US20110191274A1 - Deep-Structured Conditional Random Fields for Sequential Labeling and Classification - Google Patents
Deep-Structured Conditional Random Fields for Sequential Labeling and Classification Download PDFInfo
- Publication number
- US20110191274A1 US20110191274A1 US12/696,051 US69605110A US2011191274A1 US 20110191274 A1 US20110191274 A1 US 20110191274A1 US 69605110 A US69605110 A US 69605110A US 2011191274 A1 US2011191274 A1 US 2011191274A1
- Authority
- US
- United States
- Prior art keywords
- layer
- training
- data
- final
- layers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computing arrangements using knowledge-based models
- G06N5/02—Knowledge representation; Symbolic representation
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
Definitions
- Sequential labeling and classification of data has many applications, including those in natural language processing and speech processing. Some example applications include search query tagging, advertisement segmentation, and language identification/verification.
- Conditional random fields are discriminative models that directly estimate the probabilities of a state sequence conditioned on a whole observation sequence. For example, frames of audio signal data may be converted to features, with the state sequence predicted on all the frames. Note that this is in contrast to generative models such as the hidden Markov models (HMMs) that describe the joint probability of the observation and the states.
- HMMs hidden Markov models
- conditional random fields have been widely and successfully used to solve sequential labeling problems.
- One well-known type of conditional random field is the linear-chain conditional random field, which is commonly used due to its simplicity and efficiency. While acceptable performance is obtained by using linear chain conditional random fields, there are limitations associated with them. For example, such a conditional random field typically requires manual construction of the many different features that are needed to achieve good performance, as they lack the ability to automatically generate robust discriminative internal features from raw features.
- various aspects of the subject matter described herein are directed towards a technology by which a multiple layered (deep-structured) conditional random field model is used to classify an input signal such as comprising sequential data.
- Data corresponding to the input signal e.g., the signal itself, features extracted therefrom and/or the like
- the lowest layer outputs probability information, which is received at the next lowest layer and used in conjunction with the data corresponding to the input signal, to output its probability information and so forth, up to the final (highest) layer.
- the final layer outputs the classification, e.g., in the forms of a probability for each classification state.
- Training of the deep-structured conditional random field model may include performing the training layer by layer.
- the final layer is trained in a supervised manner using labeled training data.
- the intermediate/lower layers may be trained in supervised manner as long as their states match the final layer's output states.
- the layers' states need not match, however the lower layers are trained unsupervised; e.g., based upon raw features, training of the lower layers attempts to minimize average frame-level conditional entropy while attempting to maximize state occupation entropy, or in another alternative, attempts to minimize a reconstruction error.
- Back-propagation of error information corresponding to the final layer's error versus labeled training data may be used to iteratively modify (fine tune) the lower layer or layers relative to their coarse training. Also described is joint training, including joint training via subgroups of layers.
- FIG. 1 is a block diagram showing example components for training and using a deep-structured conditional random field model (classifier).
- FIG. 2 is a representation of layers of a deep-structured conditional random field model.
- FIG. 3 is a block diagram representing how data corresponding to an input signal is processed by layers of a deep-structured conditional random field model.
- FIG. 4 is a block diagram representing how data corresponding to an input signal is processed by layers of a deep-structured conditional random field model having the same states at each layer.
- FIG. 5 is a block diagram representing how data corresponding to an input signal is processed by layers of a deep-structured conditional random field model having different states at each layer.
- FIG. 6 is a block diagram representing how of a deep-structured conditional random field model may be trained in subgroups.
- FIG. 7 shows an illustrative example of a computing environment into which various aspects of the present invention may be incorporated.
- a deep-structured conditional random field comprises a multiple layer CRF model in which each higher layer's input observation sequence comprises the lower layer's observation sequence and the resulting lower layer's frame-level marginal probabilities.
- the deep-structured conditional random field allows for distinct state representations at different layers.
- one aspect is directed towards training and evaluating the deep-structured CRF model layer-by-layer to make it efficient, e.g., from a lowest (intermediate) layer towards a highest, final layer.
- the same intermediate-layer states are used as that in the final layer so that each layer can be trained in a supervised way.
- different states may be used, such that learning the intermediate layer occurs in an unsupervised way, e.g., by casting it as a multi-objective programming problem that is aimed at minimizing the average frame-level conditional entropy while maximizing the state occupation entropy, or by minimizing the reconstruction error.
- back-propagating the final layer error to fine tune (further modify) the intermediate layers so as to reduce the error.
- any of the examples described herein are non-limiting examples. Further, while various types of sequential input are identified, these are only examples, and the technology is not limited to any particular type of sequential input. As such, the present invention is not limited to any particular embodiments, aspects, concepts, structures, functionalities or examples described herein. Rather, any of the embodiments, aspects, concepts, structures, functionalities or examples described herein are non-limiting, and the present invention may be used various ways that provide benefits and advantages in computing and computerized learning in general.
- FIG. 1 shows a general block diagram that represents usage and training of the deep-structured CRF model 102 .
- an input signal 104 e.g., comprising a sequence of actual input data
- the deep-structured CRF model 102 which then outputs classification results, e.g., as a set of probabilities 106 .
- the input data may be any type of data suitable for processing by a CRF model into classification output.
- Some examples of such sequential input data/representative features include natural language data (speech or text) including Mel-frequency cepstral coefficients, features of words or word sub-units (e.g., phonemes), biological sequences, pixel-related data (e.g., for image processing) and so forth.
- Training also takes similar input 110 into a training mechanism 112 , as well as labeled training data 114 .
- training of intermediate layers 116 (which as used herein also includes the lowest layer) as well as the final layer 118 is based upon the labeled training data 114 .
- training of the intermediate layers 116 does not require labeled training data, which is used in training only the final layer 118 .
- f i (y t , y t ⁇ 1 , x, t)f represents both the observation features f i (y t , x, t)fi and the state transition features f i (y t , y t ⁇ 1 , t)fi.
- model parameters ( ⁇ i ) are typically optimized to maximize the L 2 regularized conditional state sequence log-likelihood:
- J 1 ⁇ ( ⁇ , X ) ⁇ k ⁇ ⁇ log ⁇ ⁇ p ⁇ ( y ( k ) ⁇ x ( k ) ; ⁇ ) - ⁇ ⁇ ⁇ 2 2 ⁇ ⁇ 2 ( 3 )
- ⁇ 2 is a parameter that balances the log-likelihood and the regularization term and can be tuned using a development set.
- the derivatives of J 1 ( , X) over the model parameters ⁇ i are given by:
- model parameters in the CRFs may thus be optimized using algorithms such as generalized iterative scaling (GIS), gradient and conjugate gradient (e.g. L-BFGS) ascent, and RPROP.
- GIS generalized iterative scaling
- L-BFGS gradient and conjugate gradient
- RPROP RPROP
- al(.) is a weight function whose definition is well known.
- the single-layer CRFs cannot learn these expanded features automatically.
- deep-structured CRFs multiple layers of simple CRFs are stacked together to achieve more powerful modeling and discrimination ability.
- the deep-structured CRFs described herein may learn discriminative intermediate representations from raw features and combine the sources of information to obtain improved classification ability.
- an architecture of an example deep-structured CRF is represented in FIG. 2 , where the final layer 220 is a linear-chain CRF and the lower layers 222 and 224 are zero-th-order CRFs that do not use state transition features. Using zero-th-order instead of linear-chain CRFs in the lower layers significantly reduces the computational cost while only slightly degrading classification performance.
- the observation sequence at layer j comprises the previous layer's observation sequence x j ⁇ 1 and the frame-level marginal posterior probabilities p(y y j ⁇ 1
- FIG. 3 which is somewhat based upon the tandem structure used in some automatic speech recognition systems. Note however that the features constructed on the observations may use only part of the input information.
- the state sequence inference is carried out layer-by-layer in a bottom-up manner so that the computational complexity is limited to at most linear to the number of layers used.
- the number of states can be directly determined by the problem to be solved and the parameters can be learned in a supervised way.
- the model parameter estimation is more complicated, and parameter learning can be more complex for the intermediate layers, which serve as abstract internal representations of the original observation and may or may not have different numbers of states than the final layer.
- Learning strategies for the deep-structured CRFs include layer-wise supervised learning, which restricts the number of states at intermediate layers to be the same as that in the final layer, as generally represented in FIG. 4 . In this manner, the same label used to train the final layer can be used to train the intermediate layers.
- Another learning strategy is entropy-based layer-wise unsupervised pre-training, which may be followed by conditional likelihood-based back propagation learning. This allows for an arbitrary number of states in the intermediate layers, and is generally represented in FIG. 5 . This learning scheme first learns each intermediate layer separately in an unsupervised manner, and then fine-tunes all the parameters jointly.
- Layer-wise supervised learning trains the intermediate layers layer-by-layer using the same label used to train the final layer. This is accomplished by restricting the number of states at intermediate layers to be the same as that in the final layer and treating each state at intermediate layers the same as that in the final layer.
- the output of the deep-structured CRF model is a state sequence, so the parameters in the final layer are optimized by maximizing the regularized conditional log-likelihood at the state-sequence level.
- the other layers may be trained by maximizing the frame-level marginal log-likelihood of
- J 2 ⁇ ( ⁇ , X ) ⁇ k , t ⁇ log ⁇ ⁇ p ⁇ ( y t ( k ) ⁇ x ( k ) ; ⁇ ) - ⁇ ⁇ ⁇ 2 2 ⁇ ⁇ 2 ( 6 )
- J 2 ( , X) can be optimized in a complexity of O(TY), where T is the number of frames and Y is the number of states. Since the output of each frame in the zero-th-order CRF is independent of each other, the process can be further speeded up using parallel computing techniques.
- the objective function J 1 ( ,X) on the training set will not decrease as more layers are added in the deep-structure CRF. It also may be proved that the deep-structured CRF performs no worse than the single-layer CRF on the training set.
- the layer-wise supervised training represented in FIG. 4 and described above works when the number of states in the intermediate layers is the same as that in the final layer so that the same supervision can be used to train each layer. This may restrict the potential of deep-structured CRFs for extracting powerful, optimization-driven internal representations automatically from the original data sequence.
- an alternative allows for different internal representations with different number of states in the intermediate layers, as generally represented in FIG. 5 , based upon a different training algorithm with one or more different objective functions as an intermediate step.
- One approach to such training as described herein is performed in an unsupervised manner, for example, in a generative way by optimizing the association between the input and the output for each intermediate layer.
- one layer-wise unsupervised learning strategy casts the intermediate layer learning problem as a multi-objective programming (MOP) learning problem.
- MOP multi-objective programming
- the average frame-level conditional entropy may be minimized while maximizing the state occupation entropy at the same time. Minimizing the average frame-level conditional entropy forces the intermediate layers to be sharp indicators of subclasses (or clusters) for each input vector, while maximizing the occupation entropy guarantees that the input vectors be represented distinctly by different intermediate states.
- the training starts from maximizing the state occupation entropy, and then updating the parameters by alternating between minimizing the frame-level conditional entropy and maximizing the average state occupation entropy.
- each objective is optimized by allowing the other one to become slightly worse within a limited range. This range is gradually tightened epoch by epoch.
- the model parameters then may be further fine tuned using the conditional likelihood-based back propagation described below.
- x, h, and h ⁇ i denote the input, output, and parameters of an intermediate layer, respectively.
- the intermediate (hidden) layer state occupation entropy is defined as:
- the frame-level conditional entropy at the intermediate layer can be written as:
- the fine tuning step aims to optimize the state sequence log-likelihood:
- N is the parameter set for the final layer
- h N ⁇ 1 , h 1 are parameters for the N ⁇ 1 hidden layers.
- the objective is to maximize:
- the update for the observed layer is the same as standard CRF, while for the hidden parameters, confidence back propagated from the observed layer needs to be taken into account.
- the derivative for hidden layer can be calculated as:
- FIG. 6 shows a type of joint optimization by training subgroups.
- a five layer model is being trained, comprising intermediate layers 601 - 604 and a final layer 605 .
- a temporary top layer A is also trained, forming group G 1 which is jointly trained via any suitable joint training algorithm and/or via back propagation.
- layer 602 , 603 and a temporary top layer are trained as another subgroup, G 2 . Note that temporary top layer A is no longer needed in training this subgroup, and may be discarded.
- top layer may be discarded.
- Intermediate layers 603 and 604 and top layer 605 form another subgroup G 3 , which is jointly trained.
- final layer 605 is not a temporary layer, but rather the actual topmost layer.
- layers 601 - 605 form the five layer model. Any model having at least two layers may be jointly trained, although subgroups of three are shown. Further, it is feasible to train in subgroups larger than three, or jointly train the model as a whole.
- FIG. 7 illustrates an example of a suitable computing and networking environment 700 on which the examples of FIGS. 1-6 may be implemented.
- the computing system environment 700 is only one example of a suitable computing environment and is not intended to suggest any limitation as to the scope of use or functionality of the invention. Neither should the computing environment 700 be interpreted as having any dependency or requirement relating to any one or combination of components illustrated in the exemplary operating environment 700 .
- the invention is operational with numerous other general purpose or special purpose computing system environments or configurations.
- Examples of well known computing systems, environments, and/or configurations that may be suitable for use with the invention include, but are not limited to: personal computers, server computers, hand-held or laptop devices, tablet devices, multiprocessor systems, microprocessor-based systems, set top boxes, programmable consumer electronics, network PCs, minicomputers, mainframe computers, distributed computing environments that include any of the above systems or devices, and the like.
- the invention may be described in the general context of computer-executable instructions, such as program modules, being executed by a computer.
- program modules include routines, programs, objects, components, data structures, and so forth, which perform particular tasks or implement particular abstract data types.
- the invention may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network.
- program modules may be located in local and/or remote computer storage media including memory storage devices.
- an exemplary system for implementing various aspects of the invention may include a general purpose computing device in the form of a computer 710 .
- Components of the computer 710 may include, but are not limited to, a processing unit 720 , a system memory 730 , and a system bus 721 that couples various system components including the system memory to the processing unit 720 .
- the system bus 721 may be any of several types of bus structures including a memory bus or memory controller, a peripheral bus, and a local bus using any of a variety of bus architectures.
- such architectures include Industry Standard Architecture (ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video Electronics Standards Association (VESA) local bus, and Peripheral Component Interconnect (PCI) bus also known as Mezzanine bus.
- ISA Industry Standard Architecture
- MCA Micro Channel Architecture
- EISA Enhanced ISA
- VESA Video Electronics Standards Association
- PCI Peripheral Component Interconnect
- the computer 710 typically includes a variety of computer-readable media.
- Computer-readable media can be any available media that can be accessed by the computer 710 and includes both volatile and nonvolatile media, and removable and non-removable media.
- Computer-readable media may comprise computer storage media and communication media.
- Computer storage media includes volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules or other data.
- Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can accessed by the computer 710 .
- Communication media typically embodies computer-readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and includes any information delivery media.
- modulated data signal means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal.
- communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media. Combinations of the any of the above may also be included within the scope of computer-readable media.
- the system memory 730 includes computer storage media in the form of volatile and/or nonvolatile memory such as read only memory (ROM) 731 and random access memory (RAM) 732 .
- ROM read only memory
- RAM random access memory
- BIOS basic input/output system 733
- RAM 732 typically contains data and/or program modules that are immediately accessible to and/or presently being operated on by processing unit 720 .
- FIG. 7 illustrates operating system 734 , application programs 735 , other program modules 736 and program data 737 .
- the computer 710 may also include other removable/non-removable, volatile/nonvolatile computer storage media.
- FIG. 7 illustrates a hard disk drive 741 that reads from or writes to non-removable, nonvolatile magnetic media, a magnetic disk drive 751 that reads from or writes to a removable, nonvolatile magnetic disk 752 , and an optical disk drive 755 that reads from or writes to a removable, nonvolatile optical disk 756 such as a CD ROM or other optical media.
- removable/non-removable, volatile/nonvolatile computer storage media that can be used in the exemplary operating environment include, but are not limited to, magnetic tape cassettes, flash memory cards, digital versatile disks, digital video tape, solid state RAM, solid state ROM, and the like.
- the hard disk drive 741 is typically connected to the system bus 721 through a non-removable memory interface such as interface 740
- magnetic disk drive 751 and optical disk drive 755 are typically connected to the system bus 721 by a removable memory interface, such as interface 750 .
- the drives and their associated computer storage media provide storage of computer-readable instructions, data structures, program modules and other data for the computer 710 .
- hard disk drive 741 is illustrated as storing operating system 744 , application programs 745 , other program modules 746 and program data 747 .
- operating system 744 application programs 745 , other program modules 746 and program data 747 are given different numbers herein to illustrate that, at a minimum, they are different copies.
- a user may enter commands and information into the computer 710 through input devices such as a tablet, or electronic digitizer, 764 , a microphone 763 , a keyboard 762 and pointing device 761 , commonly referred to as mouse, trackball or touch pad.
- Other input devices not shown in FIG. 7 may include a joystick, game pad, satellite dish, scanner, or the like.
- These and other input devices are often connected to the processing unit 720 through a user input interface 760 that is coupled to the system bus, but may be connected by other interface and bus structures, such as a parallel port, game port or a universal serial bus (USB).
- a monitor 791 or other type of display device is also connected to the system bus 721 via an interface, such as a video interface 790 .
- the monitor 791 may also be integrated with a touch-screen panel or the like. Note that the monitor and/or touch screen panel can be physically coupled to a housing in which the computing device 710 is incorporated, such as in a tablet-type personal computer. In addition, computers such as the computing device 710 may also include other peripheral output devices such as speakers 795 and printer 796 , which may be connected through an output peripheral interface 794 or the like.
- the computer 710 may operate in a networked environment using logical connections to one or more remote computers, such as a remote computer 780 .
- the remote computer 780 may be a personal computer, a server, a router, a network PC, a peer device or other common network node, and typically includes many or all of the elements described above relative to the computer 710 , although only a memory storage device 781 has been illustrated in FIG. 7 .
- the logical connections depicted in FIG. 7 include one or more local area networks (LAN) 771 and one or more wide area networks (WAN) 773 , but may also include other networks.
- LAN local area network
- WAN wide area network
- Such networking environments are commonplace in offices, enterprise-wide computer networks, intranets and the Internet.
- the computer 710 When used in a LAN networking environment, the computer 710 is connected to the LAN 771 through a network interface or adapter 770 .
- the computer 710 When used in a WAN networking environment, the computer 710 typically includes a modem 772 or other means for establishing communications over the WAN 773 , such as the Internet.
- the modem 772 which may be internal or external, may be connected to the system bus 721 via the user input interface 760 or other appropriate mechanism.
- a wireless networking component such as comprising an interface and antenna may be coupled through a suitable device such as an access point or peer computer to a WAN or LAN.
- program modules depicted relative to the computer 710 may be stored in the remote memory storage device.
- FIG. 7 illustrates remote application programs 785 as residing on memory device 781 . It may be appreciated that the network connections shown are exemplary and other means of establishing a communications link between the computers may be used.
- An auxiliary subsystem 799 (e.g., for auxiliary display of content) may be connected via the user interface 760 to allow data such as program content, system status and event notifications to be provided to the user, even if the main portions of the computer system are in a low power state.
- the auxiliary subsystem 799 may be connected to the modem 772 and/or network interface 770 to allow communication between these systems while the main processing unit 720 is in a low power state.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Software Systems (AREA)
- Evolutionary Computation (AREA)
- Data Mining & Analysis (AREA)
- Physics & Mathematics (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Artificial Intelligence (AREA)
- Medical Informatics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Computational Linguistics (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Image Analysis (AREA)
Abstract
Description
- Sequential labeling and classification of data has many applications, including those in natural language processing and speech processing. Some example applications include search query tagging, advertisement segmentation, and language identification/verification.
- Conditional random fields (CRFs) are discriminative models that directly estimate the probabilities of a state sequence conditioned on a whole observation sequence. For example, frames of audio signal data may be converted to features, with the state sequence predicted on all the frames. Note that this is in contrast to generative models such as the hidden Markov models (HMMs) that describe the joint probability of the observation and the states.
- Because of their discriminative nature, and also because they are very flexible in choosing classification features, conditional random fields have been widely and successfully used to solve sequential labeling problems. One well-known type of conditional random field is the linear-chain conditional random field, which is commonly used due to its simplicity and efficiency. While acceptable performance is obtained by using linear chain conditional random fields, there are limitations associated with them. For example, such a conditional random field typically requires manual construction of the many different features that are needed to achieve good performance, as they lack the ability to automatically generate robust discriminative internal features from raw features.
- This Summary is provided to introduce a selection of representative concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used in any way that would limit the scope of the claimed subject matter.
- Briefly, various aspects of the subject matter described herein are directed towards a technology by which a multiple layered (deep-structured) conditional random field model is used to classify an input signal such as comprising sequential data. Data corresponding to the input signal (e.g., the signal itself, features extracted therefrom and/or the like) are received and processed at each layer. The lowest layer outputs probability information, which is received at the next lowest layer and used in conjunction with the data corresponding to the input signal, to output its probability information and so forth, up to the final (highest) layer. The final layer outputs the classification, e.g., in the forms of a probability for each classification state.
- Training of the deep-structured conditional random field model may include performing the training layer by layer. The final layer is trained in a supervised manner using labeled training data. In one implementation, the intermediate/lower layers may be trained in supervised manner as long as their states match the final layer's output states. In another implementation, the layers' states need not match, however the lower layers are trained unsupervised; e.g., based upon raw features, training of the lower layers attempts to minimize average frame-level conditional entropy while attempting to maximize state occupation entropy, or in another alternative, attempts to minimize a reconstruction error. Back-propagation of error information corresponding to the final layer's error versus labeled training data may be used to iteratively modify (fine tune) the lower layer or layers relative to their coarse training. Also described is joint training, including joint training via subgroups of layers.
- Other advantages may become apparent from the following detailed description when taken in conjunction with the drawings.
- The present invention is illustrated by way of example and not limited in the accompanying figures in which like reference numerals indicate similar elements and in which:
-
FIG. 1 is a block diagram showing example components for training and using a deep-structured conditional random field model (classifier). -
FIG. 2 is a representation of layers of a deep-structured conditional random field model. -
FIG. 3 is a block diagram representing how data corresponding to an input signal is processed by layers of a deep-structured conditional random field model. -
FIG. 4 is a block diagram representing how data corresponding to an input signal is processed by layers of a deep-structured conditional random field model having the same states at each layer. -
FIG. 5 is a block diagram representing how data corresponding to an input signal is processed by layers of a deep-structured conditional random field model having different states at each layer. -
FIG. 6 is a block diagram representing how of a deep-structured conditional random field model may be trained in subgroups. -
FIG. 7 shows an illustrative example of a computing environment into which various aspects of the present invention may be incorporated. - Various aspects of the technology described herein are generally directed towards a deep-structured (multiple layer) conditional random field (CRF) model that improves sequential labeling and classification accuracy. A deep-structured conditional random field comprises a multiple layer CRF model in which each higher layer's input observation sequence comprises the lower layer's observation sequence and the resulting lower layer's frame-level marginal probabilities. The deep-structured conditional random field allows for distinct state representations at different layers.
- As described herein, one aspect is directed towards training and evaluating the deep-structured CRF model layer-by-layer to make it efficient, e.g., from a lowest (intermediate) layer towards a highest, final layer. In one implementation, the same intermediate-layer states are used as that in the final layer so that each layer can be trained in a supervised way. In an alternative implementation, different states may be used, such that learning the intermediate layer occurs in an unsupervised way, e.g., by casting it as a multi-objective programming problem that is aimed at minimizing the average frame-level conditional entropy while maximizing the state occupation entropy, or by minimizing the reconstruction error. Also described is back-propagating the final layer error to fine tune (further modify) the intermediate layers so as to reduce the error.
- It should be understood that any of the examples described herein are non-limiting examples. Further, while various types of sequential input are identified, these are only examples, and the technology is not limited to any particular type of sequential input. As such, the present invention is not limited to any particular embodiments, aspects, concepts, structures, functionalities or examples described herein. Rather, any of the embodiments, aspects, concepts, structures, functionalities or examples described herein are non-limiting, and the present invention may be used various ways that provide benefits and advantages in computing and computerized learning in general.
-
FIG. 1 shows a general block diagram that represents usage and training of the deep-structuredCRF model 102. In general, in usage, an input signal 104 (e.g., comprising a sequence of actual input data) is provided to the deep-structuredCRF model 102, which then outputs classification results, e.g., as a set ofprobabilities 106. The input data may be any type of data suitable for processing by a CRF model into classification output. Some examples of such sequential input data/representative features include natural language data (speech or text) including Mel-frequency cepstral coefficients, features of words or word sub-units (e.g., phonemes), biological sequences, pixel-related data (e.g., for image processing) and so forth. - Training, described below, also takes
similar input 110 into a training mechanism 112, as well as labeledtraining data 114. In one supervised learning implementation, training of intermediate layers 116 (which as used herein also includes the lowest layer) as well as thefinal layer 118 is based upon the labeledtraining data 114. In another (primarily) unsupervised learning implementation, training of theintermediate layers 116 does not require labeled training data, which is used in training only thefinal layer 118. - Various examples of training are described below, including layer-by-layer training. However, joint training (in partial subgroups or as a whole) of the layers is also feasible, as also described below. Further, once a layered CRF model is built, back propagation may be used in “fine-tuning” training, that is, based on the error measured at the final layer with labeled training data, the
intermediate layers 116 may be fine tuned (e.g., iteratively modified) relative to their previous “coarse” training process to reduce that error. - In general, a linear-chain CRF may be described as follows. Given a T-frame observation sequence x=x1, x2, . . . , xT, the conditional probability of the state sequence y=y1, y2, . . . , yT (which may be augmented with a special start (y0) and end (yT+1) state) is formulated as:
-
- where fi(yt, yt−1, x, t)f represents both the observation features fi(yt, x, t)fi and the state transition features fi(yt, yt−1, t)fi. The partition function
-
Z(x;Λ)=Σyexp(Σt,iλi f i(y t−1 ,x,t)) (2) - is used to normalize the exponential form so that it becomes a valid probability measure.
-
-
-
- which can be efficiently estimated using the known forward-backward (sum-product) algorithm. The model parameters in the CRFs may thus be optimized using algorithms such as generalized iterative scaling (GIS), gradient and conjugate gradient (e.g. L-BFGS) ascent, and RPROP.
- Although useful performance has been observed using single-layer CRFs, when continuous features are used, still more improved performance can be achieved by imposing constraints on the distribution of the features, which is equivalent to expanding each continuous feature fi(yt, yt−1, x, t) into features:
-
f il(y t−1 ,y t ,x,t)=a l(f i(y t−1 ,y t ,x,t))f i(y t−1 ,y t ,x,t)), (5) - where al(.) is a weight function whose definition is well known. However, the single-layer CRFs cannot learn these expanded features automatically.
- In deep-structured CRFs, multiple layers of simple CRFs are stacked together to achieve more powerful modeling and discrimination ability. Unlike previous technology, the deep-structured CRFs described herein may learn discriminative intermediate representations from raw features and combine the sources of information to obtain improved classification ability.
- In one implementation, an architecture of an example deep-structured CRF is represented in
FIG. 2 , where thefinal layer 220 is a linear-chain CRF and thelower layers - In the deep-structured CRF, the observation sequence at layer j comprises the previous layer's observation sequence xj−1 and the frame-level marginal posterior probabilities p(yy j−1|xj−1) from the preceding layer j−1. These inputs and the general architecture are represented in
FIG. 3 , which is somewhat based upon the tandem structure used in some automatic speech recognition systems. Note however that the features constructed on the observations may use only part of the input information. - In a deep-structured CRF as described herein, the state sequence inference is carried out layer-by-layer in a bottom-up manner so that the computational complexity is limited to at most linear to the number of layers used. At the final layer the number of states can be directly determined by the problem to be solved and the parameters can be learned in a supervised way. The model parameter estimation is more complicated, and parameter learning can be more complex for the intermediate layers, which serve as abstract internal representations of the original observation and may or may not have different numbers of states than the final layer.
- Learning strategies for the deep-structured CRFs include layer-wise supervised learning, which restricts the number of states at intermediate layers to be the same as that in the final layer, as generally represented in
FIG. 4 . In this manner, the same label used to train the final layer can be used to train the intermediate layers. - Another learning strategy is entropy-based layer-wise unsupervised pre-training, which may be followed by conditional likelihood-based back propagation learning. This allows for an arbitrary number of states in the intermediate layers, and is generally represented in
FIG. 5 . This learning scheme first learns each intermediate layer separately in an unsupervised manner, and then fine-tunes all the parameters jointly. - Layer-wise supervised learning (
FIG. 4 ) trains the intermediate layers layer-by-layer using the same label used to train the final layer. This is accomplished by restricting the number of states at intermediate layers to be the same as that in the final layer and treating each state at intermediate layers the same as that in the final layer. Note that the output of the deep-structured CRF model is a state sequence, so the parameters in the final layer are optimized by maximizing the regularized conditional log-likelihood at the state-sequence level. In contrast to the final layer, the other layers may be trained by maximizing the frame-level marginal log-likelihood of -
-
-
- Note that the observation features at each layer can be constructed differently, and also possibly across different frames from the previous layer. This allows for the significant flexibility of the higher layers to incorporate longer-span features from lower-layer decoding results. Allowing for long-span features can be helpful for speech recognition tasks, for example.
-
- The layer-wise supervised training represented in
FIG. 4 and described above works when the number of states in the intermediate layers is the same as that in the final layer so that the same supervision can be used to train each layer. This may restrict the potential of deep-structured CRFs for extracting powerful, optimization-driven internal representations automatically from the original data sequence. Thus, an alternative allows for different internal representations with different number of states in the intermediate layers, as generally represented inFIG. 5 , based upon a different training algorithm with one or more different objective functions as an intermediate step. - One approach to such training as described herein is performed in an unsupervised manner, for example, in a generative way by optimizing the association between the input and the output for each intermediate layer.
- As described herein, one layer-wise unsupervised learning strategy casts the intermediate layer learning problem as a multi-objective programming (MOP) learning problem. More particularly, the average frame-level conditional entropy may be minimized while maximizing the state occupation entropy at the same time. Minimizing the average frame-level conditional entropy forces the intermediate layers to be sharp indicators of subclasses (or clusters) for each input vector, while maximizing the occupation entropy guarantees that the input vectors be represented distinctly by different intermediate states.
- In one implementation, the training starts from maximizing the state occupation entropy, and then updating the parameters by alternating between minimizing the frame-level conditional entropy and maximizing the average state occupation entropy. At each such epoch, each objective is optimized by allowing the other one to become slightly worse within a limited range. This range is gradually tightened epoch by epoch. The model parameters then may be further fine tuned using the conditional likelihood-based back propagation described below.
-
-
- and where N is the total number of frames of the training data. The derivative of H(h) with respect to can be calculated as:
-
- Because
-
- the final gradient is:
-
- With respect to minimizing the frame-level conditional entropy, the frame-level conditional entropy at the intermediate layer can be written as:
-
- With respect to fine tuning with conditional likelihood-based back propagation, the fine tuning step aims to optimize the state sequence log-likelihood:
-
-
[xtft h1 ft h2 . . . ft hN−1 ],t=1, . . . ,T (16) -
where the hidden layer's frame-level log-likelihood is -
f t hn =log p(h t n |x,f h1 , . . . ,f hN−1 ,Λhn ) if n>1 (17) -
and -
f t hn =log p(h t n |x,Λ hn ) if n=1. (18) -
-
- In joint optimization, the objective is to maximize:
-
- where the hidden layer to observed layer feature is defined as:
- The update for the observed layer is the same as standard CRF, while for the hidden parameters, confidence back propagated from the observed layer needs to be taken into account. The derivative for hidden layer can be calculated as:
-
- is the standard CRF.
-
-
FIG. 6 shows a type of joint optimization by training subgroups. In this example, a five layer model is being trained, comprising intermediate layers 601-604 and afinal layer 605. To trainlayers - Once
layers layer - At the end of training subgroup G2, temporary top layer may be discarded.
Intermediate layers top layer 605 form another subgroup G3, which is jointly trained. Note however thatfinal layer 605 is not a temporary layer, but rather the actual topmost layer. At the end of training, layers 601-605 form the five layer model. Any model having at least two layers may be jointly trained, although subgroups of three are shown. Further, it is feasible to train in subgroups larger than three, or jointly train the model as a whole. -
FIG. 7 illustrates an example of a suitable computing andnetworking environment 700 on which the examples ofFIGS. 1-6 may be implemented. Thecomputing system environment 700 is only one example of a suitable computing environment and is not intended to suggest any limitation as to the scope of use or functionality of the invention. Neither should thecomputing environment 700 be interpreted as having any dependency or requirement relating to any one or combination of components illustrated in theexemplary operating environment 700. - The invention is operational with numerous other general purpose or special purpose computing system environments or configurations. Examples of well known computing systems, environments, and/or configurations that may be suitable for use with the invention include, but are not limited to: personal computers, server computers, hand-held or laptop devices, tablet devices, multiprocessor systems, microprocessor-based systems, set top boxes, programmable consumer electronics, network PCs, minicomputers, mainframe computers, distributed computing environments that include any of the above systems or devices, and the like.
- The invention may be described in the general context of computer-executable instructions, such as program modules, being executed by a computer. Generally, program modules include routines, programs, objects, components, data structures, and so forth, which perform particular tasks or implement particular abstract data types. The invention may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules may be located in local and/or remote computer storage media including memory storage devices.
- With reference to
FIG. 7 , an exemplary system for implementing various aspects of the invention may include a general purpose computing device in the form of acomputer 710. Components of thecomputer 710 may include, but are not limited to, aprocessing unit 720, asystem memory 730, and asystem bus 721 that couples various system components including the system memory to theprocessing unit 720. Thesystem bus 721 may be any of several types of bus structures including a memory bus or memory controller, a peripheral bus, and a local bus using any of a variety of bus architectures. By way of example, and not limitation, such architectures include Industry Standard Architecture (ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video Electronics Standards Association (VESA) local bus, and Peripheral Component Interconnect (PCI) bus also known as Mezzanine bus. - The
computer 710 typically includes a variety of computer-readable media. Computer-readable media can be any available media that can be accessed by thecomputer 710 and includes both volatile and nonvolatile media, and removable and non-removable media. By way of example, and not limitation, computer-readable media may comprise computer storage media and communication media. Computer storage media includes volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules or other data. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can accessed by thecomputer 710. Communication media typically embodies computer-readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and includes any information delivery media. The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media. Combinations of the any of the above may also be included within the scope of computer-readable media. - The
system memory 730 includes computer storage media in the form of volatile and/or nonvolatile memory such as read only memory (ROM) 731 and random access memory (RAM) 732. A basic input/output system 733 (BIOS), containing the basic routines that help to transfer information between elements withincomputer 710, such as during start-up, is typically stored inROM 731.RAM 732 typically contains data and/or program modules that are immediately accessible to and/or presently being operated on by processingunit 720. By way of example, and not limitation,FIG. 7 illustratesoperating system 734,application programs 735,other program modules 736 andprogram data 737. - The
computer 710 may also include other removable/non-removable, volatile/nonvolatile computer storage media. By way of example only,FIG. 7 illustrates ahard disk drive 741 that reads from or writes to non-removable, nonvolatile magnetic media, amagnetic disk drive 751 that reads from or writes to a removable, nonvolatilemagnetic disk 752, and anoptical disk drive 755 that reads from or writes to a removable, nonvolatileoptical disk 756 such as a CD ROM or other optical media. Other removable/non-removable, volatile/nonvolatile computer storage media that can be used in the exemplary operating environment include, but are not limited to, magnetic tape cassettes, flash memory cards, digital versatile disks, digital video tape, solid state RAM, solid state ROM, and the like. Thehard disk drive 741 is typically connected to thesystem bus 721 through a non-removable memory interface such asinterface 740, andmagnetic disk drive 751 andoptical disk drive 755 are typically connected to thesystem bus 721 by a removable memory interface, such asinterface 750. - The drives and their associated computer storage media, described above and illustrated in
FIG. 7 , provide storage of computer-readable instructions, data structures, program modules and other data for thecomputer 710. InFIG. 7 , for example,hard disk drive 741 is illustrated as storingoperating system 744,application programs 745,other program modules 746 andprogram data 747. Note that these components can either be the same as or different fromoperating system 734,application programs 735,other program modules 736, andprogram data 737.Operating system 744,application programs 745,other program modules 746, andprogram data 747 are given different numbers herein to illustrate that, at a minimum, they are different copies. A user may enter commands and information into thecomputer 710 through input devices such as a tablet, or electronic digitizer, 764, a microphone 763, akeyboard 762 andpointing device 761, commonly referred to as mouse, trackball or touch pad. Other input devices not shown inFIG. 7 may include a joystick, game pad, satellite dish, scanner, or the like. These and other input devices are often connected to theprocessing unit 720 through auser input interface 760 that is coupled to the system bus, but may be connected by other interface and bus structures, such as a parallel port, game port or a universal serial bus (USB). Amonitor 791 or other type of display device is also connected to thesystem bus 721 via an interface, such as avideo interface 790. Themonitor 791 may also be integrated with a touch-screen panel or the like. Note that the monitor and/or touch screen panel can be physically coupled to a housing in which thecomputing device 710 is incorporated, such as in a tablet-type personal computer. In addition, computers such as thecomputing device 710 may also include other peripheral output devices such asspeakers 795 andprinter 796, which may be connected through an outputperipheral interface 794 or the like. - The
computer 710 may operate in a networked environment using logical connections to one or more remote computers, such as aremote computer 780. Theremote computer 780 may be a personal computer, a server, a router, a network PC, a peer device or other common network node, and typically includes many or all of the elements described above relative to thecomputer 710, although only amemory storage device 781 has been illustrated inFIG. 7 . The logical connections depicted inFIG. 7 include one or more local area networks (LAN) 771 and one or more wide area networks (WAN) 773, but may also include other networks. Such networking environments are commonplace in offices, enterprise-wide computer networks, intranets and the Internet. - When used in a LAN networking environment, the
computer 710 is connected to theLAN 771 through a network interface oradapter 770. When used in a WAN networking environment, thecomputer 710 typically includes amodem 772 or other means for establishing communications over theWAN 773, such as the Internet. Themodem 772, which may be internal or external, may be connected to thesystem bus 721 via theuser input interface 760 or other appropriate mechanism. A wireless networking component such as comprising an interface and antenna may be coupled through a suitable device such as an access point or peer computer to a WAN or LAN. In a networked environment, program modules depicted relative to thecomputer 710, or portions thereof, may be stored in the remote memory storage device. By way of example, and not limitation,FIG. 7 illustratesremote application programs 785 as residing onmemory device 781. It may be appreciated that the network connections shown are exemplary and other means of establishing a communications link between the computers may be used. - An auxiliary subsystem 799 (e.g., for auxiliary display of content) may be connected via the
user interface 760 to allow data such as program content, system status and event notifications to be provided to the user, even if the main portions of the computer system are in a low power state. Theauxiliary subsystem 799 may be connected to themodem 772 and/ornetwork interface 770 to allow communication between these systems while themain processing unit 720 is in a low power state. - While the invention is susceptible to various modifications and alternative constructions, certain illustrated embodiments thereof are shown in the drawings and have been described above in detail, as well as equations and associated descriptions. It should be understood, however, that there is no intention to limit the invention to the specific forms disclosed, but on the contrary, the intention is to cover all modifications, alternative constructions, and equivalents falling within the spirit and scope of the invention.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/696,051 US8473430B2 (en) | 2010-01-29 | 2010-01-29 | Deep-structured conditional random fields for sequential labeling and classification |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/696,051 US8473430B2 (en) | 2010-01-29 | 2010-01-29 | Deep-structured conditional random fields for sequential labeling and classification |
Publications (2)
Publication Number | Publication Date |
---|---|
US20110191274A1 true US20110191274A1 (en) | 2011-08-04 |
US8473430B2 US8473430B2 (en) | 2013-06-25 |
Family
ID=44342494
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/696,051 Active 2031-10-26 US8473430B2 (en) | 2010-01-29 | 2010-01-29 | Deep-structured conditional random fields for sequential labeling and classification |
Country Status (1)
Country | Link |
---|---|
US (1) | US8473430B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120072215A1 (en) * | 2010-09-21 | 2012-03-22 | Microsoft Corporation | Full-sequence training of deep structures for speech recognition |
US9165243B2 (en) | 2012-02-15 | 2015-10-20 | Microsoft Technology Licensing, Llc | Tensor deep stacked neural network |
US9292787B2 (en) | 2012-08-29 | 2016-03-22 | Microsoft Technology Licensing, Llc | Computer-implemented deep tensor neural network |
WO2018183130A1 (en) * | 2017-03-28 | 2018-10-04 | Yodlee, Inc. | Layered masking of content |
US10489439B2 (en) * | 2016-04-14 | 2019-11-26 | Xerox Corporation | System and method for entity extraction from semi-structured text documents |
CN111754046A (en) * | 2020-07-02 | 2020-10-09 | 成都大学 | Implementation of Deep Convolutional Linear Conditional Random Fields for Structured Data |
JP2022008236A (en) * | 2020-06-24 | 2022-01-13 | 三星電子株式会社 | Neuromorphic device, and method for implementing neural network |
US20220139543A1 (en) * | 2019-02-08 | 2022-05-05 | Nanyang Technological University | Method and system for seizure detection |
US20220237210A1 (en) * | 2021-01-28 | 2022-07-28 | The Florida International University Board Of Trustees | Systems and methods for determining document section types |
US11640522B2 (en) | 2018-12-13 | 2023-05-02 | Tybalt, Llc | Computational efficiency improvements for artificial neural networks |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9280535B2 (en) * | 2011-03-31 | 2016-03-08 | Infosys Limited | Natural language querying with cascaded conditional random fields |
US9875736B2 (en) | 2015-02-19 | 2018-01-23 | Microsoft Technology Licensing, Llc | Pre-training and/or transfer learning for sequence taggers |
WO2016134183A1 (en) | 2015-02-19 | 2016-08-25 | Digital Reasoning Systems, Inc. | Systems and methods for neural language modeling |
US9858340B1 (en) | 2016-04-11 | 2018-01-02 | Digital Reasoning Systems, Inc. | Systems and methods for queryable graph representations of videos |
CN108959312B (en) * | 2017-05-23 | 2021-01-29 | 华为技术有限公司 | Method, device and terminal for generating multi-document abstract |
US10997507B2 (en) * | 2017-06-01 | 2021-05-04 | Accenture Global Solutions Limited | Data reconciliation |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060115145A1 (en) * | 2004-11-30 | 2006-06-01 | Microsoft Corporation | Bayesian conditional random fields |
US20080201279A1 (en) * | 2007-02-15 | 2008-08-21 | Gautam Kar | Method and apparatus for automatically structuring free form hetergeneous data |
US7418378B2 (en) * | 2003-12-22 | 2008-08-26 | Microsoft Corporation | Method and apparatus for training and deployment of a statistical model of syntactic attachment likelihood |
US20090198671A1 (en) * | 2008-02-05 | 2009-08-06 | Yahoo! Inc. | System and method for generating subphrase queries |
US20090216739A1 (en) * | 2008-02-22 | 2009-08-27 | Yahoo! Inc. | Boosting extraction accuracy by handling training data bias |
US7627473B2 (en) * | 2004-10-15 | 2009-12-01 | Microsoft Corporation | Hidden conditional random field models for phonetic classification and speech recognition |
US7689527B2 (en) * | 2007-03-30 | 2010-03-30 | Yahoo! Inc. | Attribute extraction using limited training data |
US7689419B2 (en) * | 2005-09-22 | 2010-03-30 | Microsoft Corporation | Updating hidden conditional random field model parameters after processing individual training samples |
US7840503B2 (en) * | 2007-04-10 | 2010-11-23 | Microsoft Corporation | Learning A* priority function from unlabeled data |
US7873209B2 (en) * | 2007-01-31 | 2011-01-18 | Microsoft Corporation | Segment-discriminating minimum classification error pattern recognition |
US7890438B2 (en) * | 2007-12-12 | 2011-02-15 | Xerox Corporation | Stacked generalization learning for document annotation |
US7912288B2 (en) * | 2006-09-21 | 2011-03-22 | Microsoft Corporation | Object detection and recognition system |
US8194965B2 (en) * | 2007-11-19 | 2012-06-05 | Parascript, Llc | Method and system of providing a probability distribution to aid the detection of tumors in mammogram images |
-
2010
- 2010-01-29 US US12/696,051 patent/US8473430B2/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7418378B2 (en) * | 2003-12-22 | 2008-08-26 | Microsoft Corporation | Method and apparatus for training and deployment of a statistical model of syntactic attachment likelihood |
US7627473B2 (en) * | 2004-10-15 | 2009-12-01 | Microsoft Corporation | Hidden conditional random field models for phonetic classification and speech recognition |
US20060115145A1 (en) * | 2004-11-30 | 2006-06-01 | Microsoft Corporation | Bayesian conditional random fields |
US7689419B2 (en) * | 2005-09-22 | 2010-03-30 | Microsoft Corporation | Updating hidden conditional random field model parameters after processing individual training samples |
US7912288B2 (en) * | 2006-09-21 | 2011-03-22 | Microsoft Corporation | Object detection and recognition system |
US7873209B2 (en) * | 2007-01-31 | 2011-01-18 | Microsoft Corporation | Segment-discriminating minimum classification error pattern recognition |
US20080201279A1 (en) * | 2007-02-15 | 2008-08-21 | Gautam Kar | Method and apparatus for automatically structuring free form hetergeneous data |
US7689527B2 (en) * | 2007-03-30 | 2010-03-30 | Yahoo! Inc. | Attribute extraction using limited training data |
US7840503B2 (en) * | 2007-04-10 | 2010-11-23 | Microsoft Corporation | Learning A* priority function from unlabeled data |
US8194965B2 (en) * | 2007-11-19 | 2012-06-05 | Parascript, Llc | Method and system of providing a probability distribution to aid the detection of tumors in mammogram images |
US7890438B2 (en) * | 2007-12-12 | 2011-02-15 | Xerox Corporation | Stacked generalization learning for document annotation |
US20090198671A1 (en) * | 2008-02-05 | 2009-08-06 | Yahoo! Inc. | System and method for generating subphrase queries |
US20090216739A1 (en) * | 2008-02-22 | 2009-08-27 | Yahoo! Inc. | Boosting extraction accuracy by handling training data bias |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9031844B2 (en) * | 2010-09-21 | 2015-05-12 | Microsoft Technology Licensing, Llc | Full-sequence training of deep structures for speech recognition |
US20120072215A1 (en) * | 2010-09-21 | 2012-03-22 | Microsoft Corporation | Full-sequence training of deep structures for speech recognition |
US9165243B2 (en) | 2012-02-15 | 2015-10-20 | Microsoft Technology Licensing, Llc | Tensor deep stacked neural network |
US9292787B2 (en) | 2012-08-29 | 2016-03-22 | Microsoft Technology Licensing, Llc | Computer-implemented deep tensor neural network |
US10489439B2 (en) * | 2016-04-14 | 2019-11-26 | Xerox Corporation | System and method for entity extraction from semi-structured text documents |
US10546154B2 (en) | 2017-03-28 | 2020-01-28 | Yodlee, Inc. | Layered masking of content |
WO2018183130A1 (en) * | 2017-03-28 | 2018-10-04 | Yodlee, Inc. | Layered masking of content |
EP3602384A4 (en) * | 2017-03-28 | 2020-03-04 | Yodlee, Inc. | LAYERED MASKING OF CONTENT |
US11250162B2 (en) | 2017-03-28 | 2022-02-15 | Yodlee, Inc. | Layered masking of content |
US11640522B2 (en) | 2018-12-13 | 2023-05-02 | Tybalt, Llc | Computational efficiency improvements for artificial neural networks |
US20220139543A1 (en) * | 2019-02-08 | 2022-05-05 | Nanyang Technological University | Method and system for seizure detection |
JP2022008236A (en) * | 2020-06-24 | 2022-01-13 | 三星電子株式会社 | Neuromorphic device, and method for implementing neural network |
CN111754046A (en) * | 2020-07-02 | 2020-10-09 | 成都大学 | Implementation of Deep Convolutional Linear Conditional Random Fields for Structured Data |
US20220237210A1 (en) * | 2021-01-28 | 2022-07-28 | The Florida International University Board Of Trustees | Systems and methods for determining document section types |
US11494418B2 (en) * | 2021-01-28 | 2022-11-08 | The Florida International University Board Of Trustees | Systems and methods for determining document section types |
Also Published As
Publication number | Publication date |
---|---|
US8473430B2 (en) | 2013-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8473430B2 (en) | Deep-structured conditional random fields for sequential labeling and classification | |
US11507800B2 (en) | Semantic class localization digital environment | |
US11763129B2 (en) | System and method for machine learning with long-range dependency | |
Adams et al. | A survey of feature selection methods for Gaussian mixture models and hidden Markov models | |
US9092425B2 (en) | System and method for feature-rich continuous space language models | |
US8249366B2 (en) | Multi-label multi-instance learning for image classification | |
US20240062515A1 (en) | Method for classification using deep learning model | |
US20100256977A1 (en) | Maximum entropy model with continuous features | |
US20120253792A1 (en) | Sentiment Classification Based on Supervised Latent N-Gram Analysis | |
US20090290802A1 (en) | Concurrent multiple-instance learning for image categorization | |
US11928597B2 (en) | Method and system for classifying images using image embedding | |
CN107256245A (en) | Improved and system of selection towards the off-line model that refuse messages are classified | |
US20090204556A1 (en) | Large Scale Manifold Transduction | |
CN111783873B (en) | User portrait method and device based on increment naive Bayes model | |
US20220236452A1 (en) | Method For Classification Of Precipitation Type Based On Deep Learning | |
CN114757310B (en) | Emotion recognition model and training method, device, equipment and readable storage medium thereof | |
Yu et al. | Learning in the deep-structured conditional random fields | |
Kook et al. | Deep interpretable ensembles | |
US12197862B2 (en) | Method for identifying a word corresponding to a target word in text information | |
US20240078998A1 (en) | Method for detect a speech segment | |
CN118710980A (en) | Automatic classification method of medical record images based on CE-CNN-Adam | |
US12093840B2 (en) | Method of training object prediction models using ambiguous labels | |
CN113268985A (en) | Relationship path-based remote supervision relationship extraction method, device and medium | |
CN117523278A (en) | Semantic attention meta-learning method based on Bayesian estimation | |
US20140310221A1 (en) | Interpretable sparse high-order boltzmann machines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MICROSOFT CORPORATION, WASHINGTON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YU, DONG;DENG, LI;WANG, SHIZHEN;SIGNING DATES FROM 20100121 TO 20100122;REEL/FRAME:023868/0031 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: MICROSOFT TECHNOLOGY LICENSING, LLC, WASHINGTON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICROSOFT CORPORATION;REEL/FRAME:034564/0001 Effective date: 20141014 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |