US9800418B2 - Signature protocol - Google Patents
Signature protocol Download PDFInfo
- Publication number
- US9800418B2 US9800418B2 US14/721,548 US201514721548A US9800418B2 US 9800418 B2 US9800418 B2 US 9800418B2 US 201514721548 A US201514721548 A US 201514721548A US 9800418 B2 US9800418 B2 US 9800418B2
- Authority
- US
- United States
- Prior art keywords
- signature
- session
- message
- private key
- result
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/32—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
- H04L9/3247—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving digital signatures
- H04L9/3252—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving digital signatures using DSA or related signature schemes, e.g. elliptic based signatures, ElGamal or Schnorr schemes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/06—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols the encryption apparatus using shift registers or memories for block-wise or stream coding, e.g. DES systems or RC4; Hash functions; Pseudorandom sequence generators
- H04L9/0618—Block ciphers, i.e. encrypting groups of characters of a plain text message using fixed encryption transformation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/30—Public key, i.e. encryption algorithm being computationally infeasible to invert or user's encryption keys not requiring secrecy
- H04L9/3066—Public key, i.e. encryption algorithm being computationally infeasible to invert or user's encryption keys not requiring secrecy involving algebraic varieties, e.g. elliptic or hyper-elliptic curves
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/32—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
- H04L9/3236—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using cryptographic hash functions
- H04L9/3242—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using cryptographic hash functions involving keyed hash functions, e.g. message authentication codes [MACs], CBC-MAC or HMAC
Definitions
- the present invention relates to data communication systems and protocols utilized in such systems.
- Data communication systems are used to exchange information between devices.
- the information to be exchanged comprises data that is organized as strings of digital bits formatted so as to be recognizable by other devices and to permit the information to be processed and/or recovered.
- the exchange of information may occur over a publically accessible network, such as a communication link between two devices, over a dedicated network within an organization, or may be between two devices within the same dedicated component, such as within a computer or point of sale device.
- a publically accessible network such as a communication link between two devices
- a dedicated network within an organization or may be between two devices within the same dedicated component, such as within a computer or point of sale device.
- the devices may range from relatively large computer systems through to telecommunication devices, cellular phones, monitoring devices, sensors, electronic wallets and smart cards, and a wide variety of devices that are connected to transfer data between two or more of such devices.
- a large number of communication protocols have been developed to allow the exchange of data between different devices.
- the communication protocols permit the exchange of data in a robust manner, often with error correction and error detection functionality, and for the data to be directed to the intended recipient and recovered for further use.
- encryption protocols and authentication protocols have been developed to provide the required attributes and ensure security and/or integrity in the exchange of information. These techniques utilize a key that is combined with the data.
- symmetric key cryptosystems There are two main types of cryptosystems that implement the protocols, symmetric key cryptosystems and asymmetric or public-key cryptosystems.
- a symmetric key cryptosystem the devices exchanging information share a common key that is known only to the devices intended to share the information.
- Symmetric key systems have the advantage that they are relatively fast and therefore able to process large quantities of data in a relatively short time, even with limited computing power.
- the keys must be distributed in a secure manner to the different devices, which leads to increased overhead and vulnerability if the key is compromised.
- Public-key cryptosystems utilize a key pair, one of which is public and the other private, associated with each device.
- the public key and private key are related by a “hard” mathematical problem so that even if the public key and the underlying problem are known, the private key cannot be recovered in a feasible time.
- One such problem is the factoring of the product of two large primes, as utilized in RSA cryptosystems.
- Another is the discrete log problem in a finite cyclic group.
- a generator, ⁇ , of the underlying group is identified as a system parameter and a random integer, k, generated for use as a private key.
- Different groups may be used in discrete log cryptosystems including the multiplicative group of a finite field, the group of integers in a finite cyclic group of order p, usually denoted Zp* and consisting of the integers 0 to p ⁇ 1.
- Public-key cryptosystems reduce the infrastructure necessary with symmetric key cryptosystems.
- a device generates a key pair by obtaining an integer k, which is used as a private key and performing a k-fold group operation to generate the corresponding public-key. In an elliptic curve group, this would be kP.
- the public-key is published so it is available to other devices.
- Devices may then use the key pair in communications between them. If one device wishes to encrypt a message to be sent to another device, it uses the public key of the intended recipient in an encryption protocol. The message may be decrypted and recovered by the other device using the private key.
- the device may also use the key pair in a digital signature protocol.
- the message is signed using the private key k and other devices can confirm the integrity of the message using the public key kP.
- a digital signature is a computer readable data string (or number) which associates a message with the author of that data string.
- a digital signature generation algorithm is a method of producing digital signatures.
- Digital signature schemes are designed to provide the digital counterpart to handwritten signatures (and more).
- a digital signature is a number dependent on some secret known only to the signer (the signer's private key), and, additionally, on the contents of the message being signed.
- Signatures must be verifiable—if a dispute arises as to whether an entity signed a document, an unbiased third party should be able to resolve the matter equitably, without requiring access to the signer's private key. Disputes may arise when a signer tries to repudiate a signature it did create, or when a forger makes a fraudulent claim.
- asymmetric means that each entity selects a key pair consisting of a private key and a related public key. The entity maintains the secrecy of the private key which it uses for signing messages, and makes authentic copies of its public key available to other entities which use it to verify signatures.
- Appendix means that a cryptographic hash function is used to create a message digest of the message, and the signing transformation is applied to the message digest rather than to the message itself.
- a digital signature must be secure if it is to fulfill its function of non-repudiation.
- Various types of attack are known against digital signatures.
- the types of attacks on Digital Signatures include:
- a digital signature scheme should be existentially unforgeable under chosenmessage attack. This notion of security was introduced by Goldwasser, Micali and Rivest. Informally, it asserts that an adversary who is able to obtain the signatures of an entity for any messages of its choice is unable to forge successfully a signature of that entity on a single other message.
- Digital signature schemes can be used to provide the following basic cryptographic services: data integrity (the assurance that data has not been altered by unauthorized or unknown means), data origin authentication (the assurance that the source of data is as claimed), and non-repudiation (the assurance that an entity cannot deny previous actions or commitments).
- Digital signature schemes are commonly used as primitives in cryptographic protocols that provide other services including entity authentication, authenticated key transport, and authenticated key agreement.
- Integer Factorization (IF) schemes which base their security on the intractability of the integer factorization problem. Examples of these include the RSA and Rabin signature schemes.
- Discrete Logarithm (DL) schemes which base their security on the intractability of the (ordinary) discrete logarithm problem in a finite field. Examples of these include the ElGamal, Schnorr, DSA, and Nyberg-Rueppel signature schemes.
- Elliptic Curve (EC) schemes which base their security on the intractability of the elliptic curve discrete logarithm problem.
- One signature scheme in wide spread use is the elliptic curve digital signature algorithm (ECDSA). To generate the signature it is necessary to hash the message and generate a public session key from a random integer.
- One signature component is obtained by a modular reduction of one co-ordinate of the point representing the public session key, and the other signature component combines the hash and private keys of the signer. This requires inversion of the session private key, which may be relatively computationally intensive.
- Verification requires the hashing of the message and inversion of the other component.
- Various mathematical techniques have been developed to make the signing and verification efficient, however the hashing and modular reduction remain computationally intensive.
- a method for generating an elliptic curve cryptographic signature comprising a first component and a second component for a message using a long term private key, a session private key and a session public key generated from the session private key, the method comprising: generating a first signature component using an x co-ordinate of the session public key and the message; generating a second signature component by combining the long term private key and the first signature component to provide a first result, subtracting the first result from the session private key to provide a second result, and combining the second result with the session private key.
- a cryptographic correspondent device comprising a processor and a memory, the memory having stored thereon a long term private key, the device further having associated therewith a cryptographic corresponding long term public key generated using the long term private key and a cryptographic generator, and an identity, the memory further having stored thereon computer instructions which when executed by the processor cause the processor to implement a elliptic curve cryptographic signature scheme comprising: generating a session private key and cryptographic corresponding session public key; generating a first signature component using an x co-ordinate of the session public key and the message; and generating a second signature component by combining the long term private key and the first signature component to provide a first result, subtracting the first result from the session private key to provide a second result, and combining the second result with the session private key.
- a signature may be verified by: reconstructing the session public key from the signature components, a long term public key corresponding to the long term private key, and a base point generator; recovering the x co-ordinate of the reconstructed session public key; generating an intermediate component from the first signature component and the message; and verifying the signature by comparing the intermediate component and the recovered x co-ordinate of the session public key.
- FIG. 1 is a schematic representation of a data communication system
- FIG. 2 is a representation of a device used in the data communication system of FIG. 1 ;
- FIG. 3 is a flow chart showing the protocol implemented between a pair of devices shown in FIG. 1 .
- the protocol is described in the context of an elliptic curve group, generated by a point P which is assumed to have prime order n.
- a data communication system 10 includes a plurality of devices 12 interconnected by communication links 14 .
- the devices 12 may be of any known type including a computer 12 a , a server 12 b , a cellphone 12 c , ATM 12 d , and smart card 12 e .
- the communication links 14 may be conventional fixed telephone lines, wireless connections implemented between the devices 12 , near field communication connections such as Blue tooth or other conventional form of communication.
- the devices 12 will differ according to their intended purpose, but typically, will include a communication module 20 ( FIG. 2 ) for communication to the links 14 .
- a memory 22 provides a storage medium for non-transient instructions to implement protocols and to store data as required.
- a secure memory module 24 which may be part of memory 22 or may be a separate module, is used to store private information, such as the private keys used in the encryption protocols and withstand tampering with that data.
- An arithmetic logic unit (ALU) 26 is provided to perform the arithmetic operations instruction by the memory 22 using data stored in the memories 22 , 24 .
- a random or pseudo random number generator 28 is also incorporated to generate bit strings representing random numbers in a cryptographically secure manner.
- the memory 22 also includes an instruction set to condition the ALU 26 to perform a block cipher algorithm, such as an AES block cipher, as described more fully below.
- the device 12 illustrated in FIG. 2 is highly schematic and representative of a conventional device used in a data communication system.
- the memory 22 stores system parameters for the cryptosystem to be implemented and a set of computer readable instructions to implement the required protocol.
- elliptic curve domain parameters consist of six quantities q, a, b, P, n, and h, which are:
- the parameters will be represented as bit strings, and the representation of the base point P as a pair of bit strings, each representing an element of the underlying field. As is conventional, one of those strings may be truncated as the full representation may be recovered from the other co-ordinate and the truncated representation.
- the secure memory module 24 contains a bit string representing a long term private key d, and the corresponding public key Q.
- the key Q dP.
- Ephemeral values computed by the ALU may also be stored within the secure module 24 if their value is intended to be secret.
- a digital signature protocol is required when one of the devices 12 sends a message, m, to one or more of the other devices, and the other devices need to be able to authenticate the message.
- the message may, for example, be a document to be signed by all parties, or may be an instruction to the ATM 12 d to transfer funds.
- each device will be identified as an entity, such as Alice or Bob, as is usual in the discussion of cryptographic protocols, or as a correspondent. It will be understood however that each entity is a device 12 performing operations using the device exemplified in FIG. 2 .
- the entity Alice composes a message m which is a bit string representative of the information to be conveyed to another entity Bob.
- the signature scheme takes as its input the message, m, and the signer's (Alice's) private key d, which is an integer.
- the verification scheme takes as input the message, m, the signer's public key, Q, which is an element of the group generated by the generating point P, and a purported signature on message by the signer.
- the signature comprises a pair of signature components, computed by the signer and sent to the recipients, usually with the message, m.
- the value k is the ephemeral (or, short term or session) private key of Alice.
- the ephemeral public key K is represented by a pair of bits strings, x,y, both of which are elements of the underlying field, as shown at block 304 .
- the component s is an integer
- the signature on the message m is the pair of components r, s.
- the message m is sent by Alice, together with the signature (r,s) to Bob, using the communication module 20 .
- the signature protocol may be summarized as:
- (r′,s′) is the signature received by Bob
- Q is the public key of Alice, which has been obtained from a trusted source, such as a certificate signed by a Certificate Authority (“CA”) and sent by Alice to Bob.
- CA Certificate Authority
- the x co-ordinate x′ of the point K′ is obtained and, at block 318 , compared to (r′ ⁇ e) (mod n), and if they are the same, the signature is verified, as shown at block 320 . If not, the signature is rejected and the message may be considered invalid, as shown at block 322 .
- the verification protocol requires:
Landscapes
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- Physics & Mathematics (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Optimization (AREA)
- Computing Systems (AREA)
- Mathematical Analysis (AREA)
- General Physics & Mathematics (AREA)
- Algebra (AREA)
- Power Engineering (AREA)
- Storage Device Security (AREA)
Abstract
Description
-
- A digital signature scheme with appendix, which requires the original message as input into the verification process.
- A digital signature scheme with message recovery, which does not require the original message as input to the verification process. Typically the original message is recovered during verification.
- A digital signature scheme with partial message recovery, which requires only a part of the message to be recovered.
-
- Key-Only Attack: An adversary only has the public key of the signer.
- Know Signature Attack: An adversary knows the public key of the signer and has message-signature pairs chosen and produced by the signer.
- Chosen Message Attack: The adversary chooses messages that are signed by the signer, in this case the signer is acting as an oracle.
- Attacks on digital signatures can result in the following breakages:
- Total Break: An adversary is either able to compute the private key information of the signer, or finds an efficient alternate signing algorithm.
- Selective Forgery: An adversary is able to create a valid signature for a particular message.
- Existential Forgery: An adversary is able to forge a signature for at least one message.
- Universal Forgery: An adversary can forge any message without the secret key.
-
- The field size q
- The elliptic curve coefficients a and b
- The base point generator P
- The order n of the base point generator
- The cofactor h, which is the number such that hn is the number of points on the elliptic curve.
s=(k+1)−1(k−dr)(mod n)
-
- a. Compute e=H(m), where H is a cryptographic hash function.
- b. Compute an elliptic curve point K by randomly selecting an integer k in the range of [1,n−1], and then computing the elliptic curve point kP=K.
- c. Let x be the affine x-coordinate of the point kP.
- d. Compute the integer r=e+x (mod n)
- e. Compute the integer s=(k+1)−1(k−dr) (mod n). If s=1, go to step (b).
- f. Output (r,s) as the signature of message m.
K′=s′(1−s′)−1 P+r′(1−s′)−1Q.
where (r′,s′) is the signature received by Bob, and Q is the public key of Alice, which has been obtained from a trusted source, such as a certificate signed by a Certificate Authority (“CA”) and sent by Alice to Bob.
-
- a. Check that r′ and s′ are in the interval [0,n−1], and s′≠1. If either check fails, then output ‘invalid’.
- b. Compute the elliptic curve point K′=s′(1−s′)−1P+r′(1−s′)−1 Q. If K′=∞, output ‘invalid’.
- c. Let x′ be the x-coordinate of the point K′.
- d. Compute e=H(m).
- e. Check that x′=(r′−e) (mod n). If the check fails, then output ‘invalid’; otherwise output ‘valid’.
Claims (16)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/721,548 US9800418B2 (en) | 2015-05-26 | 2015-05-26 | Signature protocol |
CH01275/15A CH711133B1 (en) | 2015-05-26 | 2015-09-04 | Protocol for signature generation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/721,548 US9800418B2 (en) | 2015-05-26 | 2015-05-26 | Signature protocol |
Publications (2)
Publication Number | Publication Date |
---|---|
US20160352525A1 US20160352525A1 (en) | 2016-12-01 |
US9800418B2 true US9800418B2 (en) | 2017-10-24 |
Family
ID=57391641
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/721,548 Active 2035-07-17 US9800418B2 (en) | 2015-05-26 | 2015-05-26 | Signature protocol |
Country Status (2)
Country | Link |
---|---|
US (1) | US9800418B2 (en) |
CH (1) | CH711133B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10333718B2 (en) * | 2016-07-20 | 2019-06-25 | Stmicroelectronics S.R.L. | Method for the generation of a digital signature of a message, corresponding generation unit, electronic apparatus and computer program product |
US20220385954A1 (en) * | 2018-12-07 | 2022-12-01 | Arris Enterprises Llc | Embedding information in elliptic curve base point |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201617620D0 (en) * | 2016-10-18 | 2016-11-30 | Cybernetica As | Composite digital signatures |
US10341098B2 (en) * | 2017-01-24 | 2019-07-02 | Nxp B.V. | Method of generating cryptographic key pairs |
CN110999203B (en) * | 2017-05-08 | 2021-09-07 | 亚马逊技术有限公司 | Method and system for generating a shared key |
US10516543B2 (en) | 2017-05-08 | 2019-12-24 | Amazon Technologies, Inc. | Communication protocol using implicit certificates |
US10798086B2 (en) | 2017-05-08 | 2020-10-06 | Amazon Technologies, Inc. | Implicit certificates using ring learning with errors |
US10511591B2 (en) * | 2017-05-08 | 2019-12-17 | Amazon Technologies, Inc. | Generation of shared secrets using pairwise implicit certificates |
WO2019170168A2 (en) * | 2019-05-31 | 2019-09-12 | Alibaba Group Holding Limited | Method for restoring public key based on sm2 signature |
US20220329439A1 (en) * | 2019-08-05 | 2022-10-13 | Securify Bilisim Teknolojileri Ve Guvenligi Egt. Dan. San. Ve Tic. Ltd. Sti. | Method for generating digital signatures |
US11546136B2 (en) * | 2019-08-27 | 2023-01-03 | EMC IP Holding Company LLC | Generating shared authentication keys using network connection characteristics |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2228185A1 (en) | 1997-01-31 | 1998-07-31 | Certicom Corp. | Verification protocol |
US20010008013A1 (en) | 1997-11-10 | 2001-07-12 | Certicom Corp. | Masked digital signatures |
US6782100B1 (en) * | 1997-01-29 | 2004-08-24 | Certicom Corp. | Accelerated finite field operations on an elliptic curve |
US20070189527A1 (en) * | 2005-01-21 | 2007-08-16 | Brown Daniel R L | Elliptic curve random number generation |
US7587605B1 (en) * | 2004-03-19 | 2009-09-08 | Microsoft Corporation | Cryptographic pairing-based short signature generation and verification |
US20120096273A1 (en) * | 2010-10-15 | 2012-04-19 | Certicom Corp. | Authenticated encryption for digital signatures with message recovery |
US8213604B2 (en) | 2008-08-05 | 2012-07-03 | Irdeto Access B.V. | Signcryption scheme based on elliptic curve cryptography |
FR2982106A1 (en) | 2011-10-28 | 2013-05-03 | Verimatrix France Sas | MESSAGE CRYPTOGRAPHIC SIGNATURE METHOD, SIGNATURE VERIFICATION METHOD AND CORRESPONDING SIGNATURE AND VERIFICATION DEVICES |
US8467535B2 (en) | 2005-01-18 | 2013-06-18 | Certicom Corp. | Accelerated verification of digital signatures and public keys |
US20130170644A1 (en) | 2010-09-17 | 2013-07-04 | Robert John Lambert | Mechanism for Managing Authentication Device Lifecycles |
US8775813B2 (en) * | 2010-02-26 | 2014-07-08 | Certicom Corp. | ElGamal signature schemes |
US20150006900A1 (en) | 2013-06-27 | 2015-01-01 | Infosec Global Inc. | Signature protocol |
-
2015
- 2015-05-26 US US14/721,548 patent/US9800418B2/en active Active
- 2015-09-04 CH CH01275/15A patent/CH711133B1/en unknown
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6782100B1 (en) * | 1997-01-29 | 2004-08-24 | Certicom Corp. | Accelerated finite field operations on an elliptic curve |
CA2228185A1 (en) | 1997-01-31 | 1998-07-31 | Certicom Corp. | Verification protocol |
US20010008013A1 (en) | 1997-11-10 | 2001-07-12 | Certicom Corp. | Masked digital signatures |
US6279110B1 (en) | 1997-11-10 | 2001-08-21 | Certicom Corporation | Masked digital signatures |
US7587605B1 (en) * | 2004-03-19 | 2009-09-08 | Microsoft Corporation | Cryptographic pairing-based short signature generation and verification |
US8467535B2 (en) | 2005-01-18 | 2013-06-18 | Certicom Corp. | Accelerated verification of digital signatures and public keys |
US20070189527A1 (en) * | 2005-01-21 | 2007-08-16 | Brown Daniel R L | Elliptic curve random number generation |
US8213604B2 (en) | 2008-08-05 | 2012-07-03 | Irdeto Access B.V. | Signcryption scheme based on elliptic curve cryptography |
US8775813B2 (en) * | 2010-02-26 | 2014-07-08 | Certicom Corp. | ElGamal signature schemes |
US20130170644A1 (en) | 2010-09-17 | 2013-07-04 | Robert John Lambert | Mechanism for Managing Authentication Device Lifecycles |
US20120096273A1 (en) * | 2010-10-15 | 2012-04-19 | Certicom Corp. | Authenticated encryption for digital signatures with message recovery |
FR2982106A1 (en) | 2011-10-28 | 2013-05-03 | Verimatrix France Sas | MESSAGE CRYPTOGRAPHIC SIGNATURE METHOD, SIGNATURE VERIFICATION METHOD AND CORRESPONDING SIGNATURE AND VERIFICATION DEVICES |
US20150006900A1 (en) | 2013-06-27 | 2015-01-01 | Infosec Global Inc. | Signature protocol |
Non-Patent Citations (6)
Title |
---|
International Search Report corresponding to PCT/CA2014/050604; Canadian Intellectual Property Office; dated Sep. 9, 2014. |
International Search Report corresponding to PCT/CA2015/050476; Canadian Intellectual Property Office; dated Jan. 11, 2016. |
Shen, S. et al, "SM2 Digital Signature Algorithm", Internet Engineering Task Force, Internet-Draft, draft-shen-sm2-ecdsa-00, 16 pages, Oct. 24, 2011, http://tools.ietf.org/html/draft-shen-sm2-ecdsa-00. |
Translated Office Action for corresponding Saudi Patent Application No. 114350626; Saudi Patent Office; dated Sep. 1, 2015. |
Written Opinion of the International Searching Authority corresponding to PCT/CA2014/050604; Canadian Intellectual Property Office; dated Sep. 9, 2014. |
Written Opinion of the International Searching Authority corresponding to PCT/CA2015/050476; Canadian Intellectual Property Office; dated Jan. 11, 2016. |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10333718B2 (en) * | 2016-07-20 | 2019-06-25 | Stmicroelectronics S.R.L. | Method for the generation of a digital signature of a message, corresponding generation unit, electronic apparatus and computer program product |
US20220385954A1 (en) * | 2018-12-07 | 2022-12-01 | Arris Enterprises Llc | Embedding information in elliptic curve base point |
US11616994B2 (en) * | 2018-12-07 | 2023-03-28 | Arris Enterprises Llc | Embedding information in elliptic curve base point |
Also Published As
Publication number | Publication date |
---|---|
CH711133A2 (en) | 2016-11-30 |
CH711133B1 (en) | 2019-07-15 |
US20160352525A1 (en) | 2016-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9800418B2 (en) | Signature protocol | |
US6446207B1 (en) | Verification protocol | |
McGrew et al. | Fundamental elliptic curve cryptography algorithms | |
US9571274B2 (en) | Key agreement protocol | |
US9705683B2 (en) | Verifiable implicit certificates | |
Vaudenay | The security of DSA and ECDSA: Bypassing the standard elliptic curve certification scheme | |
CN103444128B (en) | Key PV signature | |
US20130019099A1 (en) | Strengthened Public Key Protocol | |
Shankar et al. | Improved multisignature scheme for authenticity of digital document in digital forensics using edward‐curve digital signature algorithm | |
US20150006900A1 (en) | Signature protocol | |
Tanwar et al. | Efficient and secure multiple digital signature to prevent forgery based on ECC | |
US20160352689A1 (en) | Key agreement protocol | |
Hwang et al. | An untraceable blind signature scheme | |
Waheed et al. | Novel blind signcryption scheme for e-voting system based on elliptic curves | |
Kuppuswamy et al. | A new efficient digital signature scheme algorithm based on block cipher | |
Sadkhan et al. | Analysis of different types of digital signature | |
WO2016187689A1 (en) | Signature protocol | |
Chande et al. | An improvement of a elliptic curve digital signature algorithm | |
Kumar et al. | Cryptanalysis and performance evaluation of enhanced threshold proxy signature scheme based on RSA for known signers | |
JP4307589B2 (en) | Authentication protocol | |
WO2016187690A1 (en) | Key agreement protocol | |
Kwon | Virtual software tokens-a practical way to secure PKI roaming | |
US20070033405A1 (en) | Enhanced key agreement and transport protocol | |
CA2892318C (en) | Signature protocol | |
Foster | Study and Implementation of Algorithms for Digital Signatures in Network Security |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INFOSEC GLOBAL INC., ONTARIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ANTIPA, ADRIAN;REEL/FRAME:039070/0744 Effective date: 20150930 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 8 |
|
AS | Assignment |
Owner name: PNC BANK, NATIONAL ASSOCIATION, PENNSYLVANIA Free format text: SECURITY INTEREST;ASSIGNOR:INFOSEC GLOBAL INC.;REEL/FRAME:071847/0309 Effective date: 20250725 |