US20180197438A1 - System for enhancing speech performance via pattern detection and learning - Google Patents
System for enhancing speech performance via pattern detection and learning Download PDFInfo
- Publication number
- US20180197438A1 US20180197438A1 US15/402,475 US201715402475A US2018197438A1 US 20180197438 A1 US20180197438 A1 US 20180197438A1 US 201715402475 A US201715402475 A US 201715402475A US 2018197438 A1 US2018197438 A1 US 2018197438A1
- Authority
- US
- United States
- Prior art keywords
- patient
- speech
- data
- feature vectors
- disorder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000002708 enhancing effect Effects 0.000 title claims abstract description 6
- 238000001514 detection method Methods 0.000 title 1
- 230000009471 action Effects 0.000 claims abstract description 55
- 208000027765 speech disease Diseases 0.000 claims abstract description 52
- 239000013598 vector Substances 0.000 claims abstract description 31
- 238000000034 method Methods 0.000 claims abstract description 22
- 230000000116 mitigating effect Effects 0.000 claims abstract description 10
- 238000012545 processing Methods 0.000 claims description 33
- 230000001225 therapeutic effect Effects 0.000 claims description 14
- 238000004891 communication Methods 0.000 claims description 11
- 238000004590 computer program Methods 0.000 claims description 9
- 230000002996 emotional effect Effects 0.000 claims description 8
- 208000003028 Stuttering Diseases 0.000 claims description 4
- 238000013528 artificial neural network Methods 0.000 claims description 3
- 230000008878 coupling Effects 0.000 claims description 2
- 238000010168 coupling process Methods 0.000 claims description 2
- 238000005859 coupling reaction Methods 0.000 claims description 2
- 238000013473 artificial intelligence Methods 0.000 description 20
- 238000010586 diagram Methods 0.000 description 18
- 230000015654 memory Effects 0.000 description 13
- 230000006870 function Effects 0.000 description 12
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 9
- 238000003745 diagnosis Methods 0.000 description 7
- 206010013887 Dysarthria Diseases 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 230000002159 abnormal effect Effects 0.000 description 5
- 208000035475 disorder Diseases 0.000 description 5
- 210000003205 muscle Anatomy 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 206010013952 Dysphonia Diseases 0.000 description 3
- 208000030137 articulation disease Diseases 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000029058 respiratory gaseous exchange Effects 0.000 description 3
- 238000012549 training Methods 0.000 description 3
- 208000011293 voice disease Diseases 0.000 description 3
- 208000018737 Parkinson disease Diseases 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000036651 mood Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000009747 swallowing Effects 0.000 description 2
- 206010003062 Apraxia Diseases 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 241000282320 Panthera leo Species 0.000 description 1
- 241000270295 Serpentes Species 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000010485 coping Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 238000013399 early diagnosis Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000008140 language development Effects 0.000 description 1
- 208000011977 language disease Diseases 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 208000037821 progressive disease Diseases 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 210000001260 vocal cord Anatomy 0.000 description 1
- 230000001755 vocal effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09B—EDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
- G09B19/00—Teaching not covered by other main groups of this subclass
- G09B19/04—Speaking
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09B—EDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
- G09B7/00—Electrically-operated teaching apparatus or devices working with questions and answers
- G09B7/02—Electrically-operated teaching apparatus or devices working with questions and answers of the type wherein the student is expected to construct an answer to the question which is presented or wherein the machine gives an answer to the question presented by a student
- G09B7/04—Electrically-operated teaching apparatus or devices working with questions and answers of the type wherein the student is expected to construct an answer to the question which is presented or wherein the machine gives an answer to the question presented by a student characterised by modifying the teaching programme in response to a wrong answer, e.g. repeating the question, supplying a further explanation
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/02—Feature extraction for speech recognition; Selection of recognition unit
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/08—Speech classification or search
- G10L15/16—Speech classification or search using artificial neural networks
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
- G10L25/48—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use
- G10L25/51—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use for comparison or discrimination
- G10L25/66—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use for comparison or discrimination for extracting parameters related to health condition
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
- G10L25/27—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the analysis technique
- G10L25/30—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the analysis technique using neural networks
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
- G10L25/48—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use
- G10L25/51—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use for comparison or discrimination
- G10L25/63—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use for comparison or discrimination for estimating an emotional state
Definitions
- the present disclosure relates to a speech performance enhancement system, and more particularly, to a method for diagnosing a speech disorder for an individual and automatically suggesting ameliorative actions for the diagnosed speech disorder, and a system and computer product using the method.
- the speech disorders includes a child apraxia of speech (CAS), dysarthria, orofacial myofunctional disorder (OMD), etc., depending on causes of the disorders.
- the CAS is a motor speech disorder. Children with the CAS have problems saying sounds, syllables, and words.
- the brain has problems planning to move the body parts (e.g., lips, jaw, tongue) needed for speech.
- the dysarthria is also a motor speech disorder. It results from impaired movement of the muscles used for speech production, including the lips, tongue, vocal folds, and/or diaphragm. The type and severity of dysarthria depend on which area of the nervous system is affected.
- the child knows what he or she wants to say, but his/her brain has difficulty coordinating the muscle movements necessary to say those words.
- the tongue moves forward in an exaggerated way during speech and/or swallowing.
- the tongue may lie too far forward during rest or may protrude between the upper and lower teeth during speech and swallowing, and at rest.
- the speech disorders further includes an articulation disorder, a fluency disorder, and resonance or voice disorder, etc., depending on observed speech problems.
- the articulation disorder is related to difficulties in producing sounds in syllables or saying words.
- the fluency disorder is related to a dysfluency (e.g., stuttering) in which the flow of speech is interrupted by abnormal stoppages, partial-word repetitions (e.g., “b-b-boy”), or prolonging sounds and syllables (e.g., “sssssnake”).
- the resonance or voice disorder is related to abnormality in a pitch, volume, or quality of the voice.
- a system for enhancing a speech performance includes an input/output (I/O) device, a speech analyzer device, a speech recognition device, a processing device, a memory device, and a bus operably coupling devices.
- the I/O device communicates speech data of a patient.
- the speech analyzer device performs segmenting on the speech data.
- the speech recognition device generates one or more feature vectors based on at least the segmented speech data, determining whether the one or more feature vectors match with one or more recognition objects pre-trained therein using clinical data collected from one or more other patients, and determines a speech disorder based on a matched result between the one or more feature vectors and the one or more recognition objects.
- the processing device communicates, via the I/O device, one or more ameliorative actions for mitigating the determined speech disorder.
- a computer-implemented method for enhancing speech performance includes communicating speech data of a patient, segmenting the speech data, generating one or more feature vectors based on at least the segmented speech data, determining whether the one or more feature vectors match with one or more recognition objects pre-trained using clinical data collected from one or more other patients, determining a speech disorder based on a matched result between the one or more feature vectors and the one or more recognition objects, and communicating, via the I/O device, one or more ameliorative actions for mitigating the determined speech disorder.
- a computer program product comprising a computer readable storage medium having computer readable program instructions embodied therewith.
- the computer readable program instructions executable by at least one processor to cause a computer to perform a computer-implemented method.
- the method includes communicating, via an input/output (I/O) device, speech data of a patient, segmenting the speech data, generating one or more feature vectors based on at least the segmented speech data, determining whether the one or more feature vectors match with one or more recognition objects pre-trained using clinical data collected from one or more other patients, determining a speech disorder based on a matched result between the one or more feature vectors and the one or more recognition objects, and communicating, via the I/O device, one or more ameliorative actions for mitigating the determined speech disorder.
- I/O input/output
- FIG. 1A is a block diagram of a speech enhancement system according to an exemplary embodiment of the present invention.
- FIG. 1B depicts an example block diagram of a learning engine according to an exemplary embodiment of the present invention
- FIG. 1C depicts an example content of clinical data according to an exemplary embodiment of the present invention
- FIG. 2 depicts an example structure of an N-dimensional (N is an integer greater than 1) database accessed by a speech enhancement system according to an exemplary embodiment of the present invention
- FIG. 3 depicts an example block diagram of a voice-controlled intelligent agent according to an exemplary embodiment of the present invention
- FIGS. 4A to 4C depict flow charts of a method for performing a speech performance enhancement according to an exemplary embodiment of the present invention.
- FIG. 5 is a block diagram of a computing system according to an exemplary embodiment of the present invention.
- a method, system, and computer product for diagnosing a speech disorder suggesting one or more ameliorative actions for mitigating the diagnosed speech disorder, and/or assisting a patient diagnosed with a speech disorder to practice the one or more ameliorative actions.
- a system for enhancing a speech performance according to the present invention is also referred to herein as a “speech enhancement system”.
- the term “patient” may be understood to include an individual under diagnosis with speech problems.
- FIG. 1A is a block diagram of a speech enhancement system 1 a according to an exemplary embodiment of the present invention.
- the speech enhancement system 1 a may include an input/output (I/O) device 10 , a speech analyzer 20 , a learning engine 30 (i.e., speech recognition device), a processing device 40 , and a memory device 50 .
- the I/O device 10 may receive voice or speech data input from a patient and transfer the voice or speech data 111 to the speech analyzer 20 . Further, patient context data may be input via the I/O device 10 , stored into the memory device 50 , and provided to the processing device 40 .
- the processing device 40 may analyze the patient context data 51 to generate and communicate (via the I/O device 10 ) initial instructions or relevant questions to a patient when an interview for diagnosis is commenced by the speech enhancement system 1 a ; this feature will be described later in more detail with reference to FIG. 4B .
- the speech analyzer 20 may perform a speech analysis on the speech data 111 input via the I/O device 10 and provide analyzed output data 112 to the learning engine 30 .
- the speech analysis may include segmenting the speech data and/or analyzing to detect a pitch of speech, a gap between speech segments, a frequency of speech segments, a volume of speech, etc.
- the output data 112 generated by the speech analyzer 20 may be input to the learning engine 30 for recognizing speech disorder.
- the learning engine 30 may be embodied using a deep neural network (DNN) which is a well known speech recognition platform to a skilled person in the art.
- the patient context data 51 may be input to the learning engine 30 to be used for the speech disorder recognition.
- DNN deep neural network
- the data 112 and the patient context data 51 may be converted into feature vectors (e.g., multi-dimensional vectors of numerical features that represent the data 112 and the patient context data 51 ).
- the feature vectors may be suitable for processing and statistical analysis in the learning engine 30 , and may be compared with recognition objects pre-trained in the learning engine 30 .
- a speech disorder may be recognized by a result of comparing the feature vectors of the data 112 and the patient context data 51 against the pre-trained recognition objects within the learning engine 30 .
- FIG. 1B depicts an example block diagram of a learning engine 30 according to an exemplary embodiment of the present invention.
- the learning engine 30 may include a feature extraction module 310 and a feature recognition module 320 .
- the feature extraction module 310 may receive the data 112 of the speech analyzer 20 and the patient context data 51 and extract feature vectors 311 from the data 112 and the patient context data 51 .
- the feature recognition module 320 may compare the feature vectors 311 extracted from the data 112 and the patient context data 51 with pre-trained recognition objects and may recognize a speech disorder.
- the feature recognition module 320 may be pre-trained using various training data such as the clinical data 52 (collected from other patients); for example, speech data, context data, and speech disorders recognized (or diagnosed) responsive to such speed data and context data.
- the clinical data 52 may be input to the feature recognition module 320 for training it via the feature extraction module 310 .
- FIG. 1C depicts an example content of clinical data 52 according to an exemplary embodiment of the present invention.
- the clinical data 52 may be collected from cohorts of other patients.
- the clinical data 52 may include, but is not limited to, each patient's class-A and class-B data.
- the class-A data may include: a corresponding patient's speech data 201 (which may be input to the speech enhancement system 1 a when performing an interview with the patient); an abnormal speech pattern 202 (e.g., speech problem) recognized responsive to the speech data 201 ; context data 203 ; and a speech disorder 203 diagnosed responsive to the speech pattern 202 and/or the context data 203 .
- the abnormal speech patterns may include, but are not limited to, stutterings, mumblings, abnormal stoppages, partial-word repetitions (e.g., “b-b-boy”), prolonging sounds and syllables (e.g., “sssssnake”), and excessively high volume.
- the class-B data may include ameliorative actions 205 suggested responsive to the diagnosed speech disorder and mitigation progresses 206 (e.g., a degree of speech enhancement, a period of the mitigate action, a degree of a patient's interest) with the applied ameliorative actions.
- the clinical data 52 may be collected by therapeutic devices (e.g., 60 of FIG. 1A ) during or after each other patient taking ameliorative actions, or may be input by a healthcare professional or similar.
- the learning engine 30 when the learning engine 30 may be pre-trained using, e.g., the class-A data of the clinical data 52 , the learning engine 30 could classify (or recognize) the output data 112 of the speech analyzer 20 and the patient context data 51 into one or more of speech disorders (or problems) which respectively correspond to the recognition objects pre-trained using the class-A data 201 to 204 of the clinical data 52 .
- the speech disorders or problems can be recognized by the speech enhancement system 1 a may include, but are not limited to: CAS, dysarthria, OMD, an articulation disorder, a fluency disorder, resonance or voice disorder, Parkinson's disease, a decreased strength and control over articulator muscles, a language disorder.
- the learning engine 30 since the learning engine 30 has learned and known mapping relationships among speech data, context data, and speech disorders owing to the aforementioned pre-training using the class-A data 201 to 204 , the learning engine 30 could determine a speech disorder corresponding to a specific combination of speech data (or abnormal speech patterns) and the context data. Thus, as the clinical data 52 of other patients are continuously updated and used to train the learning engine 30 , a speech pattern recognition accuracy of the learning engine 30 may be improved accordingly.
- the processing device 40 may receive data 113 indicating a diagnosed speech disorder from the learning engine 30 , and determine one or more suggested ameliorative actions corresponding to the diagnosed speech disorder, using at least one of the patient context data 51 , the clinical data 52 collected from cohorts of other patients with similar speech problems, patient physical and emotional condition data 53 , and patient profile data 54 including patient progress data (e.g., patient's historical performance data).
- the determined one or more suggested ameliorative actions may be provided to the patient, or a healthcare professional, or the like, via the I/O device 10 .
- the speech enhancement system 1 a may further include a therapeutic device 60 which receives data 114 indicating one or more suggested ameliorative actions and assists a patient in practicing the suggested one or more ameliorative actions.
- the ameliorative actions may include, but are not limited to: (1) playing specific music songs that encourage the patient to practice a weakness that has been identified; (2) requesting sounds that encourage the patient to practice the weakness that has been identified (e.g., “How does the lion roar?”, “How does the snake flick its tongue?”, etc); (3) playing relax therapy music for breath exercises; (4) having the patient playing a game in which a speech improvement exercise is embedded or a vision-driven game to practice specific pronunciations; and (5) playing audible stories to the patient that emphasize target sounds/word or phrases.
- the therapeutic device 60 may interact with a patient via the I/O device 10 and an interface channel 119 for having the patient practice according to the suggested one or more ameliorative actions.
- the therapeutic device 60 is illustrated as being separated from other elements of the speech enhancement system 1 a in FIG. 1A , exemplary embodiments of the present invention are not limited thereto.
- the therapeutic device 60 may be embodied as a hardware or program module in the processing device 40 or a program module stored in the memory device 50 .
- the patient context data 51 may include a patient's family background, a patient's language environment (e.g., whether a patient is in a multilingual environment, what is a patient's native language, etc.), a patient's age, a patient's gender, a patient's occupation, a patient's culture, a patient's residential region, etc.
- the context data 203 included in the clinical data 52 may include substantially the same kinds of data sets as the patient context data 51 .
- the patient progress data 54 may include, but are not limited to: a degree of speech enhancement, a period of the mitigate action, a degree of the patient's interest, a frequency at which actions are taken, whether actions are taken as suggested (e.g., whether the patient is achieving ameliorative action's expectations such as moving his or her mouth in a specific way), etc.
- the patient progress data 54 may be collected by a therapeutic device 60 during or after the patient's taking ameliorative actions or input by a healthcare professional or similar, and stored in the memory device 50 .
- the patient physical or emotional condition data 53 may include, but are not limited to: a patient's mood, a patient's interest on taking a mitigate action, a patient's breathing or heart rate while speaking, a healthcare professional's (or a patient's or care giver's) instant feedback as to a patient's interest, etc.
- the patient physical or emotional condition data 53 may be collected by the therapeutic device 60 during or after the patient's taking ameliorative actions or provided as input by a patient, care giver, or healthcare professional.
- the speech disorder diagnosis for a patient may be made in a way that the speech enhancement system 1 a interviews the patient by giving instructions or questions to the patient and the patient follows the instructions or answering the questions via the I/O device 10 and recording patient's responses.
- the processing device 40 may generate instructions (or questions) to be given to the patient based an analysis result on the patient context data 51 .
- the processing device 40 may identify instructions (or questions) which are most likely relevant to fast and accurate diagnosis.
- the instructions (or questions) may be updated by further consideration on a speech or voice analysis result input by the patient during a diagnosis process.
- the processing device 40 may provide feedback to the patient with updated instructions (or questions) via a feedback channel 118 to repeat the word, so that the processing device 40 may use analytics for further detailed analysis of the word.
- the feedback may include a suggestion to “slow down, repeat what you said, slowly, stay calm” for getting more clear and better quality of speech data input.
- the speech enhancement system 1 a may request that the patient simply recite words or test and the system 1 a receives and monitors the patient's speech and/or utterances, without providing the instructions or questions to the patient.
- the patient may give permission for the system 1 a to monitor in real-time and/or record his or her standard, (daily) voice interactions with an I/O device such as an AI listener 10 a which will be described later in detail with reference to FIG. 3 .
- the AI listener 10 a may be placed at home and may be capable of voice interaction, music playback, making to-do lists, setting alarms, providing weather information, etc. to the patient, the system 1 a may use the speech sounds or words monitored and/or recorded through the AI listener 10 a as speech input data for speech disorder diagnosis.
- the processing device 40 may use the patient context data 51 to determine one or more ameliorative actions which work best for a patient. In one example, if the patient is an adult, the processing device 40 may determine and recommend different actions than those applied to a child patient. In another example, the processing device 40 may detect what potentially causes a decrease of a patient's speech performance based on the patient context data 51 and alert the patient or a healthcare professional. In an example, if the patient context data 51 is provided with the following information: e.g., a patient has played with someone (e.g., patient cousin or friend) who speaks incorrectly or has watched a T.V. show where words are pronounced incorrectly and the patient starts to pronounce a certain word incorrectly, the processing device 40 may suggest the patient or a healthcare professional refraining from doing the above activities that negatively affect the patient's speech performance.
- someone e.g., patient cousin or friend
- the processing device 40 may use the patient profile data 54 such as a patient historical performance data to determine one or more ameliorative actions which work best for the patient. For example, different actions may be determined according to whether the patient is new or familiar with recommended ameliorative actions.
- the processing device 40 may use the patient physical or emotional condition data 53 such as a patient's breathing or heart rate to determine one or more ameliorative actions which work best for the patient: in one example, the processing device 40 may learn how the physical or emotional conditions affect the patient's progress in developing speech performance, if determined to be necessary, a feedback to control the patient's breathing may be provided to the patient; and in another example, the processing device 40 may adaptively change ameliorative actions to be applied for the patient based on the patient's mood or progress.
- the processing device 40 may determine with a certain level of confidence that the patient is becoming impatient, nervous, or bored on a specific action, in such cases, a different action may be proposed or incentive schemas may be in place to encourage the patient's more active participation.
- the processing device 40 may use a patient or care giver's instant feedback (e.g., as to whether the patient likes a recommended action) to determine one or more ameliorative actions for the patient.
- the elements 10 to 60 of the speech enhancement system 1 a are implemented into a single standalone system, being operably connected to each other via short wired (e.g., internal) paths therein, it is understood that exemplary embodiments are not limited thereto.
- at least one of the elements 10 to 60 may be remotely located from others, being connected via a communication network; in other words, at least one of the interface channels connecting the elements 10 to 60 may be implemented using a communication network.
- the communication network may include wired communications based on Internet, local area network (LAN), wide area network (WAN), or the like, or wireless communications based on code division multiple access (CDMA), global system for mobile communication (GSM), wideband CDMA, CDMA-2000, time division multiple access (TDMA), long term evolution (LTE), wireless LAN, Bluetooth, or the like.
- CDMA code division multiple access
- GSM global system for mobile communication
- TDMA time division multiple access
- LTE long term evolution
- Bluetooth wireless based on Bluetooth, or the like.
- the patient context data 51 , the clinical data 52 , the patient physical and emotional condition data 53 , and the patient profile data 54 are stored into the memory device 50
- exemplary embodiments of the present invention are not limited thereto.
- some of the data 51 to 54 may be stored into other separate memory device (not shown) as database based on a knowledge base, an N-dimensional array (N is greater than 1), etc.
- FIG. 2 depicts an example structure of an N-dimensional database accessed by a speech enhancement system according to an exemplary embodiment of the present invention.
- a three-dimensional (3D) database 200 where three kinds of indices Ix, Iy, and Iz are used to point to specific data outcomes 201 to 203 such as relevant ameliorative actions, relevant therapeutic devices for having patients practice the ameliorative actions, relevant healthcare professionals who specialized in particular conditions defined by the indices.
- One index (e.g., Ix) of the indices Ix, Iy, and Iz may be a diagnosed type of speech disorder, and the remained indices (e.g., Iy and Iz) may be selected from the following exemplary parameters: (1) whether the patient is alone or with a caregiver or aid; (2) physical characteristics of the patient (that affect the speech); (3) whether the patient is familiar or unfamiliar with the speech enhancement system 1 a or the therapeutic device according to the present invention (whether the patient have used the system 1 a before); (4) a progression of problems or diseases of the patient, (5) history of problems for the patient; (6) a progression of problems or diseases of a cohort associated with the patient, (7) a history of problems for the cohort; and (8) data corresponding to the patient context data 51 ( FIG.
- each of the candidate indices may be managed by giving different weights depending on its degree of importance. As depicted in FIG. 2 , each of various combinations of the indices Ix, Iy, and Iz may exclusively point to one of the specific data outcomes 201 to 203 . In some aspects, a list of the parameters or an output indexed by a combination of selected ones from the parameters may be changed (or updated) when the system 1 a learns as to what is more effective to the patient or the cohort. For example, the processing device 40 may look up the three-dimensional database to determine one or more ameliorative actions corresponding to the diagnosed speech disorder.
- one mapping relationship between diagnosed speech disorders (or problems) and corresponding ameliorative actions is for a patient diagnosed with Parkinson's disease, whereby the system 1 a provides an ameliorative action by triggering what is known as “The Lee Silverman Voice Treatment”, which focuses the patient to increase vocal loudness, e.g., in sixteen one-hour sessions spread over four weeks.
- the aim is to retrain speech skills through building new motor programs or skills through regular practice.
- an ameliorative action may be to suggest to the patient exercising to increase the strength of these muscles.
- an ameliorative action may be to have the patient repeating words and syllables many times in order to the proper mouth movements.
- an ameliorative action may be to provide an augmentative and alternative communication (AAC) device (will be described in the following paragraph).
- AAC augmentative and alternative communication
- an ameliorative action may be letting the child interact the speech enhancement system 1 a (e.g., the therapeutic device 60 of FIG. 1A ) or similar by playing and talking, using pictures and multimedia stories to stimulate language development.
- the system 1 a may also model correct vocabulary and grammar and use repetition exercises to build language skills. Also, the system 1 a may physically show the child how to make certain sounds with animations of how to move the tongue to produce specific sounds. Although a 3D database is depicted in FIG. 2 , it is understood that exemplary embodiments of the present invention are not limited thereto.
- the speech enhancement system 1 a may further include an AAC device (not shown) that make coping with speech disorders (e.g., dysarthria) easier.
- the AAC device may include a speech synthesis module, a text-based telephones, etc. which allow individuals (who are not intelligible, or may be in the later stages of a progressive illness), to continue to be able to communicate without the need for fully intelligible speech.
- the speech enhancement system 1 a may detect (based on a historical data of the patient) that a speech disorder of a certain patient has progressed to an extent that the patient needs an aid of a certain AAC, the speech enhancement system 1 a may look up a relevant AAC method or device from a database (e.g., the N-dimensional database 200 of FIG. 2 ).
- a database e.g., the N-dimensional database 200 of FIG. 2
- one index (e.g., Ix) of the indices Ix, Iy, and Iz may be a diagnosed type of speech disorder, and the remained indices (e.g., Iy and Iz) may be selected from the following exemplary parameters: (1) whether the patient is alone or with a caregiver or aid; (2) physical characteristics of the patient (that affect the speech); (3) whether the patient is familiar or unfamiliar with the AAC device; (4) progression of problems or diseases of the patient, (5) history of problems for the patient; (6) progression of problems or diseases of a cohort associated with the patient, (7) history of problems for the cohort; and (8) data corresponding to the patient context data 51 ( FIG. 1A ), etc.
- the indices Ix, Iy, and Iz may respectively correspond to an axis associated with cohort information (e.g., progression or history of problems for the cohort), an axis associated with the problems or disease progression of the patient, and an axis associated with the patient's familiarity with the AAC devices.
- the data outcomes 201 to 203 may further include information of the relevant AAC method.
- a list of the parameters or an output indexed by the combination of selected one from the parameters may be changed (or updated) when the system 1 a learns as to what is more effective to the patient or the cohort.
- the I/O device 10 may be embodied using (but is not limited to) a microphone (input), a headphone (output), a speaker (output), a smart watch (input/output), and an IoT device such as an artificial intelligence (AI) listener that works as a voice-controlled intelligent agent (or voice active speaker system).
- AI artificial intelligence
- the AI listener may allow a patient to interact with the speech enhancement system 1 a in a more comfortable or flexible ways, while diagnosing or practicing (or exercising) according to suggested ameliorative actions. For example, patients who feel embarrassed for practicing in front of people or have difficulties in doing at their own comfortable pace may speak with the AI listener at any time, as desired, and the AI listener may provide coaching and assist to the patient.
- the AI listener may be implemented using an avatar in a virtual world, or a voice-controlled intelligent agent such as an Amazon EchoTM device, a Google HomeTM device, or the like.
- patients may communicate with the avatar on screen (via a microphone interfaced to the system 1 a ) or with the voice-controlled intelligent agent such as the Amazon EchoTM device, the Google HomeTM device, or the like.
- the AI listener may be capable of voice interaction, music playback, making to-do lists, setting alarms, streaming podcasts, playing audiobooks, and providing weather, traffic and other real time information.
- the AI listener may also control several smart devices using itself as a home automation hub.
- the AI listener may provide feedback from the speech enhancement system 1 a to not only a patient, but also to a healthcare professional, or may monitor and/or record speech sounds or words of the patient through daily voice interactions with the patient to provide the speech sounds or words to the system 1 a as speech input data.
- the AI listener may respond to a certain “wake word” (e.g., “Alexa” in Amazon Echo).
- the wake word can be changed by the patient to be more suitable to a person with special speech needs.
- a microphone-enabled remote may be mounted to a wheel chair or other assistive device.
- the AI listener may reconstruct a smooth speech signal from a stuttered speech signal.
- FIG. 3 depicts an example block diagram of an AI listener 10 a according to an exemplary embodiment of the present invention.
- the AI listener 10 a may include a stuttered region identification block 610 where a stuttered region is identified from a received stuttered speech signal and a stuttered region reconstruction region 620 where the identified stuttered region is reconstructed, and thus a smooth speech signal can be provided to assist patients with speech problems in interacting with the AI listener 10 a or the speech enhancement system 1 a.
- the AI listener 10 a can be trained depending on a degree of severity of speech disorder. In one example, to improve a speech recognition accuracy, the AI listener 10 a may learn speech patterns of patients with such speech disorder from various data (e.g., clinical data 52 of FIG. 1A ) collected from other patients. In one example, patients may supply feedbacks to assist the AI listener 10 a in learning, the AI listener 10 a may learn optimal speech patterns for the command words from the feedbacks.
- various data e.g., clinical data 52 of FIG. 1A
- FIGS. 4A to 4C depict flow charts of a method for performing a speech performance enhancement according to an exemplary embodiment of the present invention.
- the speech enhancement system 1 a may perform an interview with a patient in which the patient provides audible responses into the system 1 a .
- the step S 110 may include further sub-steps: receiving patient context data 51 ( FIG. 4B ).
- the speech enhancement system 1 a may determine a speech disorder for the patient.
- the step S 120 may include further sub-steps: segmenting the speech data into, e.g., units of frame (S 121 ), extracting feature vectors 311 ( FIG. 1B ) of the segmented speech data 111 ( FIG.
- the speech enhancement system 1 a may further include suggesting one or more ameliorative actions to correct (or mitigate) the determined speech order (S 130 ) and practicing the one or more ameliorative actions with the patient (S 140 ).
- FIG. 5 is a block diagram of a computing system 5000 according to an exemplary embodiment of the present invention.
- the computing system 5000 may be used (without limitation) as a platform for performing (or controlling) the functions or operations described hereinabove with respect to the system 1 a of FIG. 1A , and/or method of FIGS. 4A to 4C .
- the computing system 5000 may be implemented with an UMPC, a net-book, a PDA, a portable computer (PC), a web tablet, a wireless phone, a mobile phone, a smart phone, an e-book, a PMP, a portable game console, a navigation device, a black box, a digital camera, a DMB player, a digital audio recorder, a digital audio player, a digital picture recorder, a digital picture player, a digital video recorder, a digital video player, or the like.
- the computing system 5000 may include a processor 5010 , I/O devices 5020 , a memory system 5030 , a display device 5040 , bus 5060 , and a network adaptor 5050 .
- the processor 5010 is operably coupled to and may communicate with and/or drive the I/O devices 5020 , memory system 5030 , display device 5040 , and network adaptor 5050 through the bus 5060 .
- the computing system 5000 can communicate with one or more external devices using network adapter 5050 .
- the network adapter may support wired communications based on Internet, LAN, WAN, or the like, or wireless communications based on CDMA, GSM, wideband CDMA, CDMA-2000, TDMA, LTE, wireless LAN, Bluetooth, or the like.
- the computing system 5000 may also include or access a variety of computing system readable media. Such media may be any available media that is accessible (locally or remotely) by a computing system (e.g., the computing system 5000 ), and it may include both volatile and non-volatile media, removable and non-removable media.
- the memory system 5030 can include computer system readable media in the form of volatile memory, such as random access memory (RAM) and/or cache memory or others.
- the computing system 5000 may further include other removable/non-removable, volatile/non-volatile computer system storage media.
- the memory system 5030 may include a program module (not shown) for performing (or controlling) the functions or operations described hereinabove with respect to the system 1 a of FIG. 1A , and/or method of FIGS. 4A to 4C according to exemplary embodiments.
- the program module may include routines, programs, objects, components, logic, data structures, or the like, for performing particular tasks or implement particular abstract data types.
- the processor (e.g., 5010 ) of the computing system 5000 may execute instructions written in the program module to perform (or control) the functions or operations described hereinabove with respect to the system 1 a of FIG. 1A , and/or method of FIGS. 4A to 4C .
- the program module may be programmed into the integrated circuits of the processor (e.g., 5010 ). In some embodiments, the program module may be distributed among memory system 5030 and one or more remote computer system memories (not shown).
- the present invention may be a system, a method, and/or a computer program product at any possible technical detail level of integration
- the computer program product may include a computer readable storage medium (or media) having computer readable program instructions thereon for causing a processor to carry out aspects of the present invention
- the computer readable storage medium can be a tangible device that can retain and store instructions for use by an instruction execution device.
- the computer readable storage medium may be, for example, but is not limited to, an electronic storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing.
- a non-exhaustive list of more specific examples of the computer readable storage medium includes the following: a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), a static random access memory (SRAM), a portable compact disc read-only memory (CD-ROM), a digital versatile disk (DVD), a memory stick, a floppy disk, a mechanically encoded device such as punch-cards or raised structures in a groove having instructions recorded thereon, and any suitable combination of the foregoing.
- RAM random access memory
- ROM read-only memory
- EPROM or Flash memory erasable programmable read-only memory
- SRAM static random access memory
- CD-ROM compact disc read-only memory
- DVD digital versatile disk
- memory stick a floppy disk
- a mechanically encoded device such as punch-cards or raised structures in a groove having instructions recorded thereon
- a computer readable storage medium is not to be construed as being transitory signals per se, such as radio waves or other freely propagating electromagnetic waves, electromagnetic waves propagating through a waveguide or other transmission media (e.g., light pulses passing through a fiber-optic cable), or electrical signals transmitted through a wire.
- Computer readable program instructions described herein can be downloaded to respective computing/processing devices from a computer readable storage medium or to an external computer or external storage device via a network, for example, the Internet, a local area network, a wide area network and/or a wireless network.
- the network may comprise copper transmission cables, optical transmission fibers, wireless transmission, routers, firewalls, switches, gateway computers and/or edge servers.
- a network adapter card or network interface in each computing/processing device receives computer readable program instructions from the network and forwards the computer readable program instructions for storage in a computer readable storage medium within the respective computing/processing device.
- Computer readable program instructions for carrying out operations of the present invention may be assembler instructions, instruction-set-architecture (ISA) instructions, machine instructions, machine dependent instructions, microcode, firmware instructions, state-setting data, configuration data for integrated circuitry, or either source code or object code written in any combination of one or more programming languages, including an object oriented programming language such as Smalltalk, C++ or the like, and procedural programming languages, such as the “C” programming language or similar programming languages.
- the computer readable program instructions may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
- the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider).
- electronic circuitry including, for example, programmable logic circuitry, field-programmable gate arrays (FPGA), or programmable logic arrays (PLA) may execute the computer readable program instructions by utilizing state information of the computer readable program instructions to personalize the electronic circuitry, in order to perform aspects of the present invention.
- These computer readable program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
- These computer readable program instructions may also be stored in a computer readable storage medium that can direct a computer, a programmable data processing apparatus, and/or other devices to function in a particular manner, such that the computer readable storage medium having instructions stored therein comprises an article of manufacture including instructions which implement aspects of the function/act specified in the flowchart and/or block diagram block or blocks.
- the computer readable program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other device to cause a series of operational steps to be performed on the computer, other programmable apparatus or other device to produce a computer implemented process, such that the instructions which execute on the computer, other programmable apparatus, or other device implement the functions/acts specified in the flowchart and/or block diagram block or blocks.
- each block in the flowchart or block diagrams may represent a module, segment, or portion of instructions, which comprises one or more executable instructions for implementing the specified logical function(s).
- the functions noted in the blocks may occur out of the order noted in the Figures.
- two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved.
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Business, Economics & Management (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Theoretical Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Educational Technology (AREA)
- General Physics & Mathematics (AREA)
- Educational Administration (AREA)
- Human Computer Interaction (AREA)
- Computational Linguistics (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Entrepreneurship & Innovation (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Signal Processing (AREA)
- Medical Treatment And Welfare Office Work (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
Abstract
Description
- The present disclosure relates to a speech performance enhancement system, and more particularly, to a method for diagnosing a speech disorder for an individual and automatically suggesting ameliorative actions for the diagnosed speech disorder, and a system and computer product using the method.
- Importance of early diagnosis and mitigation for speech disorders has been increased. The speech disorders includes a child apraxia of speech (CAS), dysarthria, orofacial myofunctional disorder (OMD), etc., depending on causes of the disorders. The CAS is a motor speech disorder. Children with the CAS have problems saying sounds, syllables, and words. The brain has problems planning to move the body parts (e.g., lips, jaw, tongue) needed for speech. The dysarthria is also a motor speech disorder. It results from impaired movement of the muscles used for speech production, including the lips, tongue, vocal folds, and/or diaphragm. The type and severity of dysarthria depend on which area of the nervous system is affected. The child knows what he or she wants to say, but his/her brain has difficulty coordinating the muscle movements necessary to say those words. With the OMD, the tongue moves forward in an exaggerated way during speech and/or swallowing. The tongue may lie too far forward during rest or may protrude between the upper and lower teeth during speech and swallowing, and at rest.
- The speech disorders further includes an articulation disorder, a fluency disorder, and resonance or voice disorder, etc., depending on observed speech problems. The articulation disorder is related to difficulties in producing sounds in syllables or saying words. The fluency disorder is related to a dysfluency (e.g., stuttering) in which the flow of speech is interrupted by abnormal stoppages, partial-word repetitions (e.g., “b-b-boy”), or prolonging sounds and syllables (e.g., “sssssnake”). The resonance or voice disorder is related to abnormality in a pitch, volume, or quality of the voice.
- To enhance a speech performance or mitigate the speech disorders that individuals suffered from, accurate diagnosis for a type of speech disorder and optimal ameliorative actions are needed.
- In an aspect of the present invention, a system for enhancing a speech performance is provided. The system includes an input/output (I/O) device, a speech analyzer device, a speech recognition device, a processing device, a memory device, and a bus operably coupling devices. The I/O device communicates speech data of a patient. The speech analyzer device performs segmenting on the speech data. The speech recognition device generates one or more feature vectors based on at least the segmented speech data, determining whether the one or more feature vectors match with one or more recognition objects pre-trained therein using clinical data collected from one or more other patients, and determines a speech disorder based on a matched result between the one or more feature vectors and the one or more recognition objects. The processing device communicates, via the I/O device, one or more ameliorative actions for mitigating the determined speech disorder.
- In an aspect of the present invention, a computer-implemented method for enhancing speech performance is provided. The method includes communicating speech data of a patient, segmenting the speech data, generating one or more feature vectors based on at least the segmented speech data, determining whether the one or more feature vectors match with one or more recognition objects pre-trained using clinical data collected from one or more other patients, determining a speech disorder based on a matched result between the one or more feature vectors and the one or more recognition objects, and communicating, via the I/O device, one or more ameliorative actions for mitigating the determined speech disorder.
- In an aspect of the present invention, a computer program product comprising a computer readable storage medium having computer readable program instructions embodied therewith is provided. The computer readable program instructions executable by at least one processor to cause a computer to perform a computer-implemented method. The method includes communicating, via an input/output (I/O) device, speech data of a patient, segmenting the speech data, generating one or more feature vectors based on at least the segmented speech data, determining whether the one or more feature vectors match with one or more recognition objects pre-trained using clinical data collected from one or more other patients, determining a speech disorder based on a matched result between the one or more feature vectors and the one or more recognition objects, and communicating, via the I/O device, one or more ameliorative actions for mitigating the determined speech disorder.
-
FIG. 1A is a block diagram of a speech enhancement system according to an exemplary embodiment of the present invention; -
FIG. 1B depicts an example block diagram of a learning engine according to an exemplary embodiment of the present invention; -
FIG. 1C depicts an example content of clinical data according to an exemplary embodiment of the present invention; -
FIG. 2 depicts an example structure of an N-dimensional (N is an integer greater than 1) database accessed by a speech enhancement system according to an exemplary embodiment of the present invention; -
FIG. 3 depicts an example block diagram of a voice-controlled intelligent agent according to an exemplary embodiment of the present invention; -
FIGS. 4A to 4C depict flow charts of a method for performing a speech performance enhancement according to an exemplary embodiment of the present invention; and -
FIG. 5 is a block diagram of a computing system according to an exemplary embodiment of the present invention. - Embodiments of the present invention will now be described in detail with reference to the drawings. However, the following embodiments do not restrict the invention claimed in the claims. Moreover, all combinations of features described in the embodiments are not necessarily mandatory for the architecture of the present invention. Like numbers are assigned to like elements throughout the description of the embodiments of the present invention.
- According to exemplary embodiments of the present invention, a method, system, and computer product for diagnosing a speech disorder, suggesting one or more ameliorative actions for mitigating the diagnosed speech disorder, and/or assisting a patient diagnosed with a speech disorder to practice the one or more ameliorative actions. A system for enhancing a speech performance according to the present invention is also referred to herein as a “speech enhancement system”. The term “patient” may be understood to include an individual under diagnosis with speech problems.
-
FIG. 1A is a block diagram of aspeech enhancement system 1 a according to an exemplary embodiment of the present invention. - Referring now to the example depicted in
FIG. 1A , thespeech enhancement system 1 a may include an input/output (I/O)device 10, aspeech analyzer 20, a learning engine 30 (i.e., speech recognition device), aprocessing device 40, and amemory device 50. The I/O device 10 may receive voice or speech data input from a patient and transfer the voice orspeech data 111 to thespeech analyzer 20. Further, patient context data may be input via the I/O device 10, stored into thememory device 50, and provided to theprocessing device 40. Theprocessing device 40 may analyze thepatient context data 51 to generate and communicate (via the I/O device 10) initial instructions or relevant questions to a patient when an interview for diagnosis is commenced by thespeech enhancement system 1 a; this feature will be described later in more detail with reference toFIG. 4B . - The
speech analyzer 20 may perform a speech analysis on thespeech data 111 input via the I/O device 10 and provide analyzedoutput data 112 to thelearning engine 30. The speech analysis may include segmenting the speech data and/or analyzing to detect a pitch of speech, a gap between speech segments, a frequency of speech segments, a volume of speech, etc. Next, theoutput data 112 generated by thespeech analyzer 20 may be input to thelearning engine 30 for recognizing speech disorder. In some embodiments, thelearning engine 30 may be embodied using a deep neural network (DNN) which is a well known speech recognition platform to a skilled person in the art. Further, thepatient context data 51 may be input to thelearning engine 30 to be used for the speech disorder recognition. In this example, thedata 112 and thepatient context data 51 may be converted into feature vectors (e.g., multi-dimensional vectors of numerical features that represent thedata 112 and the patient context data 51). The feature vectors may be suitable for processing and statistical analysis in thelearning engine 30, and may be compared with recognition objects pre-trained in thelearning engine 30. Thus, a speech disorder may be recognized by a result of comparing the feature vectors of thedata 112 and thepatient context data 51 against the pre-trained recognition objects within thelearning engine 30. -
FIG. 1B depicts an example block diagram of alearning engine 30 according to an exemplary embodiment of the present invention. Referring now to the example depicted inFIG. 1B , the learningengine 30 may include afeature extraction module 310 and afeature recognition module 320. Thefeature extraction module 310 may receive thedata 112 of thespeech analyzer 20 and thepatient context data 51 andextract feature vectors 311 from thedata 112 and thepatient context data 51. Thefeature recognition module 320 may compare thefeature vectors 311 extracted from thedata 112 and thepatient context data 51 with pre-trained recognition objects and may recognize a speech disorder. In some aspects, thefeature recognition module 320 may be pre-trained using various training data such as the clinical data 52 (collected from other patients); for example, speech data, context data, and speech disorders recognized (or diagnosed) responsive to such speed data and context data. Theclinical data 52 may be input to thefeature recognition module 320 for training it via thefeature extraction module 310. -
FIG. 1C depicts an example content ofclinical data 52 according to an exemplary embodiment of the present invention. Theclinical data 52 may be collected from cohorts of other patients. Referring now to the example depicted inFIG. 1C , theclinical data 52 may include, but is not limited to, each patient's class-A and class-B data. The class-A data may include: a corresponding patient's speech data 201 (which may be input to thespeech enhancement system 1 a when performing an interview with the patient); an abnormal speech pattern 202 (e.g., speech problem) recognized responsive to thespeech data 201;context data 203; and aspeech disorder 203 diagnosed responsive to thespeech pattern 202 and/or thecontext data 203. The abnormal speech patterns may include, but are not limited to, stutterings, mumblings, abnormal stoppages, partial-word repetitions (e.g., “b-b-boy”), prolonging sounds and syllables (e.g., “sssssnake”), and excessively high volume. The class-B data may include ameliorative actions 205 suggested responsive to the diagnosed speech disorder and mitigation progresses 206 (e.g., a degree of speech enhancement, a period of the mitigate action, a degree of a patient's interest) with the applied ameliorative actions. Theclinical data 52 may be collected by therapeutic devices (e.g., 60 ofFIG. 1A ) during or after each other patient taking ameliorative actions, or may be input by a healthcare professional or similar. - Referring back to
FIG. 1B , when thelearning engine 30 may be pre-trained using, e.g., the class-A data of theclinical data 52, the learningengine 30 could classify (or recognize) theoutput data 112 of thespeech analyzer 20 and thepatient context data 51 into one or more of speech disorders (or problems) which respectively correspond to the recognition objects pre-trained using the class-A data 201 to 204 of theclinical data 52. The speech disorders or problems can be recognized by thespeech enhancement system 1 a may include, but are not limited to: CAS, dysarthria, OMD, an articulation disorder, a fluency disorder, resonance or voice disorder, Parkinson's disease, a decreased strength and control over articulator muscles, a language disorder. By way of example, since thelearning engine 30 has learned and known mapping relationships among speech data, context data, and speech disorders owing to the aforementioned pre-training using the class-A data 201 to 204, the learningengine 30 could determine a speech disorder corresponding to a specific combination of speech data (or abnormal speech patterns) and the context data. Thus, as theclinical data 52 of other patients are continuously updated and used to train thelearning engine 30, a speech pattern recognition accuracy of thelearning engine 30 may be improved accordingly. - Referring back to
FIG. 1A , theprocessing device 40 may receivedata 113 indicating a diagnosed speech disorder from the learningengine 30, and determine one or more suggested ameliorative actions corresponding to the diagnosed speech disorder, using at least one of thepatient context data 51, theclinical data 52 collected from cohorts of other patients with similar speech problems, patient physical andemotional condition data 53, andpatient profile data 54 including patient progress data (e.g., patient's historical performance data). The determined one or more suggested ameliorative actions may be provided to the patient, or a healthcare professional, or the like, via the I/O device 10. - In some embodiments, the
speech enhancement system 1 a may further include atherapeutic device 60 which receivesdata 114 indicating one or more suggested ameliorative actions and assists a patient in practicing the suggested one or more ameliorative actions. By way of example, the ameliorative actions may include, but are not limited to: (1) playing specific music songs that encourage the patient to practice a weakness that has been identified; (2) requesting sounds that encourage the patient to practice the weakness that has been identified (e.g., “How does the lion roar?”, “How does the snake flick its tongue?”, etc); (3) playing relax therapy music for breath exercises; (4) having the patient playing a game in which a speech improvement exercise is embedded or a vision-driven game to practice specific pronunciations; and (5) playing audible stories to the patient that emphasize target sounds/word or phrases. Thetherapeutic device 60 may interact with a patient via the I/O device 10 and aninterface channel 119 for having the patient practice according to the suggested one or more ameliorative actions. Although thetherapeutic device 60 is illustrated as being separated from other elements of thespeech enhancement system 1 a inFIG. 1A , exemplary embodiments of the present invention are not limited thereto. For example, thetherapeutic device 60 may be embodied as a hardware or program module in theprocessing device 40 or a program module stored in thememory device 50. - By way of example, the
patient context data 51 may include a patient's family background, a patient's language environment (e.g., whether a patient is in a multilingual environment, what is a patient's native language, etc.), a patient's age, a patient's gender, a patient's occupation, a patient's culture, a patient's residential region, etc. Thecontext data 203 included in the clinical data 52 (FIG. 1C ) may include substantially the same kinds of data sets as thepatient context data 51. Thepatient progress data 54 may include, but are not limited to: a degree of speech enhancement, a period of the mitigate action, a degree of the patient's interest, a frequency at which actions are taken, whether actions are taken as suggested (e.g., whether the patient is achieving ameliorative action's expectations such as moving his or her mouth in a specific way), etc. Thepatient progress data 54 may be collected by atherapeutic device 60 during or after the patient's taking ameliorative actions or input by a healthcare professional or similar, and stored in thememory device 50. The patient physical oremotional condition data 53 may include, but are not limited to: a patient's mood, a patient's interest on taking a mitigate action, a patient's breathing or heart rate while speaking, a healthcare professional's (or a patient's or care giver's) instant feedback as to a patient's interest, etc. The patient physical oremotional condition data 53 may be collected by thetherapeutic device 60 during or after the patient's taking ameliorative actions or provided as input by a patient, care giver, or healthcare professional. - In some embodiments, the speech disorder diagnosis for a patient may be made in a way that the
speech enhancement system 1 a interviews the patient by giving instructions or questions to the patient and the patient follows the instructions or answering the questions via the I/O device 10 and recording patient's responses. In one example, initially, theprocessing device 40 may generate instructions (or questions) to be given to the patient based an analysis result on thepatient context data 51. Theprocessing device 40 may identify instructions (or questions) which are most likely relevant to fast and accurate diagnosis. In some aspects, the instructions (or questions) may be updated by further consideration on a speech or voice analysis result input by the patient during a diagnosis process. For example, when it is determined based on the speech analysis result that a certain patient has a trouble with a specific word, theprocessing device 40 may provide feedback to the patient with updated instructions (or questions) via afeedback channel 118 to repeat the word, so that theprocessing device 40 may use analytics for further detailed analysis of the word. In another example, when a patient is stuttering, the feedback may include a suggestion to “slow down, repeat what you said, slowly, stay calm” for getting more clear and better quality of speech data input. However, in other embodiments, the above-mentioned interview process might not be performed, for example, thespeech enhancement system 1 a may request that the patient simply recite words or test and thesystem 1 a receives and monitors the patient's speech and/or utterances, without providing the instructions or questions to the patient. Further, in still other embodiments, the patient may give permission for thesystem 1 a to monitor in real-time and/or record his or her standard, (daily) voice interactions with an I/O device such as anAI listener 10 a which will be described later in detail with reference toFIG. 3 . TheAI listener 10 a may be placed at home and may be capable of voice interaction, music playback, making to-do lists, setting alarms, providing weather information, etc. to the patient, thesystem 1 a may use the speech sounds or words monitored and/or recorded through theAI listener 10 a as speech input data for speech disorder diagnosis. - In some embodiments, the
processing device 40 may use thepatient context data 51 to determine one or more ameliorative actions which work best for a patient. In one example, if the patient is an adult, theprocessing device 40 may determine and recommend different actions than those applied to a child patient. In another example, theprocessing device 40 may detect what potentially causes a decrease of a patient's speech performance based on thepatient context data 51 and alert the patient or a healthcare professional. In an example, if thepatient context data 51 is provided with the following information: e.g., a patient has played with someone (e.g., patient cousin or friend) who speaks incorrectly or has watched a T.V. show where words are pronounced incorrectly and the patient starts to pronounce a certain word incorrectly, theprocessing device 40 may suggest the patient or a healthcare professional refraining from doing the above activities that negatively affect the patient's speech performance. - In some embodiments, the
processing device 40 may use thepatient profile data 54 such as a patient historical performance data to determine one or more ameliorative actions which work best for the patient. For example, different actions may be determined according to whether the patient is new or familiar with recommended ameliorative actions. In some embodiments, theprocessing device 40 may use the patient physical oremotional condition data 53 such as a patient's breathing or heart rate to determine one or more ameliorative actions which work best for the patient: in one example, theprocessing device 40 may learn how the physical or emotional conditions affect the patient's progress in developing speech performance, if determined to be necessary, a feedback to control the patient's breathing may be provided to the patient; and in another example, theprocessing device 40 may adaptively change ameliorative actions to be applied for the patient based on the patient's mood or progress. - In another example, the
processing device 40 may determine with a certain level of confidence that the patient is becoming impatient, nervous, or bored on a specific action, in such cases, a different action may be proposed or incentive schemas may be in place to encourage the patient's more active participation. In a still another example, theprocessing device 40 may use a patient or care giver's instant feedback (e.g., as to whether the patient likes a recommended action) to determine one or more ameliorative actions for the patient. - Although it is illustrated in
FIG. 1A that theelements 10 to 60 of thespeech enhancement system 1 a are implemented into a single standalone system, being operably connected to each other via short wired (e.g., internal) paths therein, it is understood that exemplary embodiments are not limited thereto. For example, at least one of theelements 10 to 60 may be remotely located from others, being connected via a communication network; in other words, at least one of the interface channels connecting theelements 10 to 60 may be implemented using a communication network. In some embodiments, the communication network may include wired communications based on Internet, local area network (LAN), wide area network (WAN), or the like, or wireless communications based on code division multiple access (CDMA), global system for mobile communication (GSM), wideband CDMA, CDMA-2000, time division multiple access (TDMA), long term evolution (LTE), wireless LAN, Bluetooth, or the like. - Although it is illustrated in
FIG. 1B that thepatient context data 51, theclinical data 52, the patient physical andemotional condition data 53, and thepatient profile data 54 are stored into thememory device 50, exemplary embodiments of the present invention are not limited thereto. For example, some of thedata 51 to 54 may be stored into other separate memory device (not shown) as database based on a knowledge base, an N-dimensional array (N is greater than 1), etc. -
FIG. 2 depicts an example structure of an N-dimensional database accessed by a speech enhancement system according to an exemplary embodiment of the present invention. - In
FIG. 2 , a three-dimensional (3D)database 200 where three kinds of indices Ix, Iy, and Iz are used to point tospecific data outcomes 201 to 203 such as relevant ameliorative actions, relevant therapeutic devices for having patients practice the ameliorative actions, relevant healthcare professionals who specialized in particular conditions defined by the indices. One index (e.g., Ix) of the indices Ix, Iy, and Iz may be a diagnosed type of speech disorder, and the remained indices (e.g., Iy and Iz) may be selected from the following exemplary parameters: (1) whether the patient is alone or with a caregiver or aid; (2) physical characteristics of the patient (that affect the speech); (3) whether the patient is familiar or unfamiliar with thespeech enhancement system 1 a or the therapeutic device according to the present invention (whether the patient have used thesystem 1 a before); (4) a progression of problems or diseases of the patient, (5) history of problems for the patient; (6) a progression of problems or diseases of a cohort associated with the patient, (7) a history of problems for the cohort; and (8) data corresponding to the patient context data 51 (FIG. 1A ), etc. In some aspects, each of the candidate indices may be managed by giving different weights depending on its degree of importance. As depicted inFIG. 2 , each of various combinations of the indices Ix, Iy, and Iz may exclusively point to one of thespecific data outcomes 201 to 203. In some aspects, a list of the parameters or an output indexed by a combination of selected ones from the parameters may be changed (or updated) when thesystem 1 a learns as to what is more effective to the patient or the cohort. For example, theprocessing device 40 may look up the three-dimensional database to determine one or more ameliorative actions corresponding to the diagnosed speech disorder. - By way of example, one mapping relationship between diagnosed speech disorders (or problems) and corresponding ameliorative actions is for a patient diagnosed with Parkinson's disease, whereby the
system 1 a provides an ameliorative action by triggering what is known as “The Lee Silverman Voice Treatment”, which focuses the patient to increase vocal loudness, e.g., in sixteen one-hour sessions spread over four weeks. Here, the aim is to retrain speech skills through building new motor programs or skills through regular practice. By another way of example, if a patient is diagnosed as exhibiting decreased strength and control over articulator muscles, an ameliorative action may be to suggest to the patient exercising to increase the strength of these muscles. By still another way of example, if a patient is diagnosed as having challenges of other mouth movements, an ameliorative action may be to have the patient repeating words and syllables many times in order to the proper mouth movements. By still another way of example, if a patient is diagnosed with dysarthria, an ameliorative action may be to provide an augmentative and alternative communication (AAC) device (will be described in the following paragraph). By still another way of example, if a patient is a child diagnosed with language challenges, an ameliorative action may be letting the child interact thespeech enhancement system 1 a (e.g., thetherapeutic device 60 ofFIG. 1A ) or similar by playing and talking, using pictures and multimedia stories to stimulate language development. Thesystem 1 a may also model correct vocabulary and grammar and use repetition exercises to build language skills. Also, thesystem 1 a may physically show the child how to make certain sounds with animations of how to move the tongue to produce specific sounds. Although a 3D database is depicted inFIG. 2 , it is understood that exemplary embodiments of the present invention are not limited thereto. - In some embodiments, the
speech enhancement system 1 a may further include an AAC device (not shown) that make coping with speech disorders (e.g., dysarthria) easier. The AAC device may include a speech synthesis module, a text-based telephones, etc. which allow individuals (who are not intelligible, or may be in the later stages of a progressive illness), to continue to be able to communicate without the need for fully intelligible speech. For example, if thespeech enhancement system 1 a may detect (based on a historical data of the patient) that a speech disorder of a certain patient has progressed to an extent that the patient needs an aid of a certain AAC, thespeech enhancement system 1 a may look up a relevant AAC method or device from a database (e.g., the N-dimensional database 200 ofFIG. 2 ). By way of example, one index (e.g., Ix) of the indices Ix, Iy, and Iz may be a diagnosed type of speech disorder, and the remained indices (e.g., Iy and Iz) may be selected from the following exemplary parameters: (1) whether the patient is alone or with a caregiver or aid; (2) physical characteristics of the patient (that affect the speech); (3) whether the patient is familiar or unfamiliar with the AAC device; (4) progression of problems or diseases of the patient, (5) history of problems for the patient; (6) progression of problems or diseases of a cohort associated with the patient, (7) history of problems for the cohort; and (8) data corresponding to the patient context data 51 (FIG. 1A ), etc. In a further example, the indices Ix, Iy, and Iz may respectively correspond to an axis associated with cohort information (e.g., progression or history of problems for the cohort), an axis associated with the problems or disease progression of the patient, and an axis associated with the patient's familiarity with the AAC devices. In some aspect, thedata outcomes 201 to 203 may further include information of the relevant AAC method. In some aspects, a list of the parameters or an output indexed by the combination of selected one from the parameters may be changed (or updated) when thesystem 1 a learns as to what is more effective to the patient or the cohort. - Referring back to
FIG. 1A , in some embodiments, the I/O device 10 may be embodied using (but is not limited to) a microphone (input), a headphone (output), a speaker (output), a smart watch (input/output), and an IoT device such as an artificial intelligence (AI) listener that works as a voice-controlled intelligent agent (or voice active speaker system). - Use of the AI listener for an I/O interface may allow a patient to interact with the
speech enhancement system 1 a in a more comfortable or flexible ways, while diagnosing or practicing (or exercising) according to suggested ameliorative actions. For example, patients who feel embarrassed for practicing in front of people or have difficulties in doing at their own comfortable pace may speak with the AI listener at any time, as desired, and the AI listener may provide coaching and assist to the patient. In some embodiments, the AI listener may be implemented using an avatar in a virtual world, or a voice-controlled intelligent agent such as an Amazon Echo™ device, a Google Home™ device, or the like. For example, patients may communicate with the avatar on screen (via a microphone interfaced to thesystem 1 a) or with the voice-controlled intelligent agent such as the Amazon Echo™ device, the Google Home™ device, or the like. - The AI listener may be capable of voice interaction, music playback, making to-do lists, setting alarms, streaming podcasts, playing audiobooks, and providing weather, traffic and other real time information. The AI listener may also control several smart devices using itself as a home automation hub. In some aspects, the AI listener may provide feedback from the
speech enhancement system 1 a to not only a patient, but also to a healthcare professional, or may monitor and/or record speech sounds or words of the patient through daily voice interactions with the patient to provide the speech sounds or words to thesystem 1 a as speech input data. - The AI listener may respond to a certain “wake word” (e.g., “Alexa” in Amazon Echo). The wake word can be changed by the patient to be more suitable to a person with special speech needs. In some embodiments, a microphone-enabled remote may be mounted to a wheel chair or other assistive device.
- In some aspects, the AI listener may reconstruct a smooth speech signal from a stuttered speech signal.
FIG. 3 depicts an example block diagram of anAI listener 10 a according to an exemplary embodiment of the present invention. Referring toFIG. 3 , theAI listener 10 a may include a stuttered region identification block 610 where a stuttered region is identified from a received stuttered speech signal and a stutteredregion reconstruction region 620 where the identified stuttered region is reconstructed, and thus a smooth speech signal can be provided to assist patients with speech problems in interacting with theAI listener 10 a or thespeech enhancement system 1 a. - In some embodiments, depending on a degree of severity of speech disorder, the
AI listener 10 a can be trained. In one example, to improve a speech recognition accuracy, theAI listener 10 a may learn speech patterns of patients with such speech disorder from various data (e.g.,clinical data 52 ofFIG. 1A ) collected from other patients. In one example, patients may supply feedbacks to assist theAI listener 10 a in learning, theAI listener 10 a may learn optimal speech patterns for the command words from the feedbacks. -
FIGS. 4A to 4C depict flow charts of a method for performing a speech performance enhancement according to an exemplary embodiment of the present invention. Referring now toFIG. 4A , at step S110, thespeech enhancement system 1 a (FIG. 1A ) may perform an interview with a patient in which the patient provides audible responses into thesystem 1 a. As depicted inFIG. 4B , the step S110 may include further sub-steps: receiving patient context data 51 (FIG. 1A ) (S111); analyzing the patient context data 51 (S112); generating instructions (or questions) to the patient based on the analyzed result of the patient context data 51 (S113); and receiving the patient's speech data input according to the instructions (or questions) (S114). Returning now toFIG. 4A , at step S120, thespeech enhancement system 1 a may determine a speech disorder for the patient. As depicted inFIG. 4C , the step S120 may include further sub-steps: segmenting the speech data into, e.g., units of frame (S121), extracting feature vectors 311 (FIG. 1B ) of the segmented speech data 111 (FIG. 1A ) and the patient context data 51 (S122); matching (or comparing) thefeature vectors 311 with pre-trained recognition objects in the learning engine 30 (S123). At step S124, a determination may be made as to whether the feature vectors match a recognition object. The step S120 may thus further include outputting a speech disorder matched to thefeature vectors 311 as a diagnosed speech disorder (S126) in case of thefeature vectors 311 do match to one of the recognition objects in the learning engine 30 (YES) and, otherwise (NO), communicating new instructions to the patient (S125). Again, returning toFIG. 4A , thespeech enhancement system 1 a may further include suggesting one or more ameliorative actions to correct (or mitigate) the determined speech order (S130) and practicing the one or more ameliorative actions with the patient (S140). -
FIG. 5 is a block diagram of acomputing system 5000 according to an exemplary embodiment of the present invention. - Referring to the example depicted in
FIG. 5 , thecomputing system 5000 may be used (without limitation) as a platform for performing (or controlling) the functions or operations described hereinabove with respect to thesystem 1 a ofFIG. 1A , and/or method ofFIGS. 4A to 4C . - In addition (without limitation), the
computing system 5000 may be implemented with an UMPC, a net-book, a PDA, a portable computer (PC), a web tablet, a wireless phone, a mobile phone, a smart phone, an e-book, a PMP, a portable game console, a navigation device, a black box, a digital camera, a DMB player, a digital audio recorder, a digital audio player, a digital picture recorder, a digital picture player, a digital video recorder, a digital video player, or the like. - Referring now specifically to
FIG. 5 , thecomputing system 5000 may include aprocessor 5010, I/O devices 5020, amemory system 5030, adisplay device 5040,bus 5060, and anetwork adaptor 5050. - The
processor 5010 is operably coupled to and may communicate with and/or drive the I/O devices 5020,memory system 5030,display device 5040, andnetwork adaptor 5050 through thebus 5060. - The
computing system 5000 can communicate with one or more external devices usingnetwork adapter 5050. The network adapter may support wired communications based on Internet, LAN, WAN, or the like, or wireless communications based on CDMA, GSM, wideband CDMA, CDMA-2000, TDMA, LTE, wireless LAN, Bluetooth, or the like. - The
computing system 5000 may also include or access a variety of computing system readable media. Such media may be any available media that is accessible (locally or remotely) by a computing system (e.g., the computing system 5000), and it may include both volatile and non-volatile media, removable and non-removable media. - The
memory system 5030 can include computer system readable media in the form of volatile memory, such as random access memory (RAM) and/or cache memory or others. Thecomputing system 5000 may further include other removable/non-removable, volatile/non-volatile computer system storage media. - The
memory system 5030 may include a program module (not shown) for performing (or controlling) the functions or operations described hereinabove with respect to thesystem 1 a ofFIG. 1A , and/or method ofFIGS. 4A to 4C according to exemplary embodiments. For example, the program module may include routines, programs, objects, components, logic, data structures, or the like, for performing particular tasks or implement particular abstract data types. The processor (e.g., 5010) of thecomputing system 5000 may execute instructions written in the program module to perform (or control) the functions or operations described hereinabove with respect to thesystem 1 a ofFIG. 1A , and/or method ofFIGS. 4A to 4C . The program module may be programmed into the integrated circuits of the processor (e.g., 5010). In some embodiments, the program module may be distributed amongmemory system 5030 and one or more remote computer system memories (not shown). - The present invention may be a system, a method, and/or a computer program product at any possible technical detail level of integration. The computer program product may include a computer readable storage medium (or media) having computer readable program instructions thereon for causing a processor to carry out aspects of the present invention.
- The computer readable storage medium can be a tangible device that can retain and store instructions for use by an instruction execution device. The computer readable storage medium may be, for example, but is not limited to, an electronic storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing. A non-exhaustive list of more specific examples of the computer readable storage medium includes the following: a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), a static random access memory (SRAM), a portable compact disc read-only memory (CD-ROM), a digital versatile disk (DVD), a memory stick, a floppy disk, a mechanically encoded device such as punch-cards or raised structures in a groove having instructions recorded thereon, and any suitable combination of the foregoing. A computer readable storage medium, as used herein, is not to be construed as being transitory signals per se, such as radio waves or other freely propagating electromagnetic waves, electromagnetic waves propagating through a waveguide or other transmission media (e.g., light pulses passing through a fiber-optic cable), or electrical signals transmitted through a wire.
- Computer readable program instructions described herein can be downloaded to respective computing/processing devices from a computer readable storage medium or to an external computer or external storage device via a network, for example, the Internet, a local area network, a wide area network and/or a wireless network. The network may comprise copper transmission cables, optical transmission fibers, wireless transmission, routers, firewalls, switches, gateway computers and/or edge servers. A network adapter card or network interface in each computing/processing device receives computer readable program instructions from the network and forwards the computer readable program instructions for storage in a computer readable storage medium within the respective computing/processing device.
- Computer readable program instructions for carrying out operations of the present invention may be assembler instructions, instruction-set-architecture (ISA) instructions, machine instructions, machine dependent instructions, microcode, firmware instructions, state-setting data, configuration data for integrated circuitry, or either source code or object code written in any combination of one or more programming languages, including an object oriented programming language such as Smalltalk, C++ or the like, and procedural programming languages, such as the “C” programming language or similar programming languages. The computer readable program instructions may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider). In some embodiments, electronic circuitry including, for example, programmable logic circuitry, field-programmable gate arrays (FPGA), or programmable logic arrays (PLA) may execute the computer readable program instructions by utilizing state information of the computer readable program instructions to personalize the electronic circuitry, in order to perform aspects of the present invention.
- Aspects of the present invention are described herein with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer readable program instructions.
- These computer readable program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks. These computer readable program instructions may also be stored in a computer readable storage medium that can direct a computer, a programmable data processing apparatus, and/or other devices to function in a particular manner, such that the computer readable storage medium having instructions stored therein comprises an article of manufacture including instructions which implement aspects of the function/act specified in the flowchart and/or block diagram block or blocks.
- The computer readable program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other device to cause a series of operational steps to be performed on the computer, other programmable apparatus or other device to produce a computer implemented process, such that the instructions which execute on the computer, other programmable apparatus, or other device implement the functions/acts specified in the flowchart and/or block diagram block or blocks.
- The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods, and computer program products according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of instructions, which comprises one or more executable instructions for implementing the specified logical function(s). In some alternative implementations, the functions noted in the blocks may occur out of the order noted in the Figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts or carry out combinations of special purpose hardware and computer instructions.
- The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
- The corresponding structures, materials, acts, and equivalents of all means or step plus function elements, if any, in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present disclosure has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the present disclosure in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the present disclosure. The embodiment was chosen and described in order to best explain the principles of the present disclosure and the practical application, and to enable others of ordinary skill in the art to understand the present disclosure for various embodiments with various modifications as are suited to the particular use contemplated.
- While the present disclosure has been particularly shown and described with respect to preferred embodiments thereof, it will be understood by those skilled in the art that the foregoing and other changes in forms and details may be made without departing from the spirit and scope of the present disclosure. It is therefore intended that the present disclosure not be limited to the exact forms and details described and illustrated, but fall within the scope of the appended claims.
Claims (17)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/402,475 US20180197438A1 (en) | 2017-01-10 | 2017-01-10 | System for enhancing speech performance via pattern detection and learning |
US15/826,124 US11017693B2 (en) | 2017-01-10 | 2017-11-29 | System for enhancing speech performance via pattern detection and learning |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/402,475 US20180197438A1 (en) | 2017-01-10 | 2017-01-10 | System for enhancing speech performance via pattern detection and learning |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/826,124 Continuation US11017693B2 (en) | 2017-01-10 | 2017-11-29 | System for enhancing speech performance via pattern detection and learning |
Publications (1)
Publication Number | Publication Date |
---|---|
US20180197438A1 true US20180197438A1 (en) | 2018-07-12 |
Family
ID=62783305
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/402,475 Abandoned US20180197438A1 (en) | 2017-01-10 | 2017-01-10 | System for enhancing speech performance via pattern detection and learning |
US15/826,124 Expired - Fee Related US11017693B2 (en) | 2017-01-10 | 2017-11-29 | System for enhancing speech performance via pattern detection and learning |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/826,124 Expired - Fee Related US11017693B2 (en) | 2017-01-10 | 2017-11-29 | System for enhancing speech performance via pattern detection and learning |
Country Status (1)
Country | Link |
---|---|
US (2) | US20180197438A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180197439A1 (en) * | 2017-01-10 | 2018-07-12 | International Business Machines Corporation | System for enhancing speech performance via pattern detection and learning |
TWI754804B (en) * | 2019-03-28 | 2022-02-11 | 國立中正大學 | System and method for improving dysarthria speech comprehension |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102194227B1 (en) * | 2018-01-12 | 2020-12-28 | 오주성 | Acquisition System Of Language |
US20190311732A1 (en) * | 2018-04-09 | 2019-10-10 | Ca, Inc. | Nullify stuttering with voice over capability |
EP3618061B1 (en) * | 2018-08-30 | 2022-04-27 | Tata Consultancy Services Limited | Method and system for improving recognition of disordered speech |
CN114303132B (en) * | 2019-08-22 | 2024-03-01 | 三星电子株式会社 | Method and system for context association and personalization using wake words in a virtual personal assistant |
TWI746138B (en) * | 2020-08-31 | 2021-11-11 | 國立中正大學 | System for clarifying a dysarthria voice and method thereof |
US12223946B2 (en) * | 2020-09-11 | 2025-02-11 | International Business Machines Corporation | Artificial intelligence voice response system for speech impaired users |
EP4036755A1 (en) * | 2021-01-29 | 2022-08-03 | Deutsche Telekom AG | Method for generating and providing information of a service presented to a user |
US12032807B1 (en) | 2021-11-08 | 2024-07-09 | Arrowhead Center, Inc. | Assistive communication method and apparatus |
US11929845B2 (en) * | 2022-01-07 | 2024-03-12 | International Business Machines Corporation | AI-based virtual proxy nodes for intent resolution in smart audio devices |
US11594149B1 (en) * | 2022-04-07 | 2023-02-28 | Vivera Pharmaceuticals Inc. | Speech fluency evaluation and feedback |
US12417828B2 (en) * | 2023-05-30 | 2025-09-16 | International Business Machines Corporation | Expert crowdsourcing for health assessment learning from speech in the digital healthcare era |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4611298A (en) * | 1983-06-03 | 1986-09-09 | Harding And Harris Behavioral Research, Inc. | Information storage and retrieval system and method |
US20100174533A1 (en) * | 2009-01-06 | 2010-07-08 | Regents Of The University Of Minnesota | Automatic measurement of speech fluency |
US20120116772A1 (en) * | 2010-11-10 | 2012-05-10 | AventuSoft, LLC | Method and System for Providing Speech Therapy Outside of Clinic |
US20140022184A1 (en) * | 2012-07-20 | 2014-01-23 | Microsoft Corporation | Speech and gesture recognition enhancement |
Family Cites Families (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3760108A (en) | 1971-09-30 | 1973-09-18 | Tetrachord Corp | Speech diagnostic and therapeutic apparatus including means for measuring the speech intensity and fundamental frequency |
US3867770A (en) | 1973-11-14 | 1975-02-25 | Michael S Davis | Speech therapy device |
US4460342A (en) | 1982-06-15 | 1984-07-17 | M.B.A. Therapeutic Language Systems Inc. | Aid for speech therapy and a method of making same |
US4802228A (en) | 1986-10-24 | 1989-01-31 | Bernard Silverstein | Amplifier filter system for speech therapy |
US5487671A (en) * | 1993-01-21 | 1996-01-30 | Dsp Solutions (International) | Computerized system for teaching speech |
US6231500B1 (en) | 1994-03-22 | 2001-05-15 | Thomas David Kehoe | Electronic anti-stuttering device providing auditory feedback and disfluency-detecting biofeedback |
EP0956552B1 (en) | 1995-12-04 | 2002-07-17 | Jared C. Bernstein | Method and apparatus for combined information from speech signals for adaptive interaction in teaching and testing |
US6044346A (en) * | 1998-03-09 | 2000-03-28 | Lucent Technologies Inc. | System and method for operating a digital voice recognition processor with flash memory storage |
US8065155B1 (en) * | 1999-06-10 | 2011-11-22 | Gazdzinski Robert F | Adaptive advertising apparatus and methods |
KR20040106397A (en) | 2002-04-26 | 2004-12-17 | 이스트 캐롤라이나 유니버스티 | Non-stuttering biofeedback method and apparatus using DAF |
US7580570B2 (en) * | 2003-12-09 | 2009-08-25 | Microsoft Corporation | Accuracy model for recognition signal processing engines |
US20060008781A1 (en) * | 2004-07-06 | 2006-01-12 | Ordinate Corporation | System and method for measuring reading skills |
US10223934B2 (en) * | 2004-09-16 | 2019-03-05 | Lena Foundation | Systems and methods for expressive language, developmental disorder, and emotion assessment, and contextual feedback |
US7258660B1 (en) | 2004-09-17 | 2007-08-21 | Sarfati Roy J | Speech therapy method |
US7292985B2 (en) | 2004-12-02 | 2007-11-06 | Janus Development Group | Device and method for reducing stuttering |
US7762264B1 (en) | 2004-12-14 | 2010-07-27 | Lsvt Global, Inc. | Total communications and body therapy |
WO2007027989A2 (en) * | 2005-08-31 | 2007-03-08 | Voicebox Technologies, Inc. | Dynamic speech sharpening |
US20090275005A1 (en) | 2005-11-18 | 2009-11-05 | Haley Katarina L | Methods, Systems, and Computer Program Products for Speech Assessment |
US8275624B2 (en) | 2008-10-16 | 2012-09-25 | Thomas David Kehoe | Electronic speech aid and method for use thereof to treat hypokinetic dysarthria |
GB0920480D0 (en) * | 2009-11-24 | 2010-01-06 | Yu Kai | Speech processing and learning |
US9263043B2 (en) | 2009-12-04 | 2016-02-16 | University Of Mississippi | Stuttering inhibition method and device |
CA2832513A1 (en) | 2011-04-07 | 2012-10-11 | Mordechai Shani | Providing computer aided speech and language therapy |
US8571873B2 (en) | 2011-04-18 | 2013-10-29 | Nuance Communications, Inc. | Systems and methods for reconstruction of a smooth speech signal from a stuttered speech signal |
WO2014062441A1 (en) | 2012-10-16 | 2014-04-24 | University Of Florida Research Foundation, Inc. | Screening for neurologial disease using speech articulation characteristics |
US9190061B1 (en) * | 2013-03-15 | 2015-11-17 | Google Inc. | Visual speech detection using facial landmarks |
US9911358B2 (en) | 2013-05-20 | 2018-03-06 | Georgia Tech Research Corporation | Wireless real-time tongue tracking for speech impairment diagnosis, speech therapy with audiovisual biofeedback, and silent speech interfaces |
WO2015168606A1 (en) * | 2014-05-02 | 2015-11-05 | The Regents Of The University Of Michigan | Mood monitoring of bipolar disorder using speech analysis |
EP3160334B1 (en) * | 2014-08-22 | 2021-12-01 | SRI International | Speech-based assessment of a patient's state-of-mind |
US9589107B2 (en) | 2014-11-17 | 2017-03-07 | Elwha Llc | Monitoring treatment compliance using speech patterns passively captured from a patient environment |
WO2016109334A1 (en) | 2014-12-31 | 2016-07-07 | Novotalk, Ltd. | A method and system for online and remote speech disorders therapy |
US9972339B1 (en) * | 2016-08-04 | 2018-05-15 | Amazon Technologies, Inc. | Neural network based beam selection |
CA3033109A1 (en) * | 2016-08-12 | 2018-02-15 | Magic Leap, Inc. | Word flow annotation |
US10448115B1 (en) * | 2016-09-28 | 2019-10-15 | Amazon Technologies, Inc. | Speech recognition for localized content |
WO2018058425A1 (en) * | 2016-09-29 | 2018-04-05 | 中国科学院深圳先进技术研究院 | Virtual reality guided hypnotic voice processing method and apparatus |
US20180197438A1 (en) * | 2017-01-10 | 2018-07-12 | International Business Machines Corporation | System for enhancing speech performance via pattern detection and learning |
CA3053245A1 (en) * | 2017-02-09 | 2018-08-16 | Cognoa, Inc. | Platform and system for digital personalized medicine |
US11417235B2 (en) * | 2017-05-25 | 2022-08-16 | Baidu Usa Llc | Listen, interact, and talk: learning to speak via interaction |
US20200285700A1 (en) * | 2019-03-04 | 2020-09-10 | University Of Southern California | Technology-Facilitated Support System for Monitoring and Understanding Interpersonal Relationships |
CN108877765A (en) * | 2018-05-31 | 2018-11-23 | 百度在线网络技术(北京)有限公司 | Processing method and processing device, computer equipment and the readable medium of voice joint synthesis |
DK201970509A1 (en) * | 2019-05-06 | 2021-01-15 | Apple Inc | Spoken notifications |
-
2017
- 2017-01-10 US US15/402,475 patent/US20180197438A1/en not_active Abandoned
- 2017-11-29 US US15/826,124 patent/US11017693B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4611298A (en) * | 1983-06-03 | 1986-09-09 | Harding And Harris Behavioral Research, Inc. | Information storage and retrieval system and method |
US20100174533A1 (en) * | 2009-01-06 | 2010-07-08 | Regents Of The University Of Minnesota | Automatic measurement of speech fluency |
US20120116772A1 (en) * | 2010-11-10 | 2012-05-10 | AventuSoft, LLC | Method and System for Providing Speech Therapy Outside of Clinic |
US20140022184A1 (en) * | 2012-07-20 | 2014-01-23 | Microsoft Corporation | Speech and gesture recognition enhancement |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180197439A1 (en) * | 2017-01-10 | 2018-07-12 | International Business Machines Corporation | System for enhancing speech performance via pattern detection and learning |
US11017693B2 (en) * | 2017-01-10 | 2021-05-25 | International Business Machines Corporation | System for enhancing speech performance via pattern detection and learning |
TWI754804B (en) * | 2019-03-28 | 2022-02-11 | 國立中正大學 | System and method for improving dysarthria speech comprehension |
Also Published As
Publication number | Publication date |
---|---|
US11017693B2 (en) | 2021-05-25 |
US20180197439A1 (en) | 2018-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11017693B2 (en) | System for enhancing speech performance via pattern detection and learning | |
US12347563B2 (en) | System and method for assessing physiological state | |
Anumanchipalli et al. | Speech synthesis from neural decoding of spoken sentences | |
Eni et al. | Estimating autism severity in young children from speech signals using a deep neural network | |
Abad et al. | Automatic word naming recognition for an on-line aphasia treatment system | |
US20220301563A1 (en) | Method of Contextual Speech Decoding from the Brain | |
US11688300B2 (en) | Diagnosis and treatment of speech and language pathologies by speech to text and natural language processing | |
US20220208173A1 (en) | Methods of Generating Speech Using Articulatory Physiology and Systems for Practicing the Same | |
Van Der Merwe et al. | Model-driven treatment of childhood apraxia of speech: Positive effects of the speech motor learning approach | |
Wairagkar et al. | An instantaneous voice-synthesis neuroprosthesis | |
Keshavarzi et al. | Decoding of speech information using EEG in children with dyslexia: Less accurate low-frequency representations of speech, not “Noisy” representations | |
Parnandi et al. | Architecture of an automated therapy tool for childhood apraxia of speech | |
Chenausky et al. | Review of methods for conducting speech research with minimally verbal individuals with autism spectrum disorder | |
Gutz et al. | Feedback from automatic speech recognition to elicit clear speech in healthy speakers | |
Johnson | Speech, voice, and communication | |
Robles-Bykbaev et al. | A proposal of a virtual robotic assistant and a rule-based expert system to carry out therapeutic exercises with children with Dyslalia | |
Ondáš et al. | Speech therapy applications based on speech technologies | |
Hair et al. | Preliminary results from a longitudinal study of a tablet-based speech therapy game | |
Das et al. | An automated speech-language therapy tool with interactive virtual agent and peer-to-peer feedback | |
Schipor | Improving computer assisted speech therapy through speech based emotion recognition | |
Pompili et al. | Speech and language technologies for the automatic monitoring and training of cognitive functions | |
Talkar | Detection and Characterization of Autism Spectrum Disorder and Parkinson’s Disease Utilizing Measures of Speech-and Fine-Motor Coordination | |
US20250246178A1 (en) | Adaptive speech elaboration and feedback for speech therapy | |
Chen | Prosody in Mandarin: Clinical and Pedagogical Applications | |
US20250191493A1 (en) | Automated generation of targeted feedback using speech characteristics extracted from audio samples to address speech defects |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, NEW Y Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GORDON, MICHAEL S.;MONGE NUNEZ, ROXANA;PICKOVER, CLIFFORD A.;AND OTHERS;SIGNING DATES FROM 20161103 TO 20161108;REEL/FRAME:040935/0006 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |