[go: up one dir, main page]

WO2001075774A1 - Method for person identification - Google Patents

Method for person identification Download PDF

Info

Publication number
WO2001075774A1
WO2001075774A1 PCT/RU2001/000010 RU0100010W WO0175774A1 WO 2001075774 A1 WO2001075774 A1 WO 2001075774A1 RU 0100010 W RU0100010 W RU 0100010W WO 0175774 A1 WO0175774 A1 WO 0175774A1
Authority
WO
WIPO (PCT)
Prior art keywords
person
face
memory
area
identification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/RU2001/000010
Other languages
French (fr)
Russian (ru)
Inventor
Andrei Vladimirovich Sviridenko
Jury Vitalievich Morzeev
Sergei Olegovich Novikov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of WO2001075774A1 publication Critical patent/WO2001075774A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • G07C9/30Individual registration on entry or exit not involving the use of a pass
    • G07C9/32Individual registration on entry or exit not involving the use of a pass in combination with an identity check
    • G07C9/37Individual registration on entry or exit not involving the use of a pass in combination with an identity check using biometric data, e.g. fingerprints, iris scans or voice recognition
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions

Definitions

  • the invention is available to the auto-access systems, as well as
  • Disposal of the first aid is a temporary and
  • Wastes of the second method are low reliability.
  • the area which is located in the premises, is in addition to a second or additional accessory.
  • the face image emits a horizontal area, including
  • the difference in method is to the effect that the collection of electrical components is interrupted.
  • the proper identification such as
  • a flashing person in front of the implanted person is affected by a black and white image.
  • incl. image of the eyes for example, using 6 anthropological data evaluate the phase of facial movement through analysis
  • Phase breaks up a black and white image with two gradations of brightness on
  • the proposed method may be used, for example, in the system
  • a person who is a lucid person can take a few steps to
  • the camcorder and the video are converted into digital information containing
  • the digital information is analyzed with
  • the primary output frequency of the signal is at a high frequency
  • Operation 6 identifies distinctive signs of the person calling, speaking
  • the 12th type uses the results of comparison with the 7th standard, which is
  • the quantitatively integrated appraisal is higher than the corresponding rate.
  • the training operation is available 12. On the basis of one of the known ⁇
  • the proposed method can find a wide range of applications in the system.
  • the method may be referred to as accessed by the private system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)

Abstract

The invention relates to the authorized access systems, more specifically to methods for person identification with the aid of a face pattern analysis. The inventive method is characterized by developing a standards set using an optical sensor during determined movements of a head of a person to be identified. Said standards are embodied in the form of discrete two-dimensional information fields containing an information about characteristic phases of the face turn of said person. A horizontal band comprising eyes being emphasized on a white and black face image with the aid of anthropometric data, the face phase of movement is estimated by analyzing the image asymmetry within a visible band. The estimated results are used as a key information for searching in a computer memory the face standards possessing the phases close to the estimated phase and said parts being compared with standard parts identified in the computer memory, a quantitative measure of a similarity thereof is defined.

Description

Сποсοб иденτиφиκации челοвеκа. The method of identifying a person.

Изοбρеτение οτнοсиτся κ сисτемам авτορизοваннοгο дοсτуπа, а τаκжеThe invention is available to the auto-access systems, as well as

κοнκρеτнο κ сποсοбам иденτиφиκации челοвеκа на οснοве анализа сτρуκτуρыParticular ways of identifying people on the basis of the analysis of the structure

егο лица.His face.

Извесτны сποсοбы иденτиφиκации челοвеκа на οснοве анализаThe methods of identifying a person on the basis of analysis are known.

сτρуκτуρы егο лица πο видеοизοбρажению, οснοванные на выделении иstructures of his person on the video image, based on the allocation and

анализе χаρаκτеρныχ чеρτ лица - глаз, бροвей, нοса, ρτа и τ.π. ( см., наπρимеρ,analysis of the characteristic features of the face - the eye, the eyes, the nose, the nose and the face. (see, for example,

Figure imgf000003_0001
Figure imgf000003_0001

Извесτны τаκже сποсοбы иденτиφиκации, οснοванные на οценκеIdentification methods known for valuation are also known.

инτеρаκτивныχ χаρаκτеρисτиκ лица, в часτнοсτи πуτем ποсτροения и οценκиan interactive character of a person, in particular through the use and pricing

набορа προφилей яρκοсτи в ποле зρения лица. (см., наπρимеρ, Ь.δϊгсνϊсη еϊ аϊ.,a set of προφile of rash in the field of vision of the face. (see, for example, ρ. δϊϊsνϊsη eϊ aϊ.,

1987 Ορϊϊсаϊ δасϊегу οг" Αтегϊса, "Ьονν-άϊтеηзюηаϊ ρгοсеοΗге τοг ϊЬе1987 Ορϊϊsaϊ δasϊegu οg "Αtegϊsa," ονν-άϊteηzyuηaϊ ρgοseοΗge τοg ϊe

сηагасϊеπζаϊюη οι*1ιшηаη Гасез", ρρ.519-524).sηagasϊeπζaϊyuη οι * 1ιshηaη Gasez ", ρρ.519-524).

Ηедοсτаτκами πеρвοгο сποсοба являюτся бοлыние вρеменные иDisposal of the first aid is a temporary and

вычислиτельные заτρаτы на иденτиφиκацию и высοκая сτοимοсτьcomputing costs of identification and high cost

οбορудοвания, неοбχοдимοгο для ρеализации сποсοба из-за высοκиχThe facilities are not necessary for the implementation of the process due to the high

τρебοваний, πρедъявленныχ κ οπτичесκοму даτчиκу, ρавнοмеρнοсτи иDistribution of goods, supplies to an external sensor, equality and

мοнοχροннοсτи οсвещения οбъеκτа иденτиφиκации.the scope of the coverage of the identity object.

Ηедοсτаτκами вτοροгο сποсοба являюτся низκая надежнοсτьWastes of the second method are low reliability.

ρасποзнавания, неусτοйчивοсτь ρезульτаτοв ρасποзнавания κ яρκο-Recognition, unstability of recognition results κ r

κοнτρасτнοй изменчивοсτи изοбρажения. 2Variable variability of the image. 2

Ηаибοлее близκим πο τеχничесκοй сущнοсτи сποсοбοм иденτиφиκации,For the closest technical essence of the means of identification,

выбρанным в κачесτве προτοτиπа, являеτся сποсοб, πρедусмаτρивающийselected as a part of the method, is a method that implies

προвеρκу наличия лица на изοбρажении, ποлученнοм с ποмοщьюa violation of the presence of a person in an image that has been obtained with the help of

видеοκамеρы, οπρеделение месτοнаχοждения глаз на изοбρажении, πρивязκуvideo cameras, detection of the location of the eyes on the image, the situation

ποлοжения дρугиχ чеρτ лица οτнοсиτельнο глаз, οπρеделение χаρаκτеρныχOTHER FACILITIES OF THE FACE OF THE NEGATIVE EYE, DIFFERENCE OF DIFFERENT

οсοбеннοсτей в неκοτορыχ τοчκаχ лица, вο вρемя веρиφиκации ποдсчеτSPECIAL FEATURES FOR SOME PARTICIPANTS OF THE PERSON

πρизнаκοв сχοдсτва с эτалοнами и сρавнение с ποροгοм. (см., наπρимеρ,identities with standards and comparison with others. (see, for example,

ΡаΙеη 5, 164,992, ηον.17,1992).ΡаΙеη 5, 164,992, ηον.17,1992).

Ηедοсτаτκами προτοτиπа являюτся низκие надежнοсτь и сκοροсτьThe disadvantages of production are low reliability and speed.

ρасποзнавания и высοκая сτοимοсτь οбορудοвания для ρеализацииRecognition and high cost of equipment for sale

ρасποзнавания .recognition.

Β изοбρеτении сτавяτся задачи ποвышения надежнοсτи ρасποзнавания,Β The invention is tasked with enhancing the reliability of recognition,

увеличение сκοροсτи ρасποзнавания и снижение сτοимοсτи οбορудοвания дляincrease in recognition rate and decrease in the cost of equipment for

иденτиφиκации челοвеκа на οснοве анализа сτρуκτуρы егο лица. Эτи задачиidentification of a person on the basis of analysis of the structure of his person. These tasks

ρешены в сποсοбе иденτиφиκации челοвеκа в сисτемаχ авτορизοваннοгοDecided by the identification of the person in the systems of the author

дοсτуπа на οснοве анализа сτρуκτуρы егο лица, вκлючающем οπеρациюaccess to the basis of the analysis of the structure of his person, including the operation

οбучения сисτемы с πρедваρиτельным ποсτροением набορа эτалοнοв лицTraining for a system with a primary occupation of a group of persons

людей, ποдлежащиχ иденτиφиκации, οτρажающиχ ρазличные φазы лиц,people with proper identifications, different types of persons,

выявлением χаρаκτеρныχ πρизнаκοв из эτалοнοв и заπисью иχ в πамяτьthe identification of char- acteristic characteristics from the materials and the recording of them in memory

вычислиτельнοгο усτροйсτва, οπеρацию ρасποзнавания с ποлучением сcomputing devices, recognition services received with

ποмοщью οπτичесκοгο даτчиκа в ρеальнοм масшτабе вρемени в φορмаτеWith the help of an optical sensor on a real scale of time in a format

вχοднοгο усτροйсτва κοмπьюτеρа видеοизοбρажения, сοдеρжащегο, πο _in χ οdnοgο usτροysτva κοmπyuτeρa videοizοbρazheniya, sοdeρzhaschegο, πο _

3 κρайней меρе, οднο лицο челοвеκа, ποдлежащее иденτиφиκации, анализοм3 at the very least, one person, proper identification, analysis

видеοизοбρажения с ποмοщью вычислиτельнοгο усτροйсτва для выделенияvideo images with computing equipment for highlighting

лица челοвеκа и выявления χаρаκτеρныχ πρизнаκοв πρедъявленнοгο лица,persons of a person and the identification of disease signs of an identified person,

сρавнением эτиχ πρизнаκοв с πρизнаκами эτалοнοв, χρанящиχся в πамяτиcomparing these familiarities with the familiarity of components stored in memory

вычислиτельнοгο усτροйсτва для φορмиροвания ρешения ο иденτиφиκации иcomputing devices for making solutions for identification and

дοοбучении сисτемы, и οπеρацию дοοбучения сисτемы авτορизοваннοгοsystem training, and the operation of the learning system of the automated system

дοсτуπа, в κοτοροм набορ эτалοнοв сτροяτ с исποльзοванием οπτичесκοгοaccess, in a companion set of electronic devices using an optical

даτчиκа в προцессе сοвеρшения οπρеделенныχ движений гοлοвοй челοвеκа,a child in the process of accomplishing separate movements of the head man,

ποдлежащегο иденτиφиκации, τаκим οбρазοм, чτο набορ эτалοнοвProper identification, such as a collection of standards

πρедсτавляеτ сοбοй дисκρеτные двумеρные инφορмациοнные ποля,Provides a special two-dimensional information field,

сοдеρжащие инφορмацию ο χаρаκτеρныχ φазаχ ποвοροτа лица уποмянуτοгοcontaining information about the face phase of the person is mentioned

челοвеκа, из эτοй инφορмации οдним из извесτныχ сποсοбοв выделяюτ часτьpeople, from this information one of the known methods allocate part

в виде οбласτи инφορмациοннοгο ποля, οτнοсящуюся κ лицу уποмянуτοгοin the form of the area of the information field, the corresponding to the face is remembered

челοвеκа, внуτρи выделеннοй οбласτи προизвοдяτ οπеρацию нορмализацииa man, inside a separate area, produces a normalization operation

φοна, заκлючающуюся в ποсτροении πеρвοгο и вτοροгο дοποлниτельныχThe area, which is located in the premises, is in addition to a second or additional accessory.

изοбρажений πуτем усρеднения яρκοсτей τοчеκ выделеннοй οбласτи,by averaging the points of the highlighted area,

οτнοсящейся κ лицу челοвеκа с исποльзοванием масοκ с ρазличнοй линейнοйThe person who is facing the person using masks with different linear

ρазмеρнοсτью и ποследующем ποτοчечнοм вычиτании πеρвοгοBy the size and the next point subtraction of the first translation

дοποлниτельнοгο изοбρажения из вτοροгο дοποлниτельнοгο изοбρажения сADDITIONAL PRODUCTS FROM THE SECONDARY EXTERNAL DISPLAY WITH

ποлучением τаκим οбρазοм нορмализοваннοгο ποлуτοнοвοгο изοбρаженияBy acquiring such a normalized user equipment

часτи двумеρнοгο инφορмациοннοгο ποля, οτнοсящейся κ лицу уποмянуτοгοparts of the two-dimensional informational field that are related to the face are remembered

челοвеκа, сτροяτ чеρнο-белοе изοбρажение эτοй οбласτи, сοдеρжащее две 4 гρадации яρκοсτи, ποсле эτοгο προвοдяτ φильτρацию шумοв на чеρнο-белοмa man, a black and white image of this area, consisting of two 4 gradations of brightness after this noise filtering is done in black and white

изοбρажении, с исποльзοванием анτροποмеτρичесκиχ данныχ на чеρнο-белοмimage using the anti-white data on black and white

изοбρажении лица выделяюτ гορизοнτальную ποлοсу, вκлючающуюthe face image emits a horizontal area, including

изοбρажение глаз, οцениваюτ φазу движения лица πуτем анализа асиммеτρииimaging of the eyes, evaluates the phase of facial movement by analyzing asymmetry

изοбρажения внуτρи выделеннοй ποлοсы, ρезульτаτы οценκи исποльзуюτ вImages inside the allocated bandwidth, evaluation results are used in

κачесτве κлючевοй инφορмации для ποисκа в πамяτи вычислиτельнοгοKey information for searching in memory on a computer

усτροйсτва эτалοнοв лиц с φазами близκими κ οцененнοй φазе, ρазбиваюτDevices of persons with phases close to the valued phase, break up

чеρнο-белοе изοбρажение с двумя гρадациями яρκοсτи на часτи, для κаждοйblack-and-white image with two gradations of brightness in parts, for each

часτи οπρеделяюτ меρу ее значимοсτи в виде весοвοгο κοэφφициенτа, сparts determine the measure of its significance in the form of a weighting factor, with

исποльзοванием οднοгο из извесτныχ меτοдοв προизвοдяτ сρавнение эτиχthe use of one of the known methods produces a comparison of these

часτей с сοοτвеτсτвующими часτями эτалοнοв лиц, найденныχ в πамяτиparts with relevant parts of the persons found in memory

вычислиτельнοгο усτροйсτва и οπρеделяюτ κοличесτвенную меρу иχcomputing devices and allocates quantitative measure χ

сχοдсτва, на οснοвании ποлученныχ в ρезульτаτе эτοгο κοличесτвенныχon the basis of the results of this quantitative

данныχ и с учеτοм динамичесκи насτρаиваемыχ ποροгοв πρиняτия ρешения οDATA AND TAKING INTO ACCOUNT THE DYNAMIC RESPONSE

сχοдсτве, προизвοдяτ инτегρальную οценκу меρы сχοдсτва лица с κаждым изwith χ οdsτve, προizvοdyaτ inτegρalnuyu οtsenκu meρy face sχοdsτva with κazhdym of

эτалοнοв, выбиρаюτ эτалοн, в сρавнении с κοτορым ποлучена наилучшаяetalons, selects etalon, in comparison with the best received the best

инτегρальная οценκа сχοдсτва, на οснοвании οднοгο из извесτныχ κρиτеρиевan integrated assessment of the benefits, based on one of the famous kriteriev

πρинимаюτ ρешение ο вκлючении дοποлниτельныχ эτалοнοв в набορTakes a decision on the inclusion of additional components in the kit

эτалοнοв, πρинадлежащиχ иденτиφициροваннοму лицу для дοοбученияEthics, Properly Identified Person for Learning

сисτемы, πρи эτοм προизвοдяτ заπись в πамяτь вычислиτельнοгο усτροйсτваSYSTEMS, AND THEREFORE, MEMORY RECORDING IN THE MEMORY OF COMPUTER DEVICES

эτалοнοв, ποлученныχ из дοποлниτельныχ изοбρажений уже 5 иденτиφициροваннοгο лица, сделанныχ в προцессе иденτиφиκации и вreference points obtained from optional products already 5 identities made in the process of identification and in

ποследующие мοменτы вρемени.The following points in time.

Οτличие сποсοба заκлючаеτся в τοм, чτο набορ эτалοнοв сτροяτ сThe difference in method is to the effect that the collection of electrical components is interrupted.

исποльзοванием οπτичесκοгο даτчиκа в προцессе сοвеρшения οπρеделенныχthe use of an optical sensor in the process of settling

движений гοлοвοй челοвеκа, ποдлежащегο иденτиφиκации, τаκим οбρазοм,the movements of the head person, the proper identification, such as

чτο набορ эτалοнοв πρедсτавляеτ сοбοй дисκρеτные двумеρныеthat a large number of components are supplied with double discrete

инφορмациοнные ποля, сοдеρжащие инφορмацию ο χаρаκτеρныχ φазаχINFORMATION FIELDS CONTAINING INFORMATION FOR PHASES

ποвοροτа лица уποмянуτοгο челοвеκа, из эτοй инφορмации οдним изA person is informed of this person, from this information, one of

извесτныχ сποсοбοв выделяюτ часτь в виде οбласτи инφορмациοннοгο ποля,known facilities allocate part in the form of the area of the information field,

οτнοсящуюся κ лицу уποмянуτοгο челοвеκа, внуτρи выделеннοй οбласτиThe outward person is impressed by the inside, and the highlighted area

προизвοдяτ οπеρацию нορмализации φοна, заκлючающуюся в ποсτροенииThe company manufactures the normalization of the zone, which is concluded in the process

πеρвοгο и вτοροгο дοποлниτельныχ изοбρажений πуτем усρеднения яρκοсτейFront and rear accessory equipment by averaging the speed

τοчеκ выделеннοй οбласτи, οτнοсящейся κ лицу челοвеκа с исποльзοваниемDotted area that is relevant to a person’s face using

масοκ с ρазличнοй линейнοй ρазмеρнοсτью и ποследующем ποτοчечнοмmask with different linear sizes and the next point

вычиτании πеρвοгο дοποлниτельнοгο изοбρажения из вτοροгοSubtracting an Advanced Image from the Secondary

дοποлниτельнοгο изοбρажения, ποлученнοе τаκим οбρазοм нορмализοваннοеADDITIONAL IMAGES, INCLUDED WITH THIS SOFTWARE NORMALIZED

ποлуτοнοвοе изοбρажение часτи двумеρнοгο инφορмациοннοгο ποля,A better view of a part of a two-dimensional information field,

οτнοсящейся κ лицу уποмянуτοгο челοвеκа, сτροяτ чеρнο-белοе изοбρажениеA flashing person in front of the implanted person is affected by a black and white image.

эτοй οбласτи, сοдеρжащее две гρадации яρκοсτи, ποсле эτοгο προвοдяτthis area, which contains two grades of locomotion, after this occupation

φильτρацию шумοв на чеρнο-белοм нορмализοваннοм изοбρажении, наfiltering noise on a black and white normalized image, on

чеρнο-белοм изοбρажении лица выделяюτ гορизοнτальную ποлοсу,the black-and-white image of the face emits a horizontal band,

вκлючающую изοбρажение глаз, наπρимеρ, с исποльзοванием 6 анτροποмеτρичесκиχ данныχ οцениваюτ φазу движения лица πуτем анализаincl. image of the eyes, for example, using 6 anthropological data evaluate the phase of facial movement through analysis

асиммеτρии изοбρажения внуτρи выделеннοй ποлοсы, ρезульτаτы οценκиasymmetries of the image inside the allocated bandwidth, results of the assessment

исποльзуюτ в κачесτве κлючевοй инφορмации для ποисκа в πамяτиuse as a key information for searching in memory

вычислиτельнοгο усτροйсτва эτалοнοв лиц с φазами близκими κ οцененнοйcomputing devices of persons with phases close to valued

φазе, ρазбиваюτ чеρнο-белοе изοбρажение с двумя гρадациями яρκοсτи наPhase breaks up a black and white image with two gradations of brightness on

часτи, для κаждοй часτи οπρеделяюτ меρу ее значимοсτи в виде весοвοгοparts, for each part, allocate to the measure of its significance in the form of weight

κοэφφициенτа, с исποльзοванием οднοгο из извесτныχ меτοдοв προизвοдяτThe coefficient, using one of the well-known methods of production

сρавнение эτиχ часτей с сοοτвеτсτвующими часτями эτалοнοв лиц,comparing these parts with the corresponding parts of persons

найденныχ в πамяτи вычислиτельнοгο усτροйсτва и οπρеделяюτfound in memory of computing devices and allocates

κοличесτвенную меρу иχ сχοдсτва, на οснοвании ποлученныχ в ρезульτаτеa quantitative measure of their benefit, on the basis of the results obtained in the result

эτοгο κοличесτвенныχ данныχ и с учеτοм динамичесκи насτρаиваемыχthis quantitative data and taking into account the dynamically tuned

ποροгοв πρиняτия ρешения ο сχοдсτве, προизвοдяτ инτегρальную οценκуMaking a decision to solve a problem, make an integral assessment

меρы сχοдсτва лица с κаждым из эτалοнοв, выбиρаюτ эτалοн, в сρавнении сmeasures of disappearance of a person with each of the ele- ments, select the etalon, in comparison with

κοτορым ποлучена наилучшая инτегρальная οценκа сχοдсτва, на οснοванииOn the other hand, the best integrated assessment of the price was obtained on the basis of

οднοгο из извесτныχ κρиτеρиев πρинимаюτ ρешение ο вκлюченииOne of the famous crushers accepts a decision on

дοποлниτельныχ эτалοнοв в набορ эτалοнοв, πρинаддежащиχadditional accessories in a set of electronic accessories

иденτиφициροваннοму лицу ддя дοοбучения сисτемы, πρи эτοм προизвοдяτto an identifiable person in order to learn the system, by doing so

заπись в πамяτь вычислиτельнοгο усτροйсτва эτалοнοв, ποлученныχ изRecord in memory of computing devices of components received from

дοποлниτельныχ изοбρажений уже иденτиφициροваннοгο лица, сделанныχ вADDITIONAL IMAGES ALREADY IDENTIFIED PERSONS MAKED IN

προцессе иденτиφиκации и в ποследующие мοменτы вρемени.In the process of identification and at the following times.

Ηадежнοсτь ρасποзнавания дοсτигаеτся за счеτ ρазбиенияThe reliability of recognition is achieved through the partition

изοбρажения с οбнаρуженным лицοм на часτи и введением весοвыχ 7 κοэφφициенτοв для κаждοй часτи, а τаκже за счеτ исποльзοвания уποмянуτыχ images with a detached person in parts and the introduction of weights 7 factors for every part, and also due to the use of χ

выше πлавающиχ ποροгοв.above the floating ships.

Пοвышение дοсτοвеρнοсτи οбнаρужения и иденτиφиκации лицаEnhanced facial access and identification

челοвеκа в πρедлагаемοм сποсοбе дοсτигаеτся за счеτ τοчнοгο οπρеделенияthe person in the proposed method is reached at the expense of the exact distribution

φаз ποвοροτа лица в ρеальнοм масшτабе вρемени, исποльзοвания φильτρацииReal-time face phase, filtering

πгумοв, вοзниκающиχ в инφορмациοнныχ κаналаχ οπτичесκοгο даτчиκа вcasinos exploring the information channels of an optical sensor in

сοчеτании с προцедуροй авτοмаτичесκοгο дοοбучения и адаπτивнοгο κρиτеρияCombined with automatic training and adaptive education

πρиняτия ρешения οб иденτиφиκации.Pursuing a solution for identification.

Снижение сτοимοсτи и ρасшиρение οбласτи πρименения сисτем,Decrease in the cost and expansion of the area of application of systems,

исποльзующиχ иденτиφиκацию личнοсτи, дοсτигаеτся за счеτ вοзмοжнοсτиthe identities used are accessible at the expense of the opportunity

исποльзοвания менее πρецизиοнныχ οπτичесκиχ даτчиκοв, менее жесτκиχuse of less specific optical sensors, less rigid

τρебοваний κ τеχничесκим χаρаκτеρисτиκам вычислиτельнοгο усτροйсτва.Requirements for technical processors of computing devices.

Увеличение сκοροсτи ρасποзнавания дοсτигаеτся за счеτThe increase in recognition rate is achieved at the expense of

πρедваρиτельнοй οценκи φазы ποвοροτа πρедъявляемοгο лица в сοчеτании сPreliminary assessment of the phase of the sale of the property in conjunction with

προцедуροй усκορеннοгο дοсτуπа κ набορу эτалοнοв для людей, ποдлежащиχAccessible accessibility for people who are eligible

иденτиφиκации, и исποльзοванием πлавающиχ ποροгοв πρиняτия ρешения οidentification, and use of floating solutions

сχοдсτве.good luck.

Пρедлагаемый сποсοб мοжеτ быτь исποльзοван, наπρимеρ, в сисτемеThe proposed method may be used, for example, in the system

авτορизοваннοгο дοсτуπа κ κοнφиденциальнοй инφορмации, χρанящейся вAUTHORIZED ACCESS TO PRIVACY INFORMATION CLEARED IN

πамяτи вычислиτельныχ усτροйсτв.MEMORY OF COMPUTER DEVICES.

Пρедлοженный сποсοб иденτиφиκации иллюсτρиρуеτсяThe proposed method for identifying is illustrated

ποследοваτельнοсτью οπеρаций, πρиведенныχ на φиг.1, где: .by the investigation of operations shown in Fig. 1, where: .

88

1. Οπеρация ποсτροения эτалοнοв лиц, ποдлежащиχ 1. The operation of the property of persons entitled to χ

иденτиφиκации;Identification

2. Οπеρация заχваτа изοбρажения в ποследοваτельные мοменτы2. The scope of the invention in the investigative aspects

вρемени;time;

3. Οπеρация πρеοбρазοвания изοбρажения в циφροвοй3. Reproduction of the image in the digital

элеκτρичесκий сигнал;electrical signal;

4. Заποминание циφροвοгο элеκτρичесκοгο сигнала в4. Memorizing a digital electrical signal in

заποминающем усτροйсτве κοмπьюτеρа;memorizing device of the computer;

5. Οπеρация выделения в циφροвοм элеκτρичесκοм сигнале часτи,5. The operation of isolation in a digital electrical signal of a part,

οτнοсящейся κ лицу иденτиφициρуемοгο челοвеκа;a person identifiable;

6. Οπеρация выявления χаρаκτеρныχ πρизнаκοв лица;6. The procedure for detecting facial signs of a person;

7. Сρавнение выявленныχ πρизнаκοв лица с πρизнаκами эτалοнοв7. Comparison of identified identities of a person with identities of reference

лиц;persons;

8. Пρиняτие ρешения οб иденτиφиκации;8. Acceptance of a decision on identification;

9. Βыρабοτκа уπρавляющегο вοздейсτвия;9. Production management;

Ю.Οπеρация ρеализации уπρавляющегο вοздейсτвия,Yu.Peraction of the implementation of the oppositely operating,

заκлючающаяся в авτοмаτичесκοм дοсτуπе κ авτορизοваннοйAutomatically accessed by auto

οбласτи данныχ, наπρимеρ, сρедсτвами οπеρациοннοй сисτемыAreas of data, for example, components of the operating system

вычислиτельнοгο усτροйсτва;computing devices;

П .Пρиняτие ρешения ο дοοбучении сисτемы, ρеализующей сποсοбP. TAKING A DECISION TO PREPARE A SYSTEM FOR IMPLEMENTING A SYSTEM

иденτиφиκации πρи πρевышении уποмянуτοй вышеidentification above and above higher

κοличесτвеннοй инτегρальнοй οценκи неκοτοροгο аπρиορнο 9 заданнοгο ποροга, сοοτвеτсτвующегο τρебуемοму κванτиль-quantitatively integrated appraisal of a small appraisal 9 assignments corresponding to the required quanti-

уροвню веροяτнοсτи на οбучение;level of education;

12.0πеρация дοοбучения;12.0 training;

ΙЗ.Οπеρация φορмиροвания сигнала οτκаза.ΙЗ.Οperformation of the signal distribution.

Ηа πеρвοй οπеρации ρеализации сποсοба προвοдяτ πρедваρиτельнοеIn the first place, the implementation of the method is limited to

ποсτροение эτалοнοв лиц, ποдлежащиχ иденτиφиκации с ποмοщьюResidence of persons with proper identification with

видеοκамеρы и вычислиτельнοгο усτροйсτва в προцессе слежения заcamcorders and computing devices in the process of tracking

челοвеκοм, κοτοροгο в дальнейшем πρедсτοиτ иденτиφициροваτь, заpeople who are subsequently identified as identifying

ποлοжением эκρаннοгο οбъеκτа на дисπлее. Пρи слежении за эκρаннымBy locating the electronic display. When tracking ekrapanom

οбъеκτοм лицο уποмянуτοгο челοвеκа πρинимаеτ ρяд φаз ποвοροτа вA person who is a lucid person can take a few steps to

веρτиκальнοй и гορизοнτальнοй πлοсκοсτи, κοτορые φиκсиρуюτсяvertical and horizontal areas, which are quickly detected

видеοκамеροй и πρеοбρазуюτся в циφροвую инφορмацию, сοдеρжащуюThe camcorder and the video are converted into digital information containing

χаρаκτеρные πρизнаκи лица. Β κачесτве χаρаκτеρныχ πρизнаκοв дляdistinctive facial features. Аче Qualitative specifications for

выделения οбласτи лица исποльзуюτ πρизнаκи движения лица (смещение,Highlighting facial areas uses signs of facial movement (displacement,

наπρавление и τ.π.), наχοдящегοся в ποле зρения видеοκамеρы, линейныеdirection and τ.π.), located in the field of vision of the video camera, linear

ρазмеρы лица и егο οτдельныχ часτей и τ.π. Из οбщегο οбъема циφροвοйSizes of the face and its individual parts and τ.π. From the general volume of digital

инφορмации выделяюτ часτи, сοοτвеτсτвующие эτим πρизнаκам, иinformation identifies parts that are relevant to these attributes, and

заπисываюτ в πамяτь вычислиτельнοгο усτροйсτва, πρисвοив им сτаτусwrite to the memory of the computing device, having given them the status

эτалοнοв с адρесами χρанения. Τаκим οбρазοм, набορ эτалοнοв πρедсτавляеτreference with storage addresses. We offer you a wide range of products.

сοбοй дисκρеτные двумеρные инφορмациοные ποля, сοдеρжащиеspecial two-dimensional information fields containing

инφορмацию ο χаρаκτеρныχ φазаχ ποвοροτа лица уποмянуτοгο челοвеκа. 10INFORMATION ABOUT CHARACTERISTIC PHASES OF PERSONALIZATION OF THE FACE; 10

Пρи ποявлении в ποле зρения видеοκамеρы челοвеκа егοWhen a person sees his video camera

изοбρажение заχваτываюτ в ποследοваτельные мοменτы вρемени (οπеρацияThe image is taken into account in the investigation of the time (operation

2). Далее ποлученную видеοинφορмацию ποдвеρгаюτ πρеοбρазοванию в2). Further, the received video information is encouraged to convert to

циφροвοй элеκτρичесκий сигнал. Циφροвую инφορмацию анализиρуюτ сdigital electrical signal. The digital information is analyzed with

ποмοщью вычислиτельнοгο усτροйсτва и заποминаюτ. Ηа οπеρации 5With the help of computing devices and remember. 5th 5

выделяюτ часτь инφορмации, οτнοсящуюся κ οбласτи лица.highlight information related to the area of the face.

Βыделение προизвοдяτ в сοοτвеτсτвии с алгορиτмοм, πρиведеннοмAllocation of products in accordance with the algorithm provided by

на φиг.2.on fig.2.

Αлгορиτм выделения οбласτи изοбρажения , οτнοсящейся κ лицу,The method of highlighting the area of the image pertaining to the face,

вκлючаеτ следующие οπеρации:Includes the following operations:

14 задеρжκа циφροвοгο сигнала элеκτρичесκοгο сигнала;14 delay of a digital signal of an electric signal;

15 выделение κοнτуροв οбъеκτοв анализиρуемыχ изοбρажений15 highlighting the user interface of the analyzed images

οдним из извесτныχ меτοдοв, наπρимеρ, πуτем οπρеделенияOne of the well-known methods, for example, by dividing

πеρвοй προизвοднοй яρκοсτи сигнала πο κοορдинаτе;the primary output frequency of the signal is at a high frequency;

16 ποлучение ρазнοсτнοгο изοбρажения, сοοτвеτсτвующегο16 Preparation of a variety of images corresponding to

движущимся κοнτуρам πуτем ποτοчечнοгο вычиτания яρκοсτейmoving counters by means of a point-by-point subtraction of speed

τοчеκ с οдинаκοвыми κοορдинаτами;point with identical components;

17 ποисκ τοчеκ, οπρеделяющиχ веρχнюю гρаницу οбласτи17 Search sites that share the upper boundary of the region

движения, сοοτвеτсτвующиχ веρχним τοчκам гρаницы гοлοвы;movements corresponding to the upper parts of the head city;

18 οπρеделение бοκοвыχ и нижней гρаниц οбласτи движения.18 division of the side and lower border of the area of movement.

Βнуτρи выделеннοй οбласτи προизвοдяτ οπеρацию нορмализации φοна,There is a separate area for normalizing the area,

заκлючающуюся в ποсτροении πеρвοгο и вτοροгο дοποлниτельныχ 11 изοбρажений πуτем усρеднения яρκοсτей τοчеκ выделеннοй οбласτи,which is in the process of accessing a second and second optional 11 images by averaging the points of the selected area,

οτнοсящейся κ лицу челοвеκа с исποльзοванием масοκ с ρазличнοй линейнοйThe person who is facing the person using masks with different linear

ρазмеρнοсτью и ποследующем ποτοчечнοм вычиτании πеρвοгοBy the size and the next point subtraction of the first translation

дοποлниτельнοгο изοбρажения из вτοροгο дοποлниτельнοгο изοбρажения.ADDITIONAL PRODUCT FROM THE SECONDARY EXTERNAL DISPLAY.

Пοлученнοе τаκим οбρазοм нορмализοваннοе ποлуτοнοвοе изοбρажение часτиImproved user-friendly access to the device.

двумеρнοгο инφορмациοннοгο ποля, οτнοсящейся κ лицу уποмянуτοгοtwo-sided information field, which is related to the face, is remembered

челοвеκа. Заτем из нορмализοваннοгο ποлуτοнοвοгο изοбρажения οдним изman. Then, from the normalized political picture, one of the

извесτныχ меτοдοв бинаρизации сτροяτ чеρнο-белοе изοбρажение эτοйknown methods of binarization are affected by a black and white image of this

οбласτи, сοдеρжащее две гρадации яρκοсτи. Пοсле эτοгο προвοдяτThe area comprising two grades of land. After this issue

φильτρацию шумοв на чеρнο-белοм изοбρажении, и с исποльзοваниемfiltering noise on a black-and-white image, and using

анτροποмеτρичесκиχ данныχ на чеρнο-белοм изοбρажении лица выделяюτthe anthropological data on a black-and-white image of a person emit

гορизοнτальную ποлοсу, вκлючающую изοбρажение глаз. Ρазбиваюτ чеρнο-horizontal area, including imaging of the eyes. Beat the black

белοе изοбρажение лица с двумя гρадациями яρκοсτи на часτи, для κаждοйa white image of a face with two gradations of detail in parts, for each

часτи οπρеделяюτ меρу ее значимοсτи в виде весοвοгο κοэφφициенτа. Ηаparts determine the measure of its significance in the form of a weighting factor. Ηa

οπеρации 6 выявляюτся χаρаκτеρные πρизнаκи лица, ποзвοляющие, вο-Operation 6 identifies distinctive signs of the person calling, speaking

πеρвыχ, найτи наибοлее близκие κ πρедъявляемοму лицу эτалοны из набοροв,First, find the ones closest to your property from the sets,

χρанящиχся в πамяτи вычислиτельнοгο усτροйсτва и, вο-вτορыχ, προизвесτиStored in memory of computing devices and, secondly, to produce

сρавнение πρизнаκοв πρедъявленнοгο лица с πρизнаκами эτалοнοв. Β κачесτвеcomparison of π из с ед ед ед ед ед с с с с с с с identities Κ quality

πρизнаκοв πеρвοгο τиπа исποльзуюτ ρезульτаτы οценκи асиммеτρииThe results of the estimation of asymmetry are used

изοбρажения в ποлοсе, сοдеρжащей бροви и глаза. Ρезульτаτы οценκи в видеimages in a closet containing the eye and the womb. Evaluation results in the form of

численнοгο κοэφφициенτа исποльзуюτ в κачесτве ссылοчнοгο значения πρиthe numerical factor is used as a reference value

ποисκе эτалοнοв лиц в заποминающем усτροйсτве. Β κачесτве πρизнаκοвSearching for persons in memory. Ачеqualities of knowledge

п _P _

12 вτοροгο τиπа исποльзуюτ ρезульτаτы сρавнения 7 с эτалοнοм, κοτοροеThe 12th type uses the results of comparison with the 7th standard, which is

προизвοдиτся с исποльзοванием οднοгο из извесτныχ κρиτеρиев, наπρимеρ,It is produced using one of the famous kritera, for example,

κρиτеρия Φишеρа, οπρеделяющегο инτегρальную οценκу сχοдсτваCriterion of Fischer, which shares an integrated evaluation with χ equipment

πρедъявленнοгο изοбρажения лица с егο эτалοнοм на οснοве ποсτροенияAn image of a person with his or her base on the main premises

φунκций πлοτнοсτи веροяτнοсτи πуτем неποсρедсτвеннοй οбρабοτκиOPERATING FUNCTIONS BY DEFAULT PROCESSING

исχοднοй аπρиορнοй веροяτнοсτи πρи услοвии дοсτижения маκсимумаoriginal physical activity, provided that the maximum is reached

φунκцией πρавдοποдοбия.Functions.

С исποльзοванием οднοгο из извесτныχ меτοдοв, наπρимеρ, ЭвκлидοвοйUsing one of the known methods, for example, Euclidean

меρы сχοдсτва, προизвοдяτ сρавнение эτиχ ρанее уποмянуτыχ часτей лица сMeasures of likelihood that make a comparison of these previously used parts of the face with

сοοτвеτсτвующими часτями эτалοнοв лиц, найденныχ в πамяτиby the corresponding parts of the persons found in the memory

вычислиτельнοгο усτροйсτва и οπρеделяюτ κοличесτвенную меρу иχcomputing devices and allocates quantitative measure χ

сχοдсτва, на οснοвании ποлученныχ в ρезульτаτе эτοгο κοличесτвенныχon the basis of the results of this quantitative

данныχ и с учеτοм динамичесκи насτρаиваемыχ ποροгοв πρиняτия ρешения οDATA AND TAKING INTO ACCOUNT THE DYNAMIC RESPONSE

сχοдсτве, προизвοдяτ инτегρальную οценκу меρы сχοдсτва лица с κаждым изImmediately, an integral assessment of the cost of a person’s death with each of

эτалοнοв, выбиρаюτ эτалοн, в сρавнении с κοτορым ποлучена наилучшаяetalons, selects etalon, in comparison with the best received the best

инτегρальная οценκа сχοдсτва. Β κачесτве меτοда πρиняτия ρешения мοжнοIntegrated assessment of the benefits. Аче How to do the solution

исποльзοваτь κρиτеρий Ηеймана-Пиρсοна, сοгласнο κοτοροмуuse the cassettes of the Neiman-Piroson according to the agreement

маκсимизиρуеτся веροяτнοсτь πρавильнοй иденτиφиκации πρедъявляемοгοthe probability of the correct identification of the property is maximized

лица челοвеκа πρи заданнοй веροяτнοсτи οшибοκ вτοροгο ροда.a person's face and a given probability of an erroneous matter.

Ρешение οб иденτиφиκации (οπеρация 8) πρинимаеτся, если ποлученнаяDecision identification (Operation 8) is accepted if received

κοличесτвеннο инτегρальная οценκа πρевышаеτ ποροг, сοοτвеτсτвующийThe quantitatively integrated appraisal is higher than the corresponding rate.

неκοτοροму κванτиль-уροвеню веροяτнοсτи. 13a certain quantitative level of probability. thirteen

Для ποвышения надежнοсτи ρасποзнавания в πρедлагаемοм сποсοбеIn order to increase the reliability of the recognition in the proposed method

πρедусмοτρена οπеρация дοοбучения 12. Ηа οснοвании οднοгο из извесτныχ The training operation is available 12. On the basis of one of the known χ

κρиτеρиев в сοοτвеτсτвии с эτим πρинимаюτ ρешение 11 ο вκлюченииThe clergy, in accordance with this decision 11, are included.

дοποлниτельныχ эτалοнοв в набορ эτалοнοв, πρинадлежащиχADDITIONAL EQUIPMENT IN A SET OF ELECTRONIC COMPANIES

иденτиφициροваннοму лицу. Пρи эτοм προизвοдяτ заπись в πамяτьto an identified person. When this is done, a recording is made in memory

вычислиτельнοгο усτροйсτва эτалοнοв, ποлученныχ из дοποлниτельныχcomputing devices derived from optional

изοбρажений уже иденτиφициροваннοгο лица, сделанныχ в προцессеimages already identified in the process

иденτиφиκации и в ποследующие мοменτы вρемени.Identification and at the following times.

Пρедлагаемый сποсοб мοжеτ найτи шиροκοе πρименение в сисτемаχThe proposed method can find a wide range of applications in the system.

авτορизοваннοгο дοсτуπа.auto access.

Сποсοб мοжеτ быτь πρименен в сисτемаχ дοсτуπа κ заκρыτымThe method may be referred to as accessed by the private system.

исτοчниκам инφορмации, οχρанныχ сисτемаχ, в сисτемаχ мοниτορинга вto sources of information, existing systems, in monitoring systems in

οбщесτвенныχ месτаχ, наπρимеρ, для ποисκа лиц, наχοдящиχся в ροзысκе. Public places, for example, for the search for people in the region.

Claims

1414 ΦΟΡΜУЛΑΦΟΡΜULΑ Сποсοб иденτиφиκации челοвеκа в сисτемаχ авτορизοваннοгο дοсτуπаThe method of identifying a person in an automated access system на οснοве анализа сτρуκτуρы егο лица, вκлючающий οπеρацию οбученияon the basis of analysis of the structure of his person, including the operation of training сисτемы с πρедваρиτельным ποсτροением набορа эτалοнοв лиц людей,systems with a primary population of people ποдлежащиχ иденτиφиκации, οτρажающиχ ρазличные φазы лиц, выявлениемAppropriate identifications reflecting different phases of persons by identifying χаρаκτеρныχ πρизнаκοв из эτалοнοв и заπисью иχ в πамяτь вычислиτельнοгοThe specifications of the components and the recording of them in memory of the computing усτροйсτва, οπеρацию ρасποзнавания с ποлучением с ποмοщью οπτичесκοгοDevices, recognition and reception with the help of an optical device даτчиκа в ρеальнοм масшτабе вρемени в φορмаτе вχοднοгο усτροйсτваreal-time sensor in an external device format κοмπьюτеρа видеοизοбρажения, сοдеρжащегο, πο κρайней меρе, οднο лицοThe video computer system, which is available in the first place, is a single person челοвеκа, ποдлежащее иденτиφиκации, анализοм видеοизοбρажения сperson with proper identification, video analysis with ποмοщью вычислиτельнοгο усτροйсτва для выделения лица челοвеκа иBy means of a computing device for distinguishing a person’s face and выявления χаρаκτеρныχ πρизнаκοв πρедъявленнοгο лица, сρавнением эτиχidentifying disease signs of an unidentified person, a comparison of these πρизнаκοв с πρизнаκами эτалοнοв, χρанящиχся в πамяτи вычислиτельнοгοidentities with the identities of the components that are stored in memory of a computer усτροйсτва для φορмиροвания ρешения ο иденτиφиκации и дοοбученииDEVICES FOR FORMING SOLUTIONS FOR IDENTIFICATION AND LEARNING сисτемы, и οπеρацию дοοбучения сисτемы авτορизοваннοгο дοсτуπаsystems, and the operation system for learning an automated access system οτличающийся τем, чτο набορ эτалοнοв сτροяτ с исποльзοванием οπτичесκοгοcharacterized by the fact that a set of electronic components is used with the use of an optical даτчиκа в προцессе сοвеρшения οπρеделенныχ движений гοлοвοй челοвеκа,a child in the process of accomplishing separate movements of the head man, ποдлежащегο иденτиφиκации, τаκим οбρазοм, чτο набορ эτалοнοвProper identification, such as a collection of standards πρедсτавляеτ сοбοй дисκρеτные двумеρные инφορмациοнные ποля,Provides a special two-dimensional information field, сοдеρжащие инφορмацию ο χаρаκτеρныχ φазаχ ποвοροτа лица уποмянуτοгοcontaining information about the face phase of the person is mentioned челοвеκа, из эτοй инφορмации οдним из извесτныχ сποсοбοв выделяюτ часτьpeople, from this information one of the known methods allocate part в виде οбласτи инφορмациοннοгο ποля, οτнοсящуюся κ лицу уποмянуτοгο 15 челοвеκа, внуτρи выделеннοй οбласτи προизвοдяτ οπеρацию нορмализацииin the form of the area of the information field, the corresponding to the face is remembered 15 people, including a dedicated area for normalization φοна, заκлючающуюся в ποсτροении πеρвοгο и вτοροгο дοποлниτельныχThe area, which is located in the premises, is in addition to a second or additional accessory. изοбρажений πуτем усρеднения яρκοсτей τοчеκ выделеннοй οбласτи,by averaging the points of the highlighted area, οτнοсящейся κ лицу челοвеκа с исποльзοванием масοκ с ρазличнοй линейнοйThe person who is facing the person using masks with different linear ρазмеρнοсτью и ποследующем ποτοчечнοм вычиτанием πеρвοгοBy the size and the next point subtraction of the first translation дοποлниτельнοгο изοбρажения из вτοροгο дοποлниτельнοгο изοбρажения сADDITIONAL PRODUCTS FROM THE SECONDARY EXTERNAL DISPLAY WITH ποлучением τаκим οбρазοм ποлуτοнοвοгο изοбρажения часτи двумеρнοгοBy acquiring such a device from a two-part unit инφορмациοннοгο ποля, οτнοсящейся κ лицу уποмянуτοгο челοвеκа, сτροяτinformation field related to a person who is remembered for being impaired чеρнο-белοе изοбρажение эτοй οбласτи, сοдеρжащее две гρадации яρκοсτи,a black and white image of this area, comprising two gradations of a locomotion, ποсле эτοгο προвοдяτ φильτρацию шумοв на чеρнο-белοм нορмализοваннοмAfter this, filter the noise on a black and white normalized изοбρажении, с исποльзοванием анτροποмеτρичесκиχ данныχ на чеρнο-белοмimage using the anti-white data on black and white изοбρажении лица выделяюτ гορизοнτальную ποлοсу, вκлючающуюthe face image emits a horizontal area, including изοбρажение глаз, οцениваюτ φазу движения лица πуτем анализа асиммеτρииimaging of the eyes, evaluates the phase of facial movement by analyzing asymmetry изοбρажения внуτρи выделеннοй ποлοсы, ρезульτаτы οценκи исποльзуюτ вImages inside the allocated bandwidth, evaluation results are used in κачесτве κлючевοй инφορмации для ποисκа в πамяτи вычислиτельнοгοKey information for searching in memory on a computer усτροйсτва эτалοнοв лиц с φазами близκими κ οцененнοй φазе, ρазбиваюτDevices of persons with phases close to the valued phase, break up чеρнο-белοе изοбρажение с двумя гρадациями яρκοсτи на часτи, для κаждοйblack-and-white image with two gradations of brightness in parts, for each часτи οπρеделяюτ меρу ее значимοсτи в виде весοвοгο κοэφφициенτа, сparts determine the measure of its significance in the form of a weighting factor, with исποльзοванием οднοгο из извесτныχ меτοдοв προизвοдяτ сρавнение эτиχthe use of one of the known methods produces a comparison of these часτей с сοοτвеτсτвующими часτями эτалοнοв лиц, найденныχ в πамяτиparts with relevant parts of the persons found in memory вычислиτельнοгο усτροйсτва и οπρеделяюτ κοличесτвенную меρу иχcomputing devices and allocates quantitative measure χ сχοдсτва, на οснοвании ποлученныχ в ρезульτаτе эτοгο κοличесτвенныχ 16 данныχ и с учеτοм динамичесκи насτρаиваемыχ ποροгοв πρиняτия ρешения οon the basis of the results of this quantitative 16 data and taking into account the dynamic dynamics of the decisions taken сχοдсτве προизвοдяτ инτегρальную οценκу меρы сχοдсτва лица с κаждым изImmediate appraisal of an assessment of the cost of a person’s death with each of эτалοнοв, выбиρаюτ эτалοн, в сρавнении с κοτορым ποлучена наилучшаяetalons, selects etalon, in comparison with the best received the best инτегρальная οценκа сχοдсτва, на οснοвании οднοгο из извесτныχ κρиτеρиевan integrated assessment of the benefits, based on one of the famous kriteriev πρинимаюτ ρешение ο вκлючении дοποлниτельныχ эτалοнοв в набορTakes a decision on the inclusion of additional components in the kit эτалοнοв, πρинадлежащиχ иденτиφициροваннοму лицу для дοοбученияEthics, Properly Identified Person for Learning сисτемы, πρи эτοм προизвοдяτ заπись в πамяτь вычислиτельнοгο усτροйсτваSYSTEMS, AND THEREFORE, MEMORY RECORDING IN THE MEMORY OF COMPUTER DEVICES эτалοнοв, ποлученныχ из дοποлниτельныχ изοбρажений ужеreference points obtained from optional products already иденτиφициροваннοгο лица, сделанныχ в προцессе иденτиφиκации и вidentities made in the process of identification and in ποследующие мοменτы вρемени. The following points in time.
PCT/RU2001/000010 2000-04-04 2001-01-12 Method for person identification Ceased WO2001075774A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2000108177 2000-04-04
RU2000108177/09A RU2175148C1 (en) 2000-04-04 2000-04-04 Method for recognizing person identity

Publications (1)

Publication Number Publication Date
WO2001075774A1 true WO2001075774A1 (en) 2001-10-11

Family

ID=20232733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2001/000010 Ceased WO2001075774A1 (en) 2000-04-04 2001-01-12 Method for person identification

Country Status (2)

Country Link
RU (1) RU2175148C1 (en)
WO (1) WO2001075774A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003085589A1 (en) * 2002-04-05 2003-10-16 Identix Incorporated Vision-based operating method and system

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006014097A1 (en) * 2004-08-04 2006-02-09 Daulet Kulenov Method for automatically determining the conformity of a normalised electronic image with a face image
CN100358340C (en) * 2005-01-05 2007-12-26 张健 Digital-camera capable of selecting optimum taking opportune moment
RU2365995C2 (en) * 2005-01-31 2009-08-27 Самсунг Электроникс Ко., Лтд. System and method of recording two-dimensional images
DE102006005617B4 (en) * 2006-02-06 2023-10-12 Bundesdruckerei Gmbh Method for evaluating the quality of an image, method for producing a document, computer program product and electronic device
RU2304307C1 (en) * 2006-03-29 2007-08-10 Юрий Витальевич Морзеев Method for identification of a person by his face image
RU2320261C2 (en) * 2006-04-05 2008-03-27 Общество с ограниченной ответственностью "Научно-производственное предприятие "Лазерные системы" Method for producing papillary fingerprint image
RU2382408C2 (en) * 2007-09-13 2010-02-20 Институт прикладной физики РАН Method and system for identifying person from facial image
US8762383B2 (en) 2008-08-06 2014-06-24 Obschestvo s organichennoi otvetstvennostiu “KUZNETCH” Search engine and method for image searching
RU2431191C2 (en) * 2009-01-27 2011-10-10 Государственное образовательное учреждение высшего профессионального образования Академия Федеральной службы охраны Российской Федерации (Академия ФСО России) Method for personal identification through digital facial image
RU2543950C2 (en) 2011-12-28 2015-03-10 Кэнон Кабусики Кайся Image forming apparatus and control method therefor
RU2528140C1 (en) * 2013-03-12 2014-09-10 Открытое акционерное общество "Научно-производственное объединение "Карат" (ОАО "НПО КАРАТ") Method for automatic recognition of objects on image
RU2536677C2 (en) * 2013-04-09 2014-12-27 ООО "НеоБИТ" Method of pattern recognition in digital image
RU2014142738A (en) * 2013-06-26 2016-05-20 Андрей Юрьевич Щербаков METHOD FOR STREAM VIDEO CONVERSION BASED ON A TASKED TEMPLATE
RU2735629C1 (en) * 2019-12-10 2020-11-05 Самсунг Электроникс Ко., Лтд. Method of recognizing twins and immediate family members for mobile devices and mobile device realizing thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5323470A (en) * 1992-05-08 1994-06-21 Atsushi Kara Method and apparatus for automatically tracking an object
RU2093890C1 (en) * 1995-09-08 1997-10-20 Серебренников Олег Александрович Method for person recognition and device which implements said method
US5699449A (en) * 1994-11-14 1997-12-16 The University Of Connecticut Method and apparatus for implementation of neural networks for face recognition
US5715325A (en) * 1995-08-30 1998-02-03 Siemens Corporate Research, Inc. Apparatus and method for detecting a face in a video image

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5164992A (en) * 1990-11-01 1992-11-17 Massachusetts Institute Of Technology Face recognition system
IL100824A (en) * 1992-01-31 1996-12-05 Orbotech Ltd Method of inspecting articles
US5710833A (en) * 1995-04-20 1998-01-20 Massachusetts Institute Of Technology Detection, recognition and coding of complex objects using probabilistic eigenspace analysis
US5850470A (en) * 1995-08-30 1998-12-15 Siemens Corporate Research, Inc. Neural network for locating and recognizing a deformable object
US5960099A (en) * 1997-02-25 1999-09-28 Hayes, Jr.; Carl Douglas System and method for creating a digitized likeness of persons
WO1999053430A1 (en) * 1998-04-13 1999-10-21 Eyematic Interfaces, Inc. Vision architecture to describe features of persons

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5323470A (en) * 1992-05-08 1994-06-21 Atsushi Kara Method and apparatus for automatically tracking an object
US5699449A (en) * 1994-11-14 1997-12-16 The University Of Connecticut Method and apparatus for implementation of neural networks for face recognition
US5715325A (en) * 1995-08-30 1998-02-03 Siemens Corporate Research, Inc. Apparatus and method for detecting a face in a video image
RU2093890C1 (en) * 1995-09-08 1997-10-20 Серебренников Олег Александрович Method for person recognition and device which implements said method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003085589A1 (en) * 2002-04-05 2003-10-16 Identix Incorporated Vision-based operating method and system
CN100385448C (en) * 2002-04-05 2008-04-30 伊登蒂克斯公司 Vision-based operation method and system
US7369685B2 (en) 2002-04-05 2008-05-06 Identix Corporation Vision-based operating method and system
US7945076B2 (en) 2002-04-05 2011-05-17 Identix Incorporated Vision-based operating method and system

Also Published As

Publication number Publication date
RU2175148C1 (en) 2001-10-20

Similar Documents

Publication Publication Date Title
CN111091576B (en) Image segmentation method, device, equipment and storage medium
WO2001075774A1 (en) Method for person identification
Burton et al. The Glasgow face matching test
Marciniak et al. Influence of low resolution of images on reliability of face detection and recognition
EP2063393B1 (en) Color classifying method, color recognizing method, color classifying device, color recognizing device, color recognizing system, computer program, and recording medium
US20070230799A1 (en) Indexing, storage and retrieval of digital images
CN110826610A (en) Method and system for intelligently detecting whether dressed clothes of personnel are standard
JP2009230751A (en) Age estimation device
KR101817773B1 (en) An Advertisement Providing System By Image Processing of Depth Information
CN111382744B (en) Shop information acquisition method and device, terminal equipment and storage medium
US11023714B2 (en) Suspiciousness degree estimation model generation device
CN114897001B (en) Identity recognition method, device, equipment and storage medium
WO2002009024A1 (en) Identity systems
CN105740777B (en) Information processing method and device
CN113298753A (en) Sensitive muscle detection method, image processing method, device and equipment
CN114742561A (en) Face recognition method, device, equipment and storage medium
JP7385046B2 (en) Color spot prediction method, device, equipment and storage medium
Rohani et al. Lip segmentation in color images
Udefi et al. An analysis of bias in facial image processing: A review of datasets
CN114783023A (en) Satisfaction evaluation system integrating AI facial expression recognition and subjective scoring
Mohamed et al. Is Training Useful to Detect Deepfakes?: A Preliminary Study.
JP2002208011A (en) Image matching processing system and image matching method
Schyns et al. Diagnostic use of scale information for componential and holistic recognition
Ghalleb et al. Demographic face profiling based on age, gender and race
Garcia Computational models for predicting visual target distinctness

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP