ一トの格納部と、 C C Dカメラで撮像した動画像からフレーム毎 の画像中の多数の特徴点の移動により発生する動きべクトルから車両を検出し、 車両のタイヤの画像と、 前記格納部の標準テンプレートとのマッチングを取って タイヤ種別を判別するタイヤ判別部と、 撮像した動画像に車両が検出された時の 車両の速度をフレーム間の移動距離に基づいて算出する速度検出部と、 車両が検 出されてから車両の映像が消えるまでの車両通過時間と前記車両の速度を用いて 車長を求める車長判別部と、 タイヤ種別の判別出力と前記求められた車長とを用 いて車種を判別する車種判別部とを備えたことを特徴とする。 図面の簡単な説明 The present invention relates to a monitoring device for a vehicle traveling on a road, which stores a CCD camera that captures an image of a side surface of a traveling vehicle, and a standard template of various tires corresponding to the shape and size of each vehicle type. And detecting a vehicle from a motion vector generated by movement of a number of feature points in an image for each frame from a moving image captured by a CCD camera, and detecting an image of a tire of the vehicle and a standard template of the storage unit. A tire discriminator that determines a tire type by performing matching; a speed detector that calculates a speed of the vehicle when the vehicle is detected in the captured moving image based on a moving distance between frames; and a vehicle is detected. A vehicle length determining unit that obtains a vehicle length using the vehicle passing time from when the vehicle image disappears and the vehicle speed, and a vehicle type using the tire type determination output and the determined vehicle length. Characterized in that a vehicle type discriminator for. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の使用状態の説明図 ; FIG. 1 is an explanatory view of a use state of the present invention;
図 2は本発明の装置構成の説明図 ; Figure 2 is an explanatory view of the device configuration of the present invention;
図 3は図 2の画像処理ポードのブロック図; Figure 3 is a block diagram of the image processing pod of Figure 2;
図 4は画面中央に車両先頭が侵入してきた時の処理画像の説明図; 図 5は前輪直径の算出に使用する画面上下に位置に対するゲイン [m/ドッ ト] の特性図 ; Fig. 4 is an illustration of the processed image when the head of the vehicle enters the center of the screen; Fig. 5 is a characteristic diagram of the gain [m / dot] with respect to the position above and below the screen used for calculating the front wheel diameter;
図 6は画面中央を車両後端が通過した時の処理画像の説明図; Figure 6 is an illustration of the processed image when the vehicle rear edge passes through the center of the screen;
図 7は本発明による車種計測処理のフロ一チャート ; 図 8は軸数カウン夕の検出データを結合する本発明の他の実施形態の説明 図; FIG. 7 is a flowchart of the vehicle type measurement processing according to the present invention; FIG. 8 is a diagram for explaining another embodiment of the present invention in which detection data of the number of axes are combined;
図 9は図 8の実施形態における車種判別と軸数カウントデータの取込タイ ミングの説明図; FIG. 9 is an explanatory view of the discrimination of the vehicle type and the timing of taking in the number of axis count data in the embodiment of FIG.
図 1 0は図 8の実施形態で使用する画像処理ボードのブロック図 ; 図 1 1は図 8の実施形態による車種計測処理のフローチャート ; FIG. 10 is a block diagram of an image processing board used in the embodiment of FIG. 8; FIG. 11 is a flowchart of a vehicle type measurement process according to the embodiment of FIG. 8;
図 1 2は重量計の検出データを結合する本発明の他の実施形態の説明図 ; 図 1 4は図 1 2の実施形態における車種判別と車重デ一夕の取込タイミン グの説明図 ; FIG. 12 is an explanatory diagram of another embodiment of the present invention in which detection data of a weighing scale is combined; FIG. 14 is an explanatory diagram of vehicle type discrimination and a loading timing of vehicle weight data in the embodiment of FIG. ;
図 1 3は図 1 2の実施形態で使用する画像処理ポードのブ口ック図 ; 図 1 5は図 1 2の実施形態による車種計測処理のフローチャート ; 図 1 6は本発明によるタイヤ種別判別を行う画像処理部のブロック図; 図 1 7は車両進入シーンを含む画面を表す説明図; FIG. 13 is a block diagram of an image processing pod used in the embodiment of FIG. 12; FIG. 15 is a flowchart of a vehicle type measurement process according to the embodiment of FIG. 12; FIG. FIG. 17 is an explanatory diagram showing a screen including a vehicle approach scene;
図 1 8は車両画像の中のタイヤを判別する処理のフローチャート ; FIG. 18 is a flowchart of a process for determining a tire in a vehicle image;
図 1 9は標準テンプレートを用いたタイヤ検出の説明図; Figure 19 is an illustration of tire detection using a standard template;
図 2 0はフィルタ処理の説明図; FIG. 20 is an explanatory diagram of the filtering process;
図 2 1は画像のコントラストが低い場合のタイヤ判別処理のフロ一チャート; 図 2 2はタイヤ上端を正確に求めるための処理のフローチャート; FIG. 21 is a flowchart of a tire discrimination process when the contrast of an image is low; FIG. 22 is a flowchart of a process for accurately obtaining a tire upper end;
図 2 3はタイヤ上端を求める方法の具体例を示す説明図; FIG. 23 is an explanatory view showing a specific example of a method of obtaining the upper end of a tire;
図 2 4は本発明によるタイヤ種別と車長から車種を判別する画像処理部のプロッ ク図; FIG. 24 is a block diagram of an image processing unit for determining a vehicle type from a tire type and a vehicle length according to the present invention;
図 2 5は車両長さを判別する第 1処理のフローチャート; FIG. 25 is a flowchart of a first process for determining a vehicle length;
図 2 6は車両長さを判別する第 2処理のフロ一チャート; 発明を実施するための最良の形態 FIG. 26 is a flowchart of a second process for determining a vehicle length;
図 1は本発明による監視装置の設置状態の説明図である。図 1において、 本発明の監視装置 1 0は、車道 1 2の路肩 1 4に設置され、 内蔵したカメラ の視野 1 8が路面を見下ろすように設定する。このような監視装置 1 0の設 置状態で、 常に同じ条件で画像を取得できるようにするため、路肩 1 4から 例えば 2メートルと 3メートル離れた路面上に路肩 1 4と平行に 2本の白 線を引き、この路面に引いた 2本の白線が監視装置 1 0に設けているカメラ のモニタ上のマークと重なるように設置する。 FIG. 1 is an explanatory diagram of an installation state of a monitoring device according to the present invention. In FIG. 1, a monitoring device 10 of the present invention is installed on a road shoulder 14 of a roadway 12 and is set so that a field of view 18 of a built-in camera looks down on a road surface. In order to be able to always acquire images under the same conditions with such a monitoring device 10 installed, the roadside 14 must be For example, two white lines are drawn in parallel with the shoulder 14 on the road surface 2 meters and 3 meters away, and the two white lines drawn on the road surface are the marks on the camera monitor provided on the monitoring device 10 Install so that they overlap.
図 2は、 図 1の監視装置 1 0の内部構成の説明図である。 図 2において、 本発明の監視装置 1 0内にはモノクロ C C Dカメラ 2 0が設けられており、 モノクロ C C Dカメラ 2 0は超広角レンズ 2 2を使用することで、図 2のよ うに車道 1 2の車線の幅を十分にカバ一できるカメラ視野 1 8を確保して いる。また超広角レンズ 2 2の前には可視光力ットフィルタ 2 4が設けられ、 更に近赤外照明 2 6を備えている。このためモノク口 C C Dカメラ 2 0は、 可視光力ッ トフィルタ 2 4で可視光を力ッ卜した近赤外領域の波長の画像 を撮像することになる。 また監視装置 1 0には電源ュニット 2 8、画像処理 ポード 3 0、 液晶モニタ 3 2が設けられ、画像処理ボード 3 0に対してはデ ジ夕ル出力コネクタ 3 4とシリァルイン夕フエ一スコネクタ 3 6が設けら れている。 FIG. 2 is an explanatory diagram of the internal configuration of the monitoring device 10 of FIG. In FIG. 2, a monochromatic CCD camera 20 is provided in the monitoring device 10 of the present invention. The monochromatic CCD camera 20 uses an ultra-wide-angle lens 22 so that the roadway 12 as shown in FIG. The camera has a camera field of view 18 that can sufficiently cover the width of the lane. In addition, a visible light power filter 24 is provided in front of the ultra-wide-angle lens 22, and a near-infrared illumination 26 is further provided. For this reason, the monochrome aperture CCD camera 20 captures an image of a wavelength in the near infrared region in which visible light is reduced by the visible light filter 24. The monitoring device 10 is provided with a power supply unit 28, an image processing pod 30 and an LCD monitor 32. The image processing board 30 has a digital output connector 34 and a serial in connector. 36 are provided.
図 3は、図 2の監視装置 1 0に設けられた画像処理ポ一ド 3 0の回路構成 のブロック図である。 画像処理ポード 3 0には、 A D変換部 3 8、 画像処理 部 4 0、画像メモリ 4 2、 車種判別部 4 4及び車種記録部 4 6が設けられて いる。 A D変換部 3 8は、 図 2のモノクロ C C Dカメラ 2 0で撮像された近 赤外画像のアナログ画像信号をデジタル階調データに変換して、画像メモリ 4 2に所定のフレーム周期ごとにフレーム画像として記憶する。画像処理部 4 0はモノクロ C C Dカメラにより取得した映像を画像処理することで車 輪の直径 Dと車両の全長 Lを計測する。画像処理部 4 0で計測された車輪の 直径 Dと車両の全長 Lの計測結果は車種判別部 4 4に与えられ、予め定めた 所定値と比較することにより、 例えば普通乗用車、 小型トラック、 大型トラ ックといった車種を判別し、 判別結果を車種記録部 4 6に記録する。 FIG. 3 is a block diagram of a circuit configuration of the image processing port 30 provided in the monitoring device 10 of FIG. The image processing port 30 includes an AD converter 38, an image processor 40, an image memory 42, a vehicle type discriminator 44, and a vehicle type recorder 46. The AD converter 38 converts the analog image signal of the near-infrared image captured by the monochrome CCD camera 20 of FIG. 2 into digital gradation data, and stores it in the image memory 42 at predetermined frame periods. To be stored. The image processing unit 40 measures the diameter D of the wheel and the total length L of the vehicle by performing image processing on the image acquired by the monochrome CCD camera. The measurement results of the wheel diameter D and the total length L of the vehicle measured by the image processing unit 40 are given to the vehicle type discriminating unit 44 and compared with predetermined values, for example, for ordinary passenger cars, light trucks, and large vehicles. The vehicle type such as a truck is determined, and the determination result is recorded in the vehicle type recording unit 46.
次に図 3の画像処理部 4 0における車輪の直径 Dと車両の全長 Lを計測 する画像処理を説明する。 図 4は、車両の前輪の直径 Dを計測する処理画面 の説明図である。 この処理画面 4 8にあっては、画面中央に車両 5 0の先頭 Fが侵入してきた時の画像であり、この車両先頭 Fが画面中央に侵入してき た時に、 その時刻 T 1と処理画像 4 8を画像メモリ 4 2に記録する。処理画 像 4 8における前輪 5 2のタイヤ直径 Dの計測は、前輪 5 2の画面上での高 さ方向のドット数、 例えば Νドットに基づいてタイヤ直径 Dを計測する。 こ こで本発明の監視装置 1 0にあっては、図 1のように車道 1 2に対し路肩 1 4から路面を見下ろすようにカメラ視野 1 8を設定しているため、図 4の画 面上で画面の下ほど監視装置 1 0に距離が近く、画面の上に行くほど監視装 置 1 0からの距離が遠くなる。このため前輪 5 2のタイヤ直径 Dに対応する 高さ方向のドット数は、タイヤ直径 Dは変わらなくとも車両 5 0が手前に寄 るほどタイャが大きく映るのでドット数が多くなり、車両 5 0がセンタライ ン寄りに寄って奥に行くほどタイヤが小さく映るのでドッ ト数は少なくな る。 したがって、 この画面上での前輪 5 2の上下方向の位置によって 1 ドッ 卜辺りの実際の寸法を決める感度を変える必要がある。 Next, image processing for measuring the wheel diameter D and the total length L of the vehicle in the image processing unit 40 in FIG. 3 will be described. FIG. 4 is an explanatory diagram of a processing screen for measuring a diameter D of a front wheel of a vehicle. In the processing screen 48, this is an image when the leading F of the vehicle 50 enters the center of the screen, and the leading F of the vehicle enters the center of the screen. At that time, the time T 1 and the processed image 48 are recorded in the image memory 42. In the measurement of the tire diameter D of the front wheel 52 in the processed image 48, the tire diameter D is measured based on the number of dots in the height direction of the front wheel 52 on the screen, for example, Ν dot. Here, in the monitoring apparatus 10 of the present invention, the camera view 18 is set so that the roadway 12 looks down on the road surface from the shoulder 14 as shown in FIG. The lower the screen above, the closer the distance to the monitoring device 10, and the higher the position above the screen, the farther the distance from the monitoring device 10. For this reason, the number of dots in the height direction corresponding to the tire diameter D of the front wheels 52 increases even if the tire diameter D does not change. However, the closer to the centerline, the farther the tires appear, the smaller the number of dots. Therefore, it is necessary to change the sensitivity for determining the actual dimensions around one dot according to the vertical position of the front wheel 52 on this screen.
図 5は、図 4の処理画面 4 8における画像上辺から下方向へのドット数 i に対する 1 ドット当たりの実際の長さを示すゲイン G [m/ドッ卜] の関係 を示した特性図である。 この特性図から明らかなように、 上辺からのドット 数が少ないほど、即ち画面の上側に車輪があるほどゲイン Gが大きく、上辺 からのドット数が多くなると、即ち画面の下の方に車輪があるとゲイン Gは 小さくなる関係にある。 そこで図 4の処理画像 4 8にあっては、 例えば画 面上段から前輪 5 2の下端までのドット数を i ドットとすると、図 5のよう にドット数 iをプロットすることによってゲイン G i を求めることができ る。 このようにしてゲイン G iが求められたならば、 図 4の 理画像 4 8に おけるタイヤの高さを示す Nドットにゲインを掛けることで、タイヤ直径 D を FIG. 5 is a characteristic diagram showing a relationship between the number of dots i from the upper side of the image to the lower side on the processing screen 48 of FIG. 4 and a gain G [m / dot] indicating an actual length per dot with respect to the number of dots i. . As is clear from this characteristic diagram, the smaller the number of dots from the upper side, that is, the greater the number of dots from the upper side, that is, the greater the number of dots from the upper side, that is, the lower the number of dots from the upper side of the screen. In other words, the gain G becomes smaller. Therefore, in the processed image 48 of FIG. 4, for example, if the number of dots from the upper part of the screen to the lower end of the front wheel 52 is i, the gain G i is plotted by plotting the number i of dots as shown in FIG. You can ask. Once the gain G i is obtained in this way, the tire diameter D can be calculated by multiplying the gain by the N dot indicating the height of the tire in the theoretical image 48 in FIG.
D = G i X N D = G i X N
として算出することができる。この場合のゲイン G iは画像上端から前輪 5 2の下端までのドット数である i ドットから得ているが、タイヤは i ドット から ( i — N ) ドットの領域にあり、 この場合には例えば i ドット, ( i 一 N )ドットにおけるゲインの平均値を使用して Nドットをタイヤ直径 Dに変 換すれば、 より高い精度でタイヤ直径を求めることができる。 このようにし て車両先頭 Fが画面中央にきた時の画像から前輪 5 2のタイヤ直径 Dが算 出できたならば、 図 6のように、 その後、 車両が通過して車両後端 Rが処理 画像 4 8の中央を通過した時の時刻 T 2と画像を記憶し、図 4の時刻 T 1の 車両前部 Fの画像から図 6の処理画像 4 8における車両後端 Rの画像まで の車両通過中のフレームごとの車両の動きを積算して車長 Lを求める。この フレームごとの車両の動きの検出は、前フレームの画像から現フレームの画 像を差し引いて差分画像を求め、差分画像に現れた車両の走行方向の動きの 幅を示すドット数からフレームごとの車両の動きを検知して積算すればよ レ^ この場合のフレームごとの車両の動きを示す画素数についても、 画像上 辺からのドット数 iに対応して図 5のゲイン Gを求めて動き方向、即ち横方 向の画素数に乗算することで、 フレ一ムごとの車両の動き量が算出できる。 図 7は、図 3の画像処理ポ一ド 3 0による本発明の車種計測処理のフロー チャートである。 まずステップ S 1で、 図 4の処理画像 4 8に示したように、 車両先頭 Fが画面中央に侵入するか否かチェックしている。車両先頭 Fが画 面中央に侵入すると、 ステツプ S 2に進み、その時刻 T 1と画像を記録する。 続いてステップ S 3で記録画像から前輪 5 2の直径 Dを算出する。続いて ステップ S 4で、図 6の処理画像 4 8のように車両後端 Rが画面中央を通過 するか否かチェックしている。車両後端 Rが画面中央を通過するまではステ ップ S 5でフレーム画像を記録する。車両後端 Rが画面中央を通過するとス テツプ S 6に進み、その時刻 T 2と画像を記憶する。続いてステップ S 7で 車両通過中のフレームごとの動き量を積算して車長 Lを算出する。このよう にして通過車両の前輪の直径 D及び車長 Lが算出されたならば、ステップ S 8で前輪直径 Dと車長 Lから車種を判別する。 この実施形態にあっては、所 定の判別値を使用することでステップ S 9の普通乗用車、ステップ S 1 0の 普通トラック、あるいはステップ S 1 1の大型トラックを判別するようにし ている。ステップ S 9またはステップ S 1 1のいずれかの判別結果が得られ たならば、ステップ S 1 2で車種判別結果を記録して通過車両に対する車種 計測を終了する。続いてステップ S 1 3で停止指示の有無をチェックし、停 止指示がなければ再びステップ S 1に戻り、次の通過車両に対して同様な処 理を繰り返す。 Can be calculated as The gain G i in this case is obtained from i dots, which is the number of dots from the upper end of the image to the lower end of the front wheel 52, but the tire is in the region from i dot to (i—N) dots. In this case, for example, By converting the N dots to the tire diameter D using the average value of the gains of the i dot and (i-N) dots, the tire diameter can be obtained with higher accuracy. Like this If the tire diameter D of the front wheels 52 can be calculated from the image when the head F of the vehicle comes to the center of the screen, then the vehicle passes and the rear end R of the vehicle is processed as shown in Fig. 6. The time T2 and the image when passing through the center of the vehicle are stored, and the vehicle is traveling from the image of the front part F of the vehicle at the time T1 in FIG. 4 to the image of the vehicle rear end R in the processed image 48 in FIG. The vehicle length L is obtained by integrating the movement of the vehicle for each frame. To detect the movement of the vehicle in each frame, a difference image is obtained by subtracting the image of the current frame from the image of the previous frame, and the number of dots indicating the width of the movement in the traveling direction of the vehicle appearing in the difference image is determined for each frame. In this case, the number of pixels indicating the movement of the vehicle in each frame can be calculated by calculating the gain G in Fig. 5 corresponding to the number of dots i from the upper side of the image. By multiplying the direction, that is, the number of pixels in the horizontal direction, the amount of movement of the vehicle for each frame can be calculated. FIG. 7 is a flow chart of the vehicle type measurement processing of the present invention using the image processing port 30 of FIG. First, in step S1, it is checked whether or not the head F of the vehicle enters the center of the screen as shown in the processing image 48 of FIG. When the head F of the vehicle enters the center of the screen, the process proceeds to step S2, and the time T1 and the image are recorded. Subsequently, in step S3, the diameter D of the front wheel 52 is calculated from the recorded image. Subsequently, in step S4, it is checked whether or not the rear end R of the vehicle passes through the center of the screen as shown in a processed image 48 of FIG. Until the rear end R of the vehicle passes through the center of the screen, a frame image is recorded in step S5. When the rear end R of the vehicle passes through the center of the screen, the process proceeds to step S6, and the time T2 and the image are stored. Subsequently, in step S7, the vehicle length L is calculated by integrating the motion amount of each frame during the passage of the vehicle. After the front wheel diameter D and vehicle length L of the passing vehicle are calculated in this way, the type of vehicle is determined from the front wheel diameter D and vehicle length L in step S8. In this embodiment, a normal passenger car in step S9, a normal truck in step S10, or a large truck in step S11 is determined by using a predetermined determination value. If the determination result in step S9 or step S11 is obtained, the vehicle type determination result is recorded in step S12, and the vehicle type measurement for the passing vehicle is completed. Subsequently, in step S13, the presence or absence of a stop instruction is checked. If there is no stop instruction, the flow returns to step S1 again, and the same processing is performed for the next passing vehicle. Repeat the process.
図 8は、 本発明による監視装置の他の実施形態であり、 この実施形態にあ つては、本発明の監視装置 1 0に別途設置した軸数カウンタ 5 4の計測結果 を結合するようにしたことを特徴とする。 図 8において、道路の路肩には、 図 1に示したと同様にして本発明の監視装置 1 0が設置されている。この本 発明による監視装置 1 0に加え、この実施形態にあっては軸数カウンタ 5 4 を設置している。軸数カウンタ 5 4は車道 1 2に例えば感圧マツト 5 6を敷 設し、車両 1 7の左側の車輪が感圧マツト 5 6上を通るように設置している。 軸数カウンタ 5 4は感圧マツト 5 6を車輪が通過するごとに軸数カウント アップ入力を取り込んでカウンタをカウントアツプする。本発明の監視装置 1 0は、通過車両の車種を判別した際に車両通過中に軸数カウンタ 5 4で計 測した軸数カウントアップ入力を取り込むことで、車種判別を行つた通過車 両の軸数データを求めて、 車種データに併せて記録する。 FIG. 8 shows another embodiment of the monitoring device according to the present invention. In this embodiment, the measurement results of the axis number counter 54 separately installed in the monitoring device 10 of the present invention are combined. It is characterized by the following. In FIG. 8, a monitoring device 10 of the present invention is installed on the shoulder of the road in the same manner as shown in FIG. In this embodiment, in addition to the monitoring device 10 according to the present invention, an axis number counter 54 is provided. The number-of-axes counter 54 is provided with, for example, a pressure-sensitive mat 56 on the roadway 12, and is installed so that the left wheel of the vehicle 17 passes over the pressure-sensitive mat 56. The axis number counter 54 receives an axis number count-up input each time a wheel passes through the pressure-sensitive mat 56 and counts up the counter. The monitoring device 10 of the present invention, when determining the vehicle type of the passing vehicle, captures the axis count-up input measured by the axis counter 54 during the passage of the vehicle, so that the passing vehicle that has performed the vehicle type determination is obtained. Determine the number of axis data and record it along with the vehicle type data.
図 9は、図 8の監視装置 1 0における軸数カウンタ 5 4からのデータ取込 みのタイミングチヤ一トである。軸数カウンタ 5 4にあっては、感圧マツト FIG. 9 is a timing chart of data acquisition from the axis number counter 54 in the monitoring apparatus 10 of FIG. For the number of axes counter 54, the pressure-sensitive mat
5 6上を車両の車輪が通過するごとに、 軸数カウントアップ入力 5 8 a , 5 8 b, 5 8 cを得ている。 具体的には、 軸数カウントアップ入力 5 8 a〜 5 8 cとその入力時刻を記憶している。監視装置 1 0は車両 1 7の通過に対し、 カメラで取り込んだ画像を対象に車両先頭侵入時刻 T 1と車両後端通過時 刻 T 2を記録している。 したがって、軸数カウン夕 5 4から取り込んだ軸数 カウントアツプ入力 5 8 a〜5 8 cのうち、車両先頭侵入時刻 T 1から車両 後端通過時刻 T 2の間に存在する軸数カウントアップ入力 5 8 bと 5 8 c により通過車両の軸数が 2軸であることを検出し、判別車種のデータに結合 して記録する。 Each time the wheel of the vehicle passes on 56, the axis count-up input 58a, 58b, 58c is obtained. Specifically, the axis number count-up inputs 58a to 58c and the input times are stored. The monitoring device 10 records the vehicle entry time T1 and the vehicle rear end passage time T2 for the image captured by the camera when the vehicle 17 passes. Therefore, of the axis count-up input 58-58c taken from the axis count counter 54, the axis count-up input existing between the vehicle entry time T1 and the vehicle rear end time T2 Based on 58b and 58c, it detects that the number of passing vehicle axes is two, and combines and records the data for the discriminating vehicle type.
図 1 0は、図 8の実施形態の監視装置 1 0に設けている画像処理ボード 3 0のブロック図である。 この画像処理ポード 3 0にあっては、 図 3の画像処 理ボード 3 0に設けている A Z D変換部 3 8、 画像処理部 4 0、画像メモリ 4 2、 車種判別部 4 4及び車種記録部 4 6に加え、新たに軸数データ処理部 FIG. 10 is a block diagram of the image processing board 30 provided in the monitoring device 10 of the embodiment in FIG. In this image processing port 30, the AZD conversion section 38, image processing section 40, image memory 42, vehicle type discriminating section 44, and vehicle type recording section provided on the image processing board 30 of FIG. 4 In addition to 6, new axis number data processing section
6 0を設けている。軸数データ処理部 6 0は、車種判別部 4 4で通過車両の 車種判別が行われると、その時の軸数カウンタ 5 4からのカウント情報を取 り込み、図 9に示したように車両先頭侵入時刻 T 1から車両後端通過時刻 T 2の間に入力した軸数カウントアップ入力の数から通過車両の軸数を求め、 車種記録部 4 6に車種判別部 4 4による判別車種のデータと共に軸数デ一 夕を記録する。 60 is provided. The number-of-axes data processing unit 60 determines the type of passing vehicle When the vehicle type is determined, the count information from the number-of-axes counter 54 at that time is taken in, and as shown in FIG. 9, the axis input between the vehicle entry time T1 and the vehicle rear end passage time T2 is obtained. The number of axes of passing vehicles is obtained from the number of the number count-up inputs, and the number of axes data is recorded in the vehicle type recording section 46 together with the data of the discriminated vehicle type by the vehicle type discriminating section 44.
図 1 1は、図 8の軸数カウン夕 5 4のデータを結合する監視装置 1 0の処 理を示したフローチャートである。ステップ S 1の車種判別処理は図 7のス テツプ S 1〜S 1 2の処理内容を持ち、画像処理によって車種を判別して、 それを記録する。続いてステップ S 2で車両通過中にカウントされた軸数を 取り込み、 ステップ S 3で車種判別結果と計測した軸数を記録する。そして ステップ S 4で停止指示があるまで、 ステップ S 1からの処理を繰り返す。 図 1 2は、 本発明による監視装置の他の実施形態であり、 この実施形態に あっては、本発明の監視装置 1 0に別途設置した輪重計 6 2の車重デ一夕を 取り込んで結合するようにしたことを特徴とする。図 1 3の実施形態にあつ ては、本発明による監視装置 1 0の他に輪重計 6 2を別途設置している。輪 重計 6 2は車道 1 2を通過する車両 1 7の左側の車輪が通過する位置にシ —ト状の荷重センサ 6 4を設置し、通過車両の車輪が通った際の荷重センサ 6 4に加わる輪重を計測している。監視装置 1 0は通過車両の車種を判別す るごとに輪重計 6 2のデータを取り込み、 軸数、 輪重、 軸重、 総重量を求め て車種データと共に記録する。 FIG. 11 is a flowchart showing the processing of the monitoring apparatus 10 that combines the data of the axis number counter 54 of FIG. The vehicle type discriminating process in step S1 has the processing contents of steps S1 to S12 in FIG. 7, and the vehicle type is discriminated by image processing and recorded. Subsequently, in step S2, the number of axes counted while passing through the vehicle is fetched, and in step S3, the result of the vehicle type determination and the measured number of axes are recorded. Then, the processing from step S1 is repeated until a stop instruction is issued in step S4. FIG. 12 shows another embodiment of the monitoring device according to the present invention. In this embodiment, the vehicle weight data of the wheel load meter 62 separately installed in the monitoring device 10 of the present invention is taken. It is characterized by combining with. In the embodiment of FIG. 13, a weighing machine 62 is separately installed in addition to the monitoring device 10 according to the present invention. The weighing machine 6 2 is provided with a sheet-shaped load sensor 6 4 at a position where the left wheel of the vehicle 17 passing through the roadway 12 passes, and the load sensor 6 4 when the wheel of the passing vehicle passes. The wheel weight added to the is measured. Each time the monitoring device 10 determines the type of passing vehicle, the monitoring device 10 captures the data of the wheel load meter 62, obtains the number of axles, wheel loads, axle loads, and gross weight, and records the data together with the vehicle type data.
図 1 3は、図 1 2の監視装置 1 0による輪重計 6 2の車重データの取込み タイミングのタイムチャートである。輪重計 6 2にあっては、車道 1 2に設 置した加重センサ 6 4を車両の車輪が通過するごとに、車重デ一夕入力 6 8 a , 6 8 bを経て、 車両の 1輪当たりの重量である輪重を計測している。 監視装置 1 0は通過車両の車種を判別すると、輪重計 6 2の計測データを 取り込んで、車両の重量に関するデ一夕を求めて記録する。具体的には監視 装置 1 0にあっては、通過車両の画像処理によって図 1 3のタイミングチヤ ートのように車両先頭侵入時刻 T 1と車両後端通過時刻 T 2を計測してお り、この車両先頭侵入時刻 T 1と車両後端通過時刻 T 2の間に計測された車 重データ入力 6 8 b , 6 8 cを取り込み、 軸数、 軸重、 総重量を求める。 即 ち、 軸数は T 1〜T 2の間の車重データ入力 6 8 b, 6 8 cの数、 即ち軸数 2である。 また軸重は車両データ入力 6 8 b , 6 8 cによるそれぞれの輪重 を 2倍した FIG. 13 is a time chart of the timing of capturing the vehicle weight data of the wheel weighing machine 62 by the monitoring device 10 of FIG. In the wheel load meter 62, each time a vehicle wheel passes through the weight sensor 64 installed on the roadway 12, the vehicle weight data 6 The wheel weight, which is the weight per wheel, is measured. When the monitoring device 10 determines the type of the passing vehicle, the monitoring device 10 takes in the measurement data of the weighing machine 62 and obtains and records the data concerning the weight of the vehicle. Specifically, the monitoring device 10 measures the vehicle entry time T1 and the vehicle rear end time T2 as shown in the timing chart of Fig. 13 by image processing of passing vehicles. , The vehicle measured between the vehicle entry time T 1 and the vehicle rear end passage time T 2 Weight data input 6 8b and 6 8c are taken in, and the number of axes, axle weight, and total weight are calculated. That is, the number of axes is the number of vehicle weight data inputs 68b and 68c between T1 and T2, that is, the number of axes is 2. The axle weight was doubled for each wheel weight based on vehicle data input of 68b and 68c.
軸重 =輪重 X 2 Axle load = wheel load X 2
である。 更に車両の総重量は前輪軸重と後輪軸重を加算した It is. In addition, the total weight of the vehicle is the sum of the front wheel axle weight and the rear wheel axle weight
車両総重量 =前輪軸重+後輪軸重 Gross vehicle weight = front wheel axle weight + rear wheel axle weight
として求まる。更に図 1 2の実施形態の監視装置 1 0にあっては、 通過車両 の車種判別に伴って輪重計 6 2の取込みデータから検出した軸数、輪重、軸 重及び総重量のそれぞれについて予め定めた所定値と比較し、いずれかが所 定値を越えている場合には別途設置している警報装置 6 6に警報信号を出 力してアラームを出すようにしている。これによつて例えば積載オーバーと なる通過車両等に対しアラームを出して知らせることができる。 Is obtained as Further, in the monitoring device 10 of the embodiment of FIG. 12, the number of axles, wheel loads, axle loads, and gross weights detected from the data taken by the weighing machine 62 in accordance with the vehicle type discrimination of the passing vehicle are described. A comparison is made with a predetermined value, and if any of the values exceeds a predetermined value, an alarm signal is output to an alarm device 66 installed separately to generate an alarm. Thus, for example, an alarm can be issued to a passing vehicle or the like that is overloaded to notify the driver.
図 1 4は、図 1 2の実施形態における監視装置 1 0に設けた画像処理ポー ド 3 0のブロック図である。 この画像処理ポ一ド 3 0にあっては、 図 3の画 像処理ポード 3 0に設けている Aノ D変換部 3 8、 画像処理部 4 0、 画像メ モリ 4 2、車種判別部 4 4及び車種記録部 4 6に加え、車重データ処理部 7 0を設けている。車重データ処理部 7 0は車種判別部 4 4による通過車両の 車種を判別した際に、図 1 2の輪重計 6 2から図 3のタイミングチャートに 示したように車重データ入力を取り込み、車両先頭侵入時刻 T 1から車両後 端通過時刻 T 2の間の車重データ入力に基づき、 軸数、 輪重、 軸重、 総重量 を求めて、 車種記録部 4 6に、 そのとき判別した車種データに結合して記録 する。 また車両データ処理部 7 0にあっては、車重計の計測結果から求めた 軸数、 輪重、 軸重、 車両総重量をそれぞれ所定値と比較し、 所定値を越えた 場合には警報信号を出力してアラームを出させるようになる。 FIG. 14 is a block diagram of the image processing port 30 provided in the monitoring device 10 in the embodiment of FIG. In this image processing port 30, an A / D conversion section 38, an image processing section 40, an image memory 42, and a vehicle type discriminating section 4 provided in the image processing port 30 of FIG. 4 and a vehicle type recording unit 46, and a vehicle weight data processing unit 70 is provided. The vehicle weight data processing unit 70 captures the vehicle weight data input from the wheel load meter 62 in Fig. 12 as shown in the timing chart of Fig. 3 when the vehicle type discriminating unit 44 determines the vehicle type of the passing vehicle. The number of axles, wheel weights, axle weights, and gross weights are determined based on the vehicle weight data input between the time of entry T1 at the head of the vehicle and the time of passage T2 at the rear end of the vehicle. The data is combined with the vehicle type data recorded. In the vehicle data processing unit 70, the number of axles, wheel loads, axle loads, and gross vehicle weight obtained from the measurement results of the weighing scale are compared with predetermined values, and an alarm is issued if the values exceed the predetermined values. It will output a signal to trigger an alarm.
図 1 5は、図 1 2の実施形態における本発明の監視装置 1 0による処理の フローチャートである。ステップ S 1の車種判別処理は、 図 7に示したステ ップ S 1〜S 1 2の画像処理による車種判別と同じになる。この車種判別が 済むと、ステップ S 2で輪重計 6 2より車両通過中に計測されたデータを取 り込み、 軸数、 輪重、 軸重、 総重量を算出する。 続いてステップ S 3で軸数、 輪重、 軸重、 総重量のいずれかが所定値を越えているか否かチェックし、 も し越えている場合にはステップ S 4で警報信号を出力し、警報装置によりァ ラームを出す。続いてステップ S 5で停止指示がなければ、 再びステップ S 1に戻り、 同様な処理を繰り返す。 FIG. 15 is a flowchart of the processing by the monitoring apparatus 10 of the present invention in the embodiment of FIG. The vehicle type determination processing in step S1 is the same as the vehicle type determination by the image processing in steps S1 to S12 shown in FIG. After the vehicle type determination is completed, the data measured during the passage of the vehicle from the weighing machine 62 in step S2 is obtained. And calculate the number of axles, wheel loads, axle loads, and total weight. Subsequently, in step S3, it is checked whether any of the number of axles, wheel load, axle load, and gross weight exceeds a predetermined value, and if so, an alarm signal is output in step S4, An alarm is issued by an alarm. Subsequently, if there is no stop instruction in step S5, the process returns to step S1 again, and the same processing is repeated.
図 1 6は、 図 3の画像処理部による本発明のタイヤ種別判別のための処理機能 のブロック図である。 図 1 6において、画像処理部 4 0は、車両画像検出部 7 2、 タイヤ判別部 7 4、 標準テンプレート格納部 7 6を備える。 標準テンプレート格 納部 7 6には、 大型車、 中型車、 小型または普通車といった各車両の種別に対応 した直径をもつタイヤの標準テンプレートを格納している。 タイヤの直径は、 大 型は 1 0 0 O mm程度、 中型は 9 0 0 mm程度、 小型は 6 0 0 mm~ 7 0 0 mm であり、 これらにに比例したサイズとなる真横から標準レンズで撮像した画像を 用いたタイヤの標準テンプレートを格納している。 FIG. 16 is a block diagram of a processing function for the tire type determination of the present invention by the image processing unit in FIG. In FIG. 16, the image processing unit 40 includes a vehicle image detection unit 72, a tire determination unit 74, and a standard template storage unit 76. The standard template storage section 76 stores standard templates for tires having diameters corresponding to the types of vehicles such as large vehicles, medium vehicles, small vehicles and ordinary vehicles. The diameter of the tire is about 100 Omm for the large model, about 900 mm for the medium model, and about 600 mm to 700 mm for the small model. It stores a standard tire template using the captured image.
図 1及び図 2のように、 車道 1 2のそばの路肩 1 4に設置した監視装置 1 0に も受けている C C Dカメラ 2 0により車道を通過する車両を撮影して、 その動画 像を図 1 6の画像処理部 4 0に入力する。 ここで、 画像の中に移動する車両が入 ると、 車両画像検出部 7 2において撮影されるフレーム周期毎に特徴点の移動に よるベクトルの検出で車両として識別される。 これにより、 タイヤ判別部 7 4が 駆動され、 タイヤの標準テンプレート格納部 7 6から一つずつ標準テンプレート を取り出して車両画像の中のタイヤの画像とマッチングを取り、 不一致の度合い を検出し、 全ての標準テンプレートとのマッチングの結果、 最も不一致の度合い が少ない標準テンプレートを識別すると、その標準テンプレートのタイヤ種別(夕 ィャ直径) を取り出して出力する。 As shown in Figs. 1 and 2, a vehicle passing through the roadway is photographed by the CCD camera 20 which is also received by the monitoring device 10 installed on the shoulder 14 near the roadway 12 and a moving image is shown. Input to the image processing section 40 of 16. Here, when a moving vehicle is included in the image, the vehicle is detected as a vehicle by detecting a vector based on the movement of a feature point in each frame period captured by the vehicle image detecting unit 72. As a result, the tire discriminating unit 74 is driven, the standard templates are taken out one by one from the tire standard template storage unit 76, matched with the tire image in the vehicle image, and the degree of mismatch is detected. As a result of matching with the standard template, if the standard template with the least degree of mismatch is identified, the tire type (evening diameter) of the standard template is extracted and output.
図 1 7は車両進入シーンの車両画像を含むフレーム画像を表す。 C C Dカメラ 2 0により撮影されたフレーム画像 7 8は、 画像処理部 4 0において、 相関演算 等の処理が行われる。 フレーム画像 7 8に対しては、例えば 5 (横方向) X 6 (縦 方向) = 3 0個に分けられたこ小面積の相関演算エリア 8 0— 1 1〜8 0— 5 6 が形成される。 C C Dカメラ 2 0により撮影されるフレーム画像 7 8のフレーム 周期は 1 Z 3 0秒であり、 現フレームと 1フレ一ム前との画像を比較し、 その移 動量を求める。 車両の先頭が C C Dカメラ 2 0の撮影範囲内に進入してくると、 各相関演算結果から移動量、 即ち動きが検出され、 車両の進入を検知することが できる。 相関演算エリァ 8 0— 1 1〜 8 0— 5 6の内容はフレーム毎に相関演算 されて、 車の窓枠や、 ドア、 ミラ一、 タイヤ等車両の特徴点がフレーム毎に連続 して平行に移動するベクトルとして検出され、 これによつて車の進入を識別する ことができる。 車以外のゴミ等は、 相関演算により連続して広い範囲でベクトル を検出することができないため、 除外される。 FIG. 17 shows a frame image including a vehicle image of a vehicle approach scene. The frame image 78 taken by the CCD camera 20 is subjected to processing such as correlation calculation in the image processing unit 40. For the frame image 78, for example, a correlation operation area 80 0-11 to 80-56 of 5 (horizontal) x 6 (vertical) = 30 small areas is formed. . The frame period of the frame image 78 captured by the CCD camera 20 is 1Z30 seconds, and the current frame and the image of the previous frame are compared. Find the momentum. When the head of the vehicle enters the photographing range of the CCD camera 20, the movement amount, that is, the movement is detected from each correlation calculation result, and the vehicle entry can be detected. Correlation calculation area 80 0-11 to 8 0-56 The contents of the correlation calculation are performed for each frame, and the characteristic points of the vehicle, such as car window frames, doors, mirrors, and tires, are continuously parallel for each frame. It is detected as a vector that moves to the vehicle, and it is possible to identify the approach of the vehicle. Garbage other than cars is excluded because the vector cannot be detected continuously over a wide range by the correlation operation.
図 1 8は車両画像の中のタイヤを判別する処理のフローチャートである。 まず ステップ S 1で図 1 7のように入力したフレーム画像 7 8に設定している相関演 算エリア 8 0 - 1 1〜8 0— 5 6の画像について相関演算を行うことで車両画像 が取得される。 次にステップ S 2に進み、 車両画像のタイヤの画像について、 予 め用意され標準テンプレートとのマッチング率が所定値以上か判別する。 この場 合のマッチング率は、 車両画像のタイヤ画像 (探索画像) と標準テンプレートと の不一致する度合い (面積) が少ないことがマッチング率が高いことを表す。 こ のためマッチング率が所定値以上以上の場合は、 ステップ S 3でタイヤの大きさ (種別) が特定される。 マッチング率が所定値未満の場合は、 ステップ S 4で夕 ィャが検出されないと判断される。 FIG. 18 is a flowchart of a process for determining a tire in a vehicle image. First, in step S1, a vehicle image is obtained by performing a correlation operation on the image of the correlation calculation area 80-11 to 80-56 set in the frame image 78 input as shown in Fig. 17 Is done. Next, the process proceeds to step S2, where it is determined whether or not the matching ratio of the tire image of the vehicle image with the previously prepared standard template is equal to or greater than a predetermined value. In this case, the matching rate is high when the degree of mismatch (area) between the tire image (search image) of the vehicle image and the standard template is small. Therefore, if the matching ratio is equal to or greater than a predetermined value, the size (type) of the tire is specified in step S3. If the matching ratio is less than the predetermined value, it is determined in step S4 that no evening is detected.
図 1 9はタイヤ検出方法の説明図である。 図 1 9ではフレーム画像 7 8— 1 , 7 8 - 2 , 7 8— 3の順に変化しており、 車両が画面の右から左に移動している 様子を示し、 車両進入時から数フレーム分のフレーム画像を保存する。 保存した フレーム画像について、 予め用意した形とサイズで分類している複数の種別に対 応した標準テンプレートを使用してタイヤを探索する。 この車両の中のタイヤに 対して、 標準テンプレートとしてパターングループ 8 4に示すようなタイヤ及び ホイールの全部が黒画素で構成された円形のパターン 8 4— 1〜8 4— 3と、 パ ターングループ 8 6に示すような標準レンズにより撮影したタイヤである円形の 中央にホイールの白い画素が設けられたパターン 8 6— 1〜8 6— 3、 パターン グループ 8 8に示すように広角レンズにより撮影したタイヤである楕円形の中央 にホイールの白い画素が設けられたパターン 8 8— 1〜8 8— 3が準備される。 この例では 3つのパターンについて 3種類のサイズだけ示すが、 実際にはより多 くのパターンと多くのサイズが用意されている。 FIG. 19 is an explanatory diagram of a tire detection method. In Fig. 19, the frame images are changed in the order of 78-1, 78-2, and 78-3, showing that the vehicle is moving from right to left on the screen, several frames from the time of entering the vehicle. Save the frame image of. For the saved frame images, the tires are searched for using the standard templates corresponding to a plurality of types classified according to the shapes and sizes prepared in advance. For the tires in this vehicle, as a standard template, a circular pattern 841-1 to 84-3, in which all tires and wheels are composed of black pixels, as shown in pattern group 84, and a pattern group A pattern with a white pixel on the wheel at the center of the circle, which is a tire taken with a standard lens as shown in Figure 86, and a wide-angle lens as shown in Pattern Group 88 with a white pixel on the wheel. The patterns 88-1 to 88-3, in which the white pixel of the wheel is provided at the center of the oval shape of the tire, are prepared. This example shows only three sizes for three patterns, but in practice more Many patterns and many sizes are available.
図 1 9の例では、 フレーム画像 7 8— 3のタイヤ画像 7 5と標準テンプレート のパターン 8 4 - 1とのマッチングがとれたことを表す。 この標準テンプレート は実際のタイヤに対応しているため、 マッチングした標準テンプレートから画像 中のタイヤの直径を知ることができる。 ここで、画像座標から実寸法への変換は、 タイヤの接地点座標に応じて決められる変換式を用いる。 また、 標準テンプレ一 トは実際のタイヤ画像でも良いし、 ラプラシアン等のフィルタ処理後の画像でも よい。 すなわち、 画面上のタイヤの探査画像と標準テンプレートのタイヤの両方 に対してフィルタをかけることにより、 車の特徴を表す輪郭、 即ち白画素から黒 画素への変化とその逆の変化する輪郭に注目して処理するので、 画像の明るさ等 の影響を受けにくい。 また、 フィルタで輪郭をぼかすことでマッチングの可能性 を高めることができる。 In the example of FIG. 19, it is shown that the tire image 75 of the frame image 78-3 is matched with the pattern 84-1 of the standard template. Since this standard template corresponds to the actual tire, the diameter of the tire in the image can be known from the matched standard template. Here, the conversion from the image coordinates to the actual dimensions uses a conversion formula determined according to the coordinates of the ground contact point of the tire. Further, the standard template may be an actual tire image or an image after filtering such as Laplacian. In other words, by applying a filter to both the tire search image on the screen and the standard template tires, the contours that represent the characteristics of the car, that is, changes from white pixels to black pixels and vice versa, are noticed. Processing, so it is not easily affected by the brightness of the image. In addition, the possibility of matching can be increased by blurring the contour with a filter.
図 2 0はフィルタ処理の説明図である。図 2 0 (A)はタイヤ画像、図 2 0 ( B ) はタイヤ画像の中央の点を横に走査した時の画素の分布、 図 2 0 ( C ) はタイヤ 画像のラプラシアン変換の例であり、 輪郭線の境界を表す正 ·負の極性のピ一ク を持ち、白画素から黒画素への変化及び黒画素から白画素への変化を識別できる。 また図 2 0 (D) は、 タイヤ画像のソーベル変換の例であり、 輪郭を表すピーク だけ表わす。 夜間等における車両の判別を行う場合、 C C Dカメラにより撮影さ れた車両の画像にはコントラス卜が低く、 タイヤ周辺等の暗い部分の発生分布が 多い時に、 その画像濃度の分布を平坦化して暗い部分のコントラストを強調する 画像変換の処理を行い、 標準テンプレートとの相関演算を行う。 また、 夜間等の コントラストが低い場合に暗部のコントラストだけを強調するように暗部データ の拡張を行うようにして、 相関演算を行い画像中のタイヤを抽出するようにして も良い。 FIG. 20 is an explanatory diagram of the filtering process. Figure 20 (A) shows the tire image, Figure 20 (B) shows the pixel distribution when the center point of the tire image is scanned horizontally, and Figure 20 (C) shows an example of the Laplacian transform of the tire image. It has peaks of positive and negative polarities indicating the boundary of the contour line, and can identify a change from a white pixel to a black pixel and a change from a black pixel to a white pixel. FIG. 20 (D) shows an example of the Sobel transform of a tire image, in which only peaks representing contours are shown. When discriminating vehicles at night or the like, when the image of the vehicle captured by the CCD camera has low contrast and the occurrence distribution of dark areas such as around the tires is large, the image density distribution is flattened and darkened. Performs image conversion processing that emphasizes the contrast of the part, and performs correlation calculation with the standard template. Further, when the contrast is low at night or the like, the dark area data may be expanded so as to emphasize only the contrast of the dark area, and the tire in the image may be extracted by performing the correlation operation.
図 2 1は画像のコントラストが低い塲合のタイヤ判別処理のフロ一チャートで ある。 ステップ S 1で車両画像を取得すると、 ステップ S 2で画像のコントラス トが閾値以下か判別し、 閾値以下である場合はステップ S 3で画像の濃度の平坦 化処理または暗部データの拡張を行う。 続いて、 ステップ S 4で標準テンプレー トとのマッチング率は所定値以上か判別し、 所定値未満のときはステップ S 5で タイヤなしと判別し、 ステップ S Iに戻る。 ステップ S 4でマッチング率が所定 値以上の場合は、 その時の標準テンプレートからステップ S 6でタイヤの大きさ が特定される。 FIG. 21 is a flowchart of the tire discriminating process for the case where the contrast of the image is low. When a vehicle image is acquired in step S1, it is determined in step S2 whether the contrast of the image is equal to or less than a threshold. If the contrast is equal to or less than the threshold, flattening processing of image density or extension of dark area data is performed in step S3. Subsequently, in step S4, it is determined whether the matching rate with the standard template is equal to or greater than a predetermined value. Judge that there is no tire and return to step SI. If the matching ratio is equal to or larger than the predetermined value in step S4, the size of the tire is specified in step S6 from the standard template at that time.
このようなタイヤ判別処理を行う時、 タイヤの画像において車の種類または観 測する時間によって、 車のフェンダーとタイヤの上部の境界が明確でない場合が ある。 そのような場合に対応するため、 本発明では比較的に輪郭が明瞭に識別で きるタイヤの下半分の画像を利用して上半分のテンプレー卜を作成する方法を用 いる。 When performing such tire discrimination processing, the boundary between the fender of the car and the upper part of the tire may not be clear depending on the type of the car or the observation time in the tire image. In order to cope with such a case, the present invention uses a method of creating an upper half template using an image of a lower half of a tire whose contour can be relatively clearly identified.
図 2 2は、 タイヤ上端を正確に求める処理のフロ一チャートであり、 図 2 3は タイヤ上端を求める方法の具体例である。 なお、 図 2 3の画像 9 0は撮像された タイヤの全体を表し、 上半分が明確に示されている画、 実際にはフェンダーによ り輪郭が明確ではないものとする。 FIG. 22 is a flowchart of a process for accurately obtaining the upper end of the tire, and FIG. 23 is a specific example of a method for obtaining the upper end of the tire. Note that the image 90 in FIG. 23 represents the whole of the taken tire, in which the upper half is clearly shown, and the outline is actually not clear due to the fender.
まずステップ S 1で車両画像を取得し、 ステップ S 2で標準テンプレートとの マツチング率が所定値以上か判別する。マツチング率が所定値以上でない場合は、 ステップ S 3に進んでタイヤなしと判別し、 ステップ S 1に戻る。 マッチング率 が所定値以上の場合は、 ステップ S 4でタイヤの下端を発見する。 この場合、 夕 ィャの下端は道路の画素とタイヤ接地部分の画素の色の違いにより検出される。 図 2 3の例では上半分の画像 9 0 - 1と下半分の画像 9 0— 2で構成されるタイ ャ画像 9 0について下端側の下半分が検出され、 画像 9 0— 3として切り出され る。 次にステップ S 5でタイヤ下半分の画像を上下に反転してテンプレートを作 成する。 図 2 3の例では下半分の画像 9 0— 3を上下反転することで上下反転テ ンプレー卜 9 0— 4が得られる。 続いて、 ステップ S 6で上下反転テンプレート によってタイヤ上端を発見する。 この時、 図 2 3の例では、 上下反転テンプレ一 ト 9 0— 4と元のタイヤ画像 9 0の上半分の画像 9 0 - 1との間でマッチングが とられ、 所定値以上のマッチング率が得られると、 タイヤ上端を発見したことに なる。 この後、 ステップ S 7で発見された上端を持つタイヤ画像と各種タイヤの 標準テンプレートとのマッチングをとることでタイヤの大きさを特定する処理が 行われる。 First, a vehicle image is acquired in step S1, and it is determined in step S2 whether the matching ratio with the standard template is equal to or greater than a predetermined value. If the matching ratio is not equal to or more than the predetermined value, the process proceeds to step S3, where it is determined that there is no tire, and the process returns to step S1. If the matching ratio is equal to or more than the predetermined value, the lower end of the tire is found in step S4. In this case, the lower end of the evening is detected based on the difference in color between the pixels on the road and the pixels on the tire contact portion. In the example of Fig. 23, the lower half of the lower end side of the tile image 90 composed of the upper half image 90-1 and the lower half image 90-2 is detected and cut out as the image 90-3. You. Next, in step S5, the image of the lower half of the tire is turned upside down to create a template. In the example of FIG. 23, an upside down template 90-4 is obtained by inverting the lower half image 90-3. Subsequently, in step S6, the upper end of the tire is found using the upside down template. At this time, in the example of FIG. 23, matching is performed between the upside down template 90-4 and the upper half image 90-1 of the original tire image 90, and the matching ratio is equal to or higher than a predetermined value. Is obtained, it means that the upper end of the tire has been found. Thereafter, a process of specifying the size of the tire by matching the tire image having the upper end found in step S7 with the standard template of each tire is performed.
図 2 4は、 タイヤ判別に基づいて車長を検出し、 更にタイヤ種別と車長から車 種を判別する本発明における画像処理部の機能構成のブロック図である。 画像処 理部 4 0は、 図 1 6の車両画像検出部 7 2、 タイヤ判別部 7 4及び標準テンプレ 一ト格納部 7 6に加え、 新たに車長判別部 9 2と車種判別部 9 4を設けている。 Figure 24 shows the vehicle length detected based on the tire discrimination. FIG. 4 is a block diagram of a functional configuration of an image processing unit according to the present invention for determining a type. The image processing unit 40 includes a vehicle length detection unit 92 and a vehicle type determination unit 94 in addition to the vehicle image detection unit 72, the tire determination unit 74, and the standard template storage unit 76 shown in FIG. Is provided.
この実施形態は、 C C Dカメラ 2 0で撮像された動画像について車両画像検出 部 7 2でフレーム周期毎に特徴点の移動によるべクトルの検出で車両を識別した 際にタイヤ判別部 7 4が駆動され、 タイヤの標準テンプレート格納部 7 6から一 つずつ標準テンプレートを取り出して車両画像の中のタイャの画像とマッチング を取り、 不一致の度合いを検出し、 全ての標準テンプレートとのマッチングの結 果、 最も不一致の度合いが少ない標準テンプレートを識別することで、 その標準 テンプレートに対応するタイヤ直径 (種別) を識別結果として出力する。 この夕 ィャ直径の識別結果だけでは、 正確に車種が決まらない場合があり、 正確に車種 を判別するために車長判別部 9 2が駆動される。車長判別の原理には複数あるが、 その一つは車両の映像が検出されて画面内で移動する時の速度と車両が入ってか ら消えるまでの時間の積により求めることができる。 こうしてタイヤ直径 (タイ ャ種別)と車長の識別結果により車種判別部 9 4で車種を判別することができる。 次に車両の長さを判別する方法として、 原理が一部異なる 2つの方法があり、 それぞれの方法を実現する処理フローを図 2 5、 図 2 6を用いて説明する。 In this embodiment, the tire discriminating unit 74 is driven when the vehicle image is detected by the vehicle image detecting unit 72 for a moving image captured by the CCD camera 20 at each frame period by detecting a vector by moving a feature point. Then, the standard templates are taken out one by one from the tire standard template storage unit 76 and matched with the tire image in the vehicle image, the degree of mismatch is detected, and as a result of matching with all standard templates, By identifying the standard template with the least degree of mismatch, the tire diameter (type) corresponding to the standard template is output as the identification result. In some cases, the vehicle type cannot be accurately determined only by the discrimination result of the evening diameter, and the vehicle length determining unit 92 is driven to accurately determine the vehicle type. There are several principles of vehicle length discrimination, one of which can be determined by the product of the speed at which a video of a vehicle is detected and moving on the screen and the time from when the vehicle enters to when it disappears. Thus, the vehicle type can be determined by the vehicle type determining section 94 based on the identification result of the tire diameter (type of tire) and the vehicle length. Next, there are two methods for determining the length of the vehicle, some of which differ in principle. The processing flow for implementing each method will be described with reference to FIGS. 25 and 26.
図 2 5は車両長さを検出する第 1処理のフローチャートである。 この処理は、 画像の各フレーム毎に開始され、 ステップ S 1で最初に画面中に閾値以上の動き ベクトルがあるか判別し、 動きがある場合はステップ S 2に進んで 1フレーム前 に車が無かったか判別する。 ここで、 1フレーム前に車両が無かったこと分かる とステップ S 1に戻るが、 車両が有った場合は車両進入と判断してステップ S 3 に進み、 進入時の速度を 1フレーム当たりの移動ピクセル数に基づいて算出して 取得し、 ステップ S 1に戻る。 このように車両の進入が検出されてその速度を取 得した後、 車両が C C Dカメラの前を通過すると、 ステップ S 1において画面中 に閾値以上の動きべクトルが無いと判別され、ステップ S 4に移行する。 ここで、 1フレーム前に車両が有ったか判別し、 無い場合はステップ S 1に戻るが、 有つ た場合はステップ S 5で車両の通過完了を認識した後、 ステップ S 6に進み、 タ ィャ画像の車両進入時から車両が無くなるまでの時間とステップ S 3で取得して いる進入時の速度の積から車両の長さを求める。 FIG. 25 is a flowchart of a first process for detecting a vehicle length. This process is started for each frame of the image. In step S1, it is first determined whether or not there is a motion vector equal to or larger than the threshold in the screen. If there is motion, the process proceeds to step S2, and the car is moved one frame earlier. Determine if there is nothing. Here, if it is found that there was no vehicle one frame before, the process returns to step S1, but if there is a vehicle, it is determined that the vehicle has entered and the process proceeds to step S3, where the speed at the time of entry is reduced by the movement per frame. Calculate and acquire based on the number of pixels, and return to step S1. After the vehicle has been detected and its speed has been detected in this way, when the vehicle passes in front of the CCD camera, it is determined in step S1 that there is no motion vector above the threshold in the screen, and step S4 Move to Here, it is determined whether or not there is a vehicle one frame before.If there is no vehicle, the process returns to step S1.If there is, the process goes to step S6 after recognizing completion of the vehicle in step S5, and proceeds to step S6. The time from when the vehicle enters the vehicle image until the vehicle disappears The length of the vehicle is determined from the product of the speed at the time of approach.
図 2 6は車両長さを判別する第 2処理のフローチャートである。 この処理も図 2 5と同様にフレーム毎に開始され、 同様にステップ S l、 S 2が実行される。 ステップ S 2において、 1フレーム前に車が有ったと判別された場合、 ステップ S 4でその時の速度、 即ちフレーム毎の移動量を積算する。 この積算により各フ レーム毎にそれまでの移動量、 即ち長さが求められる。 ステップ S 2において、 1フレーム前に車両が無いと判別された場合、 図 2 5のステップ S 3と同様に車 両進入と判断して、 その時の速度を取得してステップ S 1に戻る。 またステップ S 1において、 画面中にしきい値以上の動きべクトルが無いと判別された場合、 図 2 5のステップ S 4、 S 5と同じ処理であるステップ S 5、 S 6が実行される。 即ち、 ステップ S 1で動きベクトルが無いことが判別された時、 ステップ S 5に 進んで 1フレーム前に車があった場合は、 ステップ S 6で車両の通過完了として 認識し、 ステップ S 7でこれまでの積算量を車長とする。 この図 2 6の第 2処理 は、 例えば車を運転する人がブレーキをかけたような場合にも比較的に正確な車 長を求めることができる。 FIG. 26 is a flowchart of the second process for determining the vehicle length. This process is also started for each frame as in FIG. 25, and steps S1 and S2 are executed similarly. In step S2, when it is determined that the vehicle is present one frame before, the speed at that time, that is, the movement amount for each frame is integrated in step S4. By this integration, the movement amount up to that point, that is, the length, is obtained for each frame. If it is determined in step S2 that there is no vehicle one frame before, it is determined that the vehicle is approaching as in step S3 in FIG. 25, the speed at that time is obtained, and the process returns to step S1. If it is determined in step S1 that there is no motion vector equal to or larger than the threshold value on the screen, steps S5 and S6, which are the same processes as steps S4 and S5 in FIG. 25, are executed. That is, when it is determined in step S1 that there is no motion vector, the process proceeds to step S5, and if there is a vehicle one frame before, it is recognized that the vehicle has passed in step S6, and in step S7 The accumulated amount up to now is defined as the vehicle length. In the second process of FIG. 26, a relatively accurate vehicle length can be obtained, for example, even when the driver of the car applies a brake.
なお、 図 2 5、 図 2 6のステップ S 1において、 車両の動きベクトルを検出す る時、 ドアのような特徴のない箇所のベクトルの検出結果では、 信頼性が低いた め、 2番目に大きい輪郭のピークとの差が所定値以上である輪郭のピークのみを 採用することが望ましい。 また、 車両通過中に特徴点が無く、 有効なベクトルが 得られなかった箇所については、 前後フレームの値もしくは平均値を用いて補間 する。 また、 求めた車長は、 接地点座標に応じた変換式を用いて実際に車両の長 さを求めることができる。 In step S1 in Figs. 25 and 26, when detecting the motion vector of the vehicle, the result of detecting the vector of a featureless place such as a door has low reliability. It is desirable to use only the peak of the contour whose difference from the peak of the large contour is equal to or larger than a predetermined value. If there is no feature point during the passage of the vehicle and a valid vector cannot be obtained, interpolation is performed using the values of the preceding and following frames or the average value. In addition, the length of the vehicle thus obtained can be actually obtained by using a conversion formula corresponding to the coordinates of the ground contact point.
尚、 上記の実施形態にあっては、 図 2のように、 本発明の監視装置 1 0単 独で通過車両の車種を画像処理により計測して記録しているが、図 2に示し たように、監視装置 1 0にはデジタル出力コネクタ 3 4やシリアルインタフ エースコネクタ 3 6が設けられていることから、これらの出力部やインタフ エースを使用して遠隔的に計測結果を記録したり監視することもできる。ま た本発明は上記の実施形態に限定されず、その目的と利点を損なわない適宜 の変形を含む。 産業上の利用の可能性 In the above embodiment, as shown in FIG. 2, the monitoring device 10 of the present invention alone measures and records the type of passing vehicle by image processing, as shown in FIG. In addition, since the monitoring device 10 is provided with a digital output connector 34 and a serial interface connector 36, the measurement results can be recorded and monitored remotely using these output units and the interface. You can also. In addition, the present invention is not limited to the above embodiment, and includes appropriate modifications that do not impair the objects and advantages thereof. Industrial applicability
このように本発明によれば、 路面上を走行する車両の車種を任意の路肩で連 続的に正確に判別することができ、 無人で車種別データを収集することが可能と なる。 また、 画像処理を用いた車種判別システムを実現することができる。 車道脇に設置される移動可能な筐体内にカメラ画像処理部、車種判別部及 び車種記録部を納めた構成とすることで、持ち運びと設置を容易にし、任意 の場所で車種の分類と集計が無人でできる。 As described above, according to the present invention, it is possible to continuously and accurately determine the type of a vehicle traveling on a road surface at an arbitrary road shoulder, and it is possible to collect vehicle type data without any person. Further, a vehicle type discrimination system using image processing can be realized. The camera image processing unit, vehicle type discrimination unit, and vehicle type recording unit are housed in a movable housing installed on the side of the road, making it easy to carry and install, and classifying and counting vehicle types at any location. Can be done unattended.
また同じ場所に設置した軸数カウンタや車重計の計測データを取り込ん で判別車種に併せて記憶することができ、更に必要があれば重量データが所 定値を越えた時にアラームを出すことができ、道路管理等に必要な通行車両 のより詳細なデ一タを無人で且つ正確に収集記録することができる。 Also, the measurement data of the axis counter and weight meter installed at the same location can be taken and stored together with the discriminated vehicle type, and if necessary, an alarm can be issued when the weight data exceeds the specified value. In addition, it is possible to collect and record more detailed data of passing vehicles required for road management and the like unmannedly and accurately.
Claims
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000394256A JP2002197588A (en) | 2000-12-26 | 2000-12-26 | Tire type determination method, vehicle type determination method, and vehicle type determination device for traveling vehicle |
| JP2000-394256 | 2000-12-26 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2002052523A1 true WO2002052523A1 (en) | 2002-07-04 |
Family
ID=18859910
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2001/008490 Ceased WO2002052523A1 (en) | 2000-12-26 | 2001-09-28 | Method and apparatus for monitoring vehicle |
Country Status (2)
| Country | Link |
|---|---|
| JP (1) | JP2002197588A (en) |
| WO (1) | WO2002052523A1 (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2903519A1 (en) * | 2006-07-07 | 2008-01-11 | Cs Systemes D Information Sa | Motor vehicle classification system for tariffication and collection of toll fee, has video camera for discriminating vehicles from images captured upstream of passage channel and transmitting output data of vehicles to computer |
| CN111127541A (en) * | 2018-10-12 | 2020-05-08 | 杭州海康威视数字技术股份有限公司 | Vehicle size determination method and device and storage medium |
| CN113808414A (en) * | 2021-09-13 | 2021-12-17 | 杭州海康威视系统技术有限公司 | Road load determination method, device and storage medium |
Families Citing this family (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4909217B2 (en) * | 2007-04-16 | 2012-04-04 | 本田技研工業株式会社 | Obstacle recognition device |
| JP2009222679A (en) * | 2008-03-18 | 2009-10-01 | Ono Sokki Co Ltd | Device and method for detecting vehicle position |
| JP5674716B2 (en) * | 2012-06-12 | 2015-02-25 | 株式会社京三製作所 | Vehicle detection device |
| KR101613667B1 (en) * | 2014-07-29 | 2016-04-19 | (주)뉴컨스텍 | Apparatus for classifyng vehicle type using -dimensional image camera |
| JP6447820B2 (en) * | 2015-03-12 | 2019-01-09 | 三菱重工機械システム株式会社 | Tire pattern determination device, vehicle type determination device, tire pattern determination method, and program |
| JP2016192177A (en) * | 2015-03-31 | 2016-11-10 | 株式会社デンソーアイティーラボラトリ | Vehicle detection system, vehicle detection device, vehicle detection method and vehicle detection program |
| KR101784635B1 (en) | 2016-11-22 | 2017-10-12 | 인하대학교 산학협력단 | METHOD AND SYSTEM FOR DETECTING MULTILINE VECHILE USING 2D LiDAR |
| JP6317004B1 (en) * | 2017-03-24 | 2018-04-25 | 東芝エレベータ株式会社 | Elevator system |
| JP6948358B2 (en) * | 2019-03-20 | 2021-10-13 | ヤフー株式会社 | Information processing equipment, information processing method, information processing program |
| JP7295785B2 (en) * | 2019-11-21 | 2023-06-21 | 株式会社小松製作所 | ROAD CONDITION MONITORING SYSTEM, WORK VEHICLE, ROAD CONDITION MONITORING METHOD AND PROGRAM |
Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH03260897A (en) * | 1990-03-12 | 1991-11-20 | Mitsubishi Heavy Ind Ltd | Car type discriminating device |
| JPH04366708A (en) * | 1991-06-14 | 1992-12-18 | Toshiba Corp | Car sort discriminating device |
| JPH10160555A (en) * | 1996-11-28 | 1998-06-19 | Takara Kizai:Kk | Transverse groove wit load sensor, and weight detecting system |
| JPH1131293A (en) * | 1997-05-14 | 1999-02-02 | Matsushita Electric Ind Co Ltd | Electronic imaging vehicle measuring device and road management system using the same |
| JPH11232467A (en) * | 1998-02-18 | 1999-08-27 | Aqueous Reserch:Kk | Branch recognition device and branch recognition method |
| JP2000099876A (en) * | 1998-09-24 | 2000-04-07 | Mitsubishi Electric Corp | Moving object measurement device |
| JP2000105898A (en) * | 1998-02-18 | 2000-04-11 | Equos Research Co Ltd | VEHICLE CONTROL DEVICE, VEHICLE CONTROL METHOD, AND COMPUTER-READABLE MEDIUM RECORDING PROGRAM FOR CAUSING COMPUTER TO EXECUTE VEHICLE CONTROL METHOD |
| JP2000293670A (en) * | 1999-04-08 | 2000-10-20 | Asia Air Survey Co Ltd | Method and apparatus for automatically recognizing road sign of video image and storage medium storing program for automatic recognition of road sign |
| JP2000306110A (en) * | 1998-04-21 | 2000-11-02 | Denso Corp | Image preprocessing device, lane mark recognition device, vehicle travel control device, and recording medium |
| JP2000322685A (en) * | 1999-05-07 | 2000-11-24 | Mitsubishi Electric Corp | License plate reader |
| JP2000335340A (en) * | 1999-05-24 | 2000-12-05 | Toyota Autom Loom Works Ltd | Vehicle backing support device |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH08233525A (en) * | 1995-02-24 | 1996-09-13 | Hitachi Ltd | Vehicle type identification device |
| JPH113492A (en) * | 1997-06-10 | 1999-01-06 | Mitsubishi Precision Co Ltd | Vehicle discriminating device |
-
2000
- 2000-12-26 JP JP2000394256A patent/JP2002197588A/en active Pending
-
2001
- 2001-09-28 WO PCT/JP2001/008490 patent/WO2002052523A1/en not_active Ceased
Patent Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH03260897A (en) * | 1990-03-12 | 1991-11-20 | Mitsubishi Heavy Ind Ltd | Car type discriminating device |
| JPH04366708A (en) * | 1991-06-14 | 1992-12-18 | Toshiba Corp | Car sort discriminating device |
| JPH10160555A (en) * | 1996-11-28 | 1998-06-19 | Takara Kizai:Kk | Transverse groove wit load sensor, and weight detecting system |
| JPH1131293A (en) * | 1997-05-14 | 1999-02-02 | Matsushita Electric Ind Co Ltd | Electronic imaging vehicle measuring device and road management system using the same |
| JPH11232467A (en) * | 1998-02-18 | 1999-08-27 | Aqueous Reserch:Kk | Branch recognition device and branch recognition method |
| JP2000105898A (en) * | 1998-02-18 | 2000-04-11 | Equos Research Co Ltd | VEHICLE CONTROL DEVICE, VEHICLE CONTROL METHOD, AND COMPUTER-READABLE MEDIUM RECORDING PROGRAM FOR CAUSING COMPUTER TO EXECUTE VEHICLE CONTROL METHOD |
| JP2000306110A (en) * | 1998-04-21 | 2000-11-02 | Denso Corp | Image preprocessing device, lane mark recognition device, vehicle travel control device, and recording medium |
| JP2000099876A (en) * | 1998-09-24 | 2000-04-07 | Mitsubishi Electric Corp | Moving object measurement device |
| JP2000293670A (en) * | 1999-04-08 | 2000-10-20 | Asia Air Survey Co Ltd | Method and apparatus for automatically recognizing road sign of video image and storage medium storing program for automatic recognition of road sign |
| JP2000322685A (en) * | 1999-05-07 | 2000-11-24 | Mitsubishi Electric Corp | License plate reader |
| JP2000335340A (en) * | 1999-05-24 | 2000-12-05 | Toyota Autom Loom Works Ltd | Vehicle backing support device |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2903519A1 (en) * | 2006-07-07 | 2008-01-11 | Cs Systemes D Information Sa | Motor vehicle classification system for tariffication and collection of toll fee, has video camera for discriminating vehicles from images captured upstream of passage channel and transmitting output data of vehicles to computer |
| CN111127541A (en) * | 2018-10-12 | 2020-05-08 | 杭州海康威视数字技术股份有限公司 | Vehicle size determination method and device and storage medium |
| CN111127541B (en) * | 2018-10-12 | 2024-02-27 | 杭州海康威视数字技术股份有限公司 | Vehicle size determination method, device and storage medium |
| CN113808414A (en) * | 2021-09-13 | 2021-12-17 | 杭州海康威视系统技术有限公司 | Road load determination method, device and storage medium |
| CN113808414B (en) * | 2021-09-13 | 2022-11-15 | 杭州海康威视系统技术有限公司 | Road load determination method, device and storage medium |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2002197588A (en) | 2002-07-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Zhang et al. | Video-based vehicle detection and classification system for real-time traffic data collection using uncalibrated video cameras | |
| CN102765365B (en) | Pedestrian detection method and pedestrian anti-collision warning system based on machine vision | |
| KR100459475B1 (en) | System and method for judge the kind of vehicle | |
| CN102737247B (en) | Identification system of smoke intensity image of tail gas of diesel vehicle | |
| US7046822B1 (en) | Method of detecting objects within a wide range of a road vehicle | |
| CN102956106B (en) | For identifying that motor vehicles are to monitor the method and apparatus of traffic | |
| US9070023B2 (en) | System and method of alerting a driver that visual perception of pedestrian may be difficult | |
| US10699567B2 (en) | Method of controlling a traffic surveillance system | |
| CN105702048B (en) | Highway front truck illegal road occupation identifying system based on automobile data recorder and method | |
| CN101016053A (en) | Warning method and system for preventing collision for vehicle on high standard highway | |
| WO2002052523A1 (en) | Method and apparatus for monitoring vehicle | |
| JP2016184316A (en) | Vehicle type determination device and vehicle type determination method | |
| CN104537649B (en) | A vehicle steering judgment method and system based on image ambiguity comparison | |
| Chen et al. | Real-time approaching vehicle detection in blind-spot area | |
| CN103116988A (en) | Traffic flow and vehicle type detecting method based on TOF (time of flight) camera | |
| CN108088799A (en) | The measuring method and system of motor-vehicle tail-gas lingemann blackness | |
| CN114219791B (en) | Vision-based road water detection method, electronic equipment and vehicle alarm system | |
| CN115331191A (en) | Vehicle type recognition method, device, system and storage medium | |
| JPH08233525A (en) | Vehicle type identification device | |
| JP3816747B2 (en) | Vehicle type discriminating apparatus, car type discriminating method, and storage medium storing computer readable program stored therein | |
| CN108198428A (en) | Lorry intercepting system and hold-up interception method | |
| CN101714264A (en) | Passive detection method and system of scales jump actions in highway charging and weighing | |
| CN112037536A (en) | Vehicle speed measuring method and device based on video feature recognition | |
| JPH0744689A (en) | Device for discriminating type of vehicle | |
| JP2004030484A (en) | Traffic information providing system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
| 122 | Ep: pct application non-entry in european phase |