US20190311619A1 - Density based traffic light control system for autonomous driving vehicles (advs) - Google Patents
Density based traffic light control system for autonomous driving vehicles (advs) Download PDFInfo
- Publication number
- US20190311619A1 US20190311619A1 US15/944,788 US201815944788A US2019311619A1 US 20190311619 A1 US20190311619 A1 US 20190311619A1 US 201815944788 A US201815944788 A US 201815944788A US 2019311619 A1 US2019311619 A1 US 2019311619A1
- Authority
- US
- United States
- Prior art keywords
- traffic light
- adv
- traffic
- junction
- information
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000004044 response Effects 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims description 26
- 238000012545 processing Methods 0.000 claims description 25
- 238000004422 calculation algorithm Methods 0.000 claims description 21
- 230000015654 memory Effects 0.000 claims description 17
- 238000013459 approach Methods 0.000 claims description 7
- 230000003466 anti-cipated effect Effects 0.000 claims description 4
- 238000002379 ultrasonic velocimetry Methods 0.000 abstract 9
- 230000008447 perception Effects 0.000 description 27
- 238000010586 diagram Methods 0.000 description 17
- 238000004891 communication Methods 0.000 description 13
- 230000004807 localization Effects 0.000 description 9
- 230000008569 process Effects 0.000 description 8
- 230000001133 acceleration Effects 0.000 description 6
- 230000006870 function Effects 0.000 description 5
- 230000002085 persistent effect Effects 0.000 description 5
- 238000012517 data analytics Methods 0.000 description 4
- 230000033001 locomotion Effects 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 230000005291 magnetic effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000010267 cellular communication Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 235000019800 disodium phosphate Nutrition 0.000 description 1
- 238000009429 electrical wiring Methods 0.000 description 1
- 229910000078 germane Inorganic materials 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010897 surface acoustic wave method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/0104—Measuring and analyzing of parameters relative to traffic conditions
- G08G1/0108—Measuring and analyzing of parameters relative to traffic conditions based on the source of data
- G08G1/0112—Measuring and analyzing of parameters relative to traffic conditions based on the source of data from the vehicle, e.g. floating car data [FCD]
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/0104—Measuring and analyzing of parameters relative to traffic conditions
- G08G1/0125—Traffic data processing
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/0104—Measuring and analyzing of parameters relative to traffic conditions
- G08G1/0125—Traffic data processing
- G08G1/0133—Traffic data processing for classifying traffic situation
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/0104—Measuring and analyzing of parameters relative to traffic conditions
- G08G1/0137—Measuring and analyzing of parameters relative to traffic conditions for specific applications
- G08G1/0145—Measuring and analyzing of parameters relative to traffic conditions for specific applications for active traffic flow control
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/056—Detecting movement of traffic to be counted or controlled with provision for distinguishing direction of travel
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/07—Controlling traffic signals
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/07—Controlling traffic signals
- G08G1/08—Controlling traffic signals according to detected number or speed of vehicles
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/123—Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams
- G08G1/127—Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams to a central station ; Indicators in a central station
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
Definitions
- Embodiments of the present disclosure relate generally to operating autonomous vehicles. More particularly, embodiments of the disclosure relate to density based traffic light control systems for autonomous driving vehicles (ADVs).
- ADVs autonomous driving vehicles
- Vehicles operating in an autonomous mode can relieve occupants, especially the driver, from some driving-related responsibilities.
- the vehicle can navigate to various locations using onboard sensors, allowing the vehicle to travel with minimal human interaction or in some cases without any passengers.
- traffic light control system There are two types of traffic light control system.
- a first type is a fixed time delay traffic light control system.
- traffic light signals are synchronized to fixed time delays.
- a second type is a density based traffic light control system.
- traffic light signals are synchronized to a density of a traffic flow at the traffic lights, which can be provided by cameras or detectors installed right before the traffic lights.
- ADVs more information (such as the ADVs will likely cross the intersection in the next traffic light cycle) can be made available for a density based traffic light control system. Such information can be used in addition to cameras and motion detectors to optimize a timing for traffic light signals synchronization to improve a traffic flow.
- FIG. 1 is a block diagram illustrating a networked system according to one embodiment.
- FIG. 2 is a block diagram illustrating an example of an autonomous vehicle according to one embodiment.
- FIGS. 3A-3B are block diagrams illustrating an example of a perception and planning system used with an autonomous vehicle according to one embodiment.
- FIG. 4 is a block diagram illustrating an example of an ADV information sender module according to one embodiment.
- FIG. 5 is a block diagram illustrating an example of a traffic light service according to one embodiment.
- FIGS. 6A and 6B are block diagrams illustrating examples of traffic light network configuration according to some embodiments.
- FIG. 7 is a block diagrams illustrating an example of a traffic light junction according to one embodiment.
- FIG. 8 is a flow diagram illustrating a method performed by a traffic light service according to one embodiment.
- FIG. 9 is a block diagram illustrating a data processing system according to one embodiment.
- a system and method directs a traffic flow for ADVs.
- the system receives vehicle information from one or more ADVs.
- the system determines a location and a heading of each ADV from the vehicle information of the ADV.
- the system determines if the ADV is approaching a traffic light junction based on the location and the heading of the ADV.
- the system sends the vehicle information of the ADVs to a traffic light control system in response to determining the ADV is approaching the traffic light junction, where the vehicle information is used by the traffic light control system to direct a traffic flow at the traffic light junction, including adjusting a time duration of a light signal at one or more traffic lights disposed at the traffic light junction in advance of the ADVs arriving at the traffic light junction.
- FIG. 1 is a block diagram illustrating an autonomous vehicle network configuration according to one embodiment of the disclosure.
- network configuration 100 includes autonomous vehicle 101 that may be communicatively coupled to one or more servers 103 - 104 over a network 102 .
- network 102 may be any type of networks such as a local area network (LAN), a wide area network (WAN) such as the Internet, a cellular network, a satellite network, or a combination thereof, wired or wireless.
- LAN local area network
- WAN wide area network
- Server(s) 103 - 104 may be any kind of servers or a cluster of servers, such as Web or cloud servers, application servers, backend servers, or a combination thereof.
- Servers 103 - 104 may be data analytics servers, content servers, traffic information servers, map and point of interest (MPOI) severs, or location servers, etc.
- MPOI map and point of interest
- An autonomous vehicle refers to a vehicle that can be configured to in an autonomous mode in which the vehicle navigates through an environment with little or no input from a driver.
- Such an autonomous vehicle can include a sensor system having one or more sensors that are configured to detect information about the environment in which the vehicle operates. The vehicle and its associated controller(s) use the detected information to navigate through the environment.
- Autonomous vehicle 101 can operate in a manual mode, a full autonomous mode, or a partial autonomous mode.
- autonomous vehicle 101 includes, but is not limited to, perception and planning system 110 , vehicle control system 111 , wireless communication system 112 , user interface system 113 , and sensor system 115 .
- Autonomous vehicle 101 may further include certain common components included in ordinary vehicles, such as, an engine, wheels, steering wheel, transmission, etc., which may be controlled by vehicle control system 111 and/or perception and planning system 110 using a variety of communication signals and/or commands, such as, for example, acceleration signals or commands, deceleration signals or commands, steering signals or commands, braking signals or commands, etc.
- Components 110 - 115 may be communicatively coupled to each other via an interconnect, a bus, a network, or a combination thereof.
- components 110 - 115 may be communicatively coupled to each other via a controller area network (CAN) bus.
- CAN controller area network
- a CAN bus is a vehicle bus standard designed to allow microcontrollers and devices to communicate with each other in applications without a host computer. It is a message-based protocol, designed originally for multiplex electrical wiring within automobiles, but is also used in many other contexts.
- sensor system 115 includes, but it is not limited to, one or more cameras 211 , global positioning system (GPS) unit 212 , inertial measurement unit (IMU) 213 , radar unit 214 , and a light detection and range (LIDAR) unit 215 .
- GPS system 212 may include a transceiver operable to provide information regarding the position of the autonomous vehicle.
- IMU unit 213 may sense position and orientation changes of the autonomous vehicle based on inertial acceleration.
- Radar unit 214 may represent a system that utilizes radio signals to sense objects within the local environment of the autonomous vehicle. In some embodiments, in addition to sensing objects, radar unit 214 may additionally sense the speed and/or heading of the objects.
- LIDAR unit 215 may sense objects in the environment in which the autonomous vehicle is located using lasers.
- LIDAR unit 215 could include one or more laser sources, a laser scanner, and one or more detectors, among other system components.
- Cameras 211 may include one or more devices to capture images of the environment surrounding the autonomous vehicle. Cameras 211 may be still cameras and/or video cameras. A camera may be mechanically movable, for example, by mounting the camera on a rotating and/or tilting a platform.
- Sensor system 115 may further include other sensors, such as, a sonar sensor, an infrared sensor, a steering sensor, a throttle sensor, a braking sensor, and an audio sensor (e.g., microphone).
- An audio sensor may be configured to capture sound from the environment surrounding the autonomous vehicle.
- a steering sensor may be configured to sense the steering angle of a steering wheel, wheels of the vehicle, or a combination thereof.
- a throttle sensor and a braking sensor sense the throttle position and braking position of the vehicle, respectively. In some situations, a throttle sensor and a braking sensor may be integrated as an integrated throttle/braking sensor.
- vehicle control system 111 includes, but is not limited to, steering unit 201 , throttle unit 202 (also referred to as an acceleration unit), and braking unit 203 .
- Steering unit 201 is to adjust the direction or heading of the vehicle.
- Throttle unit 202 is to control the speed of the motor or engine that in turn control the speed and acceleration of the vehicle.
- Braking unit 203 is to decelerate the vehicle by providing friction to slow the wheels or tires of the vehicle. Note that the components as shown in FIG. 2 may be implemented in hardware, software, or a combination thereof.
- wireless communication system 112 is to allow communication between autonomous vehicle 101 and external systems, such as devices, sensors, other vehicles, etc.
- wireless communication system 112 can wirelessly communicate with one or more devices directly or via a communication network, such as servers 103 - 104 over network 102 .
- Wireless communication system 112 can use any cellular communication network or a wireless local area network (WLAN), e.g., using WiFi to communicate with another component or system.
- Wireless communication system 112 could communicate directly with a device (e.g., a mobile device of a passenger, a display device, a speaker within vehicle 101 ), for example, using an infrared link, Bluetooth, etc.
- User interface system 113 may be part of peripheral devices implemented within vehicle 101 including, for example, a keyword, a touch screen display device, a microphone, and a speaker, etc.
- Perception and planning system 110 includes the necessary hardware (e.g., processor(s), memory, storage) and software (e.g., operating system, planning and routing programs) to receive information from sensor system 115 , control system 111 , wireless communication system 112 , and/or user interface system 113 , process the received information, plan a route or path from a starting point to a destination point, and then drive vehicle 101 based on the planning and control information.
- Perception and planning system 110 may be integrated with vehicle control system 111 .
- Perception and planning system 110 obtains the trip related data.
- perception and planning system 110 may obtain location and route information from an MPOI server, which may be a part of servers 103 - 104 .
- the location server provides location services and the MPOI server provides map services and the POIs of certain locations.
- such location and MPOI information may be cached locally in a persistent storage device of perception and planning system 110 .
- perception and planning system 110 may also obtain real-time traffic information from a traffic information system or server (TIS).
- TIS traffic information system
- servers 103 - 104 may be operated by a third party entity.
- the functionalities of servers 103 - 104 may be integrated with perception and planning system 110 .
- perception and planning system 110 can plan an optimal route and drive vehicle 101 , for example, via control system 111 , according to the planned route to reach the specified destination safely and efficiently.
- Server 103 may be a data analytics system to perform data analytics services for a variety of clients.
- data analytics system 103 includes data collector 121 and machine learning engine 122 .
- Data collector 121 collects driving statistics 123 from a variety of vehicles, either autonomous vehicles or regular vehicles driven by human drivers. Driving statistics 123 include information indicating the driving commands (e.g., throttle, brake, steering commands) issued and responses of the vehicles (e.g., speeds, accelerations, decelerations, directions) captured by sensors of the vehicles at different points in time.
- driving commands e.g., throttle, brake, steering commands
- responses of the vehicles e.g., speeds, accelerations, decelerations, directions
- Driving statistics 123 may further include information describing the driving environments at different points in time, such as, for example, routes (including starting and destination locations), MPOIs, weather conditions, and road conditions, such as slow traffic on freeway, stopped traffic, car accident, road construction, temporary detour, unknown obstacles, etc.
- machine learning engine 122 Based on driving statistics 123 , machine learning engine 122 generates or trains a set of rules, algorithms, and/or predictive models 124 for a variety of purposes, including predictive models for determining which ADVs are likely to approach a traffic light junction within a predetermined time period.
- Traffic light service 125 can receive location and/or information from one or more ADVs and send their location/route information to a traffic light control system to adjust a time duration of a current traffic light signal for a traffic light at the traffic light junction.
- FIGS. 3A and 3B are block diagrams illustrating an example of a perception and planning system used with an autonomous vehicle according to one embodiment.
- System 300 may be implemented as a part of autonomous vehicle 101 of FIG. 1 including, but is not limited to, perception and planning system 110 , control system 111 , and sensor system 115 .
- perception and planning system 110 includes, but is not limited to, localization module 301 , perception module 302 , prediction module 303 , decision module 304 , planning module 305 , control module 306 , routing module 307 , and ADV information sender module 308 .
- modules 301 - 308 may be implemented in software, hardware, or a combination thereof. For example, these modules may be installed in persistent storage device 352 , loaded into memory 351 , and executed by one or more processors (not shown). Note that some or all of these modules may be communicatively coupled to or integrated with some or all modules of vehicle control system 111 of FIG. 2 . Some of modules 301 - 308 may be integrated together as an integrated module.
- Localization module 301 determines a current location of autonomous vehicle 300 (e.g., leveraging GPS unit 212 ) and manages any data related to a trip or route of a user.
- Localization module 301 (also referred to as a map and route module) manages any data related to a trip or route of a user.
- a user may log in and specify a starting location and a destination of a trip, for example, via a user interface.
- Localization module 301 communicates with other components of autonomous vehicle 300 , such as map and route information 311 , to obtain the trip related data.
- localization module 301 may obtain location and route information from a location server and a map and POI (MPOI) server.
- MPOI map and POI
- a location server provides location services and an MPOI server provides map services and the POIs of certain locations, which may be cached as part of map and route information 311 .
- MPOI server provides map services and the POIs of certain locations, which may be cached as part of map and route information 311 .
- localization module 301 may also obtain real-time traffic information from a traffic information system or server.
- a perception of the surrounding environment is determined by perception module 302 .
- the perception information may represent what an ordinary driver would perceive surrounding a vehicle in which the driver is driving.
- the perception can include the lane configuration (e.g., straight or curve lanes), traffic light signals, a relative position of another vehicle, a pedestrian, a building, crosswalk, or other traffic related signs (e.g., stop signs, yield signs), etc., for example, in a form of an object.
- Perception module 302 may include a computer vision system or functionalities of a computer vision system to process and analyze images captured by one or more cameras in order to identify objects and/or features in the environment of autonomous vehicle.
- the objects can include traffic signals, road way boundaries, other vehicles, pedestrians, and/or obstacles, etc.
- the computer vision system may use an object recognition algorithm, video tracking, and other computer vision techniques.
- the computer vision system can map an environment, track objects, and estimate the speed of objects, etc.
- Perception module 302 can also detect objects based on other sensors data provided by other sensors such as a radar and/or LIDAR.
- prediction module 303 predicts what the object will behave under the circumstances. The prediction is performed based on the perception data perceiving the driving environment at the point in time in view of a set of map/route information 311 and traffic rules 312 . For example, if the object is a vehicle at an opposing direction and the current driving environment includes an intersection, prediction module 303 will predict whether the vehicle will likely move straight forward or make a turn. If the perception data indicates that the intersection has no traffic light, prediction module 303 may predict that the vehicle may have to fully stop prior to entering the intersection. If the perception data indicates that the vehicle is currently at a left-turn only lane or a right-turn only lane, prediction module 303 may predict that the vehicle will more likely make a left turn or right turn respectively.
- decision module 304 makes a decision regarding how to handle the object. For example, for a particular object (e.g., another vehicle in a crossing route) as well as its metadata describing the object (e.g., a speed, direction, turning angle), decision module 304 decides how to encounter the object (e.g., overtake, yield, stop, pass). Decision module 304 may make such decisions according to a set of rules such as traffic rules or driving rules 312 , which may be stored in persistent storage device 352 .
- rules such as traffic rules or driving rules 312
- Routing module 307 is configured to provide one or more routes or paths from a starting point to a destination point. For a given trip from a start location to a destination location, for example, received from a user, routing module 307 obtains route and map information 311 and determines all possible routes or paths from the starting location to reach the destination location. Routing module 307 may generate a reference line in a form of a topographic map for each of the routes it determines from the starting location to reach the destination location. A reference line refers to an ideal route or path without any interference from others such as other vehicles, obstacles, or traffic condition. That is, if there is no other vehicle, pedestrians, or obstacles on the road, an ADV should exactly or closely follows the reference line.
- the topographic maps are then provided to decision module 304 and/or planning module 305 .
- Decision module 304 and/or planning module 305 examine all of the possible routes to select and modify one of the most optimal route in view of other data provided by other modules such as traffic conditions from localization module 301 , driving environment perceived by perception module 302 , and traffic condition predicted by prediction module 303 .
- the actual path or route for controlling the ADV may be close to or different from the reference line provided by routing module 307 dependent upon the specific driving environment at the point in time.
- planning module 305 plans a path or route for the autonomous vehicle, as well as driving parameters (e.g., distance, speed, and/or turning angle), using a reference line provided by routing module 307 as a basis. That is, for a given object, decision module 304 decides what to do with the object, while planning module 305 determines how to do it. For example, for a given object, decision module 304 may decide to pass the object, while planning module 305 may determine whether to pass on the left side or right side of the object. Planning and control data is generated by planning module 305 including information describing how vehicle 300 would move in a next moving cycle (e.g., next route/path segment). For example, the planning and control data may instruct vehicle 300 to move 10 meters at a speed of 30 mile per hour (mph), then change to a right lane at the speed of 25 mph.
- driving parameters e.g., distance, speed, and/or turning angle
- control module 306 controls and drives the autonomous vehicle, by sending proper commands or signals to vehicle control system 111 , according to a route or path defined by the planning and control data.
- the planning and control data include sufficient information to drive the vehicle from a first point to a second point of a route or path using appropriate vehicle settings or driving parameters (e.g., throttle, braking, and turning commands) at different points in time along the path or route.
- the planning phase is performed in a number of planning cycles, also referred to as command cycles, such as, for example, in every time interval of 100 milliseconds (ms).
- command cycles such as, for example, in every time interval of 100 milliseconds (ms).
- one or more control commands will be issued based on the planning and control data. That is, for every 100 ms, planning module 305 plans a next route segment or path segment, for example, including a target position and the time required for the ADV to reach the target position. Alternatively, planning module 305 may further specify the specific speed, direction, and/or steering angle, etc.
- planning module 305 plans a route segment or path segment for the next predetermined period of time such as 5 seconds.
- planning module 305 plans a target position for the current cycle (e.g., next 5 seconds) based on a target position planned in a previous cycle.
- Control module 306 then generates one or more control commands (e.g., throttle, brake, steering control commands) based on the planning and control data of the current cycle.
- control commands e.g., throttle, brake, steering control commands
- Decision module 304 and planning module 305 may be integrated as an integrated module.
- Decision module 304 /planning module 305 may include a navigation system or functionalities of a navigation system to determine a driving path for the autonomous vehicle.
- the navigation system may determine a series of speeds and directional headings to effect movement of the autonomous vehicle along a path that substantially avoids perceived obstacles while generally advancing the autonomous vehicle along a roadway-based path leading to an ultimate destination.
- the destination may be set according to user inputs via user interface system 113 .
- the navigation system may update the driving path dynamically while the autonomous vehicle is in operation.
- the navigation system can incorporate data from a GPS system and one or more maps so as to determine the driving path for the autonomous vehicle.
- Decision module 304 /planning module 305 may further include a collision avoidance system or functionalities of a collision avoidance system to identify, evaluate, and avoid or otherwise negotiate potential obstacles in the environment of the autonomous vehicle.
- the collision avoidance system may effect changes in the navigation of the autonomous vehicle by operating one or more subsystems in control system 111 to undertake swerving maneuvers, turning maneuvers, braking maneuvers, etc.
- the collision avoidance system may automatically determine feasible obstacle avoidance maneuvers on the basis of surrounding traffic patterns, road conditions, etc.
- the collision avoidance system may be configured such that a swerving maneuver is not undertaken when other sensor systems detect vehicles, construction barriers, etc. in the region adjacent the autonomous vehicle that would be swerved into.
- the collision avoidance system may automatically select the maneuver that is both available and maximizes safety of occupants of the autonomous vehicle.
- the collision avoidance system may select an avoidance maneuver predicted to cause the least amount of acceleration in a passenger cabin of the autonomous vehicle.
- ADV information sender module 308 provides an interface for an ADV to broadcast its location and/or route information to a traffic light service.
- ADV information sender module 308 periodically sends its location information to a traffic light service via a wireless network, and only sends its route information to the traffic light service only if the route information has changed or a first time the route information is being sent to the traffic light service.
- FIG. 4 is a block diagram illustrating an example of an ADV information sender module according to one embodiment.
- ADV information sender module 308 can retrieve a location and/or route information for the ADV (e.g., ADV info. 313 of FIG. 3A ), and periodically send these information to a traffic light service, such as traffic light service 125 of FIG. 1 .
- ADV information sender module 308 can send ADV information including, but not limited to, time information 400 (e.g., a timestamp for a current time), speed/direction information 401 , location information 403 , and route information 405 of the ADV.
- ADV information can be any information that can help a traffic light control system in predicting a density of vehicles at any directions of a traffic light junction for a predetermined time period in the future.
- FIG. 5 is a block diagram illustrating an example of a traffic light service according to one embodiment.
- Traffic light service 125 can be a remote service hosted by server 103 to provide a communication interface to receive ADV information from a number of ADVs.
- the communication interface can be through an application programming interface (API).
- Traffic light service 125 can also determine which traffic light junctions an ADV is approaching and can send the ADV information to a traffic light control system to adjust a time duration of a traffic light at the traffic light junction.
- API application programming interface
- traffic light service 500 can include ADV information receiver module 501 , ADV location determiner module 503 , traffic junction determiner module 505 , and ADV information sender module 507 .
- ADV information receiver module 501 can receive an ADV information from one or more ADVs.
- ADV location determiner module 503 can determine a location of an ADV.
- Traffic junction determiner module 505 can determine a traffic light junction nearby the ADV (as part of traffic junction(s) 511 ).
- ADV information sender module 507 can send an ADV information to a traffic light control system (e.g., traffic light controller 509 ).
- traffic light controller 509 can be a controller maintained by a third party whom has access to and can control a traffic light signal.
- traffic light controller 509 and server 103 can be an integrated system.
- FIGS. 6A and 6B are block diagrams illustrating examples of traffic light network configurations according to some embodiments.
- traffic light service 125 can be communicatively coupled to one or more ADVs 101 via network 102 .
- Traffic light service 125 may have access to and can control a time duration of traffic light 333 , in which case, traffic light service 125 can change a time duration of traffic light 333 based on the received ADVs information.
- traffic light service 125 can be communicatively coupled to one or more ADVs 101 via network 102 but traffic light service 125 has no access to and cannot control traffic light 333 .
- traffic light service 125 can be communicatively coupled to traffic light controller 509 whom has access to and can control a time duration of traffic light 333 .
- traffic light service 125 sends ADVs information, or a representation thereof, to traffic light 333 to control a time duration of traffic light 333 to switch between green, yellow, and red light signals based on the received ADVs information.
- FIG. 7 is a block diagrams illustrating an example of a traffic light junction according to one embodiment.
- ADV 101 is approaching traffic junction 700 from the south with a directional heading in a northbound direction.
- ADV 101 periodically sends ADV information (such as a directional heading, a route, and/or a location of the ADV) to a traffic light service, such as traffic light service 125 of FIG. 1 .
- Traffic light service 125 would periodically receive these ADV information from ADV 101 , as well as ADV information from many other ADVs.
- traffic light service 125 may map ADV 101 to a location on a map to perform a check to evaluate whether the ADV information is valid.
- traffic light service 125 can check if the location, directional heading and/or route information, is rational. Once the check is performed to be rational, traffic light service 125 can determine if ADV 101 is approaching a particular traffic light junction based on the ADV information. If the check is not rational, the ADV information may be discarded and traffic light service 125 may send an error message back to ADV 101 . If it is determined ADV 101 will approach a traffic light junction (e.g., traffic light junction 700 ), traffic light service 125 can apply a predictive model (as part of rules/predictive model 124 of FIG. 1 ) to the ADV information (including any traffic information collected) to predict at which time will ADV 101 arrive at junction 700 .
- a traffic light junction e.g., traffic light junction 700
- traffic light service 125 can apply a predictive model (as part of rules/predictive model 124 of FIG. 1 ) to the ADV information (including any traffic information collected) to predict at which time will ADV 101 arrive at junction 700 .
- light traffic service 125 can send the ADV information, or a representation thereof, to a traffic light system (such as traffic light controller 509 of FIG. 5 ).
- the traffic light system or traffic light controller 509 can then use the ADV information, or a representation thereof, to adjust a time duration of the traffic lights at junction 700 .
- a representation of the ADV information sent by traffic light service 125 to the traffic light controller 509 can include a timestamp and a traffic light ID of an approaching traffic light determined by the traffic light service 125 based on a location and directional heading of the ADV 101 .
- traffic light service 125 can determine a current universal time to be “20180326150101” (e.g., year: 2018, month: 03, date: 26, hour: 15, minute: 01, second: 01) and can send a payload having a timestamp for an estimated time to arrival (ETA) of “20180326150108” and a traffic light ID of “ 703 ” to indicate an ADV (e.g., ADV 101 ) is predicted to arrive a junction corresponding to traffic light 703 (e.g., junction 700 ), and would need to pass through traffic light 703 , approximately in the next 7 seconds.
- the arrival time can be calculated by subtracting the ETA timestamp from a current timestamp.
- traffic lights 701 - 707 may be a part of traffic light 333 of FIG. 6A .
- traffic light controller 509 can adjust a time duration of a light signal of light 703 , which normally may be controlled by a sensor (such as an infrared sensor 711 ) or any density capturing devices installed for light 703 , by overriding sensor 711 and/or simulating a detection of a vehicle at sensor 711 well in advance of ADV 101 arriving at junction 700 .
- a sensor such as an infrared sensor 711
- any density capturing devices installed for light 703
- data captured by sensor 711 corresponding to light 703 can be added to the received ADV information and traffic light controller 509 can perform a density based traffic light control algorithm based on the density of traffic and ADV information to determine when to adjust a duration of a traffic signal for light 703 .
- traffic light controller 509 can perform a density based traffic light control algorithm based on the density of traffic and ADV information to determine when to adjust a duration of a traffic signal for light 703 .
- traffic light service 125 may send a current time, a location, a directional heading, and/or a route information of ADV 101 to traffic light controller 509 .
- Traffic light control controller 509 may then determine which of the traffic lights and approximately at what time will ADV 101 approach junction 700 .
- the time information included in the ADV information can ensure that a delay in data transmission will not affect calculations of estimated arrival time of the ADV at traffic junction 700 .
- server 103 having traffic light service 125 and traffic light controller 509 can be an integrated system.
- FIG. 8 is a flow diagram illustrating a method performed by a traffic light service according to one embodiment.
- Processing 800 may be performed by processing logic which may include software, hardware, or a combination thereof.
- process 800 may be performed by traffic light service 125 of FIG. 1 .
- processing logic receives vehicle information from one or more ADVs.
- processing logic determines a location and a heading of each ADV from the vehicle information of the ADV.
- processing logic determines if the ADV is approaching a traffic light junction based on the location and the heading of the ADV.
- processing logic sends the vehicle information of the ADVs to a traffic light control system (e.g., traffic light controller 509 ) in response to determining the ADV is approaching the traffic light junction, where the vehicle information is used by the traffic light control system to direct a traffic flow at the traffic light junction, including adjusting a time duration of a light signal at one or more traffic lights disposed at the traffic light junction in advance of the ADVs arriving at the traffic light junction.
- a traffic light control system e.g., traffic light controller 509
- the vehicle information from an ADV includes a time information, a location information, a speed information, and a route information for the ADV.
- the traffic light control system directs a traffic flow at the traffic light junction including operating one or more traffic lights at the traffic light junction.
- determining if the ADV is approaching a traffic light junction includes determining if the ADV is within a predetermined proximity to the traffic light junction, determining if a current road segment of the ADV routes to the traffic light junction based on a route information, and determining if a heading to route the ADV to the traffic light junction matches the heading of the ADV.
- the vehicle information of the ADV are used by the traffic light control system to perform a density-based traffic light control algorithm.
- the density-based traffic light control algorithm is performed based on a number of vehicles anticipated to approach or has arrived at the traffic light junction.
- the density-based traffic light control algorithm directs a traffic flow at the traffic light junction for a first direction having a higher density of vehicles than a second direction.
- components as shown and described above may be implemented in software, hardware, or a combination thereof.
- such components can be implemented as software installed and stored in a persistent storage device, which can be loaded and executed in a memory by a processor (not shown) to carry out the processes or operations described throughout this application.
- such components can be implemented as executable code programmed or embedded into dedicated hardware such as an integrated circuit (e.g., an application specific IC or ASIC), a digital signal processor (DSP), or a field programmable gate array (FPGA), which can be accessed via a corresponding driver and/or operating system from an application.
- an integrated circuit e.g., an application specific IC or ASIC
- DSP digital signal processor
- FPGA field programmable gate array
- such components can be implemented as specific hardware logic in a processor or processor core as part of an instruction set accessible by a software component via one or more specific instructions.
- FIG. 10 is a block diagram illustrating an example of a data processing system which may be used with one embodiment of the disclosure.
- system 1500 may represent any of data processing systems described above performing any of the processes or methods described above, such as, for example, perception and planning system 110 , traffic light service 125 , or any of servers 103 - 104 of FIG. 1 .
- System 1500 can include many different components. These components can be implemented as integrated circuits (ICs), portions thereof, discrete electronic devices, or other modules adapted to a circuit board such as a motherboard or add-in card of the computer system, or as components otherwise incorporated within a chassis of the computer system.
- ICs integrated circuits
- System 1500 is intended to show a high level view of many components of the computer system. However, it is to be understood that additional components may be present in certain implementations and furthermore, different arrangement of the components shown may occur in other implementations.
- System 1500 may represent a desktop, a laptop, a tablet, a server, a mobile phone, a media player, a personal digital assistant (PDA), a Smartwatch, a personal communicator, a gaming device, a network router or hub, a wireless access point (AP) or repeater, a set-top box, or a combination thereof.
- PDA personal digital assistant
- AP wireless access point
- system 1500 shall also be taken to include any collection of machines or systems that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein.
- system 1500 includes processor 1501 , memory 1503 , and devices 1505 - 1508 connected via a bus or an interconnect 1510 .
- Processor 1501 may represent a single processor or multiple processors with a single processor core or multiple processor cores included therein.
- Processor 1501 may represent one or more general-purpose processors such as a microprocessor, a central processing unit (CPU), or the like. More particularly, processor 1501 may be a complex instruction set computing (CISC) microprocessor, reduced instruction set computing (RISC) microprocessor, very long instruction word (VLIW) microprocessor, or processor implementing other instruction sets, or processors implementing a combination of instruction sets.
- CISC complex instruction set computing
- RISC reduced instruction set computing
- VLIW very long instruction word
- Processor 1501 may also be one or more special-purpose processors such as an application specific integrated circuit (ASIC), a cellular or baseband processor, a field programmable gate array (FPGA), a digital signal processor (DSP), a network processor, a graphics processor, a communications processor, a cryptographic processor, a co-processor, an embedded processor, or any other type of logic capable of processing instructions.
- ASIC application specific integrated circuit
- FPGA field programmable gate array
- DSP digital signal processor
- network processor a graphics processor
- communications processor a cryptographic processor
- co-processor a co-processor
- embedded processor or any other type of logic capable of processing instructions.
- Processor 1501 which may be a low power multi-core processor socket such as an ultra-low voltage processor, may act as a main processing unit and central hub for communication with the various components of the system. Such processor can be implemented as a system on chip (SoC). Processor 1501 is configured to execute instructions for performing the operations and steps discussed herein.
- System 1500 may further include a graphics interface that communicates with optional graphics subsystem 1504 , which may include a display controller, a graphics processor, and/or a display device.
- graphics subsystem 1504 may include a display controller, a graphics processor, and/or a display device.
- Processor 1501 may communicate with memory 1503 , which in one embodiment can be implemented via multiple memory devices to provide for a given amount of system memory.
- Memory 1503 may include one or more volatile storage (or memory) devices such as random access memory (RAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), static RAM (SRAM), or other types of storage devices.
- RAM random access memory
- DRAM dynamic RAM
- SDRAM synchronous DRAM
- SRAM static RAM
- Memory 1503 may store information including sequences of instructions that are executed by processor 1501 , or any other device. For example, executable code and/or data of a variety of operating systems, device drivers, firmware (e.g., input output basic system or BIOS), and/or applications can be loaded in memory 1503 and executed by processor 1501 .
- BIOS input output basic system
- An operating system can be any kind of operating systems, such as, for example, Robot Operating System (ROS), Windows® operating system from Microsoft®, Mac OS®/iOS® from Apple, Android® from Google®, LINUX, UNIX, or other real-time or embedded operating systems.
- ROS Robot Operating System
- Windows® operating system from Microsoft®
- Mac OS®/iOS® from Apple
- Android® from Google®
- LINUX LINUX
- UNIX or other real-time or embedded operating systems.
- System 1500 may further include IO devices such as devices 1505 - 1508 , including network interface device(s) 1505 , optional input device(s) 1506 , and other optional IO device(s) 1507 .
- Network interface device 1505 may include a wireless transceiver and/or a network interface card (NIC).
- the wireless transceiver may be a WiFi transceiver, an infrared transceiver, a Bluetooth transceiver, a WiMax transceiver, a wireless cellular telephony transceiver, a satellite transceiver (e.g., a global positioning system (GPS) transceiver), or other radio frequency (RF) transceivers, or a combination thereof.
- the NIC may be an Ethernet card.
- Input device(s) 1506 may include a mouse, a touch pad, a touch sensitive screen (which may be integrated with display device 1504 ), a pointer device such as a stylus, and/or a keyboard (e.g., physical keyboard or a virtual keyboard displayed as part of a touch sensitive screen).
- input device 1506 may include a touch screen controller coupled to a touch screen.
- the touch screen and touch screen controller can, for example, detect contact and movement or break thereof using any of a plurality of touch sensitivity technologies, including but not limited to capacitive, resistive, infrared, and surface acoustic wave technologies, as well as other proximity sensor arrays or other elements for determining one or more points of contact with the touch screen.
- IO devices 1507 may include an audio device.
- An audio device may include a speaker and/or a microphone to facilitate voice-enabled functions, such as voice recognition, voice replication, digital recording, and/or telephony functions.
- Other IO devices 1507 may further include universal serial bus (USB) port(s), parallel port(s), serial port(s), a printer, a network interface, a bus bridge (e.g., a PCI-PCI bridge), sensor(s) (e.g., a motion sensor such as an accelerometer, gyroscope, a magnetometer, a light sensor, compass, a proximity sensor, etc.), or a combination thereof.
- USB universal serial bus
- sensor(s) e.g., a motion sensor such as an accelerometer, gyroscope, a magnetometer, a light sensor, compass, a proximity sensor, etc.
- Devices 1507 may further include an imaging processing subsystem (e.g., a camera), which may include an optical sensor, such as a charged coupled device (CCD) or a complementary metal-oxide semiconductor (CMOS) optical sensor, utilized to facilitate camera functions, such as recording photographs and video clips.
- an imaging processing subsystem e.g., a camera
- an optical sensor such as a charged coupled device (CCD) or a complementary metal-oxide semiconductor (CMOS) optical sensor, utilized to facilitate camera functions, such as recording photographs and video clips.
- CCD charged coupled device
- CMOS complementary metal-oxide semiconductor
- Certain sensors may be coupled to interconnect 1510 via a sensor hub (not shown), while other devices such as a keyboard or thermal sensor may be controlled by an embedded controller (not shown), dependent upon the specific configuration or design of system 1500 .
- a mass storage may also couple to processor 1501 .
- this mass storage may be implemented via a solid state device (SSD).
- SSD solid state device
- the mass storage may primarily be implemented using a hard disk drive (HDD) with a smaller amount of SSD storage to act as a SSD cache to enable non-volatile storage of context state and other such information during power down events so that a fast power up can occur on re-initiation of system activities.
- a flash device may be coupled to processor 1501 , e.g., via a serial peripheral interface (SPI). This flash device may provide for non-volatile storage of system software, including BIOS as well as other firmware of the system.
- Storage device 1508 may include computer-accessible storage medium 1509 (also known as a machine-readable storage medium or a computer-readable medium) on which is stored one or more sets of instructions or software (e.g., module, unit, and/or logic 1528 ) embodying any one or more of the methodologies or functions described herein.
- Processing module/unit/logic 1528 may represent any of the components described above, such as, for example, ADV information sender module 308 of FIG. 3A .
- Processing module/unit/logic 1528 may also reside, completely or at least partially, within memory 1503 and/or within processor 1501 during execution thereof by data processing system 1500 , memory 1503 and processor 1501 also constituting machine-accessible storage media.
- Processing module/unit/logic 1528 may further be transmitted or received over a network via network interface device 1505 .
- Computer-readable storage medium 1509 may also be used to store the some software functionalities described above persistently. While computer-readable storage medium 1509 is shown in an exemplary embodiment to be a single medium, the term “computer-readable storage medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions. The terms “computer-readable storage medium” shall also be taken to include any medium that is capable of storing or encoding a set of instructions for execution by the machine and that cause the machine to perform any one or more of the methodologies of the present disclosure. The term “computer-readable storage medium” shall accordingly be taken to include, but not be limited to, solid-state memories, and optical and magnetic media, or any other non-transitory machine-readable medium.
- Processing module/unit/logic 1528 can be implemented as discrete hardware components or integrated in the functionality of hardware components such as ASICS, FPGAs, DSPs or similar devices.
- processing module/unit/logic 1528 can be implemented as firmware or functional circuitry within hardware devices.
- processing module/unit/logic 1528 can be implemented in any combination hardware devices and software components.
- system 1500 is illustrated with various components of a data processing system, it is not intended to represent any particular architecture or manner of interconnecting the components; as such details are not germane to embodiments of the present disclosure. It will also be appreciated that network computers, handheld computers, mobile phones, servers, and/or other data processing systems which have fewer components or perhaps more components may also be used with embodiments of the disclosure.
- Embodiments of the disclosure also relate to an apparatus for performing the operations herein.
- a computer program is stored in a non-transitory computer readable medium.
- a machine-readable medium includes any mechanism for storing information in a form readable by a machine (e.g., a computer).
- a machine-readable (e.g., computer-readable) medium includes a machine (e.g., a computer) readable storage medium (e.g., read only memory (“ROM”), random access memory (“RAM”), magnetic disk storage media, optical storage media, flash memory devices).
- processing logic that comprises hardware (e.g. circuitry, dedicated logic, etc.), software (e.g., embodied on a non-transitory computer readable medium), or a combination of both.
- processing logic comprises hardware (e.g. circuitry, dedicated logic, etc.), software (e.g., embodied on a non-transitory computer readable medium), or a combination of both.
- Embodiments of the present disclosure are not described with reference to any particular programming language. It will be appreciated that a variety of programming languages may be used to implement the teachings of embodiments of the disclosure as described herein.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Traffic Control Systems (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
Abstract
Description
- Embodiments of the present disclosure relate generally to operating autonomous vehicles. More particularly, embodiments of the disclosure relate to density based traffic light control systems for autonomous driving vehicles (ADVs).
- Vehicles operating in an autonomous mode (e.g., driverless) can relieve occupants, especially the driver, from some driving-related responsibilities. When operating in an autonomous mode, the vehicle can navigate to various locations using onboard sensors, allowing the vehicle to travel with minimal human interaction or in some cases without any passengers.
- There are two types of traffic light control system. A first type is a fixed time delay traffic light control system. For this type, traffic light signals are synchronized to fixed time delays. A second type is a density based traffic light control system. For this type of a traffic light controls system, traffic light signals are synchronized to a density of a traffic flow at the traffic lights, which can be provided by cameras or detectors installed right before the traffic lights. For ADVs, however, more information (such as the ADVs will likely cross the intersection in the next traffic light cycle) can be made available for a density based traffic light control system. Such information can be used in addition to cameras and motion detectors to optimize a timing for traffic light signals synchronization to improve a traffic flow.
- Embodiments of the disclosure are illustrated by way of example and not limitation in the figures of the accompanying drawings in which like references indicate similar elements.
-
FIG. 1 is a block diagram illustrating a networked system according to one embodiment. -
FIG. 2 is a block diagram illustrating an example of an autonomous vehicle according to one embodiment. -
FIGS. 3A-3B are block diagrams illustrating an example of a perception and planning system used with an autonomous vehicle according to one embodiment. -
FIG. 4 is a block diagram illustrating an example of an ADV information sender module according to one embodiment. -
FIG. 5 is a block diagram illustrating an example of a traffic light service according to one embodiment. -
FIGS. 6A and 6B are block diagrams illustrating examples of traffic light network configuration according to some embodiments. -
FIG. 7 is a block diagrams illustrating an example of a traffic light junction according to one embodiment. -
FIG. 8 is a flow diagram illustrating a method performed by a traffic light service according to one embodiment. -
FIG. 9 is a block diagram illustrating a data processing system according to one embodiment. - Various embodiments and aspects of the disclosures will be described with reference to details discussed below, and the accompanying drawings will illustrate the various embodiments. The following description and drawings are illustrative of the disclosure and are not to be construed as limiting the disclosure. Numerous specific details are described to provide a thorough understanding of various embodiments of the present disclosure. However, in certain instances, well-known or conventional details are not described in order to provide a concise discussion of embodiments of the present disclosures.
- Reference in the specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in conjunction with the embodiment can be included in at least one embodiment of the disclosure. The appearances of the phrase “in one embodiment” in various places in the specification do not necessarily all refer to the same embodiment.
- According to some embodiments, a system and method directs a traffic flow for ADVs. According to one embodiment, the system receives vehicle information from one or more ADVs. The system determines a location and a heading of each ADV from the vehicle information of the ADV. For each of the ADVs, the system determines if the ADV is approaching a traffic light junction based on the location and the heading of the ADV. The system sends the vehicle information of the ADVs to a traffic light control system in response to determining the ADV is approaching the traffic light junction, where the vehicle information is used by the traffic light control system to direct a traffic flow at the traffic light junction, including adjusting a time duration of a light signal at one or more traffic lights disposed at the traffic light junction in advance of the ADVs arriving at the traffic light junction.
-
FIG. 1 is a block diagram illustrating an autonomous vehicle network configuration according to one embodiment of the disclosure. Referring toFIG. 1 ,network configuration 100 includesautonomous vehicle 101 that may be communicatively coupled to one or more servers 103-104 over anetwork 102. Although there is one autonomous vehicle shown, multiple autonomous vehicles can be coupled to each other and/or coupled to servers 103-104 overnetwork 102. Network 102 may be any type of networks such as a local area network (LAN), a wide area network (WAN) such as the Internet, a cellular network, a satellite network, or a combination thereof, wired or wireless. Server(s) 103-104 may be any kind of servers or a cluster of servers, such as Web or cloud servers, application servers, backend servers, or a combination thereof. Servers 103-104 may be data analytics servers, content servers, traffic information servers, map and point of interest (MPOI) severs, or location servers, etc. - An autonomous vehicle refers to a vehicle that can be configured to in an autonomous mode in which the vehicle navigates through an environment with little or no input from a driver. Such an autonomous vehicle can include a sensor system having one or more sensors that are configured to detect information about the environment in which the vehicle operates. The vehicle and its associated controller(s) use the detected information to navigate through the environment.
Autonomous vehicle 101 can operate in a manual mode, a full autonomous mode, or a partial autonomous mode. - In one embodiment,
autonomous vehicle 101 includes, but is not limited to, perception andplanning system 110,vehicle control system 111,wireless communication system 112,user interface system 113, andsensor system 115.Autonomous vehicle 101 may further include certain common components included in ordinary vehicles, such as, an engine, wheels, steering wheel, transmission, etc., which may be controlled byvehicle control system 111 and/or perception andplanning system 110 using a variety of communication signals and/or commands, such as, for example, acceleration signals or commands, deceleration signals or commands, steering signals or commands, braking signals or commands, etc. - Components 110-115 may be communicatively coupled to each other via an interconnect, a bus, a network, or a combination thereof. For example, components 110-115 may be communicatively coupled to each other via a controller area network (CAN) bus. A CAN bus is a vehicle bus standard designed to allow microcontrollers and devices to communicate with each other in applications without a host computer. It is a message-based protocol, designed originally for multiplex electrical wiring within automobiles, but is also used in many other contexts.
- Referring now to
FIG. 2 , in one embodiment,sensor system 115 includes, but it is not limited to, one ormore cameras 211, global positioning system (GPS)unit 212, inertial measurement unit (IMU) 213,radar unit 214, and a light detection and range (LIDAR)unit 215.GPS system 212 may include a transceiver operable to provide information regarding the position of the autonomous vehicle. IMUunit 213 may sense position and orientation changes of the autonomous vehicle based on inertial acceleration.Radar unit 214 may represent a system that utilizes radio signals to sense objects within the local environment of the autonomous vehicle. In some embodiments, in addition to sensing objects,radar unit 214 may additionally sense the speed and/or heading of the objects. LIDARunit 215 may sense objects in the environment in which the autonomous vehicle is located using lasers. LIDARunit 215 could include one or more laser sources, a laser scanner, and one or more detectors, among other system components.Cameras 211 may include one or more devices to capture images of the environment surrounding the autonomous vehicle.Cameras 211 may be still cameras and/or video cameras. A camera may be mechanically movable, for example, by mounting the camera on a rotating and/or tilting a platform. -
Sensor system 115 may further include other sensors, such as, a sonar sensor, an infrared sensor, a steering sensor, a throttle sensor, a braking sensor, and an audio sensor (e.g., microphone). An audio sensor may be configured to capture sound from the environment surrounding the autonomous vehicle. A steering sensor may be configured to sense the steering angle of a steering wheel, wheels of the vehicle, or a combination thereof. A throttle sensor and a braking sensor sense the throttle position and braking position of the vehicle, respectively. In some situations, a throttle sensor and a braking sensor may be integrated as an integrated throttle/braking sensor. - In one embodiment,
vehicle control system 111 includes, but is not limited to,steering unit 201, throttle unit 202 (also referred to as an acceleration unit), andbraking unit 203.Steering unit 201 is to adjust the direction or heading of the vehicle.Throttle unit 202 is to control the speed of the motor or engine that in turn control the speed and acceleration of the vehicle.Braking unit 203 is to decelerate the vehicle by providing friction to slow the wheels or tires of the vehicle. Note that the components as shown inFIG. 2 may be implemented in hardware, software, or a combination thereof. - Referring back to
FIG. 1 ,wireless communication system 112 is to allow communication betweenautonomous vehicle 101 and external systems, such as devices, sensors, other vehicles, etc. For example,wireless communication system 112 can wirelessly communicate with one or more devices directly or via a communication network, such as servers 103-104 overnetwork 102.Wireless communication system 112 can use any cellular communication network or a wireless local area network (WLAN), e.g., using WiFi to communicate with another component or system.Wireless communication system 112 could communicate directly with a device (e.g., a mobile device of a passenger, a display device, a speaker within vehicle 101), for example, using an infrared link, Bluetooth, etc.User interface system 113 may be part of peripheral devices implemented withinvehicle 101 including, for example, a keyword, a touch screen display device, a microphone, and a speaker, etc. - Some or all of the functions of
autonomous vehicle 101 may be controlled or managed by perception andplanning system 110, especially when operating in an autonomous driving mode. Perception andplanning system 110 includes the necessary hardware (e.g., processor(s), memory, storage) and software (e.g., operating system, planning and routing programs) to receive information fromsensor system 115,control system 111,wireless communication system 112, and/oruser interface system 113, process the received information, plan a route or path from a starting point to a destination point, and then drivevehicle 101 based on the planning and control information. Alternatively, perception andplanning system 110 may be integrated withvehicle control system 111. - For example, a user as a passenger may specify a starting location and a destination of a trip, for example, via a user interface. Perception and
planning system 110 obtains the trip related data. For example, perception andplanning system 110 may obtain location and route information from an MPOI server, which may be a part of servers 103-104. The location server provides location services and the MPOI server provides map services and the POIs of certain locations. Alternatively, such location and MPOI information may be cached locally in a persistent storage device of perception andplanning system 110. - While
autonomous vehicle 101 is moving along the route, perception andplanning system 110 may also obtain real-time traffic information from a traffic information system or server (TIS). Note that servers 103-104 may be operated by a third party entity. Alternatively, the functionalities of servers 103-104 may be integrated with perception andplanning system 110. Based on the real-time traffic information, MPOI information, and location information, as well as real-time local environment data detected or sensed by sensor system 115 (e.g., obstacles, objects, nearby vehicles), perception andplanning system 110 can plan an optimal route and drivevehicle 101, for example, viacontrol system 111, according to the planned route to reach the specified destination safely and efficiently. -
Server 103 may be a data analytics system to perform data analytics services for a variety of clients. In one embodiment,data analytics system 103 includesdata collector 121 andmachine learning engine 122.Data collector 121 collects drivingstatistics 123 from a variety of vehicles, either autonomous vehicles or regular vehicles driven by human drivers. Drivingstatistics 123 include information indicating the driving commands (e.g., throttle, brake, steering commands) issued and responses of the vehicles (e.g., speeds, accelerations, decelerations, directions) captured by sensors of the vehicles at different points in time. Drivingstatistics 123 may further include information describing the driving environments at different points in time, such as, for example, routes (including starting and destination locations), MPOIs, weather conditions, and road conditions, such as slow traffic on freeway, stopped traffic, car accident, road construction, temporary detour, unknown obstacles, etc. - Based on driving
statistics 123,machine learning engine 122 generates or trains a set of rules, algorithms, and/orpredictive models 124 for a variety of purposes, including predictive models for determining which ADVs are likely to approach a traffic light junction within a predetermined time period.Traffic light service 125 can receive location and/or information from one or more ADVs and send their location/route information to a traffic light control system to adjust a time duration of a current traffic light signal for a traffic light at the traffic light junction. -
FIGS. 3A and 3B are block diagrams illustrating an example of a perception and planning system used with an autonomous vehicle according to one embodiment.System 300 may be implemented as a part ofautonomous vehicle 101 ofFIG. 1 including, but is not limited to, perception andplanning system 110,control system 111, andsensor system 115. Referring toFIGS. 3A-3B , perception andplanning system 110 includes, but is not limited to,localization module 301,perception module 302,prediction module 303,decision module 304,planning module 305,control module 306,routing module 307, and ADVinformation sender module 308. - Some or all of modules 301-308 may be implemented in software, hardware, or a combination thereof. For example, these modules may be installed in
persistent storage device 352, loaded intomemory 351, and executed by one or more processors (not shown). Note that some or all of these modules may be communicatively coupled to or integrated with some or all modules ofvehicle control system 111 ofFIG. 2 . Some of modules 301-308 may be integrated together as an integrated module. -
Localization module 301 determines a current location of autonomous vehicle 300 (e.g., leveraging GPS unit 212) and manages any data related to a trip or route of a user. Localization module 301 (also referred to as a map and route module) manages any data related to a trip or route of a user. A user may log in and specify a starting location and a destination of a trip, for example, via a user interface.Localization module 301 communicates with other components ofautonomous vehicle 300, such as map androute information 311, to obtain the trip related data. For example,localization module 301 may obtain location and route information from a location server and a map and POI (MPOI) server. A location server provides location services and an MPOI server provides map services and the POIs of certain locations, which may be cached as part of map androute information 311. Whileautonomous vehicle 300 is moving along the route,localization module 301 may also obtain real-time traffic information from a traffic information system or server. - Based on the sensor data provided by
sensor system 115 and localization information obtained bylocalization module 301, a perception of the surrounding environment is determined byperception module 302. The perception information may represent what an ordinary driver would perceive surrounding a vehicle in which the driver is driving. The perception can include the lane configuration (e.g., straight or curve lanes), traffic light signals, a relative position of another vehicle, a pedestrian, a building, crosswalk, or other traffic related signs (e.g., stop signs, yield signs), etc., for example, in a form of an object. -
Perception module 302 may include a computer vision system or functionalities of a computer vision system to process and analyze images captured by one or more cameras in order to identify objects and/or features in the environment of autonomous vehicle. The objects can include traffic signals, road way boundaries, other vehicles, pedestrians, and/or obstacles, etc. The computer vision system may use an object recognition algorithm, video tracking, and other computer vision techniques. In some embodiments, the computer vision system can map an environment, track objects, and estimate the speed of objects, etc.Perception module 302 can also detect objects based on other sensors data provided by other sensors such as a radar and/or LIDAR. - For each of the objects,
prediction module 303 predicts what the object will behave under the circumstances. The prediction is performed based on the perception data perceiving the driving environment at the point in time in view of a set of map/route information 311 and traffic rules 312. For example, if the object is a vehicle at an opposing direction and the current driving environment includes an intersection,prediction module 303 will predict whether the vehicle will likely move straight forward or make a turn. If the perception data indicates that the intersection has no traffic light,prediction module 303 may predict that the vehicle may have to fully stop prior to entering the intersection. If the perception data indicates that the vehicle is currently at a left-turn only lane or a right-turn only lane,prediction module 303 may predict that the vehicle will more likely make a left turn or right turn respectively. - For each of the objects,
decision module 304 makes a decision regarding how to handle the object. For example, for a particular object (e.g., another vehicle in a crossing route) as well as its metadata describing the object (e.g., a speed, direction, turning angle),decision module 304 decides how to encounter the object (e.g., overtake, yield, stop, pass).Decision module 304 may make such decisions according to a set of rules such as traffic rules or drivingrules 312, which may be stored inpersistent storage device 352. -
Routing module 307 is configured to provide one or more routes or paths from a starting point to a destination point. For a given trip from a start location to a destination location, for example, received from a user,routing module 307 obtains route andmap information 311 and determines all possible routes or paths from the starting location to reach the destination location.Routing module 307 may generate a reference line in a form of a topographic map for each of the routes it determines from the starting location to reach the destination location. A reference line refers to an ideal route or path without any interference from others such as other vehicles, obstacles, or traffic condition. That is, if there is no other vehicle, pedestrians, or obstacles on the road, an ADV should exactly or closely follows the reference line. The topographic maps are then provided todecision module 304 and/orplanning module 305.Decision module 304 and/orplanning module 305 examine all of the possible routes to select and modify one of the most optimal route in view of other data provided by other modules such as traffic conditions fromlocalization module 301, driving environment perceived byperception module 302, and traffic condition predicted byprediction module 303. The actual path or route for controlling the ADV may be close to or different from the reference line provided byrouting module 307 dependent upon the specific driving environment at the point in time. - Based on a decision for each of the objects perceived,
planning module 305 plans a path or route for the autonomous vehicle, as well as driving parameters (e.g., distance, speed, and/or turning angle), using a reference line provided byrouting module 307 as a basis. That is, for a given object,decision module 304 decides what to do with the object, while planningmodule 305 determines how to do it. For example, for a given object,decision module 304 may decide to pass the object, while planningmodule 305 may determine whether to pass on the left side or right side of the object. Planning and control data is generated by planningmodule 305 including information describing howvehicle 300 would move in a next moving cycle (e.g., next route/path segment). For example, the planning and control data may instructvehicle 300 to move 10 meters at a speed of 30 mile per hour (mph), then change to a right lane at the speed of 25 mph. - Based on the planning and control data,
control module 306 controls and drives the autonomous vehicle, by sending proper commands or signals tovehicle control system 111, according to a route or path defined by the planning and control data. The planning and control data include sufficient information to drive the vehicle from a first point to a second point of a route or path using appropriate vehicle settings or driving parameters (e.g., throttle, braking, and turning commands) at different points in time along the path or route. - In one embodiment, the planning phase is performed in a number of planning cycles, also referred to as command cycles, such as, for example, in every time interval of 100 milliseconds (ms). For each of the planning cycles or command cycles, one or more control commands will be issued based on the planning and control data. That is, for every 100 ms,
planning module 305 plans a next route segment or path segment, for example, including a target position and the time required for the ADV to reach the target position. Alternatively,planning module 305 may further specify the specific speed, direction, and/or steering angle, etc. In one embodiment,planning module 305 plans a route segment or path segment for the next predetermined period of time such as 5 seconds. For each planning cycle,planning module 305 plans a target position for the current cycle (e.g., next 5 seconds) based on a target position planned in a previous cycle.Control module 306 then generates one or more control commands (e.g., throttle, brake, steering control commands) based on the planning and control data of the current cycle. - Note that
decision module 304 andplanning module 305 may be integrated as an integrated module.Decision module 304/planning module 305 may include a navigation system or functionalities of a navigation system to determine a driving path for the autonomous vehicle. For example, the navigation system may determine a series of speeds and directional headings to effect movement of the autonomous vehicle along a path that substantially avoids perceived obstacles while generally advancing the autonomous vehicle along a roadway-based path leading to an ultimate destination. The destination may be set according to user inputs viauser interface system 113. The navigation system may update the driving path dynamically while the autonomous vehicle is in operation. The navigation system can incorporate data from a GPS system and one or more maps so as to determine the driving path for the autonomous vehicle. -
Decision module 304/planning module 305 may further include a collision avoidance system or functionalities of a collision avoidance system to identify, evaluate, and avoid or otherwise negotiate potential obstacles in the environment of the autonomous vehicle. For example, the collision avoidance system may effect changes in the navigation of the autonomous vehicle by operating one or more subsystems incontrol system 111 to undertake swerving maneuvers, turning maneuvers, braking maneuvers, etc. The collision avoidance system may automatically determine feasible obstacle avoidance maneuvers on the basis of surrounding traffic patterns, road conditions, etc. The collision avoidance system may be configured such that a swerving maneuver is not undertaken when other sensor systems detect vehicles, construction barriers, etc. in the region adjacent the autonomous vehicle that would be swerved into. The collision avoidance system may automatically select the maneuver that is both available and maximizes safety of occupants of the autonomous vehicle. The collision avoidance system may select an avoidance maneuver predicted to cause the least amount of acceleration in a passenger cabin of the autonomous vehicle. - According to one embodiment, ADV
information sender module 308 provides an interface for an ADV to broadcast its location and/or route information to a traffic light service. In some embodiments, ADVinformation sender module 308 periodically sends its location information to a traffic light service via a wireless network, and only sends its route information to the traffic light service only if the route information has changed or a first time the route information is being sent to the traffic light service. -
FIG. 4 is a block diagram illustrating an example of an ADV information sender module according to one embodiment. Referring toFIG. 4 , ADVinformation sender module 308 can retrieve a location and/or route information for the ADV (e.g., ADV info. 313 ofFIG. 3A ), and periodically send these information to a traffic light service, such astraffic light service 125 ofFIG. 1 . In one embodiment, ADVinformation sender module 308 can send ADV information including, but not limited to, time information 400 (e.g., a timestamp for a current time), speed/direction information 401,location information 403, androute information 405 of the ADV. ADV information can be any information that can help a traffic light control system in predicting a density of vehicles at any directions of a traffic light junction for a predetermined time period in the future. -
FIG. 5 is a block diagram illustrating an example of a traffic light service according to one embodiment.Traffic light service 125 can be a remote service hosted byserver 103 to provide a communication interface to receive ADV information from a number of ADVs. The communication interface can be through an application programming interface (API).Traffic light service 125 can also determine which traffic light junctions an ADV is approaching and can send the ADV information to a traffic light control system to adjust a time duration of a traffic light at the traffic light junction. - In one embodiment, traffic light service 500 can include ADV
information receiver module 501, ADVlocation determiner module 503, trafficjunction determiner module 505, and ADVinformation sender module 507. ADVinformation receiver module 501 can receive an ADV information from one or more ADVs. ADVlocation determiner module 503 can determine a location of an ADV. Trafficjunction determiner module 505 can determine a traffic light junction nearby the ADV (as part of traffic junction(s) 511). ADVinformation sender module 507 can send an ADV information to a traffic light control system (e.g., traffic light controller 509). In one embodiment,traffic light controller 509 can be a controller maintained by a third party whom has access to and can control a traffic light signal. In another embodiment,traffic light controller 509 andserver 103 can be an integrated system. -
FIGS. 6A and 6B are block diagrams illustrating examples of traffic light network configurations according to some embodiments. Referring toFIG. 6A , in one embodiment,traffic light service 125 can be communicatively coupled to one ormore ADVs 101 vianetwork 102.Traffic light service 125 may have access to and can control a time duration oftraffic light 333, in which case,traffic light service 125 can change a time duration oftraffic light 333 based on the received ADVs information. Referring toFIG. 6B , in one embodiment,traffic light service 125 can be communicatively coupled to one ormore ADVs 101 vianetwork 102 buttraffic light service 125 has no access to and cannot controltraffic light 333. Howevertraffic light service 125 can be communicatively coupled totraffic light controller 509 whom has access to and can control a time duration oftraffic light 333. In this case,traffic light service 125 sends ADVs information, or a representation thereof, totraffic light 333 to control a time duration oftraffic light 333 to switch between green, yellow, and red light signals based on the received ADVs information. -
FIG. 7 is a block diagrams illustrating an example of a traffic light junction according to one embodiment. Referring toFIG. 7 , in this scenario,ADV 101 is approachingtraffic junction 700 from the south with a directional heading in a northbound direction. In one embodiment,ADV 101 periodically sends ADV information (such as a directional heading, a route, and/or a location of the ADV) to a traffic light service, such astraffic light service 125 ofFIG. 1 .Traffic light service 125 would periodically receive these ADV information fromADV 101, as well as ADV information from many other ADVs. Based on the receive ADV information,traffic light service 125 may mapADV 101 to a location on a map to perform a check to evaluate whether the ADV information is valid. In one embodiment, to check for validity,traffic light service 125 can check if the location, directional heading and/or route information, is rational. Once the check is performed to be rational,traffic light service 125 can determine ifADV 101 is approaching a particular traffic light junction based on the ADV information. If the check is not rational, the ADV information may be discarded andtraffic light service 125 may send an error message back toADV 101. If it isdetermined ADV 101 will approach a traffic light junction (e.g., traffic light junction 700),traffic light service 125 can apply a predictive model (as part of rules/predictive model 124 ofFIG. 1 ) to the ADV information (including any traffic information collected) to predict at which time will ADV 101 arrive atjunction 700. Based on the predicted time,light traffic service 125 can send the ADV information, or a representation thereof, to a traffic light system (such astraffic light controller 509 ofFIG. 5 ). The traffic light system ortraffic light controller 509 can then use the ADV information, or a representation thereof, to adjust a time duration of the traffic lights atjunction 700. - In one embodiment, a representation of the ADV information sent by
traffic light service 125 to thetraffic light controller 509 can include a timestamp and a traffic light ID of an approaching traffic light determined by thetraffic light service 125 based on a location and directional heading of theADV 101. In this case, for example,traffic light service 125 can determine a current universal time to be “20180326150101” (e.g., year: 2018, month: 03, date: 26, hour: 15, minute: 01, second: 01) and can send a payload having a timestamp for an estimated time to arrival (ETA) of “20180326150108” and a traffic light ID of “703” to indicate an ADV (e.g., ADV 101) is predicted to arrive a junction corresponding to traffic light 703 (e.g., junction 700), and would need to pass throughtraffic light 703, approximately in the next 7 seconds. The arrival time can be calculated by subtracting the ETA timestamp from a current timestamp. Note traffic lights 701-707 may be a part oftraffic light 333 ofFIG. 6A . - In one embodiment, based on the received ETA timestamp and the traffic light ID,
traffic light controller 509 can adjust a time duration of a light signal oflight 703, which normally may be controlled by a sensor (such as an infrared sensor 711) or any density capturing devices installed forlight 703, by overridingsensor 711 and/or simulating a detection of a vehicle atsensor 711 well in advance ofADV 101 arriving atjunction 700. In another embodiment, data captured bysensor 711 corresponding to light 703, such as a density of traffic, can be added to the received ADV information andtraffic light controller 509 can perform a density based traffic light control algorithm based on the density of traffic and ADV information to determine when to adjust a duration of a traffic signal forlight 703. Such a density based traffic light algorithm would direct a traffic flow in a first direction at the traffic light having a higher density of traffic than a second direction at the traffic light. In another embodiment,traffic light service 125 may send a current time, a location, a directional heading, and/or a route information ofADV 101 totraffic light controller 509. Trafficlight control controller 509 may then determine which of the traffic lights and approximately at what time will ADV 101approach junction 700. The time information included in the ADV information can ensure that a delay in data transmission will not affect calculations of estimated arrival time of the ADV attraffic junction 700. Note, although the above is described with respect to ADV information fromADV 101, many ADVs information can be simultaneously received from other ADVs bytraffic light service 125. In some embodiments,server 103 havingtraffic light service 125 andtraffic light controller 509 can be an integrated system. -
FIG. 8 is a flow diagram illustrating a method performed by a traffic light service according to one embodiment. Processing 800 may be performed by processing logic which may include software, hardware, or a combination thereof. For example,process 800 may be performed bytraffic light service 125 ofFIG. 1 . Referring toFIG. 8 , atblock 801, processing logic receives vehicle information from one or more ADVs. Atblock 802, processing logic determines a location and a heading of each ADV from the vehicle information of the ADV. Atblock 803, for each of the ADVs, processing logic determines if the ADV is approaching a traffic light junction based on the location and the heading of the ADV. Atblock 804, processing logic sends the vehicle information of the ADVs to a traffic light control system (e.g., traffic light controller 509) in response to determining the ADV is approaching the traffic light junction, where the vehicle information is used by the traffic light control system to direct a traffic flow at the traffic light junction, including adjusting a time duration of a light signal at one or more traffic lights disposed at the traffic light junction in advance of the ADVs arriving at the traffic light junction. - In one embodiment, the vehicle information from an ADV includes a time information, a location information, a speed information, and a route information for the ADV. In one embodiment, the traffic light control system directs a traffic flow at the traffic light junction including operating one or more traffic lights at the traffic light junction.
- In one embodiment, determining if the ADV is approaching a traffic light junction includes determining if the ADV is within a predetermined proximity to the traffic light junction, determining if a current road segment of the ADV routes to the traffic light junction based on a route information, and determining if a heading to route the ADV to the traffic light junction matches the heading of the ADV. In one embodiment, the vehicle information of the ADV are used by the traffic light control system to perform a density-based traffic light control algorithm. In another embodiment, the density-based traffic light control algorithm is performed based on a number of vehicles anticipated to approach or has arrived at the traffic light junction. In one embodiment, the density-based traffic light control algorithm directs a traffic flow at the traffic light junction for a first direction having a higher density of vehicles than a second direction.
- Note that some or all of the components as shown and described above may be implemented in software, hardware, or a combination thereof. For example, such components can be implemented as software installed and stored in a persistent storage device, which can be loaded and executed in a memory by a processor (not shown) to carry out the processes or operations described throughout this application. Alternatively, such components can be implemented as executable code programmed or embedded into dedicated hardware such as an integrated circuit (e.g., an application specific IC or ASIC), a digital signal processor (DSP), or a field programmable gate array (FPGA), which can be accessed via a corresponding driver and/or operating system from an application. Furthermore, such components can be implemented as specific hardware logic in a processor or processor core as part of an instruction set accessible by a software component via one or more specific instructions.
-
FIG. 10 is a block diagram illustrating an example of a data processing system which may be used with one embodiment of the disclosure. For example,system 1500 may represent any of data processing systems described above performing any of the processes or methods described above, such as, for example, perception andplanning system 110,traffic light service 125, or any of servers 103-104 ofFIG. 1 .System 1500 can include many different components. These components can be implemented as integrated circuits (ICs), portions thereof, discrete electronic devices, or other modules adapted to a circuit board such as a motherboard or add-in card of the computer system, or as components otherwise incorporated within a chassis of the computer system. - Note also that
system 1500 is intended to show a high level view of many components of the computer system. However, it is to be understood that additional components may be present in certain implementations and furthermore, different arrangement of the components shown may occur in other implementations.System 1500 may represent a desktop, a laptop, a tablet, a server, a mobile phone, a media player, a personal digital assistant (PDA), a Smartwatch, a personal communicator, a gaming device, a network router or hub, a wireless access point (AP) or repeater, a set-top box, or a combination thereof. Further, while only a single machine or system is illustrated, the term “machine” or “system” shall also be taken to include any collection of machines or systems that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein. - In one embodiment,
system 1500 includesprocessor 1501,memory 1503, and devices 1505-1508 connected via a bus or aninterconnect 1510.Processor 1501 may represent a single processor or multiple processors with a single processor core or multiple processor cores included therein.Processor 1501 may represent one or more general-purpose processors such as a microprocessor, a central processing unit (CPU), or the like. More particularly,processor 1501 may be a complex instruction set computing (CISC) microprocessor, reduced instruction set computing (RISC) microprocessor, very long instruction word (VLIW) microprocessor, or processor implementing other instruction sets, or processors implementing a combination of instruction sets.Processor 1501 may also be one or more special-purpose processors such as an application specific integrated circuit (ASIC), a cellular or baseband processor, a field programmable gate array (FPGA), a digital signal processor (DSP), a network processor, a graphics processor, a communications processor, a cryptographic processor, a co-processor, an embedded processor, or any other type of logic capable of processing instructions. -
Processor 1501, which may be a low power multi-core processor socket such as an ultra-low voltage processor, may act as a main processing unit and central hub for communication with the various components of the system. Such processor can be implemented as a system on chip (SoC).Processor 1501 is configured to execute instructions for performing the operations and steps discussed herein.System 1500 may further include a graphics interface that communicates withoptional graphics subsystem 1504, which may include a display controller, a graphics processor, and/or a display device. -
Processor 1501 may communicate withmemory 1503, which in one embodiment can be implemented via multiple memory devices to provide for a given amount of system memory.Memory 1503 may include one or more volatile storage (or memory) devices such as random access memory (RAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), static RAM (SRAM), or other types of storage devices.Memory 1503 may store information including sequences of instructions that are executed byprocessor 1501, or any other device. For example, executable code and/or data of a variety of operating systems, device drivers, firmware (e.g., input output basic system or BIOS), and/or applications can be loaded inmemory 1503 and executed byprocessor 1501. An operating system can be any kind of operating systems, such as, for example, Robot Operating System (ROS), Windows® operating system from Microsoft®, Mac OS®/iOS® from Apple, Android® from Google®, LINUX, UNIX, or other real-time or embedded operating systems. -
System 1500 may further include IO devices such as devices 1505-1508, including network interface device(s) 1505, optional input device(s) 1506, and other optional IO device(s) 1507.Network interface device 1505 may include a wireless transceiver and/or a network interface card (NIC). The wireless transceiver may be a WiFi transceiver, an infrared transceiver, a Bluetooth transceiver, a WiMax transceiver, a wireless cellular telephony transceiver, a satellite transceiver (e.g., a global positioning system (GPS) transceiver), or other radio frequency (RF) transceivers, or a combination thereof. The NIC may be an Ethernet card. - Input device(s) 1506 may include a mouse, a touch pad, a touch sensitive screen (which may be integrated with display device 1504), a pointer device such as a stylus, and/or a keyboard (e.g., physical keyboard or a virtual keyboard displayed as part of a touch sensitive screen). For example, input device 1506 may include a touch screen controller coupled to a touch screen. The touch screen and touch screen controller can, for example, detect contact and movement or break thereof using any of a plurality of touch sensitivity technologies, including but not limited to capacitive, resistive, infrared, and surface acoustic wave technologies, as well as other proximity sensor arrays or other elements for determining one or more points of contact with the touch screen.
- IO devices 1507 may include an audio device. An audio device may include a speaker and/or a microphone to facilitate voice-enabled functions, such as voice recognition, voice replication, digital recording, and/or telephony functions. Other IO devices 1507 may further include universal serial bus (USB) port(s), parallel port(s), serial port(s), a printer, a network interface, a bus bridge (e.g., a PCI-PCI bridge), sensor(s) (e.g., a motion sensor such as an accelerometer, gyroscope, a magnetometer, a light sensor, compass, a proximity sensor, etc.), or a combination thereof. Devices 1507 may further include an imaging processing subsystem (e.g., a camera), which may include an optical sensor, such as a charged coupled device (CCD) or a complementary metal-oxide semiconductor (CMOS) optical sensor, utilized to facilitate camera functions, such as recording photographs and video clips. Certain sensors may be coupled to
interconnect 1510 via a sensor hub (not shown), while other devices such as a keyboard or thermal sensor may be controlled by an embedded controller (not shown), dependent upon the specific configuration or design ofsystem 1500. - To provide for persistent storage of information such as data, applications, one or more operating systems and so forth, a mass storage (not shown) may also couple to
processor 1501. In various embodiments, to enable a thinner and lighter system design as well as to improve system responsiveness, this mass storage may be implemented via a solid state device (SSD). However in other embodiments, the mass storage may primarily be implemented using a hard disk drive (HDD) with a smaller amount of SSD storage to act as a SSD cache to enable non-volatile storage of context state and other such information during power down events so that a fast power up can occur on re-initiation of system activities. Also a flash device may be coupled toprocessor 1501, e.g., via a serial peripheral interface (SPI). This flash device may provide for non-volatile storage of system software, including BIOS as well as other firmware of the system. -
Storage device 1508 may include computer-accessible storage medium 1509 (also known as a machine-readable storage medium or a computer-readable medium) on which is stored one or more sets of instructions or software (e.g., module, unit, and/or logic 1528) embodying any one or more of the methodologies or functions described herein. Processing module/unit/logic 1528 may represent any of the components described above, such as, for example, ADVinformation sender module 308 ofFIG. 3A . Processing module/unit/logic 1528 may also reside, completely or at least partially, withinmemory 1503 and/or withinprocessor 1501 during execution thereof bydata processing system 1500,memory 1503 andprocessor 1501 also constituting machine-accessible storage media. Processing module/unit/logic 1528 may further be transmitted or received over a network vianetwork interface device 1505. - Computer-
readable storage medium 1509 may also be used to store the some software functionalities described above persistently. While computer-readable storage medium 1509 is shown in an exemplary embodiment to be a single medium, the term “computer-readable storage medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions. The terms “computer-readable storage medium” shall also be taken to include any medium that is capable of storing or encoding a set of instructions for execution by the machine and that cause the machine to perform any one or more of the methodologies of the present disclosure. The term “computer-readable storage medium” shall accordingly be taken to include, but not be limited to, solid-state memories, and optical and magnetic media, or any other non-transitory machine-readable medium. - Processing module/unit/
logic 1528, components and other features described herein can be implemented as discrete hardware components or integrated in the functionality of hardware components such as ASICS, FPGAs, DSPs or similar devices. In addition, processing module/unit/logic 1528 can be implemented as firmware or functional circuitry within hardware devices. Further, processing module/unit/logic 1528 can be implemented in any combination hardware devices and software components. - Note that while
system 1500 is illustrated with various components of a data processing system, it is not intended to represent any particular architecture or manner of interconnecting the components; as such details are not germane to embodiments of the present disclosure. It will also be appreciated that network computers, handheld computers, mobile phones, servers, and/or other data processing systems which have fewer components or perhaps more components may also be used with embodiments of the disclosure. - Some portions of the preceding detailed descriptions have been presented in terms of algorithms and symbolic representations of operations on data bits within a computer memory. These algorithmic descriptions and representations are the ways used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. An algorithm is here, and generally, conceived to be a self-consistent sequence of operations leading to a desired result. The operations are those requiring physical manipulations of physical quantities.
- It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the above discussion, it is appreciated that throughout the description, discussions utilizing terms such as those set forth in the claims below, refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.
- Embodiments of the disclosure also relate to an apparatus for performing the operations herein. Such a computer program is stored in a non-transitory computer readable medium. A machine-readable medium includes any mechanism for storing information in a form readable by a machine (e.g., a computer). For example, a machine-readable (e.g., computer-readable) medium includes a machine (e.g., a computer) readable storage medium (e.g., read only memory (“ROM”), random access memory (“RAM”), magnetic disk storage media, optical storage media, flash memory devices).
- The processes or methods depicted in the preceding figures may be performed by processing logic that comprises hardware (e.g. circuitry, dedicated logic, etc.), software (e.g., embodied on a non-transitory computer readable medium), or a combination of both. Although the processes or methods are described above in terms of some sequential operations, it should be appreciated that some of the operations described may be performed in a different order. Moreover, some operations may be performed in parallel rather than sequentially.
- Embodiments of the present disclosure are not described with reference to any particular programming language. It will be appreciated that a variety of programming languages may be used to implement the teachings of embodiments of the disclosure as described herein.
- In the foregoing specification, embodiments of the disclosure have been described with reference to specific exemplary embodiments thereof. It will be evident that various modifications may be made thereto without departing from the broader spirit and scope of the disclosure as set forth in the following claims. The specification and drawings are, accordingly, to be regarded in an illustrative sense rather than a restrictive sense.
Claims (21)
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/944,788 US10971004B2 (en) | 2018-04-04 | 2018-04-04 | Density based traffic light control system for autonomous driving vehicles (ADVs) |
| CN201910058100.2A CN110349416B (en) | 2018-04-04 | 2019-01-22 | Density-based traffic light control system for autonomous vehicles (ADV) |
| JP2019020601A JP2019207677A (en) | 2018-04-04 | 2019-02-07 | Traffic light control system based on density used in autonomous driving vehicles (ADV) |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/944,788 US10971004B2 (en) | 2018-04-04 | 2018-04-04 | Density based traffic light control system for autonomous driving vehicles (ADVs) |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20190311619A1 true US20190311619A1 (en) | 2019-10-10 |
| US10971004B2 US10971004B2 (en) | 2021-04-06 |
Family
ID=68097244
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/944,788 Active US10971004B2 (en) | 2018-04-04 | 2018-04-04 | Density based traffic light control system for autonomous driving vehicles (ADVs) |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US10971004B2 (en) |
| JP (1) | JP2019207677A (en) |
| CN (1) | CN110349416B (en) |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111739313A (en) * | 2020-07-17 | 2020-10-02 | 安徽达尔智能控制系统股份有限公司 | Signal lamp management and control system based on road traffic flow big data |
| US20210334550A1 (en) * | 2020-04-22 | 2021-10-28 | Pixord Corporation | Control system of traffic lights and method thereof |
| CN113781801A (en) * | 2021-09-13 | 2021-12-10 | 杭州图软科技有限公司 | Traffic light display guideboard based on vehicle-road coordination |
| US20220051558A1 (en) * | 2018-12-19 | 2022-02-17 | Samsung Electronics Co., Ltd. | Electronic device and method for providing v2x service using same |
| US20220051157A1 (en) * | 2020-08-15 | 2022-02-17 | Lacuna Technologies, Inc. | Ground transportation management using simulation and modeling |
| US11302185B2 (en) * | 2018-04-17 | 2022-04-12 | Valiant Yuk Yuen LEUNG | Synergistic reconfigurable traffic intersection |
| US20220230540A1 (en) * | 2019-05-08 | 2022-07-21 | Vivacity Labs Limited | Traffic control system |
| US20230196907A1 (en) * | 2020-08-01 | 2023-06-22 | Grabtaxi Holdings Pte. Ltd. | Processing apparatus and method for generating route navigation data |
| CN116311948A (en) * | 2023-05-11 | 2023-06-23 | 武汉理工大学三亚科教创新园 | Vehicle route planning method based on traffic flow speed prediction and signal light status |
| US12017632B1 (en) * | 2023-08-17 | 2024-06-25 | Torc Robotics, Inc. | Methods and systems for reducing vehicle delays based on movement prediction |
| CN119749592A (en) * | 2024-12-26 | 2025-04-04 | 知行汽车科技(苏州)股份有限公司 | Intersection traffic decision method, device, equipment and medium |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR102854808B1 (en) * | 2019-12-03 | 2025-09-04 | 현대자동차주식회사 | Traffic information service system and method |
| US11288528B2 (en) * | 2020-05-12 | 2022-03-29 | Baidu Usa Llc | Differentiation-based traffic light detection |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080316055A1 (en) * | 2002-08-15 | 2008-12-25 | California Institute Of Technology | Emergency Vehicle Traffic Signal Preemption System |
| US20100256852A1 (en) * | 2009-04-06 | 2010-10-07 | Gm Global Technology Operations, Inc. | Platoon vehicle management |
| US20160148507A1 (en) * | 2014-11-20 | 2016-05-26 | Blyncsy, Inc. | Traffic system for monitoring, analyzing, and modulating traffic patterns |
| US9633560B1 (en) * | 2016-03-30 | 2017-04-25 | Jason Hao Gao | Traffic prediction and control system for vehicle traffic flows at traffic intersections |
| US20170221366A1 (en) * | 2016-01-29 | 2017-08-03 | Electronics And Telecommunications Research Institute | Autonomous vehicle driving system and method |
| US20180090001A1 (en) * | 2016-09-29 | 2018-03-29 | Cubic Corporation | Systems and methods for using autonomous vehicles in traffic |
| US20180307245A1 (en) * | 2017-05-31 | 2018-10-25 | Muhammad Zain Khawaja | Autonomous Vehicle Corridor |
| US20190205659A1 (en) * | 2018-01-04 | 2019-07-04 | Motionloft, Inc. | Event monitoring with object detection systems |
Family Cites Families (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2000030185A (en) * | 1998-07-13 | 2000-01-28 | Toshiba Corp | Traffic light control system in road traffic, traffic light control method in the system, traffic light centralized management system, and traffic light centralized management method |
| JP2000339584A (en) * | 1999-05-31 | 2000-12-08 | Nec Commun Syst Ltd | Traffic survey system and traffic light control system |
| CN101777253B (en) * | 2009-12-24 | 2012-08-22 | 戴磊 | Real-time road condition acquiring, analyzing and back-feeding and intelligent transportation integrated service system |
| JP2012181651A (en) | 2011-03-01 | 2012-09-20 | Sumitomo Electric Ind Ltd | Traffic signal control system, device, and method |
| JP2013143089A (en) * | 2012-01-12 | 2013-07-22 | Honda Motor Co Ltd | Traffic signal controller and program |
| JP2013214225A (en) * | 2012-04-03 | 2013-10-17 | Sumitomo Electric Ind Ltd | Traffic information system, central server, service server and traffic information providing method |
| JP2016177638A (en) | 2015-03-20 | 2016-10-06 | 住友電気工業株式会社 | Roadside control device, computer program, and information processing method |
| CN106600989A (en) * | 2015-10-14 | 2017-04-26 | 张玉德 | Intelligent traffic guidance control system |
| CN106251653B (en) * | 2016-08-29 | 2018-11-27 | 王若芊 | A kind of Intelligent traffic light control method and system |
| CN106846834A (en) * | 2017-01-21 | 2017-06-13 | 亚信蓝涛(江苏)数据科技有限公司 | A kind of traffic control optimization method based on deep learning |
| CN107103777A (en) * | 2017-06-20 | 2017-08-29 | 包伯瑜 | A kind of interactive traffic signal controller and system |
| US20190051171A1 (en) * | 2017-08-11 | 2019-02-14 | Gridsmart Technologies, Inc. | System and method for managing traffic by providing recommendations to connected objects |
-
2018
- 2018-04-04 US US15/944,788 patent/US10971004B2/en active Active
-
2019
- 2019-01-22 CN CN201910058100.2A patent/CN110349416B/en active Active
- 2019-02-07 JP JP2019020601A patent/JP2019207677A/en active Pending
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080316055A1 (en) * | 2002-08-15 | 2008-12-25 | California Institute Of Technology | Emergency Vehicle Traffic Signal Preemption System |
| US20100256852A1 (en) * | 2009-04-06 | 2010-10-07 | Gm Global Technology Operations, Inc. | Platoon vehicle management |
| US20160148507A1 (en) * | 2014-11-20 | 2016-05-26 | Blyncsy, Inc. | Traffic system for monitoring, analyzing, and modulating traffic patterns |
| US20170221366A1 (en) * | 2016-01-29 | 2017-08-03 | Electronics And Telecommunications Research Institute | Autonomous vehicle driving system and method |
| US9633560B1 (en) * | 2016-03-30 | 2017-04-25 | Jason Hao Gao | Traffic prediction and control system for vehicle traffic flows at traffic intersections |
| US20180090001A1 (en) * | 2016-09-29 | 2018-03-29 | Cubic Corporation | Systems and methods for using autonomous vehicles in traffic |
| US20180307245A1 (en) * | 2017-05-31 | 2018-10-25 | Muhammad Zain Khawaja | Autonomous Vehicle Corridor |
| US20190205659A1 (en) * | 2018-01-04 | 2019-07-04 | Motionloft, Inc. | Event monitoring with object detection systems |
Cited By (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11302185B2 (en) * | 2018-04-17 | 2022-04-12 | Valiant Yuk Yuen LEUNG | Synergistic reconfigurable traffic intersection |
| US11749104B2 (en) * | 2018-12-19 | 2023-09-05 | Samsung Electronics Co., Ltd. | Electronic device and method for providing V2X service using same |
| US20220051558A1 (en) * | 2018-12-19 | 2022-02-17 | Samsung Electronics Co., Ltd. | Electronic device and method for providing v2x service using same |
| US11893886B2 (en) * | 2019-05-08 | 2024-02-06 | Vivacity Labs Limited | Traffic control system |
| US20220230540A1 (en) * | 2019-05-08 | 2022-07-21 | Vivacity Labs Limited | Traffic control system |
| US11776259B2 (en) * | 2020-04-22 | 2023-10-03 | Pixord Corporation | Control system of traffic lights and method thereof |
| US20210334550A1 (en) * | 2020-04-22 | 2021-10-28 | Pixord Corporation | Control system of traffic lights and method thereof |
| CN111739313A (en) * | 2020-07-17 | 2020-10-02 | 安徽达尔智能控制系统股份有限公司 | Signal lamp management and control system based on road traffic flow big data |
| US20240096211A1 (en) * | 2020-08-01 | 2024-03-21 | Grabtaxi Holdings Pte. Ltd. | Processing apparatus and method for generating route navigation data |
| US20230196907A1 (en) * | 2020-08-01 | 2023-06-22 | Grabtaxi Holdings Pte. Ltd. | Processing apparatus and method for generating route navigation data |
| US12249236B2 (en) * | 2020-08-01 | 2025-03-11 | Grabtaxi Holdings Pte. Ltd. | Processing apparatus and method for generating route navigation data |
| US11869348B2 (en) * | 2020-08-01 | 2024-01-09 | Grabtaxi Holdings Pte. Ltd. | Processing apparatus and method for generating route navigation data |
| US20220051157A1 (en) * | 2020-08-15 | 2022-02-17 | Lacuna Technologies, Inc. | Ground transportation management using simulation and modeling |
| CN113781801A (en) * | 2021-09-13 | 2021-12-10 | 杭州图软科技有限公司 | Traffic light display guideboard based on vehicle-road coordination |
| CN116311948A (en) * | 2023-05-11 | 2023-06-23 | 武汉理工大学三亚科教创新园 | Vehicle route planning method based on traffic flow speed prediction and signal light status |
| US12017632B1 (en) * | 2023-08-17 | 2024-06-25 | Torc Robotics, Inc. | Methods and systems for reducing vehicle delays based on movement prediction |
| WO2025038929A1 (en) * | 2023-08-17 | 2025-02-20 | Torc Robotics, Inc. | Methods and systems for reducing vehicle delays based on movement prediction |
| US12459486B2 (en) | 2023-08-17 | 2025-11-04 | Torc Robotics, Inc. | Methods and systems for reducing vehicle delay based on movement prediction |
| US12459485B2 (en) | 2023-08-17 | 2025-11-04 | Torc Robotics, Inc. | Methods and systems for reducing vehicle delay based on movement prediction |
| US12459484B2 (en) | 2023-08-17 | 2025-11-04 | Torc Robotics, Inc. | Methods and systems for reducing vehicle delay based on movement prediction |
| CN119749592A (en) * | 2024-12-26 | 2025-04-04 | 知行汽车科技(苏州)股份有限公司 | Intersection traffic decision method, device, equipment and medium |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2019207677A (en) | 2019-12-05 |
| US10971004B2 (en) | 2021-04-06 |
| CN110349416B (en) | 2022-09-30 |
| CN110349416A (en) | 2019-10-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US12017663B2 (en) | Sensor aggregation framework for autonomous driving vehicles | |
| US11269352B2 (en) | System for building a vehicle-to-cloud real-time traffic map for autonomous driving vehicles (ADVS) | |
| US10971004B2 (en) | Density based traffic light control system for autonomous driving vehicles (ADVs) | |
| US11143513B2 (en) | Labeling scheme for labeling and generating high-definition map based on trajectories driven by vehicles | |
| US10551840B2 (en) | Planning driven perception system for autonomous driving vehicles | |
| US11367354B2 (en) | Traffic prediction based on map images for autonomous driving | |
| US10520319B2 (en) | Data driven map updating system for autonomous driving vehicles | |
| CN110597243B (en) | V2X communication-based vehicle lane system of autonomous vehicle | |
| US10852736B2 (en) | Method to track and to alert autonomous driving vehicles (ADVS) of emergency vehicles | |
| US10183641B2 (en) | Collision prediction and forward airbag deployment system for autonomous driving vehicles | |
| US11561546B2 (en) | Tunnel-based planning system for autonomous driving vehicles | |
| US20200004265A1 (en) | Autonomous driving vehicles with redundant ultrasonic radar | |
| US20190317515A1 (en) | Method for generating trajectories for autonomous driving vehicles (advs) | |
| US10606273B2 (en) | System and method for trajectory re-planning of autonomous driving vehicles | |
| US20180307944A1 (en) | Automatically collecting training data for object recognition with 3d lidar and localization | |
| US11591019B2 (en) | Control dominated three-point turn planning for autonomous driving vehicles | |
| US11221405B2 (en) | Extended perception based on radar communication of autonomous driving vehicles | |
| US11136023B2 (en) | Method for determining exiting intersection of moving objects for autonomous driving vehicles | |
| US11247700B2 (en) | Enumeration-based three-point turn planning for autonomous driving vehicles | |
| US11392140B2 (en) | Two inertial measurement units and GPS based localization system for an autonomous driving truck | |
| US11084503B2 (en) | Mutual nudge algorithm for self-reverse lane of autonomous driving | |
| US10788839B2 (en) | Planning-control collaboration design for low cost autonomous driving technology |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| AS | Assignment |
Owner name: BAIDU USA LLC, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TAO, JIAMING;JIANG, YIFEI;ZHANG, LIANGLIANG;AND OTHERS;SIGNING DATES FROM 20180327 TO 20180404;REEL/FRAME:045452/0447 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |