[go: up one dir, main page]

WO1996035981A1 - Method of monitoring the state of dynamic noise processes - Google Patents

Method of monitoring the state of dynamic noise processes Download PDF

Info

Publication number
WO1996035981A1
WO1996035981A1 PCT/EP1996/001998 EP9601998W WO9635981A1 WO 1996035981 A1 WO1996035981 A1 WO 1996035981A1 EP 9601998 W EP9601998 W EP 9601998W WO 9635981 A1 WO9635981 A1 WO 9635981A1
Authority
WO
WIPO (PCT)
Prior art keywords
monitoring
signal
diagnosis
measured
values
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP1996/001998
Other languages
German (de)
French (fr)
Inventor
Joachim Pohlus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institut fur Sicherheitstechnologie (istec) GmbH
Original Assignee
Institut fur Sicherheitstechnologie (istec) GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut fur Sicherheitstechnologie (istec) GmbH filed Critical Institut fur Sicherheitstechnologie (istec) GmbH
Publication of WO1996035981A1 publication Critical patent/WO1996035981A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • G21D3/001Computer implemented control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B21/00Systems involving sampling of the variable controlled
    • G05B21/02Systems involving sampling of the variable controlled electric
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • G21D3/08Regulation of any parameters in the plant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention relates to a method for monitoring the operational mode of operation and the improved state diagnosis of stochastic processes, such as the processes in nuclear reactors.
  • the energy-generating process in the nuclear reactor is stochastically based on the statistical nature of nuclear fission. This process is influenced by a feedback system of the process variables neutron flow, temperature and pressure.
  • the process variables themselves show statistical fluctuations and thus represent sources of noise.
  • the process variables neutron flux, temperature and pressure are measured and evaluated for process monitoring and process control in a nuclear power plant. Only these signals are available for the diagnosis and status monitoring of the processes in the reactor core.
  • ERS ⁇ TZBL ⁇ rT (RULE 26) cycle changes the boron concentration in the reactor and thus the reactivity coefficient of the coolant temperature. The result is a dynamic increase in neutron flux noise.
  • the method of statistical parameter modeling described in the invention enables the broadband process noise to be separated from the measured overall signal.
  • the parameters of the statistical model from the process signal and from the calculated statistical functions are determined using recursive algorithms and used as filter coefficients.
  • the measured signals can be filtered on-line in the time domain and the broadband noise component can be separated.
  • This method can also be used for filtering signals with superimposed noise in the area outside of nuclear energy.
  • the separated broadband noise component can be used for diagnostic purposes.
  • the dynamic increase of the separated broadband noise component can be used for diagnostic purposes.
  • EBS ⁇ TZBLA ⁇ (REGEL26)
  • Neutron flux noise over the fuel element cycle can be monitored using characteristic parameters on the basis of the model parameters determined.
  • the residual function represents the signal filtered via the parameter model.
  • This signal contains the deterministic fluctuation components and is used for the vibration diagnosis. With the help of multivariate analysis, the influences of the process variables and their fluctuations on the individual signal can be separated.
  • the calculation of the transfer functions between the process variables neutron flux and temperature enables the dynamic changes in important reactor parameters, such as the moderator-temperature coefficient of reactivity, to be monitored, and the detection of process anomalies, e.g. in the reactor core, directly from the fluctuation signals.
  • FIGS. 1-3 show the auto power density spectra of the AR residual of the excore neutron flux signal X10 in a linear representation and FIGS. 4-6 auto power density spectra of the excore neutron flux signal X10 and the AR residual.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

Disclosed is a method of monitoring the reliable operation and improving diagnosis of state of controlled stochastic processes, in particular of the energy-producing process in nuclear reactors, using process signals measured with the aid of suitable sensors (detectors) for measured values, e.g. neutron flux, temperature and pressure, including the constant components of said values (process values) and the fluctuating components (process noise). Specifically, measurements and analysis of the process signals from the stochastic process are used to calculate characteristic values based on statistical procedures, using statistical parameter estimation procedures of sequential analysis; variations in the calculated model parameters (characteristic vectors) are evaluated for monitoring and diagnosis of the wideband fluctuating components in the frequency range with the aid of characteristic values such as the pulse response function. The calculated residual function in the time range and the power density spectrum of the signal residue are used to improve diagnosis of the narrow-band fluctuating components in the frequency range such as deterministic oscillations and, with the aid of multivariate parameter models, the effect of fluctuations of process values of a particular process variable vector on the measured individual signal is separated for monitoring purposes and, using multivariate parameter models, signal and system transfer functions and signal and noise contributory factors for the signals of a measured process variable vector are calculated and used to diagnose process characteristics, in particular in feedback systems such as those in a nuclear reactor.

Description

Verfahren zur Zustandsüberwachung dynamischer Rausch¬ prozesseProcess for monitoring the status of dynamic noise processes

Die Erfindung betrifft ein Verfahren zur Überwachung der betrieblichen Arbeitsweise und der verbesserten Zu¬ Standsdiagnose von stochastischen Prozessen, wie der Prozesse in Kernreaktoren.The invention relates to a method for monitoring the operational mode of operation and the improved state diagnosis of stochastic processes, such as the processes in nuclear reactors.

Eine Vielzahl der stofflichen Umwandlungsprozesse in der Industrie besitzen stochastischen Charakter. Der energieerzeugende Prozeß im Kernreaktor ist stochas- tisch begründet durch den statistischen Charakter der Kernspaltung. Dieser Prozeß wird über ein rückgekoppel¬ tes System der Prozeßgrößen Neutronenfluß, Temperatur und Druck beeinflußt. Die Prozeßgrößen selbst zeigen statistische Fluktuationen und stellen somit Rausch¬ quellen dar.A large number of material conversion processes in industry have a stochastic character. The energy-generating process in the nuclear reactor is stochastically based on the statistical nature of nuclear fission. This process is influenced by a feedback system of the process variables neutron flow, temperature and pressure. The process variables themselves show statistical fluctuations and thus represent sources of noise.

Für die Prozeßüberwachung und Prozeßsteuerung in einem Kernkraftwerk werden die Prozeßgrößen Neutronenfluß, Temperatur und Druck gemessen und bewertet. Für die Diagnose und Zustandsüberwachung der Prozesse im Reak¬ torkern stehen allein diese Signale zur Verfügung.The process variables neutron flux, temperature and pressure are measured and evaluated for process monitoring and process control in a nuclear power plant. Only these signals are available for the diagnosis and status monitoring of the processes in the reactor core.

Während eines Betriebszyklus (Brennelementzyklus) ver¬ ändert sich das Übertragungs erhalten zwischen den Pro¬ zeßgrößen sowie der charakteristische Schwankungsanteil dieser Prozeßgrößen dynamisch. Infolge des Abbrandver- haltens der Brennelemente wird während eines Betriebs-During an operating cycle (fuel element cycle), the transfer obtained between the process variables and the characteristic fluctuation component of these process variables change dynamically. As a result of the combustion behavior of the fuel elements,

ERSÄTZBLÄrT (REGEL 26) zyklus die Borkonzentration im Reaktor und damit der Reaktivitätskoeffizient der Kühlmitteltemperatur verän¬ dert. Die Folge ist eine dynamische Erhöhung des Neu- tronenflußrauschens.ERSÄTZBLÄrT (RULE 26) cycle changes the boron concentration in the reactor and thus the reactivity coefficient of the coolant temperature. The result is a dynamic increase in neutron flux noise.

Die Veränderungen in den dynamischen Prozeßgrößen Neu¬ tronenfluß, Temperatur und Druck werden in der Anlage überwacht und durch Grenzwerte kontrolliert. Dabei kön¬ nen auch Ansprechwerte durch die der Prozeßgröße über¬ lagerten Fluktuationen erreicht werden.The changes in the dynamic process variables neutron flow, temperature and pressure are monitored in the system and controlled by limit values. Response values can also be achieved by the fluctuations superimposed on the process variable.

Die Analyse der Schwankungsanteile der Prozeßgrößen wird bisher für die Überwachung und Diagnose von Schwingungen der Komponenten und Kerneinbauten mit Hilfe von FFT-Prozeduren durchgeführt.The analysis of the fluctuation components of the process variables has so far been carried out for the monitoring and diagnosis of vibrations of the components and core internals with the aid of FFT procedures.

Das in der Erfindung beschriebene Verfahren der statis¬ tischen Parametermodellierung ermöglicht die Separation des breitbandigen Prozeßrauschens vom gemessenen Ge¬ samtsignal. Dabei werden über rekursive Algorithmen die Parameter des statistischen Modells aus dem Prozeßsi¬ gnal und aus den berechneten statistischen Funktionen ermittelt und als Filterkoeffizienten verwendet.The method of statistical parameter modeling described in the invention enables the broadband process noise to be separated from the measured overall signal. The parameters of the statistical model from the process signal and from the calculated statistical functions are determined using recursive algorithms and used as filter coefficients.

Damit können im Zeitbereich on-line die gemessenen Sig¬ nale gefiltert und der breitbandige Rauschanteil sepa¬ riert werden. Dieses Verfahren ist auch für die Filte¬ rung von Signalen mit überlagertem Rauschen im Bereich außerhalb der Kernenergie einsetzbar.In this way, the measured signals can be filtered on-line in the time domain and the broadband noise component can be separated. This method can also be used for filtering signals with superimposed noise in the area outside of nuclear energy.

Der separierte breitbandige Rauschanteil kann für Diag¬ nosezwecke genutzt werden. Die dynamische Erhöhung desThe separated broadband noise component can be used for diagnostic purposes. The dynamic increase of

EBSÄTZBLAΓΓ(REGEL26) Neutronenflußrauschens über den Brennelement-Zyklus kann mit Hilfe von charakteristischen Kenngrößen auf der Basis der ermittelten Modellparameter überwacht werden.EBSÄTZBLAΓΓ (REGEL26) Neutron flux noise over the fuel element cycle can be monitored using characteristic parameters on the basis of the model parameters determined.

Die Residualfunktion stellt das über das Parametermo¬ dell gefilterte Signal dar. Dieses Signal enthält die deterministischen Schwankungsanteile und wird für die Schwingungsdiagnose genutzt. Dabei können mit Hilfe der multivariaten Analyse die Einflüsse der Prozeßgrößen und ihrer Schwankungen auf das Einzelsignal separiert werden.The residual function represents the signal filtered via the parameter model. This signal contains the deterministic fluctuation components and is used for the vibration diagnosis. With the help of multivariate analysis, the influences of the process variables and their fluctuations on the individual signal can be separated.

Die Berechnung der Übertragungsfunktionen zwischen den Prozeßgrößen Neutronenfluß und Temperatur ermöglicht die Überwachung der dynamischen Änderungen wichtiger Reaktorparameter, wie des Moderator-Temperatur-Koeffi¬ zienten der Reaktivität, sowie die Detektion von Pro¬ zeßanomalien, z.B. im Reaktorkern, direkt aus den Schwankungssignalen.The calculation of the transfer functions between the process variables neutron flux and temperature enables the dynamic changes in important reactor parameters, such as the moderator-temperature coefficient of reactivity, to be monitored, and the detection of process anomalies, e.g. in the reactor core, directly from the fluctuation signals.

Zur Erleichterung der Veranschaulichung sind in den Fig. 1 - 3 Autoleistungsdichtespektren des AR-Residuals des Excore-Neutronenflußsignals X10 in linearer Dar¬ stellung und in den Fig. 4 - 6 Autoleistungssdichte- spektren des Excore-Neutronenflußsignals X10 und des AR-Residuals dargestellt.For ease of illustration, FIGS. 1-3 show the auto power density spectra of the AR residual of the excore neutron flux signal X10 in a linear representation and FIGS. 4-6 auto power density spectra of the excore neutron flux signal X10 and the AR residual.

3 3

Claims

Patentanspruch Claim 1. Verfahren zur Überwachung der betriebssicheren Ar¬ beitsweise und der verbesserten Zustandsdiagnose von kontrollierten stochastischen Prozessen, insbesondere des energieerzeugenden Prozesses in Kernreaktoren, un¬ ter Verwendung der mit geeigneten Meßwertaufnehmern (Detektoren) gemessenen Prozeßsignale, wie z.B. Neutro¬ nenfluß, Temperatur und Druck, einschließlich deren Gleichanteile (Prozeßgrößen) und Schwankungsanteile (Prozeßrauschen) ,1.Procedure for monitoring the operationally reliable mode of operation and the improved status diagnosis of controlled stochastic processes, in particular the energy-generating process in nuclear reactors, using the process signals measured with suitable measurement sensors (detectors), e.g. Neutron flow, temperature and pressure, including their constant components (process variables) and fluctuation components (process noise), a) in Messungen und Analysen der Prozeßsignale des stochastischen Prozesses charakteristische Kenngrößen auf der Basis statistischer Verfahren (wie z.B. der Berechnung der Kovarianzfunktion bzw. Korrelationsfunktion im Zeitbereich und des Leistungsdichtespektrums im Frequenzbereich) ermittelt und in einer definierten Datenstruktur abgespeichert werden,a) characteristic parameters in measurements and analyzes of the process signals of the stochastic process are determined on the basis of statistical methods (such as the calculation of the covariance function or correlation function in the time domain and the power density spectrum in the frequency domain) and stored in a defined data structure, b) unter Verwendung statistischer Parameterschätzverfahren der Zeitreihenanalyse, wie der autoregressiven Modellbildung, eine Separation bestimmter Signalanteile mit unterschiedlichen statistischen Eigenschaften durchgeführt wird (autoregressive Filterfunktion) ,b) using statistical parameter estimation methods of time series analysis, such as autoregressive modeling, a separation of certain signal components with different statistical properties is carried out (autoregressive filter function), c) die Änderungen in den berechneten Modellparametern (Merkmalsvektoren) für die Überwachung und Diagnose der im Frequenzbereic breitbandigen Schwankungsanteile mit Hilfe von Kennwerten, wie der Impulsantwort-Funktion, bewertet werden,c) the changes in the calculated model parameters (feature vectors) for monitoring and Diagnosis of the broadband fluctuation components in the frequency range are evaluated with the aid of characteristic values, such as the impulse response function, d) die berechnete Residualfunktion im Zeitbereich bzw. das Leistungsdichtespektrum des Signalresiduais für die Verbesserung der Diagnose der im Frequenzbereich schmalbandigen Schwankungsanteile, wie deterministische Schwingungen, verwendet wird,d) the calculated residual function in the time domain or the power density spectrum of the signal residual relay is used to improve the diagnosis of the narrowband fluctuation components in the frequency domain, such as deterministic vibrations, e) mit Hilfe der Anwendung multivariater Parametermodelle, wie der multivariaten autoregressiven Modellbildung, der Einfluß der Schwankungen der Prozeßgrößen eines bestimmten Prozeßvariablenvektors auf das gemessene Einzelsignal für Überwachungszwecke separiert wird,e) using the use of multivariate parameter models, such as multivariate autoregressive modeling, the influence of the fluctuations in the process variables of a specific process variable vector on the measured individual signal is separated for monitoring purposes, f) auf der Basis multivariater Parametermodelle Signal- sowie Systemübertragungsfunktionen und Signal- sowie Rauschquellen- Beitragsverhältnisse für die Signale eines gemessenen Prozeßvariablenvektors berechnet und für die Diagnose des Prozeßverhaltens, insbesondere in rückgekoppelten Systemen, wie in einem Kernreaktor, verwendet werden,f) on the basis of multivariate parameter models, signal and system transmission functions and signal and noise source contribution ratios for the signals of a measured process variable vector are calculated and used for the diagnosis of the process behavior, in particular in feedback systems, such as in a nuclear reactor, g) eine für die Prozeßüberwachung und Prozeßführung relevante Information zur Unterstützung erforderlicher Maßnahmen zur Verfügung gestellt wird. * g) information relevant to process monitoring and process control to support necessary measures is made available. *
PCT/EP1996/001998 1995-05-10 1996-05-10 Method of monitoring the state of dynamic noise processes Ceased WO1996035981A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19517104.7 1995-05-10
DE19517104A DE19517104A1 (en) 1995-05-10 1995-05-10 Procedure for monitoring the status of dynamic noise processes

Publications (1)

Publication Number Publication Date
WO1996035981A1 true WO1996035981A1 (en) 1996-11-14

Family

ID=7761545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1996/001998 Ceased WO1996035981A1 (en) 1995-05-10 1996-05-10 Method of monitoring the state of dynamic noise processes

Country Status (2)

Country Link
DE (1) DE19517104A1 (en)
WO (1) WO1996035981A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117109953A (en) * 2023-10-16 2023-11-24 唐智科技湖南发展有限公司 A method, system, device and medium for collaborative acoustic and vibration diagnosis of trains

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19635033A1 (en) * 1996-08-29 1998-03-12 Siemens Ag Process for analyzing a process status of a technical system
DE19732046A1 (en) * 1997-07-25 1999-01-28 Abb Patent Gmbh Process diagnostic system and method for diagnosing processes and states of a technical process
DE19737404A1 (en) * 1997-08-27 1999-03-11 Siemens Ag Process for the non-destructive testing of the immunity to accidents of an electrical component of a nuclear power plant
DE10044402A1 (en) * 2000-09-08 2002-04-04 Tobias P Kurpjuhn Parameter estimation method e.g. for frequency estimation adjusting spatial pre-filter by feeding back coarse parameter estimation and optimizing data of transformed, virtual array processing using fed back, estimated parameters
FR2818427B1 (en) * 2000-12-15 2003-03-14 Framatome Anp METHOD FOR DETERMINING THE DOUBLING TIME OF A NEUTRONIC FLOW IN THE HEART OF A NUCLEAR REACTOR
DE602004002098T2 (en) * 2004-06-08 2006-12-28 Electrolux Home Products Corporation N.V. Method for automating cooking processes

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3119045C2 (en) * 1981-05-13 1985-11-14 INTERATOM GmbH, 5060 Bergisch Gladbach Method and arrangement for the detection and reporting of cooling faults in a fuel element of a reactor core
DE3146374A1 (en) * 1981-11-23 1983-05-26 Interatom Internationale Atomreaktorbau Gmbh, 5060 Bergisch Gladbach Method and arrangement for detecting and indicating cooling malfunctions in reactor cores
DE3238522A1 (en) * 1982-10-18 1984-04-19 Interatom Internationale Atomreaktorbau Gmbh, 5060 Bergisch Gladbach METHOD AND DEVICE FOR MONITORING THE REACTIVITY BALANCE OF THE CORE OF A CORE REACTOR AND FOR DIAGNOSIS OF REACTIVITY INTERRUPTIONS
JPH0625930B2 (en) * 1985-09-24 1994-04-06 株式会社東芝 Plant diagnostic equipment
US4954975A (en) * 1988-08-10 1990-09-04 K-Tron International, Inc. Weigh feeding system with self-tuning stochastic control and weight and actuator measurements
EP0516895A1 (en) * 1991-06-04 1992-12-09 Unilever N.V. A method for the adaptive stochastic control of a process
DE4219372C2 (en) * 1992-06-15 2002-09-26 Busch Dieter & Co Prueftech Method for analyzing a time signal
SE509235C2 (en) * 1993-05-11 1998-12-21 Asea Atom Ab Method for monitoring the dryout of a boiler reactor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
O. GLÖCKLER: "Fault detection via sequential ratio test of multivariate autoregressive modeling-based residual time series", SYMPOSIUM ON NUCLEAR REACTOR SURVEILLANCE AND DIAGNOSTICS, vol. 2, 19 May 1991 (1991-05-19) - 24 May 1991 (1991-05-24), KNOXVILLE USA, pages 70/01 - 70/15, XP000601353 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117109953A (en) * 2023-10-16 2023-11-24 唐智科技湖南发展有限公司 A method, system, device and medium for collaborative acoustic and vibration diagnosis of trains
CN117109953B (en) * 2023-10-16 2024-01-02 唐智科技湖南发展有限公司 Sound and vibration collaborative diagnosis method, system, device and medium for train

Also Published As

Publication number Publication date
DE19517104A1 (en) 1996-11-14

Similar Documents

Publication Publication Date Title
EP2889712B1 (en) Self-diagnostic process control loop for a process plant
EP0315307B1 (en) Performance data processing system
DE19808197C2 (en) System and method for diagnosing engine conditions
DE69419264T2 (en) SYSTEM FOR MONITORING AN INDUSTRIAL PROCESS AND DETERMINING THE SENSOR STATE
Volponi et al. The use of Kalman filter and neural network methodologies in gas turbine performance diagnostics: a comparative study
Zhang et al. Process modelling and fault diagnosis using fuzzy neural networks
DE602004008910T2 (en) ERROR DIAGNOSIS DEVICE AND METHOD FOR A PROCESSING DEVICE USING A PROCESS-RELATED SENSOR SIGNAL
CN100487617C (en) Fast plant test for model-based control
Vedam et al. A wavelet theory-based adaptive trend analysis system for process monitoring and diagnosis
Harris et al. Plant-wide feedback control performance assessment using an expert-system framework
EP3327406B1 (en) Method for operating a coriolis mass flow meter and coriolis mass flow meter
EP1198739B1 (en) Method and system for diagnosing a technical installation
DE60210157T2 (en) Device for estimating combustion chamber pressure fluctuations, plant and gas turbine plant
WO1996013764A1 (en) Process for analysing a measurement and measurement analyser for implementing it
US5623579A (en) Automated method for the systematic interpretation of resonance peaks in spectrum data
CN105043776A (en) Aircraft engine performance monitoring and fault diagnosis method
WO1996035981A1 (en) Method of monitoring the state of dynamic noise processes
Ahnlund et al. Rule-based reduction of alarm signals in industrial control
Matania et al. Transfer across different machines by transfer function estimation
ENGLISH et al. Control charts applied as filtering devices within a feedback control loop
Meléndez et al. Episodes representation for supervision. Application to diagnosis of a level control system
Kanemoto et al. Noise source and reactor stability estimation in a boiling water reactor using a multivariate autoregressive model
RU2331120C1 (en) Method of noise diagnostics of reactors with water under pressure
Choudhury Troubleshooting plantwide oscillations using nonlinearity information
JPH06309580A (en) Plant monitoring and diagnostic equipment

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP KR RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA