[go: up one dir, main page]

US20140156192A1 - Systems and methods for determining position of marker depth coordinates for construction of geological model of deposit - Google Patents

Systems and methods for determining position of marker depth coordinates for construction of geological model of deposit Download PDF

Info

Publication number
US20140156192A1
US20140156192A1 US14/094,773 US201314094773A US2014156192A1 US 20140156192 A1 US20140156192 A1 US 20140156192A1 US 201314094773 A US201314094773 A US 201314094773A US 2014156192 A1 US2014156192 A1 US 2014156192A1
Authority
US
United States
Prior art keywords
well
correlation
wells
maximum
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/094,773
Inventor
Olga Andreevna Cheskis
Semen Leonidovich Tregub
Andrey Sergeevich Kazarov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOO Rock Flow Dynamics
Original Assignee
OOO Rock Flow Dynamics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from RU2012151407/08A external-priority patent/RU2534964C2/en
Priority claimed from RU2012151408/08A external-priority patent/RU2530324C2/en
Priority claimed from RU2012151896/28A external-priority patent/RU2515081C1/en
Application filed by OOO Rock Flow Dynamics filed Critical OOO Rock Flow Dynamics
Publication of US20140156192A1 publication Critical patent/US20140156192A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/09Locating or determining the position of objects in boreholes or wells, e.g. the position of an extending arm; Identifying the free or blocked portions of pipes
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/04Measuring depth or liquid level
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/40Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/40Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
    • G01V1/44Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging using generators and receivers in the same well
    • G01V1/48Processing data
    • G01V1/50Analysing data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V11/00Prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V20/00Geomodelling in general
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Definitions

  • the invention relates to a method, device, and a machine-readable medium designed for constructing a geological model of oil or other mineral deposit.
  • the invention refers to a method, device, and machine-readable medium intended for evaluating the correlation coefficient for a set of well log curves and determining the position of marker depths at which the coefficient of correlation is maximal.
  • Patent Publication No. EA 200600036 A1, E21B 7/04, 30 Dec. 2008 describes a program package to be stored in computer memory in a workstation or other computer system, designed for constructing a single-well model of a mineral deposit.
  • U.S. Patent Application Publication US 2007/0276604 A1, G01V 1/00, 29 Nov. 2007 presents a method for visualization and organization of data on oil and gas deposits.
  • the method enables the processing of well log data with the use of raster images of well log records, which are digitized for the further placement of a marker on them.
  • U.S. Patent Application Publication No. US 2010/0004864 A1, GO1V 9/00, 7 Jan. 2010 presents a method of correlation of well logs, involving automatically correlating data from a set of well log records, describing information in different land areas.
  • the embodiments described herein are directed to methods and systems that substantially obviate one or more of the above and other problems associated with conventional systems and methods for constructing of geological models.
  • the problem to be solved with the use of the claimed invention is the constructing of a geological model with precisely determining the position of oil or other mineral deposit.
  • An engineering result is the improvement of the accuracy of evaluating the parameters that are used to construct a geological model of location of oil or other mineral deposit.
  • the problem of correlating sets of well log records implies the presence of a group of wells surveyed by logging methods at a level sufficient for stratigraphic and lithological analysis. Without loss of generality, it is assumed that such surveys result in a set of well log curves obtained for each well in the group and for each method.
  • An important step in the constructing of a geological model of a deposit is the tracing of boundaries of stratigraphic complexes or lithological features. Such boundaries can be identified along wells and extended to the area under study by interpolation. Such boundaries, referred to as markers, have depth markers at wells at sites where well log curves show joint singularities.
  • a method that involves evaluating the coefficients of correlation for a set of well log records for pairs of wells, situated within the given distance from one another, and identifying the marker depth at which this coefficient is maximal.
  • the marker depths are sought for the wells that are not in a reference group, for which those depths have been specified in advance.
  • the method also includes the multiple repetition of such search with inclusion of the newly found wells into the reference group at each iteration.
  • the search is filtered by a set of tests designed to improve the computation accuracy.
  • the method can use trend markers, thus improving its efficiency.
  • the method makes it possible to calculate the depths of a marker in a group of wells, given the depths to this marker in another well group used as a reference set.
  • wells from the reference group are chosen lying within the specified distance from the well W, and the well with the maximal correlation coefficient is chosen among them.
  • the point in well W at which this maximum is attained is taken as the required marker position.
  • Such looping of the main algorithm allows the solution to be obtained for many wells.
  • a series of tests is added to the method to prevent the placing of markers in inappropriate points.
  • the tests include correlation threshold, correlation quality, transitivity level, limitations on the values of function on a well.
  • a method involving calculating functionals, equal to the sum of correlation coefficients for a set of well log curves in the marker points that are an initial approximation, for pairs of wells located within a given distance from one another, and finding their maximums with the use of gradient descent method adapted to the problem.
  • a functional is defined as the sum of correlation coefficients for a set of well log methods for pairs of wells located within the given distance from one another. Partial derivatives are evaluated for the functional, and the vector thus obtained is smoothed and used to find a larger value of the functional within a straight-line segment along the vector. If no larger value can be found, the last position of marker is taken as the solution of the problem, otherwise the solution point is smoothed and the process is reiterated. Marker depths are sorted at each iteration of the algorithm.
  • a computerized system for determining the marker depth in wells W at the construction of a geological model of a deposit.
  • the computerized system can be, but is not limited to a supercomputer, personal computer, port-able computer, tablet computer, hand-held computer, smartphone, etc.
  • the computerized system may incorporate one or more processors intended for executing computer commands or codes, which are stored in the memory of the computerized system with the aim to implement the first or second variant of this invention, a machine-readable data carrier (memory) and input/output moduli (I/O).
  • the I/O moduli are represented by, but not limited to standard and known from the technical level control means for the computerized system: mouse, keyboard, joystick, touchpad, trackball, beam pen, stylus, sensor display, etc.
  • the I/O moduli also are, but not limited to, typical and known from the technical level means for displaying information: monitor, projector, printer, graph-plotter, etc.
  • the machine-readable data carrier may contain random-access memory (RAM); read-only memory (ROM); electronically erasable programmable read-only memory (EEPROM); flash-memory, or other memory technologies; CDROM, digital versatile disk (DVD), or other optical or holographic data carriers; magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic memory devices, carrying waves or other data carriers, which can be used for coding the required data and accessed by the computerized system described above.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electronically erasable programmable read-only memory
  • flash-memory or other memory technologies
  • CDROM compact disc-read only memory
  • DVD digital versatile disk
  • magnetic cassettes magnetic tape
  • magnetic disk storage or other magnetic memory devices carrying waves or other data carriers, which can be used for coding the required data and accessed by the computerized system described above.
  • the machine-readable data carrier may contain random-access memory (RAM); read-only memory (ROM); electronically erasable programmable read-only memory (EEPROM); flash-memory, or other memory technologies; CDROM, digital versatile disk (DVD), or other optical or holographic data carriers; magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic memory devices, carrying waves, or other data carriers, which can be used for coding the required data and accessed by the computerized system described in the third variant of implementation of the invention, and which, accordingly, are not described in more detail.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electronically erasable programmable read-only memory
  • flash-memory or other memory technologies
  • CDROM compact disc read-only memory
  • DVD digital versatile disk
  • magnetic cassettes magnetic tape, magnetic disk storage or other magnetic memory devices, carrying waves, or other data carriers
  • FIG. 1 gives a general scheme of implementing the method by the first variant of implementation of the invention.
  • FIG. 2 gives curves of well-logging method in wells Wand W 0 , respectively, and a correlation function of the well-logging method.
  • FIG. 3 illustrates the stage of determining the distance between well groups.
  • FIG. 4 illustrates the stage of determining the depth z max , corresponding to the maximal value of correlation.
  • FIG. 5 illustrates the stage of adding to the reference well group, whose depth was determined at the stage of determining the depth z max .
  • FIG. 6 illustrates the general scheme of implementation of the method by the second variant of implementation of the invention.
  • FIG. 7 illustrates the stage of formation of gradient vector for the current point of solution.
  • FIG. 8 illustrates the stage of searching for a value of the functional in excess of its previous value along the direction of the gradient vector.
  • FIG. 9 illustrates the stage of smoothing the obtained solution.
  • FIG. 10 illustrates an exemplary embodiment of a computer platform upon which the invention may be implemented.
  • the problem solving method which is further described as applied to the first variant of implementation of the invention consists in finding the depth of the marker by calculating the correlation coefficient of well-logging curves for pairs of wells, such that the problem has been already solved for one well in the pair. Namely, suppose that the depths of markers are known for a subgroup of wells, which are referred to as reference group. Then, choosing a reference well W 0 with marker depth z 0 , we calculate for any well W, not in the reference group, the correlation function C(z), whose values are coefficients of correlation of a set of well log curves for well W in point z and for well W 0 in point z 0 . Let us denote the maximum of this function by z max .
  • the depth z max corresponding to the reference well with the largest value of the maximum of function C(z), is taken as a possible depth of marker in well W.
  • the correlation function varies from ⁇ 1 to 1; for one method of well log, F is defined as
  • F W and F W 0 are curves of method F at wells Wand W 0 , respectively.
  • a and b are calculated as the solution of a system of obvious linear equations.
  • C i (z) is the correlation function for method F i
  • w i are weight coefficients ( FIG. 2 ).
  • wells are to be found, lying within a specified neighborhood of the reference well group, i.e., located within distance R from a well from the reference group.
  • the distance between the wells can be determined in several ways: as the distance between points of the wells at a certain depth, as the distance between points of the given marker, or as the distance between the points where the wells intersect a specified plane ( FIG. 3 ).
  • the second stage of the method consists in calculating correlation functions and the choice for each well W identified at the first stage of a corresponding well W 0 from the reference group with maximal correlation coefficient and a corresponding point z max in well W.
  • each well W, chosen at the second stage is subjected to a series of tests, and, if the tests are successful, the choice of the well is approved and the depth z max , corresponding to the maximal correlation, is taken as the depth of marker in well W ( FIG. 4 ).
  • the process is reiterated until no wells are found at the first, second, or third stage.
  • the tests used at the third stage include
  • the correlation function in point z max is to be in excess of a specified threshold value. Higher threshold values improve the accuracy of the algorithm but reduce the number of wells found. For example, with the threshold value of 0.9 and at the maximum correlation in point z max equal to 0.88, the well is classified as not meeting the test conditions.
  • the coefficient of the quality of correlation in the point is to be in excess of the specified threshold value.
  • the coefficient of the quality of correlation is defined as a coefficient of deviation of the local maximum of correlation function, nearest in terms of value, from its largest local maximum in point z max . Larger values of this coefficient imply that the found maximum of correlation coefficient is appreciably higher than other local maximums of the correlation function. For example, if the maximal value of the correlation function is 0.9 and the maximum nearest by its value is 0.89, the value of the coefficient of the quality of correlation will be (0.9-0.89)/0.9, which is about 0.01. In this case, with the threshold value of the quality coefficient taken equal, for example, to 0.5, the well will be classified as not meeting the test conditions.
  • the degree of transitivity is to be in excess of a specified threshold value.
  • the degree of transitivity is defined as the number of previous iterations of the algorithm for which the maximum of the correlation function between the chosen reference well and the well of the current iteration satisfies the conditions of test 1. This test improves the reliability of the method. For example, if the threshold for the correlation function from test 1 has been taken equal to 0.9 and well A has passed the test for the correlation with well B from the reference group, and well B, in its turn, was approved by the correlation with well C at the previous iteration, then the value of transitivity threshold equal 2 requires that the maximum of correlation function between well A and well C, as a reference well for A, be not less than 0.9.
  • the threshold value of the degree of transitivity is taken equal to the number of previous iterations of the algorithm, if this number is less than the specified threshold value.
  • the values of the specified function at a well in the point of maximal correlation are to fall within a specified interval. This test allows the certainly poor sites to be rejected based on the values of some function containing appropriate information.
  • the method can use, for example, the coherence function or the function of deviation of extremums of wavelet transform with increasing period.
  • a functional in n-dimensional space as
  • C k (z i , z j ) is the coefficient of correlation for the kth well-logging method in points z i and z j at wells i and j, respectively.
  • This coefficient takes values between ⁇ 1 and 1 and can be calculated as
  • markers of the set were sorted at each well. The result of this sorting is that the depths corresponding to one marker can be assigned to another one. This simple procedure reduces the scatter of marker depths in different wells.
  • the value of functional C is calculated in the initial point of solution ⁇ z i ⁇ .
  • the gradient vector is smoothed, i.e., each component of the vector at well W is replaced by the mean value of components at wells lying within distance R from well W.
  • a value of the functional greater than the previous one is sought for in the segment with a specified length, originating from point ⁇ z i ⁇ and directed along the gradient vector. Once such value is not found, the algorithm ceases its work and the current solution ⁇ z i ⁇ is taken as the final solution. ( FIG. 8 ).
  • the obtained solution is improved by searching for a larger value with a smaller step within the previous step where the maximum was found.
  • the current solution ⁇ z i ⁇ is taken to be the point where the maximum of the functional was found and this point is smoothed by the same procedure as that applied to the gradient vector at the third stage, and the smoothing radius R is reduced by a specified value.
  • the marker marks of the set are sorted by the depth and the procedure is reiterated starting from the second stage of the algorithm.
  • FIG. 10 is a block diagram that illustrates an embodiment of a computer system 1000 upon which various embodiments of the inventive concepts described herein may be implemented.
  • the system 1000 includes a computer platform 1001 , peripheral devices 1002 and network resources 1003 .
  • the computer platform 1001 may include a data bus 1004 or other communication mechanism for communicating information across and among various parts of the computer platform 1001 , and a processor 1005 coupled with bus 1004 for processing information and performing other computational and control tasks.
  • Computer platform 1001 also includes a volatile storage 1006 , such as a random access memory (RAM) or other dynamic storage device, coupled to bus 1004 for storing various information as well as instructions to be executed by processor 1005 , including the software application for proxy detection described above.
  • the volatile storage 1006 also may be used for storing temporary variables or other intermediate information during execution of instructions by processor 1005 .
  • Computer platform 1001 may further include a read only memory (ROM or EPROM) 1007 or other static storage device coupled to bus 1004 for storing static information and instructions for processor 1005 , such as basic input-output system (BIOS), as well as various system configuration parameters.
  • ROM or EPROM read only memory
  • a persistent storage device 1008 such as a magnetic disk, optical disk, or solid-state flash memory device is provided and coupled to bus 1004 for storing information and instructions.
  • Computer platform 1001 may be coupled via bus 1004 to a touch-sensitive display 1009 , such as a cathode ray tube (CRT), plasma display, or a liquid crystal display (LCD), for displaying information to a system administrator or user of the computer platform 1001 .
  • a touch-sensitive display 1009 such as a cathode ray tube (CRT), plasma display, or a liquid crystal display (LCD), for displaying information to a system administrator or user of the computer platform 1001 .
  • An input device 1010 is coupled to bus 1004 for communicating information and command selections to processor 1005 .
  • cursor control device 1011 is Another type of user input device.
  • cursor control device 1011 such as a mouse, a trackball, or cursor direction keys for communicating direction information and command selections to processor 1005 and for controlling cursor movement on touch-sensitive display 1009 .
  • This input device typically has two degrees of freedom in two axes, a first axis (e.g., x) and a second axis (e.g., y), that allows the device to specify positions in a plane.
  • the display 1009 may incorporate a touchscreen interface configured to detect user's tactile events and send information on the detected events to the processor 1005 via the bus 1004 .
  • An external storage device 1012 may be coupled to the computer platform 1001 via bus 1004 to provide an extra or removable storage capacity for the computer platform 1001 .
  • the external removable storage device 1012 may be used to facilitate exchange of data with other computer systems.
  • the invention is related to the use of computer system 1000 for implementing the techniques described herein.
  • the inventive system may reside on a machine such as computer platform 1001 .
  • the techniques described herein are performed by computer system 1000 in response to processor 1005 executing one or more sequences of one or more instructions contained in the volatile memory 1006 .
  • Such instructions may be read into volatile memory 1006 from another computer-readable medium, such as persistent storage device 1008 .
  • Execution of the sequences of instructions contained in the volatile memory 1006 causes processor 1005 to perform the process steps described herein.
  • hard-wired circuitry may be used in place of or in combination with software instructions to implement the invention.
  • embodiments of the invention are not limited to any specific combination of hardware circuitry and software.
  • Non-volatile media includes, for example, optical or magnetic disks, such as the persistent storage device 1008 .
  • Volatile media includes dynamic memory, such as volatile storage 1006 .
  • Computer-readable media include, for example, a floppy disk, a flexible disk, hard disk, magnetic tape, or any other magnetic medium, a CD-ROM, any other optical medium, punchcards, papertape, any other physical medium with patterns of holes, a RAM, a PROM, an EPROM, a FLASH-EPROM, a flash drive, a memory card, any other memory chip or cartridge, or any other medium from which a computer can read.
  • Various forms of computer readable media may be involved in carrying one or more sequences of one or more instructions to processor 1005 for execution.
  • the instructions may initially be carried on a magnetic disk from a remote computer.
  • a remote computer can load the instructions into its dynamic memory and send the instructions over a telephone line using a modem.
  • a modem local to computer system can receive the data on the telephone line and use an infra-red transmitter to convert the data to an infra-red signal.
  • An infra-red detector can receive the data carried in the infra-red signal and appropriate circuitry can place the data on the data bus 1004 .
  • the bus 1004 carries the data to the volatile storage 1006 , from which processor 1005 retrieves and executes the instructions.
  • the instructions received by the volatile memory 1006 may optionally be stored on persistent storage device 1008 either before or after execution by processor 1005 .
  • the instructions may also be downloaded into the computer platform 1001 via Internet using a variety of network data communication protocols well known in the art.
  • the computer platform 1001 also includes a communication interface, such as network interface card 1013 coupled to the data bus 1004 .
  • Communication interface 1013 provides a two-way data communication coupling to a network link 1014 that is coupled to a local network 1015 .
  • communication interface 1013 may be an integrated services digital network (ISDN) card or a modem to provide a data communication connection to a corresponding type of telephone line.
  • ISDN integrated services digital network
  • communication interface 1013 may be a local area network interface card (LAN NIC) to provide a data communication connection to a compatible LAN.
  • Wireless links such as well-known 802.11a, 802.11b, 802.11g and Bluetooth may also used for network implementation.
  • communication interface 1013 sends and receives electrical, electromagnetic or optical signals that carry digital data streams representing various types of information.
  • Network link 1014 typically provides data communication through one or more networks to other network resources.
  • network link 1014 may provide a connection through local network 1015 to a host computer 1016 , or a network storage/server 1022 .
  • the network link 1014 may connect through gateway/firewall 1017 to the wide-area or global network 1018 , such as an Internet.
  • the computer platform 1001 can access network resources located anywhere on the Internet 1018 , such as a remote network storage/server 1019 .
  • the computer platform 1001 may also be accessed by clients located anywhere on the local area network 1015 and/or the Internet 1018 .
  • the network clients 1020 and 1021 may themselves be implemented based on the computer platform similar to the platform 1001 .
  • Local network 1015 and the Internet 1018 both use electrical, electromagnetic or optical signals that carry digital data streams.
  • the signals through the various networks and the signals on network link 1014 and through communication interface 1013 , which carry the digital data to and from computer platform 1001 , are exemplary forms of carrier waves transporting the information.
  • Computer platform 1001 can send messages and receive data, including program code, through the variety of network(s) including Internet 1018 and LAN 1015 , network link 1015 and communication interface 1013 .
  • network(s) including Internet 1018 and LAN 1015 , network link 1015 and communication interface 1013 .
  • system 1001 when the system 1001 acts as a network server, it might transmit a requested code or data for an application program running on client(s) 1020 and/or 1021 through the Internet 1018 , gateway/firewall 1017 , local area network 1015 and communication interface 1013 . Similarly, it may receive code from other network resources.
  • the received code may be executed by processor 1005 as it is received, and/or stored in persistent or volatile storage devices 1008 and 1006 , respectively, or other non-volatile storage for later execution.

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Remote Sensing (AREA)
  • Mining & Mineral Resources (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The invention relates to constructing a geological model of oil or other mineral deposit. In particular, the invention refers to the method, device, and machine-readable data carrier intended for evaluating the correlation coefficient for a set of well log curves and determining the position of marker depths at which the coefficient of correlation is maximal. A technical result is the improved accuracy of evaluation of parameters used in the construction of geological model describing the location of oil or other deposits. The method makes enables calculation of the depths of marker in a group of wells, given the depths to this marker in another well group used as a reference set. For any well W where the marker depth is to be determined, wells from the reference group are chosen lying at specified distance from the well W and the well with the maximal correlation coefficient is chosen among them.

Description

    CROSS-REFERENCE TO RELATED PATENT APPLICATIONS
  • This U.S. patent application is related to the following U.S. patent applications filed on the same day: U.S. patent application Ser. No. ______ entitled “SYSTEMS AND METHODS FOR DETERMINING POSITION OF MARKER DEPTH COORDINATES FOR CONSTRUCTION OF GEOLOGICAL MODEL OF DEPOSIT,” attorney docket No. 10052.2, U.S. patent application Ser. No. ______ entitled “SYSTEM FOR DETERMINING POSITION OF MARKER DEPTH COORDINATES FOR CONSTRUCTION OF GEOLOGICAL MODEL OF DEPOSIT,” attorney docket No. 10052.3, and U.S. patent application Ser. No. ______ entitled “SYSTEM FOR DETERMINING POSITION OF MARKER
  • DEPTH COORDINATES FOR CONSTRUCTION OF GEOLOGICAL MODEL OF DEPOSIT,” attorney docket No. 10052.4, all of which are incorporated by reference herein in their entirety.
  • BACKGROUND OF THE INVENTION
  • 1. Technical Field
  • The invention relates to a method, device, and a machine-readable medium designed for constructing a geological model of oil or other mineral deposit. In particular, the invention refers to a method, device, and machine-readable medium intended for evaluating the correlation coefficient for a set of well log curves and determining the position of marker depths at which the coefficient of correlation is maximal.
  • 2. Description of the Related Art
  • Patent Publication No. EA 200600036 A1, E21B 7/04, 30 Dec. 2008 describes a program package to be stored in computer memory in a workstation or other computer system, designed for constructing a single-well model of a mineral deposit.
  • U.S. Patent Application Publication US 2007/0276604 A1, G01V 1/00, 29 Nov. 2007 presents a method for visualization and organization of data on oil and gas deposits. The method enables the processing of well log data with the use of raster images of well log records, which are digitized for the further placement of a marker on them.
  • U.S. Patent Application Publication No. US 2010/0004864 A1, GO1V 9/00, 7 Jan. 2010 presents a method of correlation of well logs, involving automatically correlating data from a set of well log records, describing information in different land areas.
  • All publications mentioned above reveal, to certain extent, the general principles of building a geological model of a mineral deposit; however, none of the above publications provides for or implies the generation of a high-accuracy geological model based on coefficients of correlation between large well groups with respect to the positions of deep markers, allowing the accuracy of locating raw-material deposits to be improved. Therefore, new and improved techniques for generating of high-accuracy geological models are needed.
  • SUMMARY OF THE INVENTION
  • The embodiments described herein are directed to methods and systems that substantially obviate one or more of the above and other problems associated with conventional systems and methods for constructing of geological models.
  • The problem to be solved with the use of the claimed invention is the constructing of a geological model with precisely determining the position of oil or other mineral deposit.
  • An engineering result is the improvement of the accuracy of evaluating the parameters that are used to construct a geological model of location of oil or other mineral deposit.
  • The problem of correlating sets of well log records implies the presence of a group of wells surveyed by logging methods at a level sufficient for stratigraphic and lithological analysis. Without loss of generality, it is assumed that such surveys result in a set of well log curves obtained for each well in the group and for each method. An important step in the constructing of a geological model of a deposit is the tracing of boundaries of stratigraphic complexes or lithological features. Such boundaries can be identified along wells and extended to the area under study by interpolation. Such boundaries, referred to as markers, have depth markers at wells at sites where well log curves show joint singularities.
  • In accordance with one aspect of the embodiments described herein, there is provided a method that involves evaluating the coefficients of correlation for a set of well log records for pairs of wells, situated within the given distance from one another, and identifying the marker depth at which this coefficient is maximal. The marker depths are sought for the wells that are not in a reference group, for which those depths have been specified in advance. The method also includes the multiple repetition of such search with inclusion of the newly found wells into the reference group at each iteration. The search is filtered by a set of tests designed to improve the computation accuracy. The method can use trend markers, thus improving its efficiency.
  • The method makes it possible to calculate the depths of a marker in a group of wells, given the depths to this marker in another well group used as a reference set. For any well W where the marker depth is to be determined, wells from the reference group are chosen lying within the specified distance from the well W, and the well with the maximal correlation coefficient is chosen among them. The point in well W at which this maximum is attained is taken as the required marker position. With the result of the above algorithm assumed an iteration of a generalized algorithm and its result for a well added to the reference group after each iteration, the process is iterated until a blank result is obtained, i.e., the algorithm finds all wells where marker marks are available having been analyzed and identified in the given domain. Such looping of the main algorithm allows the solution to be obtained for many wells. To improve the reliability of calculations, a series of tests is added to the method to prevent the placing of markers in inappropriate points. The tests include correlation threshold, correlation quality, transitivity level, limitations on the values of function on a well.
  • In accordance with another aspect of the embodiments described herein, there is provided a method involving calculating functionals, equal to the sum of correlation coefficients for a set of well log curves in the marker points that are an initial approximation, for pairs of wells located within a given distance from one another, and finding their maximums with the use of gradient descent method adapted to the problem.
  • This approach makes it possible, with the markers chosen as the initial solution, to calculate the depth of marker in each well to ensure the best total correlation. For each marker in the set under consideration, a functional is defined as the sum of correlation coefficients for a set of well log methods for pairs of wells located within the given distance from one another. Partial derivatives are evaluated for the functional, and the vector thus obtained is smoothed and used to find a larger value of the functional within a straight-line segment along the vector. If no larger value can be found, the last position of marker is taken as the solution of the problem, otherwise the solution point is smoothed and the process is reiterated. Marker depths are sorted at each iteration of the algorithm.
  • In accordance with yet another aspect of the embodiments described herein, there is provided a computerized system for determining the marker depth in wells W at the construction of a geological model of a deposit. The computerized system can be, but is not limited to a supercomputer, personal computer, port-able computer, tablet computer, hand-held computer, smartphone, etc. The computerized system may incorporate one or more processors intended for executing computer commands or codes, which are stored in the memory of the computerized system with the aim to implement the first or second variant of this invention, a machine-readable data carrier (memory) and input/output moduli (I/O). The I/O moduli are represented by, but not limited to standard and known from the technical level control means for the computerized system: mouse, keyboard, joystick, touchpad, trackball, beam pen, stylus, sensor display, etc. The I/O moduli also are, but not limited to, typical and known from the technical level means for displaying information: monitor, projector, printer, graph-plotter, etc. As an example, but not limitation, the machine-readable data carrier may contain random-access memory (RAM); read-only memory (ROM); electronically erasable programmable read-only memory (EEPROM); flash-memory, or other memory technologies; CDROM, digital versatile disk (DVD), or other optical or holographic data carriers; magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic memory devices, carrying waves or other data carriers, which can be used for coding the required data and accessed by the computerized system described above.
  • In accordance with yet another aspect of the embodiments described herein, there is provided a computer-readable medium, containing a program code, which causes one or more processors to perform the methods described above, which, accordingly, are not described in more detail. As an example, but not limitation, the machine-readable data carrier may contain random-access memory (RAM); read-only memory (ROM); electronically erasable programmable read-only memory (EEPROM); flash-memory, or other memory technologies; CDROM, digital versatile disk (DVD), or other optical or holographic data carriers; magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic memory devices, carrying waves, or other data carriers, which can be used for coding the required data and accessed by the computerized system described in the third variant of implementation of the invention, and which, accordingly, are not described in more detail.
  • Additional aspects related to the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. Aspects of the invention may be realized and attained by means of the elements and combinations of various elements and aspects particularly pointed out in the following detailed description and the appended claims.
  • It is to be understood that both the foregoing and the following descriptions are exemplary and explanatory only and are not intended to limit the claimed invention or application thereof in any manner whatsoever.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings, which are incorporated in and constitute a part of this specification exemplify the embodiments of the present invention and, together with the description, serve to explain and illustrate principles of the inventive technique. Specifically:
  • FIG. 1 gives a general scheme of implementing the method by the first variant of implementation of the invention.
  • FIG. 2 gives curves of well-logging method in wells Wand W0, respectively, and a correlation function of the well-logging method.
  • FIG. 3 illustrates the stage of determining the distance between well groups.
  • FIG. 4 illustrates the stage of determining the depth zmax, corresponding to the maximal value of correlation.
  • FIG. 5 illustrates the stage of adding to the reference well group, whose depth was determined at the stage of determining the depth zmax.
  • FIG. 6 illustrates the general scheme of implementation of the method by the second variant of implementation of the invention.
  • FIG. 7 illustrates the stage of formation of gradient vector for the current point of solution.
  • FIG. 8 illustrates the stage of searching for a value of the functional in excess of its previous value along the direction of the gradient vector.
  • FIG. 9 illustrates the stage of smoothing the obtained solution.
  • FIG. 10 illustrates an exemplary embodiment of a computer platform upon which the invention may be implemented.
  • DETAILED DESCRIPTION
  • In the following detailed description, reference will be made to the accompanying drawing(s), in which identical functional elements are designated with like numerals. The aforementioned accompanying drawings show by way of illustration, and not by way of limitation, specific embodiments and implementations consistent with principles of the present invention. These implementations are described in sufficient detail to enable those skilled in the art to practice the invention and it is to be understood that other implementations may be utilized and that structural changes and/or substitutions of various elements may be made without departing from the scope and spirit of present invention. The following detailed description is, therefore, not to be construed in a limited sense. Additionally, the various embodiments of the invention as described may be implemented in the form of a software running on a general purpose computer, in the form of a specialized hardware, or combination of software and hardware.
  • The problem solving method, which is further described as applied to the first variant of implementation of the invention consists in finding the depth of the marker by calculating the correlation coefficient of well-logging curves for pairs of wells, such that the problem has been already solved for one well in the pair. Namely, suppose that the depths of markers are known for a subgroup of wells, which are referred to as reference group. Then, choosing a reference well W0 with marker depth z0, we calculate for any well W, not in the reference group, the correlation function C(z), whose values are coefficients of correlation of a set of well log curves for well W in point z and for well W0 in point z0. Let us denote the maximum of this function by zmax. If for well W, wells in the reference group have been found, lying within its specified neighborhood, the depth zmax corresponding to the reference well with the largest value of the maximum of function C(z), is taken as a possible depth of marker in well W. The correlation function varies from −1 to 1; for one method of well log, F is defined as
  • C ( z ) = F W ( T ( z + x ) ) F W 0 ( z 0 + x ) x F W 2 ( T ( z + x ) ) x F W 0 2 ( z 0 + x ) x ,
  • where FW and FW 0 are curves of method F at wells Wand W0, respectively.
  • Function T has the form T(z)=az+b, where a is not equal to 1 and b is nonzero only when one or two trend markers are specified, respectively. In such cases, a and b are calculated as the solution of a system of obvious linear equations. For a set of methods {Fi}, i=0, . . . , n, the correlation function is defined as
  • C ( z ) = i = 0 n w i C i ( z ) i = 0 n w i ,
  • where Ci(z) is the correlation function for method Fi, and wi are weight coefficients (FIG. 2).
  • In accordance with FIG. 1, the implementation stages of the method will be described in detail below.
  • At the first stage of the method, wells are to be found, lying within a specified neighborhood of the reference well group, i.e., located within distance R from a well from the reference group. The distance between the wells can be determined in several ways: as the distance between points of the wells at a certain depth, as the distance between points of the given marker, or as the distance between the points where the wells intersect a specified plane (FIG. 3).
  • The second stage of the method consists in calculating correlation functions and the choice for each well W identified at the first stage of a corresponding well W0 from the reference group with maximal correlation coefficient and a corresponding point zmax in well W.
  • At the third stage, each well W, chosen at the second stage, is subjected to a series of tests, and, if the tests are successful, the choice of the well is approved and the depth zmax, corresponding to the maximal correlation, is taken as the depth of marker in well W (FIG. 4).
  • At the fourth stage of the method, wells with the choice approved at the third stage are added to the reference group and the procedure returns to the first stage (FIG. 5).
  • The process is reiterated until no wells are found at the first, second, or third stage. The tests used at the third stage include
  • 1. The correlation function in point zmax is to be in excess of a specified threshold value. Higher threshold values improve the accuracy of the algorithm but reduce the number of wells found. For example, with the threshold value of 0.9 and at the maximum correlation in point zmax equal to 0.88, the well is classified as not meeting the test conditions.
  • 2. The coefficient of the quality of correlation in the point is to be in excess of the specified threshold value. The coefficient of the quality of correlation is defined as a coefficient of deviation of the local maximum of correlation function, nearest in terms of value, from its largest local maximum in point zmax. Larger values of this coefficient imply that the found maximum of correlation coefficient is appreciably higher than other local maximums of the correlation function. For example, if the maximal value of the correlation function is 0.9 and the maximum nearest by its value is 0.89, the value of the coefficient of the quality of correlation will be (0.9-0.89)/0.9, which is about 0.01. In this case, with the threshold value of the quality coefficient taken equal, for example, to 0.5, the well will be classified as not meeting the test conditions.
  • 3. The degree of transitivity is to be in excess of a specified threshold value. The degree of transitivity is defined as the number of previous iterations of the algorithm for which the maximum of the correlation function between the chosen reference well and the well of the current iteration satisfies the conditions of test 1. This test improves the reliability of the method. For example, if the threshold for the correlation function from test 1 has been taken equal to 0.9 and well A has passed the test for the correlation with well B from the reference group, and well B, in its turn, was approved by the correlation with well C at the previous iteration, then the value of transitivity threshold equal 2 requires that the maximum of correlation function between well A and well C, as a reference well for A, be not less than 0.9. The threshold value of the degree of transitivity is taken equal to the number of previous iterations of the algorithm, if this number is less than the specified threshold value.
  • 4. The values of the specified function at a well in the point of maximal correlation are to fall within a specified interval. This test allows the certainly poor sites to be rejected based on the values of some function containing appropriate information. As such function, the method can use, for example, the coherence function or the function of deviation of extremums of wavelet transform with increasing period.
  • The method of solving the problem, which is described below with respect to the second variant of implementation of the invention, consists in determining the depths of markers by evaluating the maximums of functionals, which characterize the degree of similarity of sets of well-logging curves in marker points at wells. Namely, let {zi}, i=0, . . . , n be depth marks at wells Wi. We define a functional in n-dimensional space as
  • C ( z 0 , , z n ) = i = 0 n j = i + 1 n B ( i , j ) · C ( z i , z j ) ,
  • where Ck(zi, zj)is the coefficient of correlation for the kth well-logging method in points zi and zj at wells i and j, respectively. This coefficient takes values between −1 and 1 and can be calculated as
  • C k ( z i , z j ) = F k , i ( z i + x ) F k , j ( z j + x ) x F k , i 2 ( z i + x ) x F k , j 2 ( z j + x ) x ,
  • Maximums of those functionals are sought for with the use of gradient descent method (in this case, this is ascent), including the calculation of the gradient vector, whose coordinates are partial derivatives of the functional, and the search for maximal values along the direction of this vector. To neutralize the typical problems in the application of gradient descent method, “shaking” procedure is applied to intermediate solutions of the algorithm; this procedure consists in smoothing the current point of solution and the current gradient vector. Such smoothing is carried out with a specified coefficient, which decreases with the number of iteration and nearly disappears at the last iterations of the algorithm. The smoothing can be carried out, for example by moving average, with the smoothing coefficient in this case being the size of window. Since changes in the current point can be accompanied by a considerable deviation of its depth solutions at some wells from depths at other wells, resulting in that they can become closer to other markers of the set in terms of depth, markers of the set were sorted at each well. The result of this sorting is that the depths corresponding to one marker can be assigned to another one. This simple procedure reduces the scatter of marker depths in different wells.
  • At the first stage, the value of functional C is calculated in the initial point of solution {zi}.
  • At the second state of the method, partial derivatives of the functional are calculated and gradient vector is composed for the current point of solution {zi}. (FIG. 7).
  • At the third stage, the gradient vector is smoothed, i.e., each component of the vector at well W is replaced by the mean value of components at wells lying within distance R from well W.
  • At the fourth stage, a value of the functional greater than the previous one is sought for in the segment with a specified length, originating from point {zi} and directed along the gradient vector. Once such value is not found, the algorithm ceases its work and the current solution {zi} is taken as the final solution. (FIG. 8).
  • At the fifth stage, the obtained solution is improved by searching for a larger value with a smaller step within the previous step where the maximum was found.
  • At the sixth stage, the current solution {zi} is taken to be the point where the maximum of the functional was found and this point is smoothed by the same procedure as that applied to the gradient vector at the third stage, and the smoothing radius R is reduced by a specified value. (FIG. 9)
  • At the seventh stage, the marker marks of the set are sorted by the depth and the procedure is reiterated starting from the second stage of the algorithm.
  • FIG. 10 is a block diagram that illustrates an embodiment of a computer system 1000 upon which various embodiments of the inventive concepts described herein may be implemented. The system 1000 includes a computer platform 1001, peripheral devices 1002 and network resources 1003.
  • The computer platform 1001 may include a data bus 1004 or other communication mechanism for communicating information across and among various parts of the computer platform 1001, and a processor 1005 coupled with bus 1004 for processing information and performing other computational and control tasks. Computer platform 1001 also includes a volatile storage 1006, such as a random access memory (RAM) or other dynamic storage device, coupled to bus 1004 for storing various information as well as instructions to be executed by processor 1005, including the software application for proxy detection described above. The volatile storage 1006 also may be used for storing temporary variables or other intermediate information during execution of instructions by processor 1005. Computer platform 1001 may further include a read only memory (ROM or EPROM) 1007 or other static storage device coupled to bus 1004 for storing static information and instructions for processor 1005, such as basic input-output system (BIOS), as well as various system configuration parameters. A persistent storage device 1008, such as a magnetic disk, optical disk, or solid-state flash memory device is provided and coupled to bus 1004 for storing information and instructions.
  • Computer platform 1001 may be coupled via bus 1004 to a touch-sensitive display 1009, such as a cathode ray tube (CRT), plasma display, or a liquid crystal display (LCD), for displaying information to a system administrator or user of the computer platform 1001. An input device 1010, including alphanumeric and other keys, is coupled to bus 1004 for communicating information and command selections to processor 1005. Another type of user input device is cursor control device 1011, such as a mouse, a trackball, or cursor direction keys for communicating direction information and command selections to processor 1005 and for controlling cursor movement on touch-sensitive display 1009. This input device typically has two degrees of freedom in two axes, a first axis (e.g., x) and a second axis (e.g., y), that allows the device to specify positions in a plane. To detect user's gestures, the display 1009 may incorporate a touchscreen interface configured to detect user's tactile events and send information on the detected events to the processor 1005 via the bus 1004.
  • An external storage device 1012 may be coupled to the computer platform 1001 via bus 1004 to provide an extra or removable storage capacity for the computer platform 1001. In an embodiment of the computer system 1000, the external removable storage device 1012 may be used to facilitate exchange of data with other computer systems.
  • The invention is related to the use of computer system 1000 for implementing the techniques described herein. In an embodiment, the inventive system may reside on a machine such as computer platform 1001. According to one embodiment of the invention, the techniques described herein are performed by computer system 1000 in response to processor 1005 executing one or more sequences of one or more instructions contained in the volatile memory 1006. Such instructions may be read into volatile memory 1006 from another computer-readable medium, such as persistent storage device 1008. Execution of the sequences of instructions contained in the volatile memory 1006 causes processor 1005 to perform the process steps described herein. In alternative embodiments, hard-wired circuitry may be used in place of or in combination with software instructions to implement the invention. Thus, embodiments of the invention are not limited to any specific combination of hardware circuitry and software.
  • The term “computer-readable medium” as used herein refers to any medium that participates in providing instructions to processor 1005 for execution. The computer-readable medium is just one example of a machine-readable medium, which may carry instructions for implementing any of the methods and/or techniques described herein. Such a medium may take many forms, including but not limited to, non-volatile media and volatile media. Non-volatile media includes, for example, optical or magnetic disks, such as the persistent storage device 1008. Volatile media includes dynamic memory, such as volatile storage 1006.
  • Common forms of computer-readable media include, for example, a floppy disk, a flexible disk, hard disk, magnetic tape, or any other magnetic medium, a CD-ROM, any other optical medium, punchcards, papertape, any other physical medium with patterns of holes, a RAM, a PROM, an EPROM, a FLASH-EPROM, a flash drive, a memory card, any other memory chip or cartridge, or any other medium from which a computer can read.
  • Various forms of computer readable media may be involved in carrying one or more sequences of one or more instructions to processor 1005 for execution. For example, the instructions may initially be carried on a magnetic disk from a remote computer. Alternatively, a remote computer can load the instructions into its dynamic memory and send the instructions over a telephone line using a modem. A modem local to computer system can receive the data on the telephone line and use an infra-red transmitter to convert the data to an infra-red signal. An infra-red detector can receive the data carried in the infra-red signal and appropriate circuitry can place the data on the data bus 1004. The bus 1004 carries the data to the volatile storage 1006, from which processor 1005 retrieves and executes the instructions. The instructions received by the volatile memory 1006 may optionally be stored on persistent storage device 1008 either before or after execution by processor 1005. The instructions may also be downloaded into the computer platform 1001 via Internet using a variety of network data communication protocols well known in the art.
  • The computer platform 1001 also includes a communication interface, such as network interface card 1013 coupled to the data bus 1004. Communication interface 1013 provides a two-way data communication coupling to a network link 1014 that is coupled to a local network 1015. For example, communication interface 1013 may be an integrated services digital network (ISDN) card or a modem to provide a data communication connection to a corresponding type of telephone line. As another example, communication interface 1013 may be a local area network interface card (LAN NIC) to provide a data communication connection to a compatible LAN. Wireless links, such as well-known 802.11a, 802.11b, 802.11g and Bluetooth may also used for network implementation. In any such implementation, communication interface 1013 sends and receives electrical, electromagnetic or optical signals that carry digital data streams representing various types of information.
  • Network link 1014 typically provides data communication through one or more networks to other network resources. For example, network link 1014 may provide a connection through local network 1015 to a host computer 1016, or a network storage/server 1022. Additionally or alternatively, the network link 1014 may connect through gateway/firewall 1017 to the wide-area or global network 1018, such as an Internet. Thus, the computer platform 1001 can access network resources located anywhere on the Internet 1018, such as a remote network storage/server 1019. On the other hand, the computer platform 1001 may also be accessed by clients located anywhere on the local area network 1015 and/or the Internet 1018. The network clients 1020 and 1021 may themselves be implemented based on the computer platform similar to the platform 1001.
  • Local network 1015 and the Internet 1018 both use electrical, electromagnetic or optical signals that carry digital data streams. The signals through the various networks and the signals on network link 1014 and through communication interface 1013, which carry the digital data to and from computer platform 1001, are exemplary forms of carrier waves transporting the information.
  • Computer platform 1001 can send messages and receive data, including program code, through the variety of network(s) including Internet 1018 and LAN 1015, network link 1015 and communication interface 1013. In the Internet example, when the system 1001 acts as a network server, it might transmit a requested code or data for an application program running on client(s) 1020 and/or 1021 through the Internet 1018, gateway/firewall 1017, local area network 1015 and communication interface 1013. Similarly, it may receive code from other network resources.
  • The received code may be executed by processor 1005 as it is received, and/or stored in persistent or volatile storage devices 1008 and 1006, respectively, or other non-volatile storage for later execution.
  • Finally, it should be understood that processes and techniques described herein are not inherently related to any particular apparatus and may be implemented by any suitable combination of components. Further, various types of general purpose devices may be used in accordance with the teachings described herein. It may also prove advantageous to construct specialized apparatus to perform the method steps described herein. The present invention has been described in relation to particular examples, which are intended in all respects to be illustrative rather than restrictive. Those skilled in the art will appreciate that many different combinations of hardware, software, and firmware will be suitable for practicing the present invention. For example, the described software may be implemented in a wide variety of programming or scripting languages, such as Assembler, C/C++, Objective-C, perl, shell, PHP, Java, as well as any now known or later developed programming or scripting language.
  • Moreover, other implementations of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. Various aspects and/or components of the described embodiments may be used singly or in any combination in the systems and methods for constructing of geological models. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.

Claims (15)

What is claimed is:
1. A computer-implemented method for determining a position of a coordinate of marker depth in well W for a construction of a geological model of a mineral deposit, the computer-implemented comprising:
1) determining a reference group of wells;
2) determining wells W lying within a specified neighborhood of the reference group of wells where the neighborhood does not exceed the value of distance R from any well of the reference group;
3) determining a correlation function C(z), and choosing for each well W identified at the previous stage a well from the reference group with the maximal correlation coefficient and an appropriate point zmax in well W;
4) testing the well W, and, if the tests are successful, the choice of the well is approved and the depth zmax corresponding to the maximal correlation is taken as the marker depth at well W;
5) adding the well W thus found to the reference well group; and
6) reiterating all steps of the method until no well W is found at step 1) or steps 2) or 3).
2. The computer-implemented method according to claim 1, characterized in that a test is used to check whether the maximum of correlation function C(z) in point zmax is in excess of the specified threshold value; the value of the maximum of the correlation function during the test is rounded upward to the nearest tenth; if the value of the rounded correlation maximum is greater than or equal to the specified threshold value, the well is classified as not meeting the test conditions.
3. The computer-implemented method according to claim 2, characterized in that an additional test is used to check whether the correlation quality coefficient is in excess of a specified threshold value; the coefficient of the quality of correlation being defined as a coefficient of deviation of the local maximum of correlation function, nearest in terms of value, from its largest local maximum in point zmax; if the value of the correlation quality coefficient is less than the specified threshold value, the well being tested is classified as not meeting the test conditions.
4. The computer-implemented method according to claim 2, characterized in that an additional test is used to check whether the degree of transitivity is in excess of a specified threshold value; the degree of transitivity is defined as the number of previous iterations of the algorithm for which the maximum of the correlation function between the chosen reference well and the well of the current iteration does not exceed the maximum of correlation function C(z) in point zmax.
5. The computer-implemented method according to claim 3, characterized in that an additional test is used to establish a specified interval of values and to check whether there are wells that do not lie within this interval with the subsequent elimination of those wells.
6. A computerized system for determining a position of a marker depth coordinate for a well W for construction of a geological model of a mineral deposit, computerized system comprising:
one or a plurality of processors;
input/output moduli (I/O);
a computer-readable medium, containing a program code, which, when executed, induces the processor or processors to implement the steps of:
1) determining a reference group of wells;
2) determining wells W located within the given neighborhood of the reference well group wherein the neighborhood does not exceed a distance R from any well in the reference group;
3) determining the correlation function C(z)and choosing for each well W found in a preceding step an appropriate well of the reference group with the maximum correlation coefficient and finding a point zmax corresponding to the reference group in well W;
4) checking the well W with the use of tests, and, if the check is successful, the choice of the well is assumed approved, and the depth corresponding to the maximum value of correlation zmax is taken to be the depth of the marker in well W;
5) adding the obtained well W to the reference well group; and
6) reiterating all steps of the method until no well W is found at the steps 1), 2), or 3).
7. The computerized system according to claim 6, characterized in that a test is used to check whether the maximum of the correlation function C(z) in point zmax is in excess of a specified threshold value; the value of the maximum of the correlation function during the test being rounded upward to the nearest tenth, and if the value of the rounded correlation maximum is greater than or equal to the specified threshold value, the well is classified as not meeting the test conditions.
8. The computerized system according to claim 7, characterized in that an additional test is used to check whether the degree of transitivity is in excess of a specified threshold value; the degree of transitivity being defined as the number of previous iterations of the algorithm for which the maximum of the correlation function between the chosen reference well and the well of the current iteration does not exceed the maximum of correlation function C(z) in point zmax.
9. The computerized system according to claim 8, characterized in that an additional test is used to establish a specified interval of values and to check whether there are wells that do not lie within this interval for the subsequent elimination of those wells.
10. The computerized system according to claim 7, characterized in that an additional test is used to establish a specified interval of values and to check whether there are wells that do not lie within this interval for the subsequent elimination of those wells.
11. A non-transitory computer-readable medium embodying a asset of instructions, which, when executed by one or more processors, cause the one or more processors to perform a method for determining a position of a coordinate of marker depth in well W for construction of a geological model of a mineral deposit, the method comprising:
1) determining a reference group of wells;
2) determining wells W lying within a specified neighborhood of the reference group of wells where the neighborhood does not exceed the value of distance R from any well of the reference group;
3) determining a correlation function C(z), and choosing for each well W identified at the previous stage a well from the reference group with the maximal correlation coefficient and an appropriate point zmax in well W;
4) testing the well W, and, if the tests are successful, the choice of the well is approved and the depth zmax corresponding to the maximal correlation is taken as the marker depth at well W;
5) adding the well W thus found to the reference well group; and
6) reiterating all steps of the method until no well W is found at step 1) or steps 2) or 3).
12. The non-transitory computer-readable medium according to claim 11, characterized in that a test is used to check whether the maximum of correlation function C(z) in point zmax is in excess of the specified threshold value; the value of the maximum of the correlation function during the test is rounded upward to the nearest tenth; if the value of the rounded correlation maximum is greater than or equal to the specified threshold value, the well is classified as not meeting the test conditions.
13. The non-transitory computer-readable medium according to claim 12, characterized in that an additional test is used to check whether the degree of transitivity is in excess of a specified threshold value; the degree of transitivity is defined as the number of previous iterations of the algorithm for which the maximum of the correlation function between the chosen reference well and the well of the current iteration does not exceed the maximum of correlation function C(z) in point zmax.
14. The non-transitory computer-readable medium according to claim 12, characterized in that an additional test is used to check whether the correlation quality coefficient is in excess of a specified threshold value; the coefficient of the quality of correlation being defined as a coefficient of deviation of the local maximum of correlation function, nearest in terms of value, from its largest local maximum in point zmax; if the value of the correlation quality coefficient is less than the specified threshold value, the well being tested is classified as not meeting the test conditions.
15. The non-transitory computer-readable medium according to claim 14, characterized in that an additional test is used to establish a specified interval of values and to check whether there are wells that do not lie within this interval with the subsequent elimination of those wells.
US14/094,773 2012-11-30 2013-12-02 Systems and methods for determining position of marker depth coordinates for construction of geological model of deposit Abandoned US20140156192A1 (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
RU2012151407/08A RU2534964C2 (en) 2012-11-30 2012-11-30 Method, device and computer-readable data medium for determining depth coordinates of marker when constructing geologic model of deposit
RU2012151404 2012-11-30
RU2012151405 2012-11-30
RU2012151407 2012-11-30
RU2012151404 2012-11-30
RU2012151408 2012-11-30
RU2012151405 2012-11-30
RU2012151408/08A RU2530324C2 (en) 2012-11-30 2012-11-30 Method for determining position of marker depth coordinates when constructing geological model of deposit
RU2012151896 2012-12-04
RU2012151896/28A RU2515081C1 (en) 2012-12-04 2012-12-04 Automatic allocation of surfaces for building of geologic and hydrodynamic model of oil and gas deposit against seismic data

Publications (1)

Publication Number Publication Date
US20140156192A1 true US20140156192A1 (en) 2014-06-05

Family

ID=50826249

Family Applications (4)

Application Number Title Priority Date Filing Date
US14/094,783 Active 2036-01-18 US9664033B2 (en) 2012-11-30 2013-12-02 System for determining position of marker depth coordinates for construction of geological model of deposit
US14/094,773 Abandoned US20140156192A1 (en) 2012-11-30 2013-12-02 Systems and methods for determining position of marker depth coordinates for construction of geological model of deposit
US14/094,776 Abandoned US20140156217A1 (en) 2012-11-30 2013-12-02 Systems and methods for determining position of marker depth coordinates for construction of geological model of deposit
US14/094,779 Expired - Fee Related US9874086B2 (en) 2012-11-30 2013-12-02 System for determining position of marker depth coordinates for construction of geological model of deposit

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/094,783 Active 2036-01-18 US9664033B2 (en) 2012-11-30 2013-12-02 System for determining position of marker depth coordinates for construction of geological model of deposit

Family Applications After (2)

Application Number Title Priority Date Filing Date
US14/094,776 Abandoned US20140156217A1 (en) 2012-11-30 2013-12-02 Systems and methods for determining position of marker depth coordinates for construction of geological model of deposit
US14/094,779 Expired - Fee Related US9874086B2 (en) 2012-11-30 2013-12-02 System for determining position of marker depth coordinates for construction of geological model of deposit

Country Status (1)

Country Link
US (4) US9664033B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140156244A1 (en) * 2012-11-30 2014-06-05 OOO Rock Flow Dynamics System for determining position of marker depth coordinates for construction of geological model of deposit
EP3298235A4 (en) * 2015-05-20 2019-01-09 Baker Hughes, A Ge Company, Llc PREDICTION OF TRAINING LAYERS AND STRATIGRAPHICS DURING DRILLING
WO2019204555A1 (en) * 2018-04-20 2019-10-24 Schlumberger Technology Corporation Well log correlation and propagation system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106646661A (en) * 2016-09-22 2017-05-10 张春志 Comprehensive survey system for hydrogeology of mineral deposit
WO2018208634A1 (en) * 2017-05-08 2018-11-15 Schlumberger Technology Corporation Integrating geoscience data to predict formation properties
CN110208874B (en) * 2018-02-28 2020-10-20 中国石油化工股份有限公司 Method for identifying effective reservoir of tight sandstone reservoir
CN113803055B (en) * 2020-06-11 2024-05-24 中国石油化工股份有限公司 Oil-water interface depth determining method and early warning method for preventing production well water channeling
US12086512B2 (en) 2021-03-16 2024-09-10 Saudi Arabian Oil Company Method to automatically pick formation tops using optimization algorithm

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4320469A (en) * 1973-05-09 1982-03-16 Schlumberger Technology Corporation Well logging: depth correlation of logs
US6012017A (en) * 1996-09-25 2000-01-04 Geoquest, A Division Of Schlumberger Technology Corporation Interpreting formation tops
US20140156193A1 (en) * 2012-11-30 2014-06-05 OOO Rock Flow Dynamics System for determining position of marker depth coordinates for construction of geological model of deposit

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000022572A1 (en) * 1998-10-09 2000-04-20 Koninklijke Philips Electronics N.V. Deriving geometrical data of a structure from an image
CA2530371A1 (en) 2003-06-25 2005-01-06 Schlumberger Canada Limited Method and apparatus and program storage device including an integrated well planning workflow control system with process dependencies
GB0318827D0 (en) * 2003-08-11 2003-09-10 Bg Intellectual Pty Ltd Dip value in seismic images
US20070276604A1 (en) 2006-05-25 2007-11-29 Williams Ralph A Method of locating oil and gas exploration prospects by data visualization and organization
US7873476B2 (en) 2008-07-02 2011-01-18 Chevron U.S.A. Inc. Well log correlation
US10577895B2 (en) * 2012-11-20 2020-03-03 Drilling Info, Inc. Energy deposit discovery system and method
US9336629B2 (en) * 2013-01-30 2016-05-10 F3 & Associates, Inc. Coordinate geometry augmented reality process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4320469A (en) * 1973-05-09 1982-03-16 Schlumberger Technology Corporation Well logging: depth correlation of logs
US6012017A (en) * 1996-09-25 2000-01-04 Geoquest, A Division Of Schlumberger Technology Corporation Interpreting formation tops
US20140156193A1 (en) * 2012-11-30 2014-06-05 OOO Rock Flow Dynamics System for determining position of marker depth coordinates for construction of geological model of deposit

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140156244A1 (en) * 2012-11-30 2014-06-05 OOO Rock Flow Dynamics System for determining position of marker depth coordinates for construction of geological model of deposit
US9664033B2 (en) * 2012-11-30 2017-05-30 OOO Rock Flow Dynamics System for determining position of marker depth coordinates for construction of geological model of deposit
US9874086B2 (en) * 2012-11-30 2018-01-23 OOO Rock Flow Dynamics System for determining position of marker depth coordinates for construction of geological model of deposit
EP3298235A4 (en) * 2015-05-20 2019-01-09 Baker Hughes, A Ge Company, Llc PREDICTION OF TRAINING LAYERS AND STRATIGRAPHICS DURING DRILLING
US10732312B2 (en) 2015-05-20 2020-08-04 Baker Hughes, A Ge Company, Llc Prediction of formation and stratigraphic layers while drilling
US10928537B2 (en) 2015-05-20 2021-02-23 Baker Hughes, A Ge Company, Llc Prediction of formation and stratigraphic layers while drilling
WO2019204555A1 (en) * 2018-04-20 2019-10-24 Schlumberger Technology Corporation Well log correlation and propagation system
US11828167B2 (en) 2018-04-20 2023-11-28 Schlumberger Technology Corporation Well log correlation and propagation system

Also Published As

Publication number Publication date
US9874086B2 (en) 2018-01-23
US20140156193A1 (en) 2014-06-05
US20140156244A1 (en) 2014-06-05
US9664033B2 (en) 2017-05-30
US20140156217A1 (en) 2014-06-05

Similar Documents

Publication Publication Date Title
US20140156192A1 (en) Systems and methods for determining position of marker depth coordinates for construction of geological model of deposit
US11480709B2 (en) Systems and methods for predicting hydrocarbon production and assessing prediction uncertainty
US12086512B2 (en) Method to automatically pick formation tops using optimization algorithm
US20200308934A1 (en) Automatic calibration of forward depositional models
US11971513B2 (en) System and method for forming a seismic velocity model and imaging a subterranean region
US20150205001A1 (en) Basin-to-Reservoir Modeling
US9581707B2 (en) System for automated identification of surfaces for building of geologic hydrodynamic model of oil and gas deposit by seismic data
US8364442B2 (en) Automated structural interpretation
CN109492775B (en) A detection method for geological structure interpretation, detection device and readable storage medium
US11867857B2 (en) Method and system for updating a seismic velocity model
US20230037886A1 (en) Method and system for determination of seismic propagation velocities using nonlinear transformations
US10705234B2 (en) Line and edge detection and enhancement
US9874094B2 (en) Identifying formation layer boundaries on well log measurements
US8340912B2 (en) Seismic attributes for structural analysis
US11899150B2 (en) Velocity model for sediment-basement interface using seismic and potential fields data
CN109100803B (en) Method and device for determining micro-fracture
US20210405234A1 (en) System and method for subsurface structural interpretation
RU2530324C2 (en) Method for determining position of marker depth coordinates when constructing geological model of deposit
WO2016209265A1 (en) Identifying formation layer boundaries on well log measurements
US20150193707A1 (en) Systems and Methods for Estimating Opportunity in a Reservoir System
CN113900141B (en) Oil and gas distribution prediction method and device
US11846740B2 (en) First break picking for full wavefield travel-time inversion
CN116449422B (en) Method, device, equipment and medium for establishing three-dimensional speed model of disc on positive fault
US11762114B2 (en) Method for constructing a geological model
US20250369337A1 (en) System and method for automatic conversion of interpreted features on borehole images to digital labeling for deep learning

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION