[go: up one dir, main page]

US20180196918A1 - Bioprocess method and system - Google Patents

Bioprocess method and system Download PDF

Info

Publication number
US20180196918A1
US20180196918A1 US15/917,419 US201815917419A US2018196918A1 US 20180196918 A1 US20180196918 A1 US 20180196918A1 US 201815917419 A US201815917419 A US 201815917419A US 2018196918 A1 US2018196918 A1 US 2018196918A1
Authority
US
United States
Prior art keywords
unit operation
biological process
physical
element structure
standardized element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/917,419
Inventor
Michael Ian SADOWSKI
Sean Michael WARD
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SYNTHACE Ltd
Original Assignee
SYNTHACE Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50686811&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20180196918(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by SYNTHACE Ltd filed Critical SYNTHACE Ltd
Priority to US15/917,419 priority Critical patent/US20180196918A1/en
Publication of US20180196918A1 publication Critical patent/US20180196918A1/en
Assigned to SYNTHACE LIMITED reassignment SYNTHACE LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SADOWSKI, Michael Ian, WARD, Sean Michael
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B50/00ICT programming tools or database systems specially adapted for bioinformatics
    • G06F19/28
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/36Apparatus for enzymology or microbiology including condition or time responsive control, e.g. automatically controlled fermentors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/48Automatic or computerized control

Definitions

  • the present inventors have overcome the problems associated with the art by providing methods and systems for reproducible and scalable bioprocess workflows via stacking of smart and reusable elements.
  • a first aspect of the invention provides a method for performing a biological process wherein the method comprises implementation of at least one unit operation, and wherein the unit operation is defined according to a standardised element structure, the element structure comprising a plurality of functional section blocks, and wherein the section blocks comprise at least one of the group consisting of: imports; parameters; data; physical inputs; requirements; setup; and execution steps.
  • the element structure further comprises at least one additional section block selected from the group consisting of: physical outputs, analysis and validation steps.
  • the element structure comprises at least the sections blocks defining: imports; parameters; data; physical inputs; requirements; setup; and execution steps.
  • the biological process comprises at least two unit operations, wherein each unit operation defined according to a standardised element structure.
  • each unit operation defined according to a standardised element structure.
  • a plurality of unit operations may be arranged in sequence or in parallel to create a workflow.
  • the least two unit operations are non-identical.
  • the unit operation is selected from the group consisting of: a conversion; a reaction; a purification; a construct assembly step; an assay or analysis such as a quantification of a product, a by-product or reagent; a nucleotide or protein/peptide synthesis; a cell culture; an incubation; a restriction; a ligation; a mutation; an inoculation; a lysis; a transformation; an extraction; the conditioning of a product (e.g. for storage); and an amplification (e.g. with respect to a nucleic acid).
  • the biological process is either a manufacturing process and/or an analytical process.
  • the process may comprise at least two unit operations, at least one of which is a process operation and at least one of which is an analytical process operation.
  • a second aspect of the invention provides a computer implemented method comprising any of the method steps described herein.
  • a third aspect of the invention provides a system for performing a biological process, comprising:
  • each standardised element defines a unit operation in a biological process
  • the data storing means is a database and/or the data is provided through a cloud service.
  • the system comprises a website or a mobile device or computer application to access the service.
  • the system may be incorporated as part of a laboratory information management system (LIMS).
  • LIMS laboratory information management system
  • a fourth aspect of the invention provides a computer readable medium comprising a database, wherein the database comprises a plurality of unit operations, each unit operation being suitable for use within a biological process and wherein each unit operation is defined according to a standardised element structure, the element structure comprising a plurality of functional section blocks, and wherein the section blocks comprise at least one of the group consisting of: imports; parameters; data; physical inputs; requirements; setup; and execution steps.
  • the element structure further comprises at least one additional section block selected from the group consisting of: physical outputs, analysis and validation steps.
  • the element structure comprises at least the section blocks defining: imports; parameters; data; physical inputs; requirements; setup; and execution steps.
  • a fifth aspect of the invention provides an apparatus comprising the computer readable medium described herein.
  • the apparatus comprises one or more memories and one or more processors, and wherein the one or more memories and the one or more processors are in electronic communication with each other, the one or more memories tangibly encoding a set of instructions for implementing the methods of the invention as described.
  • a sixth aspect of the invention provides a computer implemented method for designing an experiment comprising the steps of:
  • the unit operation is defined according to a standardised element structure, the element structure comprising a plurality of functional section blocks, and wherein the section blocks comprise: imports; parameters; data; physical inputs; requirements; setup; and execution steps.
  • a seventh aspect of the invention provides an apparatus comprising one or more memories and one or more processors, and wherein the one or more memories and the one or more processors are in electronic communication with each other, the one or more memories tangibly encoding a set of instructions for implementing the methods described herein.
  • FIG. 1 shows a flow diagram according to one embodiment of the present invention
  • FIGS. 2 ( a ) and ( b ) show exemplary bioprocess workflows according to embodiments of the present invention, each unit operation is defined by an element shown as a box containing a cog-shaped wheel symbol.
  • FIG. 3 shows the multi-section structure of an element according to one embodiment of the present invention
  • the term “comprising” means any of the recited elements are necessarily included and other elements may optionally be included as well. “Consisting essentially of” means any recited elements are necessarily included, elements that would materially affect the basic and novel characteristics of the listed elements are excluded, and other elements may optionally be included. “Consisting of” means that all elements other than those listed are excluded. Embodiments defined by each of these terms are within the scope of this invention.
  • process is defined as a specific sequence of transformative events performed upon a starting material in order to achieve a specified purpose or goal.
  • the process may result in the transformation of the starting material into a product—in which case the process is a “production process”.
  • the process may result in the determination of information about the starting material—in which case the process may be diagnostic or prognostic in nature.
  • the overall process may be sub-divided into individual process steps that are applied in sequence to achieve the desired outcome.
  • the process is a “bio-process” that uses complete living cells or their components (e.g., prokaryotic or eukaryotic cells, enzymes, organelles such as chloroplasts) to obtain desired products.
  • a process comprises a set of steps that are applied on inputs (including at least a physical input) in order to produce an output (including at least a physical output such as a product, and possibly additional data outputs).
  • Inputs may comprise physical starting materials selected from one or more of the group consisting of: reagents; cells; cellular derivatives; cellular extracts; tissue extracts; polypeptides; peptides; proteins; nucleic acids; small molecules; oligosaccharides; polysaccharides; polymeric molecules; elements; organic or inorganic salts; pharmaceutical compounds; pro-drugs; and any other composition of matter suitable for use within a biological process.
  • An embodiment of the invention may include a process which involves the introduction of one or more genes into a microorganism, which in turn expresses one or more proteins encoded by those genes or modifies the metabolic processes of the organism by the expression of non-protein-coding genes or other alterations to the genetic makeup of the host.
  • the protein(s) itself is may be the desired product or where it functions as part of a pathway, the protein may contribute to the generation of a desired product.
  • unit operation is defined as any step or sub-step in a process that can be identified as a self-contained process or “unit” which contributes to a set of successive steps—or units—that together serve to make up a complete process.
  • a unit operation may be selected from one or more of: a conversion; a reaction; a purification; a construct assembly step; an assay or analysis such as a quantification of a product, a by-product or reagent; a sequencing of nucleic acids; a physical mixing; a centrifugation; a spreading or physical plating of a sample; the selective sampling of a sub population of a sample, such as colony picking; the three dimensional placement of a sample into a structural matrix; a nucleotide or protein/peptide synthesis; a fermentation; a cell culture; an incubation; a restriction; a ligation; a mutation; a transformation; a specific computation analysis, such as a linear regression, sequence alignment, or model
  • parts refers to any physical element utilised within a process or unit operation.
  • a part may be a reagent, product, or input to any unit operation, or any piece of equipment or apparatus that is used in a process or unit operation.
  • Typical parts may be selected from one or more of: a variant of a gene or polynucleotide; a genetic construct; a whole cell or cell line; an enzyme; an antibody; a small molecule; a solution (such as buffers, reagents, culture media, etc.); a solid support; a container (such as reaction tanks, flasks, slides, beads or physical interaction substrates, etc.); a peptide; a polypeptide; a functional or non-functional nucleic acid; a nutrient compound; a growth factor; a cytokine; an element; an ionic substance, such as an organic or inorganic anion or cation; and a gas or vapour in the environment of the process. It will be appreciated that the aforementioned does not represent an exhaustive list of potential parts, which are typically reliant upon the precise nature of the process that is to be undertaken.
  • a product is defined as any desirable physical output of a process.
  • a product may include a eukaryotic or prokaryotic organism, virus, nanostructure, a protein, polypeptide, polynucleotide, polymer, tissue, complex or small molecule that is produced as a result of the process.
  • the product is in fact an information object, such as a digital genetic sequence, or a measurement of system properties that is the result of a destructive or non-destructive assay. It will be appreciated that the aforementioned does not represent an exhaustive list of potential products, which are typically reliant upon the precise nature of the process that is to be undertaken.
  • protocol refers to a set of instructions for performing a unit operation.
  • the set of instructions may be a non-exhaustive list of actions and associated parameters that have to be performed, such that a series of variables are set by the protocol while additional variables are left to the user.
  • Typical variables that are set by a protocol may include the identity and/or concentration of inputs to the operation, the order and/or timing of performing various steps in the protocol, the value of physical parameters which have to be set for some or all steps of the protocol (such as e.g. the temperature, pH, oxygen concentration, mixing speed, etc.), features of the equipment used, and factors such as selecting between alternative calculation models or analysis techniques for computationally derived steps. It will be appreciated that the aforementioned does not represent an exhaustive list of potential elements of a protocol, which are typically reliant upon the precise nature of the process that is to be undertaken.
  • factor is used herein to denote any defined feature of or within a process that can be modified without changing the ultimate goal of the process. According to one embodiment of the present invention there are two categories of factors: genetic and process factors.
  • Process factors suitably relate to features of a process which are not associated with the genetics of a construct or host.
  • Typical process factors may include features of the equipment (e.g. dimensions of a reaction tank, impeller configurations, siting of probes), environment (e.g. temperature, pH, oxygenation, atmospheric pressure), protocol (e.g. timings of significant stages and events such as inoculation and induction), reagents (growth media composition, nutrient level, feedstock concentration, inducer concentration), handling of cells (stock storage conditions, size of inoculations between reactors), process design (number of process steps, type of reaction vessel). It will be appreciated that the aforementioned does not represent an exhaustive list of potential process factors, which are typically reliant upon the precise nature of the process that is to be undertaken.
  • Genetic factors suitably relate to qualitative and quantitative features associated with any genetic material involved in a process, for example, such as features of the specific genetic ‘construct’ which is used to introduce new nucleic acid, including DNA, into the host (e.g. identity or composition of vector), features of the host microorganism (e.g. strain, genetic background (including knockouts of undesirable genes and protein overexpression, epigenetic factors), features of functional DNA (e.g. promoter strength, ribosome binding site strength, plasmid origin of replication, terminator, codon usage strategy, operator, activator, gene variant). It will be appreciated that the aforementioned does not represent an exhaustive list of potential genetic factors, which are typically reliant upon the precise nature of the process that is to be undertaken.
  • Factors whether process or genetic factors, are deemed to interact when the effects of changes to one factor are dependent on the value of another factor.
  • a given process step within a process such as a bioprocess—may comprise a plurality of factors that can interact with each other.
  • a cascade of interactions when one factor is altered as a result of a change in a process parameter, or the inherent characteristics associated with that factor are changed, there can be a cascade of interactions that will modify the effects of other factors within that process step in a causative manner.
  • this cascade of interactions may lead to additional interactions within factors of neighbouring or even distant process steps. It follows, therefore, that many processes can be considered to be multi-factorial in nature.
  • a score refers to any interpretable objective or subjective measurement of the suitability of a part, unit operation or protocol for a given purpose within a process.
  • a score may be in the form of a user-defined rating (such as e.g. in a range of a minimum to a maximum number of stars, points, etc.), a grade, a proportion of positive evaluations, or a colour (such as a traffic light ranking), or a Boolean indicator (such as a thumbs up or thumbs down symbol).
  • a score may be in the form of a quantifiable or measurable feature of a part or operation, such as e.g.
  • Context refers to the situational information associated with a specified user. Context as applied to a multidimensional rating or score provides a perspective to the value ascribed by a score. It will be appreciated that virtually every user will have a unique perspective when providing a rating for any a given unit operation. The context will depend, in part, upon the parts available to the user, the success of those parts (e.g. apparatus, infrastructure) in performing a unit operation, the success of the unit operation within the process as a whole or in combination with other unit operations (e.g. compatibility with other unit operations) and any factor variables associated with the user.
  • parts e.g. apparatus, infrastructure
  • other unit operations e.g. compatibility with other unit operations
  • element as used herein comprises a standardised description of a part, protocol and/or unit operation that can be utilised within a biological process.
  • an element represents a reusable unit which can be combined with other elements to form process workflows and pipelines.
  • the elements can robustly describe the inputs and outputs of unit operations. This includes both the information flow and the physical sample flow, with strong typing ensuring compatibility with other unit operations.
  • an element will relate to a single workflow within a given unit operation with a defined set up physical and information inputs being processed into a defined set of physical and information outputs.
  • the described method can be implemented via one or more computer systems.
  • the invention provides a computer readable medium containing program instructions for implementing the method of the invention, wherein execution of the program instructions by one or more processors of a computer system causes the one or more processors to carry out the phases as described herein.
  • the computer system includes at least: an input device, an output device, a storage medium, and a microprocessor).
  • Possible input devices include a keyboard, a computer mouse, a touch screen, and the like.
  • Output devices computer monitor, a liquid-crystal display (LCD), light emitting diode (LED) computer monitor, virtual reality (VR) headset and the like.
  • LCD liquid-crystal display
  • LED light emitting diode
  • VR virtual reality
  • information can be output to a user, a user interface device, a computer-readable storage medium, or another local or networked computer.
  • Storage media include various types of memory such as a hard disk, RAM, flash memory, and other magnetic, optical, physical, or electronic memory devices.
  • the microprocessor is any typical computer microprocessor for performing calculations and directing other functions for performing input, output, calculation, and display of data.
  • Two or more computer systems may be linked using wired or wireless means and may communicate with one another or with other computer systems directly and/or using a publicly-available networking system such as the Internet. Networking of computers permits various aspects of the invention to be carried out, stored in, and shared amongst one or more computer systems locally and at remote sites.
  • the computer processor may comprise an artificial neural network (ANN).
  • the method may be incorporated as part of a laboratory information management system (LIMS) or a software suite that is compatible with a LIMS.
  • LIMS laboratory information management system
  • the methods of the invention may be configured to interact with and control automated laboratory equipment including liquid handling and dispensing apparatus or more advanced laboratory robotic systems. Where higher numbers of factors are considered during the factor screening phase, in one embodiment of the invention it is an option to automate performance of factor screening experiments using a high-level programming language to produce reproducible and scalable workflows to underpin the screening, refining and optimisation phases of the method.
  • Suitable high-level programming languages may include C++, JavaTM, Visual Basic, Ruby, Google® Go and PHP, as well as the biology specific language AnthaTM (www.antha-lang.org).
  • FIG. 1 is a flow diagram that shows a computer implemented platform for the design of experiments or biological processes by a user that utilises various interacting modules.
  • the user will access the platform via a user interface ( 105 ) so as to access a workflow design tool ( 101 ).
  • the user interface ( 105 ) may be comprised within a laboratory information management system (LIMS) package, via a dedicated software application (an ‘app’), via a website or any other suitable user interface.
  • LIMS laboratory information management system
  • the workflow design tool ( 101 ) enables the user to specify the type of experiment or biological process that is under consideration, especially by specifying inputs (e.g. starting materials) and the desired outputs (e.g. products).
  • the workflow design tool ( 101 ) the user is able to access the experimental design module ( 101 a ) which provides a mechanism for breaking down the experiment or process into one or more unit operations.
  • Each unit operation will comprise one or more parts and one or more protocols. Selection of the most appropriate components of the one or more unit operation can be accomplished within the parts module ( 101 b ) and the protocols module ( 101 c ).
  • the parts module ( 101 b ) and the protocols module ( 101 c ) respectively are able to access a library of compatible standardised parts and protocols comprised within a parts characterisation module ( 102 ) and a protocol definition module ( 103 ).
  • a fully assembled workflow provides a process pipeline that comprises at least one unit operation, more typically a plurality of unit operations such as the ones shown in FIGS. 2 ( a ) and ( b ) .
  • the fully assembled workflow can be tested for compatibility with the user's available parts—including laboratory automation apparatus—so as to provide a validation of the workflow within the specific context of the user. Validation can be carried out via the analysis module ( 101 d ). It is optional for unit operations to subject to associated scoring or rating criteria that allow for comparison of the user's unique context with the suggested workflow.
  • the workflow design tool ( 101 ) provides capability to establish a design space in part defined by the user's unique context and, in so doing, only permits assembly of a workflow that is compatible with the user contextualised design space.
  • One important aspect of the platform is that it permits certain degrees of freedom for users to modify unit operations in order to improve compatibility with available parts and associated protocols. This advantageously enables a level of flexibility within the design space as well as an evolution of unit operations to accommodate slightly different user contexts.
  • the workflow can be implemented either via fully automated laboratory systems or via a manual implementation, or a combination of both.
  • Feedback metrics may include, for example, scores, ratings, data and information on reaction conditions, yield of product, time taken for completion of the protocol, purity of the product, amongst others.
  • the feedback metrics may be combined together with the information regarding the process pipeline and communicated to a standardisation engine ( 104 ).
  • the standardisation engine ( 104 ) provides a function of data standardisation, including normalisation, reformatting and parsing on the input information that includes the pipeline process assembly and any accompanying modifications made by the user, together with associated metrics and scores.
  • Data standardisation may comprise removal of extraneous or irrelevant information as well as normalisation of data or values to common or standard form, such as via reference to lookup tables. In so doing, the standardisation engine ( 104 ) transforms the input data into a common representation of values thereby providing a consistent record.
  • the standardisation engine ( 104 ) may comprise a database of standardised unit operations, parts and protocols.
  • the standardisation engine ( 104 ) does not comprise a database itself but communicates with a database within a separate module (not shown), or within one or more databases comprised within the workflow design tool ( 101 ).
  • the standardisation engine provides standardised descriptions of parts to the parts characterisation module ( 102 ) and the protocol definition module ( 103 ) respectively.
  • the computer implemented platform provides an iterative procedure for assembling unit operations from standardised parts and procedures that are continually improved, adapted and modified dependent upon the user's context.
  • the unit operations are defined in a standardised element structure, described further below. Where the platform is accessed by multiple users, such as in the instance of a multi-user cloud or internet based platform, users will benefit from the continual generation of novel and/or improved parts, protocols and associated unit operations.
  • the workflow design tool ( 101 ) may select one or more unit operations that are defined as elements. Hence, as in FIGS. 2 ( a ) and ( b ) , each unit operation in the finally assembled workflow consists of an element.
  • a specific embodiment of the invention provides a method for performing or designing a biological process—including one or more experimental steps—wherein the method is comprised of at least one unit operation, and wherein the unit operation is defined according to standardised element structure.
  • the element according to this embodiment is shown in FIG. 3 as having a section-based format that defines information as well as the physical inputs and outputs of the unit operation.
  • the use of a structured, text-based format with a domain specific vocabulary also permits the use of version control systems to track how protocols evolve and change over time and to identify which changes are responsible for particular behaviour, also avoiding repetition of errors.
  • the elements are configured to run as microservices communicating via a network using a flow-based approach.
  • the element typically comprises a section-based format having at least the following functional section blocks: imports; parameters; data; physical inputs; requirements; setup; and execution steps.
  • the element may further comprise at least one additional section that relates to physical outputs, analysis and/or validation.
  • the Import section block suitably defines a name for the element, and specifies what additional protocols, parts or unit operations are needed to execute the element.
  • the Parameters section block suitably defines the information inputs to the element.
  • Data types can be any of the built-in types from high level programming languages such as Google® Go language or AnthaTM, including int, string, byte, float, as well as specified metric units required in the protocol. Default parameters may be included in this section block.
  • the Data section block suitably defines the information outputs from the element.
  • the Data section follows the same format as the Parameters block, although typically no default values are given.
  • the Inputs block suitably defines the physical inputs to the protocol, along with their appropriate type. Physical inputs may comprise starting materials or parts used in the unit operation.
  • the Outputs section block is optional and may only be present in a unit operation in which a physical product is generated.
  • Examples of protocols that output a physical sample may, thus, include a new liquid solution containing DNA, enzymes, or cells; a lyophilised preparation comprising biological material; or a frozen sample comprising a biopolymer.
  • the Requirements block is typically executed by a protocol before it begins work, to allow confirmation that the states of any inputs are suitable for successful completion of the unit operation.
  • the Setup section block is performed once the first time that an element is executed. This can be used to perform any configuration that is needed globally for the element, and is also used to define any special setup that may be needed for groups of concurrent tasks that might be executed at the same time. Any variables that need to be accessed by the steps function globally can be defined here as well.
  • the functional core of the element of the invention is defined within the Steps section block.
  • the Steps block describes the actual steps taken to transform a set of input parameters and samples into the output data and samples.
  • the Steps are a kernel function, meaning they share no information for every concurrent sample that is processed, and define the workflow to transform a single block of inputs and samples into a single set of outputs.
  • the Analysis section block is optional and defines how the results of the Steps block should be transformed into final values, if appropriate.
  • the Validation section block is optional and allows the definition of specific tests to verify the correct execution of an element, along with reporting capabilities as well as the ability to declare the execution a failure.
  • section blocks within the element may be varied in alternative embodiments of the invention.
  • section blocks may be combined to give dual functionality and additional section blocks may be added to expand functionality beyond the element set out in FIG. 3 .
  • a unit operation of a biological process is defined within the high level biology language AnthaTM.
  • the element defines a Bradford assay, which is a molecular biology assay used to quantify the amount of protein in a physical sample.
  • AnthaTM is an extension of the Go language (www.golang.org), and shares a focus on describing concurrent processes functionally. Any execution of a workflow is intended to describe a large array of parallel processes, and is described from the standpoint of the smallest appropriate unit of operation. In the case of this Element, that is the set of actions to process a single physical sample, even though this protocol will normally be run on arrays of samples at the same time.
  • a core purpose of the AnthaTM system is to establish a de facto standard language for defining protocols and parts for use in biological experimentation. Therefore, it is designed to mask some of the programming detail from the user and focus on the biology.
  • the AnthaTM Element starts by defining a name for the protocol, in this case bradford, and listing what additional protocols or Go libraries are needed to execute the bradford protocol.
  • the AnthaTM compiler is intelligent enough to identify whether the imports are existing Go libraries, or other AnthaTM Elements, and can be transparently imported directly from source code repositories such as Github (www.github.com).
  • the Parameters block defines the information inputs to the Bradford Element.
  • Data types can be any of the built-in types from the Go language, such as int, string, byte, float, as well as the strongly typed scientific types introduced by the AnthaTM language, such as the metric units. Parameter declarations follow the syntax of
  • ExampleVolume means “Create a parameter named ExampleVolume, which only accepts volume units, with a default value of 15 microlitres.
  • ExampleVolume means “Create a parameter named ExampleVolume, which only accepts volume units, with a default value of 15 microlitres.
  • variables are named in UpperCamelCase (using an Upper-case letter for each word as a single name). All Parameters are visible to other Elements, so also by convention they start with an Upper-case letter.
  • ReplicateCount is a special variable, which tells AnthaTM to run ReplicateCount additional copies of each sample. The association of the results, and impact on workflow is automatically handled by the system.
  • ReplicateCount is a special variable, which tells AnthaTM to run ReplicateCount additional copies of each sample. The association of the results and impact on workflow is automatically handled by the system.
  • the Data block defines the information outputs from the Bradford Element.
  • Declaration follows the same format as the Parameters block, although no default values are given.
  • results which may be consumed as outputs by other Elements are named with an Upper-case first letter.
  • Variables which start with a lower-case first letter are intended for use only within the protocol, and while the values will be logged, they are not available to any other AnthaTM Elements. Additionally, they are shared across all executing copies of an Element, which requires their use to be carefully considered to avoid concurrency problems.
  • the Inputs block defines the physical inputs to the protocol, along with their appropriate type.
  • all the types are WaterSolutions, meaning they can be operated on by a standard liquid handling robot, or manual pipette operations.
  • Additional attributes of the physical samples are used by the AnthaTM Execution system to plan the optimal way to perform physical actions such as mixing on samples based on their types.
  • This protocol is a destructive protocol, meaning that all of the intermediates and the final sample created as a result of this assay needs to be destroyed after performing the protocol.
  • many protocols also output a physical sample, such as a new liquid solution containing DNA, enzymes, or cells. By default, any physical sample which is not passed to an Output is scheduled for destruction, with methods appropriate to the safety level of the sample (such as having to autoclave genetic materials, etc).
  • the Requirements block is executed by a protocol before it begins work, to allow confirming the state of any inputs. For example, a test like require(!Sample.Expired( ) would explicitly confirm that the input sample had not, for the information on the type of sample available to the AnthaTM system, expired by being left outside of a temperature controlled environment for too long. By default, AnthaTM confirms items such as whether samples have expired automatically, and this block is provided primarily as a convenience for certain classes of more complex tests needed to validate complex inputs such as DNA assembly protocols.
  • the Setup block is performed once the first time that an Element is executed. This can be used to perform any configuration that is needed globally for the Element, and is also used to define any special setup that may be needed for groups of concurrent tasks that might be executed at the same time. Any variables that need to be accessed by the Steps function globally can be defined here as well, but need to be handled with care to avoid concurrency problems.
  • Control library is used to enable the protocol to define a block of samples that need to be performed in concert with any block of tasks. For example, each 96 well plate of samples needs to have a set of control samples added to it to enable the calculation of the amount of protein in each sample. Creating these control samples is done via a serial dilution of a known protein sample, using up to ControlCurvePoints+1 samples in each block.
  • the Steps block defines the actual steps taken to transform a set of input parameters and samples into the output data and samples.
  • the Steps are a kernel function, meaning they share no information for every concurrent sample that is processed, and define the workflow to transform a single block of inputs and samples into a single set of outputs, even if the Element is operating on an entire array (such as micro-titre plate of samples at once).
  • the newly created sample, product is then passed to another AnthaTM Element, which in this case represents a device driver for a plate reader, to perform a measurement on the sample.
  • another AnthaTM Element which in this case represents a device driver for a plate reader, to perform a measurement on the sample.
  • the system automatically manages the scheduling of samples to be collocated on a shared micro-titre plate.
  • the Analysis block defines how the results of the Steps can be transformed into final values, if appropriate.
  • Computing the final protein concentration of a Bradford assay requires having the data back from the control samples, performing a linear regression, and then using those results to normalize the plate reader results.
  • control .WaitForCompletion( ) is a utility method saying that the Analysis needs to wait for the concurrent control samples to be fully processed before analysis can continue.
  • the actual linear regression is then performed by using an existing Go library for linear regression, which like all Go code, can be seamlessly included in AnthaTM
  • the final normalized result (the protein concentration in the sample) is stored in the ProteinConc variable where it can be accessed by downstream Elements.
  • the Validation block allows the definition of specific tests to verify the correct execution of an Element, along with reporting capabilities (and the ability to declare the execution a failure).
  • the Bradford assay can only handle a specific linear range of concentrations, so if the amount of protein in the sample is above or below that range, the assay will fail.
  • the solution in such a case is to rerun the assay, with a different dilution factor, however as the Bradford Element is a destructive assay, it may require the generation of more source material which may not be possible, preventing the Element alone from handling such an error.
  • Validation checks can be grouped as destructive or non destructive. All the tests performed in this example are non-destructive, as they simply analyse the data. However, in other types of Elements, a validation test may require the consumption of some of a sample, such as to run a mass spec trace, and as such only random dipstick testing may be required rather than validating every sample which is executed. Policies such as dipstick validation testing can be configured in the AnthaTM Execution environment.
  • the practice of the present invention employs conventional techniques of chemistry, computer science, statistics, molecular biology, microbiology, recombinant DNA technology, and chemical methods, which are within the capabilities of a person of ordinary skill in the art.
  • Such techniques are also explained in the literature, for example, T. Cormen, C. Leiserson, R. Rivest, 2009, Introduction to Algorithms, 3rd Edition, The MIT Press, Cambridge, Mass.; L. Eriksson, E. Johansson, N. Kettaneh-Wold, J. Trygg, C. Wikstom, S. Wold, Multi- and Megavariate Data Analysis, Part 1, 2 nd Edition, 2006, UMetrics, UMetrics AB, Sweden; M.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioethics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analytical Chemistry (AREA)
  • Sustainable Development (AREA)
  • Biophysics (AREA)
  • Databases & Information Systems (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Medical Informatics (AREA)
  • Medicinal Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Methods, systems and apparatus for performing a biological process are provided, wherein the method comprises implementation of at least one unit operation, and wherein the unit operation is defined according to a standardized element structure, the element structure comprising a plurality of functional section blocks, and wherein the section blocks comprise at least one of the group consisting of: imports; parameters; data; physical inputs; requirements; setup; and execution steps.

Description

  • This application is a continuation of U.S. patent application Ser. No. 15/271,592, filed Sep. 21, 2016, which is a continuation of PCT/US2015/022280, filed Mar. 24, 2015, which claims priority of GB1405246.8, filed Mar. 24, 2014. The contents of the above-identified applications are incorporated herein by reference in their entirety.
  • FIELD OF THE INVENTION
  • Methods and systems for design and execution of experiments are considered in this invention, in particular design and implementation of bioprocess manufacturing via automated laboratory systems.
  • BACKGROUND OF THE INVENTION
  • When assembling a biological synthetic process, multiple alternatives typically exist for each of the operations and parts in the process, such as the structure and identity of the genetic constructs used, the particular protocol used to perform a step such as a transformation, purification etc. The question of how to design the most efficient process is therefore one of choosing a set of parts and operations, in order to satisfy design criteria such as maximising yield of the required output.
  • There are very large numbers of variables that influence the overall yield of product in a biological synthetic process, such as the host organism selected and the particular strain of host species used, physical factors such as temperature, pH and oxygen availability and timing of reactions, to name a few. Therefore, the choice of suitable parts and operations that make up a multi-step process has to be made in the context of a highly dimensional design space. Often the combination of variables that work in the context of one manufacturing facility cannot be easily transposed to other facilities. This leads to considerable difficulties in standardisation of bio-processing and represents a key challenge for the future of synthetic biology. By way of example, a 2012 report in Nature recounted that scientists at biotech company Amgen had only managed to reproduce around 11% of 53 published cancer-related studies which they had attempted over the previous years (Begley C. G & Ellis L. M., Nature 483, 531-533 (29 Mar. 2012). Similarly, the pharmaceutical company Bayer has indicated that in their estimation only 20-25% of published data corresponded to their own in-house findings (Prinz, F., Schlange, T. & Asadullah, K. Nature Rev. Drug Discov. 10, 712 (2011)).
  • Conventionally, essential process or experimental design decisions have to-date been made arbitrarily based on what is usual in the art, available or known to the experimenter or manufacturer at the time of setting up the process or experimental pipeline. Decisions in biological process design are often habitual or based upon artisanal know-how passed down within laboratories or industrial organisations. This is often complicated with time and resource constraints leading to a trial and error development in which a pipeline is adjusted by exchanging discrete parts and operations or modifying parameters, in order to improve the features of the starting pipeline. This results in design decisions that are often suboptimal or require substantial resources to identify reagents, operations and parameters that might be merely satisfactory. Hence, there can be considerable institutional resistance to change a process once it has been settled upon due to the inherent uncertainty associated with the optimization strategy as a whole.
  • Despite these problems many successful bioprocesses have been developed and there is a recognised potential for bio-based manufacturing to provide enormous benefits across many areas. Hence, there exists a need in the art—particularly within synthetic biology—to provide methods and systems that can facilitate the design of experimental or production pipelines from the level of the laboratory bench up to and including the industrial-scale bioreactor. In particular there is a need to provide methods and systems that can facilitate like-for-like comparisons between processes as well as standardised approaches for defining parts and protocols that may be used in experimental design, bioprocessing and manufacturing. To achieve this, there exists a need in the art to provide methods and systems that can facilitate reliable design of experiments from the level of the lab bench up to and including the industrial-scale bioreactor. These and other uses, features and advantages of the invention should be apparent to those skilled in the art from the teachings provided herein.
  • SUMMARY OF THE INVENTION
  • The present inventors have overcome the problems associated with the art by providing methods and systems for reproducible and scalable bioprocess workflows via stacking of smart and reusable elements.
  • Accordingly a first aspect of the invention provides a method for performing a biological process wherein the method comprises implementation of at least one unit operation, and wherein the unit operation is defined according to a standardised element structure, the element structure comprising a plurality of functional section blocks, and wherein the section blocks comprise at least one of the group consisting of: imports; parameters; data; physical inputs; requirements; setup; and execution steps. Suitably, the element structure further comprises at least one additional section block selected from the group consisting of: physical outputs, analysis and validation steps. Optionally, the element structure comprises at least the sections blocks defining: imports; parameters; data; physical inputs; requirements; setup; and execution steps.
  • In a specific embodiment of the invention the biological process comprises at least two unit operations, wherein each unit operation defined according to a standardised element structure. Suitably a plurality of unit operations may be arranged in sequence or in parallel to create a workflow. In a further embodiment of the invention the least two unit operations are non-identical.
  • In yet a further embodiment of the invention, the unit operation is selected from the group consisting of: a conversion; a reaction; a purification; a construct assembly step; an assay or analysis such as a quantification of a product, a by-product or reagent; a nucleotide or protein/peptide synthesis; a cell culture; an incubation; a restriction; a ligation; a mutation; an inoculation; a lysis; a transformation; an extraction; the conditioning of a product (e.g. for storage); and an amplification (e.g. with respect to a nucleic acid). Optionally, the biological process is either a manufacturing process and/or an analytical process. Suitably the process may comprise at least two unit operations, at least one of which is a process operation and at least one of which is an analytical process operation.
  • A second aspect of the invention provides a computer implemented method comprising any of the method steps described herein.
  • A third aspect of the invention provides a system for performing a biological process, comprising:
  • a server with processing modules adapted to implement the methods as described herein;
  • a data storing means which is accessible by the processor for maintaining a record of standardised elements, wherein each standardised element defines a unit operation in a biological process; and
  • an interface for accessing the method.
  • Suitably, the data storing means is a database and/or the data is provided through a cloud service. Optionally, the system comprises a website or a mobile device or computer application to access the service. Typically, the system may be incorporated as part of a laboratory information management system (LIMS).
  • A fourth aspect of the invention provides a computer readable medium comprising a database, wherein the database comprises a plurality of unit operations, each unit operation being suitable for use within a biological process and wherein each unit operation is defined according to a standardised element structure, the element structure comprising a plurality of functional section blocks, and wherein the section blocks comprise at least one of the group consisting of: imports; parameters; data; physical inputs; requirements; setup; and execution steps. Typically, the element structure further comprises at least one additional section block selected from the group consisting of: physical outputs, analysis and validation steps. Suitably, the element structure comprises at least the section blocks defining: imports; parameters; data; physical inputs; requirements; setup; and execution steps.
  • A fifth aspect of the invention provides an apparatus comprising the computer readable medium described herein. In a specific embodiment, the apparatus comprises one or more memories and one or more processors, and wherein the one or more memories and the one or more processors are in electronic communication with each other, the one or more memories tangibly encoding a set of instructions for implementing the methods of the invention as described.
  • A sixth aspect of the invention provides a computer implemented method for designing an experiment comprising the steps of:
  • (i) selecting an input and a desired output for the experiment, wherein the input comprises physical input and the output is selected from either or both of a physical output and an information output; and
  • (ii) determining a process for conversion of the input to the desired output, wherein the process comprises at least one unit operation, and wherein the unit operation is selected from a database that comprises a plurality of potential unit operations;
  • wherein the unit operation is defined according to a standardised element structure, the element structure comprising a plurality of functional section blocks, and wherein the section blocks comprise: imports; parameters; data; physical inputs; requirements; setup; and execution steps.
  • A seventh aspect of the invention provides an apparatus comprising one or more memories and one or more processors, and wherein the one or more memories and the one or more processors are in electronic communication with each other, the one or more memories tangibly encoding a set of instructions for implementing the methods described herein.
  • DRAWINGS
  • The invention is further illustrated with reference to the following drawings in which
  • FIG. 1 shows a flow diagram according to one embodiment of the present invention
  • FIGS. 2 (a) and (b) show exemplary bioprocess workflows according to embodiments of the present invention, each unit operation is defined by an element shown as a box containing a cog-shaped wheel symbol.
  • FIG. 3 shows the multi-section structure of an element according to one embodiment of the present invention
  • DETAILED DESCRIPTION OF THE INVENTION
  • All references cited herein are incorporated by reference in their entirety. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.
  • Prior to setting forth the invention, a number of definitions are provided that will assist in the understanding of the invention.
  • As used herein, the term “comprising” means any of the recited elements are necessarily included and other elements may optionally be included as well. “Consisting essentially of” means any recited elements are necessarily included, elements that would materially affect the basic and novel characteristics of the listed elements are excluded, and other elements may optionally be included. “Consisting of” means that all elements other than those listed are excluded. Embodiments defined by each of these terms are within the scope of this invention.
  • The term “process” is defined as a specific sequence of transformative events performed upon a starting material in order to achieve a specified purpose or goal. The process may result in the transformation of the starting material into a product—in which case the process is a “production process”. Alternatively, the process may result in the determination of information about the starting material—in which case the process may be diagnostic or prognostic in nature. The overall process may be sub-divided into individual process steps that are applied in sequence to achieve the desired outcome. According to an embodiment of the invention, the process is a “bio-process” that uses complete living cells or their components (e.g., prokaryotic or eukaryotic cells, enzymes, organelles such as chloroplasts) to obtain desired products. The processes of the present invention are subject to process variables that are referred to as factors. Hence, a process comprises a set of steps that are applied on inputs (including at least a physical input) in order to produce an output (including at least a physical output such as a product, and possibly additional data outputs). Inputs may comprise physical starting materials selected from one or more of the group consisting of: reagents; cells; cellular derivatives; cellular extracts; tissue extracts; polypeptides; peptides; proteins; nucleic acids; small molecules; oligosaccharides; polysaccharides; polymeric molecules; elements; organic or inorganic salts; pharmaceutical compounds; pro-drugs; and any other composition of matter suitable for use within a biological process. An embodiment of the invention may include a process which involves the introduction of one or more genes into a microorganism, which in turn expresses one or more proteins encoded by those genes or modifies the metabolic processes of the organism by the expression of non-protein-coding genes or other alterations to the genetic makeup of the host. The protein(s) itself is may be the desired product or where it functions as part of a pathway, the protein may contribute to the generation of a desired product.
  • The term “unit operation” is defined as any step or sub-step in a process that can be identified as a self-contained process or “unit” which contributes to a set of successive steps—or units—that together serve to make up a complete process. Suitably, a unit operation may be selected from one or more of: a conversion; a reaction; a purification; a construct assembly step; an assay or analysis such as a quantification of a product, a by-product or reagent; a sequencing of nucleic acids; a physical mixing; a centrifugation; a spreading or physical plating of a sample; the selective sampling of a sub population of a sample, such as colony picking; the three dimensional placement of a sample into a structural matrix; a nucleotide or protein/peptide synthesis; a fermentation; a cell culture; an incubation; a restriction; a ligation; a mutation; a transformation; a specific computation analysis, such as a linear regression, sequence alignment, or model based prediction; a separation such as chromatography; a filtration; a concentration; an evaporation; a desiccation; a wash; an extraction; the conditioning of a product (e.g. for storage); and an amplification (e.g. with respect to a nucleic acid). It will be appreciated that the aforementioned does not represent an exhaustive list of potential unit operations, which are typically reliant upon the precise nature of the process that is to be undertaken.
  • The term “parts” refers to any physical element utilised within a process or unit operation. Suitably, a part may be a reagent, product, or input to any unit operation, or any piece of equipment or apparatus that is used in a process or unit operation. Typical parts may be selected from one or more of: a variant of a gene or polynucleotide; a genetic construct; a whole cell or cell line; an enzyme; an antibody; a small molecule; a solution (such as buffers, reagents, culture media, etc.); a solid support; a container (such as reaction tanks, flasks, slides, beads or physical interaction substrates, etc.); a peptide; a polypeptide; a functional or non-functional nucleic acid; a nutrient compound; a growth factor; a cytokine; an element; an ionic substance, such as an organic or inorganic anion or cation; and a gas or vapour in the environment of the process. It will be appreciated that the aforementioned does not represent an exhaustive list of potential parts, which are typically reliant upon the precise nature of the process that is to be undertaken.
  • The term “product” is defined as any desirable physical output of a process. Suitably, a product may include a eukaryotic or prokaryotic organism, virus, nanostructure, a protein, polypeptide, polynucleotide, polymer, tissue, complex or small molecule that is produced as a result of the process. In some processes the product is in fact an information object, such as a digital genetic sequence, or a measurement of system properties that is the result of a destructive or non-destructive assay. It will be appreciated that the aforementioned does not represent an exhaustive list of potential products, which are typically reliant upon the precise nature of the process that is to be undertaken.
  • The term “protocol” refers to a set of instructions for performing a unit operation. Typically, the set of instructions may be a non-exhaustive list of actions and associated parameters that have to be performed, such that a series of variables are set by the protocol while additional variables are left to the user. Typical variables that are set by a protocol may include the identity and/or concentration of inputs to the operation, the order and/or timing of performing various steps in the protocol, the value of physical parameters which have to be set for some or all steps of the protocol (such as e.g. the temperature, pH, oxygen concentration, mixing speed, etc.), features of the equipment used, and factors such as selecting between alternative calculation models or analysis techniques for computationally derived steps. It will be appreciated that the aforementioned does not represent an exhaustive list of potential elements of a protocol, which are typically reliant upon the precise nature of the process that is to be undertaken.
  • The term “factor” is used herein to denote any defined feature of or within a process that can be modified without changing the ultimate goal of the process. According to one embodiment of the present invention there are two categories of factors: genetic and process factors.
  • “Process factors” suitably relate to features of a process which are not associated with the genetics of a construct or host. Typical process factors may include features of the equipment (e.g. dimensions of a reaction tank, impeller configurations, siting of probes), environment (e.g. temperature, pH, oxygenation, atmospheric pressure), protocol (e.g. timings of significant stages and events such as inoculation and induction), reagents (growth media composition, nutrient level, feedstock concentration, inducer concentration), handling of cells (stock storage conditions, size of inoculations between reactors), process design (number of process steps, type of reaction vessel). It will be appreciated that the aforementioned does not represent an exhaustive list of potential process factors, which are typically reliant upon the precise nature of the process that is to be undertaken.
  • “Genetic factors” suitably relate to qualitative and quantitative features associated with any genetic material involved in a process, for example, such as features of the specific genetic ‘construct’ which is used to introduce new nucleic acid, including DNA, into the host (e.g. identity or composition of vector), features of the host microorganism (e.g. strain, genetic background (including knockouts of undesirable genes and protein overexpression, epigenetic factors), features of functional DNA (e.g. promoter strength, ribosome binding site strength, plasmid origin of replication, terminator, codon usage strategy, operator, activator, gene variant). It will be appreciated that the aforementioned does not represent an exhaustive list of potential genetic factors, which are typically reliant upon the precise nature of the process that is to be undertaken.
  • Factors, whether process or genetic factors, are deemed to interact when the effects of changes to one factor are dependent on the value of another factor. Typically, a given process step within a process—such as a bioprocess—may comprise a plurality of factors that can interact with each other. Hence, when one factor is altered as a result of a change in a process parameter, or the inherent characteristics associated with that factor are changed, there can be a cascade of interactions that will modify the effects of other factors within that process step in a causative manner. Where a process comprises more than one process step, this cascade of interactions may lead to additional interactions within factors of neighbouring or even distant process steps. It follows, therefore, that many processes can be considered to be multi-factorial in nature.
  • The term “score” refers to any interpretable objective or subjective measurement of the suitability of a part, unit operation or protocol for a given purpose within a process. Suitably, a score may be in the form of a user-defined rating (such as e.g. in a range of a minimum to a maximum number of stars, points, etc.), a grade, a proportion of positive evaluations, or a colour (such as a traffic light ranking), or a Boolean indicator (such as a thumbs up or thumbs down symbol). In some embodiments, a score may be in the form of a quantifiable or measurable feature of a part or operation, such as e.g. the quantity, purity, productivity, efficacy of a product output; the quantity of a by-product or contaminant present; the yield of a process; and the cost, energy or time efficiency of a part or unit operation. It will be appreciated that the aforementioned does not represent an exhaustive list of potential scores, which are typically reliant upon the precise nature of the process that is to be undertaken.
  • The term “context” as used herein refers to the situational information associated with a specified user. Context as applied to a multidimensional rating or score provides a perspective to the value ascribed by a score. It will be appreciated that virtually every user will have a unique perspective when providing a rating for any a given unit operation. The context will depend, in part, upon the parts available to the user, the success of those parts (e.g. apparatus, infrastructure) in performing a unit operation, the success of the unit operation within the process as a whole or in combination with other unit operations (e.g. compatibility with other unit operations) and any factor variables associated with the user.
  • The term “element” as used herein comprises a standardised description of a part, protocol and/or unit operation that can be utilised within a biological process. In this way, an element represents a reusable unit which can be combined with other elements to form process workflows and pipelines. According to an embodiment of the invention, the elements can robustly describe the inputs and outputs of unit operations. This includes both the information flow and the physical sample flow, with strong typing ensuring compatibility with other unit operations. Typically an element will relate to a single workflow within a given unit operation with a defined set up physical and information inputs being processed into a defined set of physical and information outputs.
  • In a specific embodiment of the invention, the described method can be implemented via one or more computer systems. In another embodiment the invention provides a computer readable medium containing program instructions for implementing the method of the invention, wherein execution of the program instructions by one or more processors of a computer system causes the one or more processors to carry out the phases as described herein. Suitably, the computer system includes at least: an input device, an output device, a storage medium, and a microprocessor). Possible input devices include a keyboard, a computer mouse, a touch screen, and the like. Output devices computer monitor, a liquid-crystal display (LCD), light emitting diode (LED) computer monitor, virtual reality (VR) headset and the like. In addition, information can be output to a user, a user interface device, a computer-readable storage medium, or another local or networked computer. Storage media include various types of memory such as a hard disk, RAM, flash memory, and other magnetic, optical, physical, or electronic memory devices. The microprocessor is any typical computer microprocessor for performing calculations and directing other functions for performing input, output, calculation, and display of data. Two or more computer systems may be linked using wired or wireless means and may communicate with one another or with other computer systems directly and/or using a publicly-available networking system such as the Internet. Networking of computers permits various aspects of the invention to be carried out, stored in, and shared amongst one or more computer systems locally and at remote sites. In one embodiment of the invention, the computer processor may comprise an artificial neural network (ANN). In a further embodiment of the invention the method may be incorporated as part of a laboratory information management system (LIMS) or a software suite that is compatible with a LIMS.
  • The methods of the invention may be configured to interact with and control automated laboratory equipment including liquid handling and dispensing apparatus or more advanced laboratory robotic systems. Where higher numbers of factors are considered during the factor screening phase, in one embodiment of the invention it is an option to automate performance of factor screening experiments using a high-level programming language to produce reproducible and scalable workflows to underpin the screening, refining and optimisation phases of the method. Suitable high-level programming languages may include C++, Java™, Visual Basic, Ruby, Google® Go and PHP, as well as the biology specific language Antha™ (www.antha-lang.org).
  • FIG. 1 is a flow diagram that shows a computer implemented platform for the design of experiments or biological processes by a user that utilises various interacting modules. In one embodiment of the invention the user will access the platform via a user interface (105) so as to access a workflow design tool (101). The user interface (105) may be comprised within a laboratory information management system (LIMS) package, via a dedicated software application (an ‘app’), via a website or any other suitable user interface. The workflow design tool (101) enables the user to specify the type of experiment or biological process that is under consideration, especially by specifying inputs (e.g. starting materials) and the desired outputs (e.g. products). In defining the objectives of the experiment or process the workflow design tool (101) the user is able to access the experimental design module (101 a) which provides a mechanism for breaking down the experiment or process into one or more unit operations.
  • Each unit operation will comprise one or more parts and one or more protocols. Selection of the most appropriate components of the one or more unit operation can be accomplished within the parts module (101 b) and the protocols module (101 c). The parts module (101 b) and the protocols module (101 c) respectively are able to access a library of compatible standardised parts and protocols comprised within a parts characterisation module (102) and a protocol definition module (103). A fully assembled workflow provides a process pipeline that comprises at least one unit operation, more typically a plurality of unit operations such as the ones shown in FIGS. 2 (a) and (b). The fully assembled workflow can be tested for compatibility with the user's available parts—including laboratory automation apparatus—so as to provide a validation of the workflow within the specific context of the user. Validation can be carried out via the analysis module (101 d). It is optional for unit operations to subject to associated scoring or rating criteria that allow for comparison of the user's unique context with the suggested workflow. Hence, the workflow design tool (101) provides capability to establish a design space in part defined by the user's unique context and, in so doing, only permits assembly of a workflow that is compatible with the user contextualised design space.
  • One important aspect of the platform is that it permits certain degrees of freedom for users to modify unit operations in order to improve compatibility with available parts and associated protocols. This advantageously enables a level of flexibility within the design space as well as an evolution of unit operations to accommodate slightly different user contexts. Once a validated process pipeline is approved by the user the workflow can be implemented either via fully automated laboratory systems or via a manual implementation, or a combination of both. As the unit operations within the pipeline are completed the laboratory automation apparatus and/or the user are prompted to provide feedback metrics on the successful performance of the unit operation as well as the assembled pipeline as a whole. Feedback metrics may include, for example, scores, ratings, data and information on reaction conditions, yield of product, time taken for completion of the protocol, purity of the product, amongst others. The feedback metrics may be combined together with the information regarding the process pipeline and communicated to a standardisation engine (104).
  • The standardisation engine (104) provides a function of data standardisation, including normalisation, reformatting and parsing on the input information that includes the pipeline process assembly and any accompanying modifications made by the user, together with associated metrics and scores. Data standardisation may comprise removal of extraneous or irrelevant information as well as normalisation of data or values to common or standard form, such as via reference to lookup tables. In so doing, the standardisation engine (104) transforms the input data into a common representation of values thereby providing a consistent record. The standardisation engine (104) may comprise a database of standardised unit operations, parts and protocols. Optionally the standardisation engine (104) does not comprise a database itself but communicates with a database within a separate module (not shown), or within one or more databases comprised within the workflow design tool (101). The standardisation engine provides standardised descriptions of parts to the parts characterisation module (102) and the protocol definition module (103) respectively. Hence, the computer implemented platform provides an iterative procedure for assembling unit operations from standardised parts and procedures that are continually improved, adapted and modified dependent upon the user's context. Suitably, the unit operations are defined in a standardised element structure, described further below. Where the platform is accessed by multiple users, such as in the instance of a multi-user cloud or internet based platform, users will benefit from the continual generation of novel and/or improved parts, protocols and associated unit operations.
  • In accordance with one embodiment of the invention, the workflow design tool (101) may select one or more unit operations that are defined as elements. Hence, as in FIGS. 2 (a) and (b), each unit operation in the finally assembled workflow consists of an element.
  • A specific embodiment of the invention provides a method for performing or designing a biological process—including one or more experimental steps—wherein the method is comprised of at least one unit operation, and wherein the unit operation is defined according to standardised element structure. The element according to this embodiment is shown in FIG. 3 as having a section-based format that defines information as well as the physical inputs and outputs of the unit operation. The use of a structured, text-based format with a domain specific vocabulary also permits the use of version control systems to track how protocols evolve and change over time and to identify which changes are responsible for particular behaviour, also avoiding repetition of errors. In one embodiment of the invention the elements are configured to run as microservices communicating via a network using a flow-based approach.
  • The element typically comprises a section-based format having at least the following functional section blocks: imports; parameters; data; physical inputs; requirements; setup; and execution steps. Optionally, the element may further comprise at least one additional section that relates to physical outputs, analysis and/or validation.
  • The Import section block suitably defines a name for the element, and specifies what additional protocols, parts or unit operations are needed to execute the element.
  • The Parameters section block suitably defines the information inputs to the element. Data types can be any of the built-in types from high level programming languages such as Google® Go language or Antha™, including int, string, byte, float, as well as specified metric units required in the protocol. Default parameters may be included in this section block.
  • The Data section block suitably defines the information outputs from the element. The Data section follows the same format as the Parameters block, although typically no default values are given.
  • The Inputs block suitably defines the physical inputs to the protocol, along with their appropriate type. Physical inputs may comprise starting materials or parts used in the unit operation.
  • The Outputs section block is optional and may only be present in a unit operation in which a physical product is generated. Examples of protocols that output a physical sample may, thus, include a new liquid solution containing DNA, enzymes, or cells; a lyophilised preparation comprising biological material; or a frozen sample comprising a biopolymer.
  • The Requirements block is typically executed by a protocol before it begins work, to allow confirmation that the states of any inputs are suitable for successful completion of the unit operation.
  • The Setup section block is performed once the first time that an element is executed. This can be used to perform any configuration that is needed globally for the element, and is also used to define any special setup that may be needed for groups of concurrent tasks that might be executed at the same time. Any variables that need to be accessed by the steps function globally can be defined here as well.
  • The functional core of the element of the invention is defined within the Steps section block. The Steps block describes the actual steps taken to transform a set of input parameters and samples into the output data and samples. The Steps are a kernel function, meaning they share no information for every concurrent sample that is processed, and define the workflow to transform a single block of inputs and samples into a single set of outputs.
  • The Analysis section block is optional and defines how the results of the Steps block should be transformed into final values, if appropriate.
  • The Validation section block is optional and allows the definition of specific tests to verify the correct execution of an element, along with reporting capabilities as well as the ability to declare the execution a failure.
  • The placement order of the section blocks within the element may be varied in alternative embodiments of the invention. In addition, section blocks may be combined to give dual functionality and additional section blocks may be added to expand functionality beyond the element set out in FIG. 3.
  • The invention is further illustrated by the following non-limiting example.
  • Example
  • In this example, a unit operation of a biological process is defined within the high level biology language Antha™. The element defines a Bradford assay, which is a molecular biology assay used to quantify the amount of protein in a physical sample.
  • Syntax wise, Antha™ is an extension of the Go language (www.golang.org), and shares a focus on describing concurrent processes functionally. Any execution of a workflow is intended to describe a large array of parallel processes, and is described from the standpoint of the smallest appropriate unit of operation. In the case of this Element, that is the set of actions to process a single physical sample, even though this protocol will normally be run on arrays of samples at the same time. A core purpose of the Antha™ system is to establish a de facto standard language for defining protocols and parts for use in biological experimentation. Therefore, it is designed to mask some of the programming detail from the user and focus on the biology.
  • Imports:
  • protocol bradford
    import (
      “plate_reader”
      “github.com/sajari/regression”
      “standard_labware”
    )
  • The Antha™ Element starts by defining a name for the protocol, in this case bradford, and listing what additional protocols or Go libraries are needed to execute the bradford protocol. The Antha™ compiler is intelligent enough to identify whether the imports are existing Go libraries, or other Antha™ Elements, and can be transparently imported directly from source code repositories such as Github (www.github.com).
  • Parameters:
  •   // Input parameters for this protocol (data)
      Parameters {
        var SampleVolume Volume = 15.(uL)
        var BradfordVolume Volume = 5.(uL)
        var Wavelength Wavelength = 595.(nm)
        var ControlCurvePoints uint32 = 7
        var ControlCurveDilutionFactor uint32 = 2
        var ReplicateCount uint32 = 1 // Note: 1 replicate means
    experiment is in duplicate, etc.
    }
  • The Parameters block defines the information inputs to the Bradford Element. Data types can be any of the built-in types from the Go language, such as int, string, byte, float, as well as the strongly typed scientific types introduced by the Antha™ language, such as the metric units. Parameter declarations follow the syntax of
  • var VariableName VariableType=OptionalDefaultValue.(OptionalUnit)
  • For Example:
  • go
  • var ExampleVolume Volume=15.(uL)
  • means “Create a parameter named ExampleVolume, which only accepts volume units, with a default value of 15 microlitres. By convention variables are named in UpperCamelCase (using an Upper-case letter for each word as a single name). All Parameters are visible to other Elements, so also by convention they start with an Upper-case letter.
  • ReplicateCount is a special variable, which tells Antha™ to run ReplicateCount additional copies of each sample. The association of the results, and impact on workflow is automatically handled by the system.
  • ReplicateCount is a special variable, which tells Antha™ to run ReplicateCount additional copies of each sample. The association of the results and impact on workflow is automatically handled by the system.
  • Data
  • // Data which is returned from this protocol, and data types
    Data {
      var SampleAbsorbance Absorbance
      var ProteinConc Concentration
      var RSquared float32
      var control_absorbance [control_curve_points+1]Absorbance
      var control_concentrations [control_curve_points+1]float64
    }
  • The Data block defines the information outputs from the Bradford Element. Declaration follows the same format as the Parameters block, although no default values are given. By convention, results which may be consumed as outputs by other Elements are named with an Upper-case first letter. Variables which start with a lower-case first letter are intended for use only within the protocol, and while the values will be logged, they are not available to any other Antha™ Elements. Additionally, they are shared across all executing copies of an Element, which requires their use to be carefully considered to avoid concurrency problems.
  • Inputs:
  • // Physical Inputs to this protocol with types
    Inputs {
      var Sample WaterSolution
      var BradfordReagent WaterSolution
      var ControlProtein WaterSolution
      var DistilledWater WaterSolution
    }
  • The Inputs block defines the physical inputs to the protocol, along with their appropriate type. For example, in this block, all the types are WaterSolutions, meaning they can be operated on by a standard liquid handling robot, or manual pipette operations. Additional attributes of the physical samples are used by the Antha™ Execution system to plan the optimal way to perform physical actions such as mixing on samples based on their types.
  • Declaration syntax follows the form of the information variables, with the exceptions that no default value is declared.
  • Outputs:
  • // Physical outputs from this protocol with types
    Outputs {
    // None
    }
  • This protocol is a destructive protocol, meaning that all of the intermediates and the final sample created as a result of this assay needs to be destroyed after performing the protocol. However, many protocols also output a physical sample, such as a new liquid solution containing DNA, enzymes, or cells. By default, any physical sample which is not passed to an Output is scheduled for destruction, with methods appropriate to the safety level of the sample (such as having to autoclave genetic materials, etc).
  • Requirements:
  • Requirements {
    // None
    }
  • The Requirements block is executed by a protocol before it begins work, to allow confirming the state of any inputs. For example, a test like require(!Sample.Expired( ) would explicitly confirm that the input sample had not, for the information on the type of sample available to the Antha™ system, expired by being left outside of a temperature controlled environment for too long. By default, Antha™ confirms items such as whether samples have expired automatically, and this block is provided primarily as a convenience for certain classes of more complex tests needed to validate complex inputs such as DNA assembly protocols.
  • Setup:
  • Setup {
    control.Config(config.per_plate)
    var control_curve[ControlCurvePoints + 1]WaterSolution
    for i:= 0; i < control_curve_points; i++ {
      go func(i) {
        if (i == control_curve_points) {
              control_curve[i] = mix(distilled_water
    (sample_volume) + bradford_reagent(bradford_volume))
            } else {
              control_curve[i] =
    serial_dilute(control_protein(sample_volume), control_curve_points,
    control_curve_dilution_factor, i)
            }
            control_absorbance[i] = plate_reader.read
    (control_curve[i], wavelength)
          }
        }
      }
      }
  • The Setup block is performed once the first time that an Element is executed. This can be used to perform any configuration that is needed globally for the Element, and is also used to define any special setup that may be needed for groups of concurrent tasks that might be executed at the same time. Any variables that need to be accessed by the Steps function globally can be defined here as well, but need to be handled with care to avoid concurrency problems.
  • In the context of this Bradford Element, the Control library is used to enable the protocol to define a block of samples that need to be performed in concert with any block of tasks. For example, each 96 well plate of samples needs to have a set of control samples added to it to enable the calculation of the amount of protein in each sample. Creating these control samples is done via a serial dilution of a known protein sample, using up to ControlCurvePoints+1 samples in each block.
  • Steps:
  • Steps {
    var product = mix(Sample(SampleVolume) + BradfordReagent(Bradford-
    Volume))SampleAbsorbance = PlateReader.ReadAbsorbance(product,
    Wavelength)
    }
  • The Steps block defines the actual steps taken to transform a set of input parameters and samples into the output data and samples. The Steps are a kernel function, meaning they share no information for every concurrent sample that is processed, and define the workflow to transform a single block of inputs and samples into a single set of outputs, even if the Element is operating on an entire array (such as micro-titre plate of samples at once).
  • In this Bradford Element, a new sample is created, which is the result of mixing SampleVolume amount of the physical input, Sample. Note: no physical locations, layouts, or methods are required, as the Antha™ Execution layer manages determining the capabilities to perform library functions such as the mix function depending on the equipment registered with the system. Where automated methods of sample transport or liquid handling are not available, it falls back to providing manual instructions.
  • The newly created sample, product, is then passed to another Antha™ Element, which in this case represents a device driver for a plate reader, to perform a measurement on the sample. Where such processing needs to be batched (such as performing it a plate at a time) the system automatically manages the scheduling of samples to be collocated on a shared micro-titre plate.
  • Lastly, the results of the plate reader are stored as the output data variable SampleAbsorbance.
  • Analysis:
  • Analysis {
    // need the control samples to be completed before doing the analysis
    control.WaitForCompletion( )
      // Need to compute the linear curve y = m * x + c
      var r regression.Regression
      r.SetObservedName(“Absorbance”)
      r.SetVarName(0, “Concentration”)
      r.AddDataPoint(regression.DataPoint{Observed :
    ControlCurvePoints+1, Variables : ControlAbsorbance})
      r.AddDataPoint(regression.DataPoint{Observed :
    ControlCurvePoints+1, Variables : ControlConcentrations})
      r.RunLinearRegression( )
      m := r.GetRegCoeff(0)
      c := r.GetRegCoeff(1)
      RSquared = r.Rsquared
      ProteinConc = (sample_absorbance − c) / m
      }
  • The Analysis block defines how the results of the Steps can be transformed into final values, if appropriate. Computing the final protein concentration of a Bradford assay requires having the data back from the control samples, performing a linear regression, and then using those results to normalize the plate reader results.
  • To start, the control .WaitForCompletion( ) is a utility method saying that the Analysis needs to wait for the concurrent control samples to be fully processed before analysis can continue. The actual linear regression is then performed by using an existing Go library for linear regression, which like all Go code, can be seamlessly included in Antha™
  • Lastly, the final normalized result (the protein concentration in the sample) is stored in the ProteinConc variable where it can be accessed by downstream Elements.
  • Validation:
  • Validation {
    if SampleAbsorbance > 1 {
      panic(“Sample likely needs further dilution”)
    }
    if (RSquared < 0.9) {
      warn(“Low r_squared on standard curve”)
    }
    if (RSquared < 0.7) {
      panic(“Bad r_squared on standard curve”)
    }
    // TODO: add test of replicate variance
    }
  • The Validation block allows the definition of specific tests to verify the correct execution of an Element, along with reporting capabilities (and the ability to declare the execution a failure). For example, the Bradford assay can only handle a specific linear range of concentrations, so if the amount of protein in the sample is above or below that range, the assay will fail.
  • The solution in such a case is to rerun the assay, with a different dilution factor, however as the Bradford Element is a destructive assay, it may require the generation of more source material which may not be possible, preventing the Element alone from handling such an error.
  • Validation checks can be grouped as destructive or non destructive. All the tests performed in this example are non-destructive, as they simply analyse the data. However, in other types of Elements, a validation test may require the consumption of some of a sample, such as to run a mass spec trace, and as such only random dipstick testing may be required rather than validating every sample which is executed. Policies such as dipstick validation testing can be configured in the Antha™ Execution environment.
  • Unless otherwise indicated, the practice of the present invention employs conventional techniques of chemistry, computer science, statistics, molecular biology, microbiology, recombinant DNA technology, and chemical methods, which are within the capabilities of a person of ordinary skill in the art. Such techniques are also explained in the literature, for example, T. Cormen, C. Leiserson, R. Rivest, 2009, Introduction to Algorithms, 3rd Edition, The MIT Press, Cambridge, Mass.; L. Eriksson, E. Johansson, N. Kettaneh-Wold, J. Trygg, C. Wikstom, S. Wold, Multi- and Megavariate Data Analysis, Part 1, 2nd Edition, 2006, UMetrics, UMetrics AB, Sweden; M. R. Green, J. Sambrook, 2012, Molecular Cloning: A Laboratory Manual, Fourth Edition, Books 1-3, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.; Ausubel, F. M. et al. (1995 and periodic supplements; Current Protocols in Molecular Biology, ch. 9, 13, and 16, John Wiley & Sons, New York, N. Y.); B. Roe, J. Crabtree, and A. Kahn, 1996, DNA Isolation and Sequencing: Essential Techniques, John Wiley & Sons; J. M. Polak and James O'D. McGee, 1990, In Situ Hybridisation: Principles and Practice, Oxford University Press; M. J. Gait (Editor), 1984, Oligonucleotide Synthesis: A Practical Approach, IRL Press; and D. M. J. Lilley and J. E. Dahlberg, 1992, Methods of Enzymology: DNA Structure Part A: Synthesis and Physical Analysis of DNA Methods in Enzymology, Academic Press. Each of these general texts is herein incorporated by reference.
  • Although particular embodiments of the invention have been disclosed herein in detail, this has been done by way of example and for the purposes of illustration only. The aforementioned embodiments are not intended to be limiting with respect to the scope of the appended claims, which follow. It is contemplated by the inventors that various substitutions, alterations, and modifications may be made to the invention without departing from the spirit and scope of the invention as defined by the claims.

Claims (21)

1. A system for performing a biological process that includes a step involving one or more of a reproducible and scalable transformation of a material into a physical product or a quantification of an amount of a molecule in the material, the system comprising:
(i) a server with at least one processing module adapted to implement a method for performing the biological process wherein the method comprises implementation of at least one unit operation, and wherein the at least one unit operation is defined according to a standardized element structure, the standardized element structure comprising a plurality of functional section blocks, and wherein the plurality of functional section blocks comprises at least one of the group consisting of: imports; parameters; data; physical inputs; requirements; setup; and execution steps;
(i) a data storing mechanism which is accessible by the at least one processing module for maintaining a record of standardized elements, wherein each standardized element defines a unit operation in a biological process; and
(ii) a first interface for accessing the method.
2. The system of claim 1, further comprising a second interface for controlling an automated laboratory equipment to implement the at least one unit operation of the biological process to perform the reproducible and scalable transformation of the material into a physical product.
3. The system of claim 1, wherein the at least one unit operation is a self-contained process of the biological process and the standardized element structure comprises a structure of a combination of elements that are each reproducible and scalable in a plurality of workflows including a workflow to perform the biological process.
4. The system of claim 1, wherein the data storing mechanism comprises a database.
5. The system of claim 1, wherein the method is provided through a cloud service.
6. The system of claim 1, wherein the system comprises a website or a mobile device or computer application to access the method.
7. The system of claim 1, wherein the system is incorporated as part of a laboratory information management system (LIMS).
8. The system of claim 1, wherein the standardized element structure further comprises at least one additional section block selected from the group consisting of:
physical outputs; analysis; and validation steps.
9. The system of claim 1 wherein the standardized element structure comprises at least section blocks defining: imports; parameters; data; physical inputs;
requirements; setup; and execution steps.
10. The system of claim 1, wherein the biological process comprises at least two unit operations, wherein each unit operation is defined according to a standardized element structure.
11. The system of claim 10, wherein the at least two unit operations are non-identical.
12. The system of claim 1, wherein the at least one unit operation is selected from the group consisting of: a conversion; a reaction; a purification; a construct assembly step; an assay or analysis including any of a quantification of a product, a by-product or reagent; a nucleotide or protein/peptide synthesis; a cell culture; an incubation; a restriction; a ligation; a mutation; an inoculation; a lysis; a transformation; an extraction; conditioning of a product; and an amplification.
13. The system of claim 1, wherein the biological process comprises a manufacturing process.
14. The system of claim 1, wherein the biological process comprises an analytical process.
15. A system for designing an experiment, the system comprising:
(i) a server with at least one processing module adapted to implement a method for designing the experiment, wherein the method comprises determining a reproducible and scalable biological process for conversion of a selected input to a desired output, wherein the reproducible and scalable process comprises at least one unit operation selected from a database that comprises at least one unit operation, and wherein the at least one unit operation is defined according to a standardized element structure, the standardized element structure comprising a plurality of functional section blocks, and wherein the plurality of functional section blocks comprises at least one of the group consisting of: imports; parameters; data; physical inputs; requirements; setup; and execution steps;
(ii) a data storing mechanism which is accessible by the at least one processing module for maintaining a record of standardized elements, wherein each standardized element defines a unit operation in a biological process; and
(iii) at least a first interface for a user to choose the selected input and the desired output for the experiment, wherein the selected input comprises physical input and the desired output is selected from either or both a physical output and information output.
16. The system of claim 15, further comprising a second interface for controlling an automated laboratory equipment to implement the at least one unit operation of the biological process to perform the reproducible and scalable transformation of a material into a physical product.
17. The system of claim 15, wherein the at least one unit operation is a self-contained process of the biological process and the standardized element structure is a structure of a combination of elements that are each reproducible and scalable in a plurality of workflows including a workflow to perform the biological process.
18. The system of claim 15, wherein the data storing mechanism is a database.
19. The system of claim 15, wherein the method is provided through a cloud service.
20. The system of claim 15, wherein the system comprises a website or a mobile device or computer application to access the method.
21. The system of claim 15, wherein the system is incorporated as part of a laboratory information management system (LIMS).
US15/917,419 2014-03-24 2018-03-09 Bioprocess method and system Abandoned US20180196918A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/917,419 US20180196918A1 (en) 2014-03-24 2018-03-09 Bioprocess method and system

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GB1405246.8 2014-03-24
GBGB1405246.8A GB201405246D0 (en) 2014-03-24 2014-03-24 System and apparatus
PCT/US2015/022280 WO2015148530A1 (en) 2014-03-24 2015-03-24 Bioprocess method and system
US15/271,592 US9977862B2 (en) 2014-03-24 2016-09-21 Bioprocess method and system
US15/917,419 US20180196918A1 (en) 2014-03-24 2018-03-09 Bioprocess method and system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/271,592 Continuation US9977862B2 (en) 2014-03-24 2016-09-21 Bioprocess method and system

Publications (1)

Publication Number Publication Date
US20180196918A1 true US20180196918A1 (en) 2018-07-12

Family

ID=50686811

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/271,592 Active US9977862B2 (en) 2014-03-24 2016-09-21 Bioprocess method and system
US15/917,419 Abandoned US20180196918A1 (en) 2014-03-24 2018-03-09 Bioprocess method and system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US15/271,592 Active US9977862B2 (en) 2014-03-24 2016-09-21 Bioprocess method and system

Country Status (5)

Country Link
US (2) US9977862B2 (en)
EP (1) EP3122892B1 (en)
CN (1) CN106414761A (en)
GB (1) GB201405246D0 (en)
WO (1) WO2015148530A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021168368A1 (en) * 2020-02-19 2021-08-26 Multiply Labs, Inc. Systems and methods for facilitating modular and parallelized manufacturing at a biological foundry
US11376587B2 (en) 2020-03-10 2022-07-05 Cellares Corporation Fluid connector
CN115936033A (en) * 2022-12-31 2023-04-07 苏州药明康德新药开发有限公司 Automatic sample checking system
US12180453B2 (en) 2023-03-21 2024-12-31 Cellares Corporation Systems, devices, and methods for electroporation within a cell processing system
US12305156B2 (en) 2023-08-21 2025-05-20 Cellares Corporation Systems, devices, and methods for fluid control in a cell processing system
US12337321B2 (en) 2023-08-21 2025-06-24 Cellares Corporation Systems, devices, and methods for automatic cell sorting
US12399193B2 (en) 2023-05-05 2025-08-26 Cellares Corporation Systems, devices, and methods for combined cell processes
US12492368B2 (en) 2024-03-11 2025-12-09 Cellares Corporation Monitoring air pressure within a cell processing system
US12497587B2 (en) 2023-08-21 2025-12-16 Cellares Corporation Bioreactors and methods of their use in automatic cell processing systems
USD1109621S1 (en) 2024-04-15 2026-01-20 Cellares Corporation Analytical platform for biological material testing

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201405246D0 (en) * 2014-03-24 2014-05-07 Synthace Ltd System and apparatus
US10740505B2 (en) 2014-08-01 2020-08-11 Riffyn, Inc. Systems and methods for process design and analysis
WO2017096308A1 (en) 2015-12-04 2017-06-08 Riffyn, Inc. Systems and methods for parsing data in order to form structured data tables
CN107730125B (en) * 2017-10-20 2021-09-14 南方电网科学研究院有限责任公司 Laboratory management system
CA3134318A1 (en) * 2019-05-08 2020-11-12 Stefan DE KOK Downscaling parameters to design experiments and plate models for micro-organisms at small scale to improve prediction of performance at larger scale
US11501240B2 (en) 2019-08-27 2022-11-15 Siemens Industry Software Inc. Systems and methods for process design including inheritance
US11325093B2 (en) 2020-01-24 2022-05-10 BiologIC Technologies Limited Modular reactor systems and devices, methods of manufacturing the same and methods of performing reactions
CN111610860B (en) * 2020-05-22 2020-12-18 江苏濠汉信息技术有限公司 Sampling method and system based on augmented reality
CN115904359A (en) * 2021-09-23 2023-04-04 腾讯科技(深圳)有限公司 Machine learning method, device, electronic device and storage medium based on pipeline
CN114276896B (en) * 2021-12-22 2023-12-29 成都瀚辰光翼科技有限责任公司 Automatic nucleic acid extraction method and storage medium
US12340877B1 (en) * 2024-08-16 2025-06-24 Benchling, Inc. Bioprocess execution workflow interfaces

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0661380A2 (en) * 1993-12-28 1995-07-05 Ajinomoto Co., Inc. A cultivation method and apparatus for aerobic culture of microorganism
WO2000070490A2 (en) * 1999-05-13 2000-11-23 Pe Corporation (Ny) Methods, apparatus, articles of manufacture, and user interfaces for performing automated biological assay preparation and macromolecule purification
US20080104003A1 (en) * 2006-10-31 2008-05-01 Macharia Maina A Model predictive control of a fermentation feed in biofuel production
US20080103748A1 (en) * 2006-10-31 2008-05-01 Celso Axelrud Integrated model predictive control of distillation and dehydration sub-processes in a biofuel production process
US20090130765A1 (en) * 2006-06-01 2009-05-21 Roche Diagnostics Operations, Inc. System and a method for managing information relating to sample test requests within a laboratory environment
AT11199U2 (en) * 2009-11-03 2010-06-15 Gottfried Hase DEVICE FOR PREPARING ORGANIC MATERIAL
US7745204B1 (en) * 2005-04-29 2010-06-29 Georgia Tech Research Corporation Automation of biological sample aliquoting
US20150100155A1 (en) * 2013-10-03 2015-04-09 Gilson, Inc. Protocol generation for liquid handler
US9977862B2 (en) * 2014-03-24 2018-05-22 Synthace Limited Bioprocess method and system
WO2019084315A1 (en) * 2017-10-26 2019-05-02 Zymergen Inc. Device-agnostic system for planning and executing high-throughput genomic manufacturing operations

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2255839A1 (en) * 1996-07-05 1998-01-15 Mark Gross Automated sample processing system
WO1998037504A1 (en) 1997-02-07 1998-08-27 Brown Peter G System and method for simulation and modeling of biopharmaceutical batch process manufacturing facilities
US20090089247A1 (en) 2007-09-28 2009-04-02 Terrence Lynn Blevins Methods and apparatus to standardize data properties in a process control environment
US8606379B2 (en) 2008-09-29 2013-12-10 Fisher-Rosemount Systems, Inc. Method of generating a product recipe for execution in batch processing
US20130260419A1 (en) * 2010-12-06 2013-10-03 Thomas C. Ransohoff Continuous processing methods for biological products

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0661380A2 (en) * 1993-12-28 1995-07-05 Ajinomoto Co., Inc. A cultivation method and apparatus for aerobic culture of microorganism
WO2000070490A2 (en) * 1999-05-13 2000-11-23 Pe Corporation (Ny) Methods, apparatus, articles of manufacture, and user interfaces for performing automated biological assay preparation and macromolecule purification
US7745204B1 (en) * 2005-04-29 2010-06-29 Georgia Tech Research Corporation Automation of biological sample aliquoting
US20090130765A1 (en) * 2006-06-01 2009-05-21 Roche Diagnostics Operations, Inc. System and a method for managing information relating to sample test requests within a laboratory environment
US20080104003A1 (en) * 2006-10-31 2008-05-01 Macharia Maina A Model predictive control of a fermentation feed in biofuel production
US20080103748A1 (en) * 2006-10-31 2008-05-01 Celso Axelrud Integrated model predictive control of distillation and dehydration sub-processes in a biofuel production process
AT11199U2 (en) * 2009-11-03 2010-06-15 Gottfried Hase DEVICE FOR PREPARING ORGANIC MATERIAL
US20150100155A1 (en) * 2013-10-03 2015-04-09 Gilson, Inc. Protocol generation for liquid handler
US9977862B2 (en) * 2014-03-24 2018-05-22 Synthace Limited Bioprocess method and system
WO2019084315A1 (en) * 2017-10-26 2019-05-02 Zymergen Inc. Device-agnostic system for planning and executing high-throughput genomic manufacturing operations

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Wendel, Gregory J. "Liquid handling with adaptive real-time validation." SLAS Technology 11.2 (2006): 88-91. (Year: 2006) *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021168368A1 (en) * 2020-02-19 2021-08-26 Multiply Labs, Inc. Systems and methods for facilitating modular and parallelized manufacturing at a biological foundry
US12403468B2 (en) 2020-03-10 2025-09-02 Cellares Corporation Fluid connector
US12350668B2 (en) 2020-03-10 2025-07-08 Cellares Corporation Systems and methods for cell processing
US11701654B2 (en) 2020-03-10 2023-07-18 Cellares Corporation Fluid connector
US12491512B2 (en) 2020-03-10 2025-12-09 Cellares Corporation Apparatus and method for control of cell processing system
US11826756B2 (en) 2020-03-10 2023-11-28 Cellares Corporation Fluid connector
US11872557B2 (en) 2020-03-10 2024-01-16 Cellares Corporation Apparatus and method for control of cell processing system
US12157119B2 (en) 2020-03-10 2024-12-03 Cellares Corporation Systems and methods for cell processing
US11376587B2 (en) 2020-03-10 2022-07-05 Cellares Corporation Fluid connector
US12350664B2 (en) 2020-03-10 2025-07-08 Cellares Corporation Cartridges for cell processing
US12350667B2 (en) 2020-03-10 2025-07-08 Cellares Corporation Systems and methods for cell processing
US11786896B2 (en) 2020-03-10 2023-10-17 Cellares Corporation Fluid connector
CN115936033A (en) * 2022-12-31 2023-04-07 苏州药明康德新药开发有限公司 Automatic sample checking system
US12180453B2 (en) 2023-03-21 2024-12-31 Cellares Corporation Systems, devices, and methods for electroporation within a cell processing system
US12399193B2 (en) 2023-05-05 2025-08-26 Cellares Corporation Systems, devices, and methods for combined cell processes
US12305156B2 (en) 2023-08-21 2025-05-20 Cellares Corporation Systems, devices, and methods for fluid control in a cell processing system
US12337321B2 (en) 2023-08-21 2025-06-24 Cellares Corporation Systems, devices, and methods for automatic cell sorting
US12497587B2 (en) 2023-08-21 2025-12-16 Cellares Corporation Bioreactors and methods of their use in automatic cell processing systems
US12492368B2 (en) 2024-03-11 2025-12-09 Cellares Corporation Monitoring air pressure within a cell processing system
USD1109621S1 (en) 2024-04-15 2026-01-20 Cellares Corporation Analytical platform for biological material testing

Also Published As

Publication number Publication date
EP3122892A1 (en) 2017-02-01
US20170011170A1 (en) 2017-01-12
US9977862B2 (en) 2018-05-22
WO2015148530A1 (en) 2015-10-01
EP3122892B1 (en) 2021-08-04
EP3122892A4 (en) 2017-11-15
CN106414761A (en) 2017-02-15
GB201405246D0 (en) 2014-05-07

Similar Documents

Publication Publication Date Title
US9977862B2 (en) Bioprocess method and system
JP7297810B2 (en) Laboratory Experimental Data Exploration and Visualization
Sadowski et al. Harnessing QbD, programming languages, and automation for reproducible biology
Yu et al. In vitro continuous protein evolution empowered by machine learning and automation
Rana et al. Recent advances on constraint-based models by integrating machine learning
Heinemann et al. Synthetic biology—putting engineering into biology
Cock et al. Galaxy tools and workflows for sequence analysis with applications in molecular plant pathology
González-Cabaleiro et al. Heterogeneity in pure microbial systems: experimental measurements and modeling
Hérisson et al. The automated Galaxy-SynBioCAD pipeline for synthetic biology design and engineering
Allen et al. Using KBase to assemble and annotate prokaryotic genomes
US10590494B2 (en) Multifactorial process optimisation method and system
Li et al. Large language model for knowledge synthesis and AI-enhanced biomanufacturing
Jupe et al. Expression data analysis with Reactome
Kim et al. Abstraction hierarchy to define biofoundry workflows and operations for interoperable synthetic biology research and applications
Bultelle et al. Engineering biology and automation–Replicability as a design principle
Gupta et al. Advancing biofoundry development: strategies and challenges
Tiukova et al. Genesis: towards the automation of systems biology research
Gorin et al. Assessing markovian and delay models for single-nucleus RNA sequencing
Orouji et al. Autonomous catalysis research with human–AI–robot collaboration
KR20200078558A (en) Device-agnostic systems for planning and performing high-throughput genome manufacturing tasks
Frolov et al. Digital Transformation in the Biopharmaceutical Industry: Rebuilding the Way We Discover Complex Therapeutics
Heo et al. Architectures of emerging biofoundry platforms for synthetic biology
Gao et al. Autonomous liquid-handling robotics scripting through large language models enables accessible and safe protein engineering workflows
Sushmitha et al. Metabolic Modeling and Flux Analysis: Intersection with Other Omics Techniques
Ananikov Artificial Intelligence Chemistry

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: SYNTHACE LIMITED, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SADOWSKI, MICHAEL IAN;WARD, SEAN MICHAEL;REEL/FRAME:048034/0148

Effective date: 20161021

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION