US20040236229A1 - Integrated imaging apparatus - Google Patents
Integrated imaging apparatus Download PDFInfo
- Publication number
- US20040236229A1 US20040236229A1 US10/678,651 US67865103A US2004236229A1 US 20040236229 A1 US20040236229 A1 US 20040236229A1 US 67865103 A US67865103 A US 67865103A US 2004236229 A1 US2004236229 A1 US 2004236229A1
- Authority
- US
- United States
- Prior art keywords
- images
- imaging apparatus
- imaging
- image
- visible
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 52
- 238000012544 monitoring process Methods 0.000 claims abstract description 13
- 238000011156 evaluation Methods 0.000 claims abstract description 9
- 230000003595 spectral effect Effects 0.000 claims description 19
- 238000001228 spectrum Methods 0.000 claims description 11
- 230000004927 fusion Effects 0.000 claims description 10
- 238000012545 processing Methods 0.000 claims description 10
- 230000002123 temporal effect Effects 0.000 claims description 8
- 230000003287 optical effect Effects 0.000 claims description 6
- 238000001069 Raman spectroscopy Methods 0.000 claims description 5
- 238000002073 fluorescence micrograph Methods 0.000 claims description 4
- 230000031018 biological processes and functions Effects 0.000 claims description 3
- 230000007246 mechanism Effects 0.000 claims description 3
- 238000005286 illumination Methods 0.000 claims description 2
- 230000010354 integration Effects 0.000 claims description 2
- 230000008827 biological function Effects 0.000 claims 1
- 230000008054 signal transmission Effects 0.000 claims 1
- 230000000087 stabilizing effect Effects 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 42
- 230000036541 health Effects 0.000 abstract description 6
- 238000002405 diagnostic procedure Methods 0.000 abstract description 4
- 238000001356 surgical procedure Methods 0.000 abstract description 4
- 210000001519 tissue Anatomy 0.000 description 48
- 230000010412 perfusion Effects 0.000 description 19
- 230000006870 function Effects 0.000 description 18
- 238000000701 chemical imaging Methods 0.000 description 16
- INGWEZCOABYORO-UHFFFAOYSA-N 2-(furan-2-yl)-7-methyl-1h-1,8-naphthyridin-4-one Chemical compound N=1C2=NC(C)=CC=C2C(O)=CC=1C1=CC=CO1 INGWEZCOABYORO-UHFFFAOYSA-N 0.000 description 15
- 108010064719 Oxyhemoglobins Proteins 0.000 description 15
- 108010002255 deoxyhemoglobin Proteins 0.000 description 15
- 108010054147 Hemoglobins Proteins 0.000 description 11
- 102000001554 Hemoglobins Human genes 0.000 description 11
- 238000013507 mapping Methods 0.000 description 11
- 238000006213 oxygenation reaction Methods 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 238000001514 detection method Methods 0.000 description 9
- 208000015181 infectious disease Diseases 0.000 description 9
- 230000004044 response Effects 0.000 description 9
- 238000003745 diagnosis Methods 0.000 description 8
- 239000003814 drug Substances 0.000 description 8
- 238000004611 spectroscopical analysis Methods 0.000 description 8
- 230000009466 transformation Effects 0.000 description 8
- 229940079593 drug Drugs 0.000 description 7
- 238000005534 hematocrit Methods 0.000 description 7
- 230000033001 locomotion Effects 0.000 description 7
- 206010028980 Neoplasm Diseases 0.000 description 6
- 238000013459 approach Methods 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 230000000875 corresponding effect Effects 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 230000035899 viability Effects 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 208000028867 ischemia Diseases 0.000 description 5
- 206010047139 Vasoconstriction Diseases 0.000 description 4
- 210000001367 artery Anatomy 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 230000017531 blood circulation Effects 0.000 description 4
- 201000011510 cancer Diseases 0.000 description 4
- 230000000747 cardiac effect Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 230000002596 correlated effect Effects 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 230000035939 shock Effects 0.000 description 4
- 230000025033 vasoconstriction Effects 0.000 description 4
- 210000003462 vein Anatomy 0.000 description 4
- 206010058990 Venous occlusion Diseases 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 3
- 238000002059 diagnostic imaging Methods 0.000 description 3
- 238000010191 image analysis Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000036407 pain Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000010410 reperfusion Effects 0.000 description 3
- 230000029058 respiratory gaseous exchange Effects 0.000 description 3
- 230000009885 systemic effect Effects 0.000 description 3
- 238000001931 thermography Methods 0.000 description 3
- 230000003612 virological effect Effects 0.000 description 3
- 230000029663 wound healing Effects 0.000 description 3
- 208000031104 Arterial Occlusive disease Diseases 0.000 description 2
- 208000035143 Bacterial infection Diseases 0.000 description 2
- 208000034656 Contusions Diseases 0.000 description 2
- 208000001034 Frostbite Diseases 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 208000032843 Hemorrhage Diseases 0.000 description 2
- 208000032456 Hemorrhagic Shock Diseases 0.000 description 2
- 206010021143 Hypoxia Diseases 0.000 description 2
- 108010061951 Methemoglobin Proteins 0.000 description 2
- 208000018262 Peripheral vascular disease Diseases 0.000 description 2
- 206010040070 Septic Shock Diseases 0.000 description 2
- 206010049771 Shock haemorrhagic Diseases 0.000 description 2
- 206010046996 Varicose vein Diseases 0.000 description 2
- 206010053648 Vascular occlusion Diseases 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 208000021328 arterial occlusion Diseases 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 208000034526 bruise Diseases 0.000 description 2
- 238000002591 computed tomography Methods 0.000 description 2
- 239000002537 cosmetic Substances 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000012774 diagnostic algorithm Methods 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000000799 fluorescence microscopy Methods 0.000 description 2
- 230000002538 fungal effect Effects 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 208000027096 gram-negative bacterial infections Diseases 0.000 description 2
- 150000003278 haem Chemical class 0.000 description 2
- 230000007954 hypoxia Effects 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 210000001165 lymph node Anatomy 0.000 description 2
- 238000002595 magnetic resonance imaging Methods 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000002182 neurohumoral effect Effects 0.000 description 2
- 230000001575 pathological effect Effects 0.000 description 2
- 230000007170 pathology Effects 0.000 description 2
- 238000003909 pattern recognition Methods 0.000 description 2
- 230000000144 pharmacologic effect Effects 0.000 description 2
- 230000035479 physiological effects, processes and functions Effects 0.000 description 2
- 230000007261 regionalization Effects 0.000 description 2
- 238000009877 rendering Methods 0.000 description 2
- 230000003252 repetitive effect Effects 0.000 description 2
- 210000002374 sebum Anatomy 0.000 description 2
- 230000036303 septic shock Effects 0.000 description 2
- 230000037380 skin damage Effects 0.000 description 2
- 230000036620 skin dryness Effects 0.000 description 2
- 230000036548 skin texture Effects 0.000 description 2
- 210000003625 skull Anatomy 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 230000036962 time dependent Effects 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 208000027185 varicose disease Diseases 0.000 description 2
- 208000021331 vascular occlusion disease Diseases 0.000 description 2
- 230000024883 vasodilation Effects 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- 238000001530 Raman microscopy Methods 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 230000003833 cell viability Effects 0.000 description 1
- 239000013626 chemical specie Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000003759 clinical diagnosis Methods 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000002316 cosmetic surgery Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000006392 deoxygenation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000010339 dilation Effects 0.000 description 1
- 229940088679 drug related substance Drugs 0.000 description 1
- 238000002651 drug therapy Methods 0.000 description 1
- 238000003708 edge detection Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 210000000245 forearm Anatomy 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000003331 infrared imaging Methods 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000012067 mathematical method Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 238000004476 mid-IR spectroscopy Methods 0.000 description 1
- 238000000491 multivariate analysis Methods 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 235000003715 nutritional status Nutrition 0.000 description 1
- 238000000399 optical microscopy Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 238000002106 pulse oximetry Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000002694 regional anesthesia Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000013179 statistical model Methods 0.000 description 1
- 238000012731 temporal analysis Methods 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 238000012285 ultrasound imaging Methods 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 238000002460 vibrational spectroscopy Methods 0.000 description 1
- 238000001429 visible spectrum Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/44—Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
- A61B5/441—Skin evaluation, e.g. for skin disorder diagnosis
- A61B5/442—Evaluating skin mechanical properties, e.g. elasticity, hardness, texture, wrinkle assessment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0071—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by measuring fluorescence emission
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0073—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by tomography, i.e. reconstruction of 3D images from 2D projections
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0077—Devices for viewing the surface of the body, e.g. camera, magnifying lens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/01—Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
- A61B5/015—By temperature mapping of body part
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
- A61B5/14535—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue for measuring haematocrit
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
- A61B5/1455—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/41—Detecting, measuring or recording for evaluating the immune or lymphatic systems
- A61B5/414—Evaluating particular organs or parts of the immune or lymphatic systems
- A61B5/415—Evaluating particular organs or parts of the immune or lymphatic systems the glands, e.g. tonsils, adenoids or thymus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/41—Detecting, measuring or recording for evaluating the immune or lymphatic systems
- A61B5/414—Evaluating particular organs or parts of the immune or lymphatic systems
- A61B5/418—Evaluating particular organs or parts of the immune or lymphatic systems lymph vessels, ducts or nodes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/44—Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
- A61B5/441—Skin evaluation, e.g. for skin disorder diagnosis
- A61B5/444—Evaluating skin marks, e.g. mole, nevi, tumour, scar
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/44—Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
- A61B5/441—Skin evaluation, e.g. for skin disorder diagnosis
- A61B5/445—Evaluating skin irritation or skin trauma, e.g. rash, eczema, wound, bed sore
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/44—Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
- A61B5/441—Skin evaluation, e.g. for skin disorder diagnosis
Definitions
- the invention is directed to an imaging apparatus and methods for performing assessment and monitoring with interpreted imaging.
- Embodiments of the invention are particularly useful in surgery, clinical procedures, tissue assessment, diagnostic procedures, health monitoring, and medical evaluations.
- Spectroscopy is an enormously powerful tool for the analysis of biomedical samples.
- the medical community has a definite preference for imaging methods, as exemplified by methods such as MRI and CT scanning as well as standard X-ray photography and ultrasound imaging. This is entirely understandable as many factors need to be taken into account for a physician to make a clinical diagnosis. Imaging methods potentially can provide far more information to a physician than their non-imaging counterparts. With this medical reality in mind, there has been considerable effort put into combining the power and versatility of imaging method with the specificity of spectroscopic methods.
- Near-infrared (near-IR) spectroscopy and spectroscopic imaging can measure the balance between oxygen delivery and tissue oxygen utilization by monitoring the hemoglobin oxygen saturation in tissues (Sowa, M. G. et al., 1998, Proc. SPIE 3252, pp. 199-207; Sowa, G. W. et al., 1999, Journal of Surgical Research , 86:62-29; Sow, G. W. et al., 1999 , Journal of Biomedical Optics, 4:474-481; Mansfield, J. R., et al., 2000 , International Society of Optical Engineers , 3920:99-197).
- Non-invasive monitoring of hemoglobin oxygenation exploits the differential absorption of HbO 2 and Hb, along with the fact that near-IR radiation can penetrate relatively deeply into tissues.
- Pulse oximetry routinely supplies a noninvasive measure of arterial hemoglobin oxygenation based on the differential red-visible and near infrared absorption of Hb and HbO 2 .
- Visible/near-IR multispectral imaging permits the regional variations in tissue perfusion to be mapped on macro and micro scale. Unlike infrared thermography, hyperspectral imaging alone does not map the thermal emission of the tissues.
- this imaging method relies on the differential absorption of light by a chromophore, such as, Hb and HbO 2 , resulting in differences in the wavelength dependence of the tissue reflectance depending on the hemoglobin oxygen saturation of the tissue.
- a chromophore such as, Hb and HbO 2
- Spectroscopic imaging methodologies and data are becoming increasingly common in analytical laboratories, whether it be magnetic resonance (MRI), mid-IR, Raman, fluorescence and optical microscopy, or near-IR/visible-based imaging.
- MRI magnetic resonance
- Raman Raman
- fluorescence and optical microscopy or near-IR/visible-based imaging.
- the volume of information contained in spectroscopic images can make standard data processing techniques cumbersome.
- the objective of analyzing spectroscopic images is not only to determine what the spectrum is at any particular pixel in the sample, but also to determine which regions of the sample contain similar spectra; i.e., what regions of the sample contain chemically related compounds.
- Multivariate analysis methodologies can be used to determine both the spectral and spatial characteristics of a sample within a spectroscopic imaging data set. These techniques can also be used to analyze variations in the temporal shape of a time series of images either derived for extracted from a time series of spectroscopic images.
- spectroscopic imaging data cube spectroscopic imaging data cube or just hypercube.
- This is a three dimensional array of data, consisting of two spatial dimensions (the imaging component), and one spectral dimension. It can be thought of as an array of spatially resolved individual spectra, with every pixel in the first image consisting of an entire spectrum, or as a series of spectrally resolved images.
- the 3D data cube can be treated as a single entity containing enormous amounts of spatial and spectral information about the sample from which it was acquired.
- Multi-modal image fusion is an important problem frequently addressed in medical image analysis. Registration is the process of aligning data that arise from different sources into one consistent coordinate frame. For example, various tissues appear more clearly in different types of imaging methods. Soft tissue, for example, is imaged well in MR scans, while bone is more easily discernible in CT scans. Blood vessels are often highlighted better in an MR angiogram than in a standard MR scan. Multiple scans of the same patient will generally be unregistered when acquired, as the patient may be in different positions in each scanner, and each scanner has its own coordinate system. In order to fuse the information from all scans into one coherent frame, the scans must be registered. The very reason why multiple scans are useful is what makes the registration process difficult. As each modality images tissue differently and has its own artifacts and noise characteristics, accurately modeling the intensity relationship between the scans, and subsequently aligning them, is difficult.
- the registration of two images consists of finding the transformation that best maps one image into the other. If I 1 and I 2 are two images of the same tissue and T is the correct transformation, then the voxel I 1 (x) corresponds to the same position in the sample as the voxel I 2 (T(x)).
- T is a rigid transformation consisting of three degrees of freedom of rotation and three degrees of freedom of translation. The need for rigid registration arises primarily from the patient being in different positions in the scanning devices used to image the anatomy. The information from all the images is best used when presented in one unified coordinate system. Without such image fusion, the clinician must mentally relate the information from the disparate coordinate frames.
- One method of aligning the two images is to define an intermediate, patient-centered coordinate system, instead of trying to directly register the images to one another.
- An example of a patient-centered reference frame is the use of fiducial markers attached to a patient throughout the various image acquisitions.
- the fiducial markers define a coordinate system specific to the patient, independent of the scanner or choice of imaging modality. If the markers remain fixed and can be accurately localized in all the images, then the volumes can be registered by computing the best alignment of the corresponding fiducials (Hom, B. K. P., 1987, Journal of the Optical Society of America A , 4:629-642; Mandava, V.
- a common method of registering MR and CT of the head involves extracting the skin (or skull) surfaces from both images, and aligning the 3D head models (Jiang, H., et al., 1992 Proc. SPIE , 1808:196-213; Lemoine, D. et al., 1994 , Proc. SPIE , 2164:46-56).
- the brain surface is typically used since the skull is not clearly visible in PET (Pelizzari, C., et al., J Comput Assist. Tomogr ., 1989, 13:20-26).
- Voxel-based approaches to registration do not extract any features from the images, but use the intensities themselves to register the two images. Such approaches model the relationships between intensities of the two images when they are registered, and then search through the transformation space to find an alignment that best agrees with the model. Various intensity models are discussed, including correlation, mutual information, and joint intensity priors.
- Correlation is a measure commonly used to compare two images or regions of images for computer vision problems such as alignment or matching. Given the intensity values of two image patches stacked in the vectors u and v, the normalized correlation measure is the dot product of unit vectors in the directions of u and v:
- An advantage of correlation-based methods is that they can be computed quite efficiently using convolution operators. Correlation is applicable when one expects a linear relationship between the intensities in the two images.
- normalized correlation provides some amount of robustness to lighting variation over a measure such as sum of square differences (SSD), ⁇ u ⁇ v ⁇ 2 .
- SSD sum of square differences
- the primary reason for acquiring more than one medical scan of a patient stems from the fact that each scan provides different information to the clinician. Therefore, two images that have a simple linear intensity relationship may be straightforward to register, but do not provide any additional information than one scan by itself.
- the images are completely independent (e.g. no intensity relationship exists between them), then they cannot be registered using voxel-based methods. In general, there is some dependence between images of different modalities and each modality does provide additional information.
- the function F would predict the intensity at a point in Image A given the intensity at the corresponding point in Image B. Such a function could be used to align a pair of images that are initially in different coordinate systems using SSD:
- T * argmin T ⁇ x ( F ( R B ( P ( x ))) ⁇ R A ( P ( x ))) 2
- T is the transformation between the two sets of image coordinates.
- Van den Elsen et al. compute such a mapping that makes a CT image appear more like an MR, and then register the images using correlation (van den Elsen, P., et al., 1994, “Visualization in Biomedical Computing,” 1994 Proc SPIE , 2359:227-237).
- van den Elsen, P., et al. 1994, “Visualization in Biomedical Computing,” 1994 Proc SPIE , 2359:227-237.
- explicitly computing the function F that relates two imaging modalities is difficult and under-constrained.
- MI mutual information
- MI ( U, V ) H ( U )+ H ( V ) ⁇ H ( U, V )
- H(U) and H(V) are the entropies of the two variables, and H(U,V) is the joint entropy.
- the entropy of a discrete random variable is defined as:
- T * argmax T MI ( I 1 ( x ), I 2 ( T ( x )))
- T * argmax T H ( I i ( x ))+ H ( I 2 ( T ( x ))) ⁇ H ( I 1 ( x ), I 2 ( T ( x ))
- the entropies of the two images encourage transformations that project II onto complex parts of I 2 .
- the third term, the (negative) joint entropy of I 1 and I 2 takes on large values when X explains Y well.
- Derivatives of the entropies with respect to the pose parameters can be calculated and used to perform stochastic gradient ascent (Wells, 1996). West et al. compare many multi-modal registration techniques and find mutual information to be one of the most accurate across all pairs of modalities (West, 1996).
- Leventon et al. introduced an approach to multi-modal registration using statistical models derived from a training set of images (Leventon, M., et al., 1998 , Medical Image Computing and Computer-assisted Intervention ).
- the method involved building a prior model of the intensity relationship between the two scans being registered.
- the method requires a pair of registered training images of the same modalities as those to be registered in order to build the joint intensity model.
- To align a novel pair of images the likelihood of the two images given a certain pose based on our model by sampling the intensities at corresponding points is computed. This current hypothesis can be improved by ascending the log likelihood function. In essence, one computes a probabilistic estimate of the function F (that relates the two imaging modalities) based on intensity co-occurrence.
- F that relates the two imaging modalities
- the present invention overcomes problems and disadvantages associated with current strategies and designs and provides methods and apparatus for imaging using real-time or near real-time assessment and monitoring.
- Embodiments of the device are useful in a plurality of settings including surgery, clinical procedures, tissue assessment, diagnostic procedures, forensic, health monitoring and medical evaluations.
- One embodiment of the invention is directed to an imaging apparatus comprising integrating spatial, spectral and temporal features, and optionally other physiologic or relevant data, such as room temperature or ambient light, in a spectral and temporal multimodal imaging system for the evaluation of biological systems and stimuli and fusing one or more thermal images or other imaging modalities and hyperspectral data cube for assessment of biological processes.
- the integrated features may comprise two or more of visible or infrared hyperspectral images, visible or infrared brightfield images, thermal images, fluorescence images, Raman images and/or other relevant imaging modalities.
- the imaging apparatus may further comprise a specific UV, visible and/or infrared light source, and means for collecting two or more of visible or infrared hyperspectral images, visible or infrared brightfield images, thermal images, fluorescence images, Raman images, or standard video images.
- a specific UV, visible and/or infrared light source and means for collecting two or more of visible or infrared hyperspectral images, visible or infrared brightfield images, thermal images, fluorescence images, Raman images, or standard video images.
- Another embodiment of the invention is directed to methods for detecting a diseased condition comprising acquiring thermal images from a target, acquiring visible or infrared hyperspectral images from the same target, fusing the thermal images and visible or infrared hyperspectral images to analyze spatial distributions and/or feature determination of the target.
- Thermal images or hyperspectral images of the target and/or other data can be interlaced with a time dependent reference to determine changes which could influence and be correlated with results from other imaging modalities. Wavelengths can be selected to maximize diagnostic information for a specific tissue state or anticipated end diagnostic goal.
- the selection step involves performing multivariate image and spectral processing using multivariate image and spectral processing algorithms to extract information from the plurality of images and spectra for real-time or near real-time assessment.
- Multiple hyperspectral collection devices in a variety of wavelength regimens could be used simultaneously or sequentially or on an as needed basis. For instance a visible hyperspectral images could be combined with a near infrared hyperspectral imager (plus or minus a broad band thermal camera) to provide combined information from both wavelength regions.
- tissue health mapping ; skin sebum level mapping; skin dryness, skin texture, skin feel or skin color mapping; skin damage detection and mapping (UV damage, frostbite, burns, cuts, abrasions) impact of cosmetics or other substances applied to the skin bruise age, force of impact, peripheral vascular disease diagnosis, extent, determination or regionalization of ischemia, varicose veins or hemorrhage detection, local detection and mapping, systemic infection detection, differentiation between viral, bacterial and fungal, and more specific identification, such as between gram negative and gram positive bacterial infection, venous occlusion increase in total hemoglobin, hematocrit, and change in deoxyhemoglobin/oxyhemoglobin ratio, differentiate between ischemia and hypoxia, burn depth and wound healing evaluation, non-invasive diagnosis of shock by imaging uninjured skin, hemorrhagic shock, septic shock, burn shock, changes in a dynamic system as a function of time or other parameter, vascular occlusion, vaso-
- FIG. 1 A schematic diagram of a common optical path shared by multiple modalities.
- the present invention is directed to an imaging apparatus and methods for performing real-time or near real-time assessment and monitoring.
- Embodiments of the device are useful in a plurality of settings including surgery, clinical procedures, tissue assessment, diagnostic procedures, forensic, health monitoring and medical evaluations.
- ATR Automatic Target Recognition
- a technology developed within the military for automatic analysis and pattern recognition of signature data and gating of images relative to repetitive physiological parameters such as heart rate or respiration.
- an ATR is used to maintain image centering.
- the addition of such novel features as a common optical path optimizes data collection and minimizes processing requirements for a fused image.
- Image fusion between hyperspectral image datasets (also referred to as cubes) and other imaging modalities would allow for the extraction of more medically-relevant features and diagnostic information than any of the modalities alone.
- Addition of physiologically or medically related scalar variables to the data set of one or more hyperspectral imaging sets with or without formal image fusion being required allows for the enhancement of diagnostic algorithms.
- Thermal images or hyperspectral images may be used as an interlaced, time dependent reference to identify changes in the dynamic system. These changes may influence and be correlated with the results from all modalities.
- signal beam 110 is acquired and IR Beam-splitter 160 is placed in the path of signal beam 110 and accordingly, splits or diverts a portion of the infra-red signal beam 110 to infra-red focal plane array 120 .
- 90/10 Visible Beam-splitter 130 is placed in signal beam 110 behind IR Beamsplitter 160 .
- Visible Beam-splitter 130 splits the visible spectrum of signal beam 110 into two portions, wherein one portion is received by video camera 150 , and the other is received by visible camera 150 .
- One or multiple mirrors can be used for the beam splitter. This allows for the simultaneous acquisition of data from multiple modalities.
- Fusion of broad band infrared and hyperspectral imaging methodologies may be useful to devise algorithms for wavelength selection that maximize the diagnostic information for a specific tissue state; employ various multivariate image processing algorithms to extract information from the hyperspectral images and spectra and the thermal images for real-time or near real-time assessment of tissue state; devise image processing algorithms to assess the size and shape of abnormal tissue regions or domains; acquire sequential hyperspectral imaging cubes, thermal images or other physiological data to examine changes in a dynamic system as a function of time. Utility is extended by pairing more superficial data from hyperspectral imaging cubes with deeper perfusion data.
- a method for determining a total hematocrit comprises measuring a spatial distribution of oxyhemoglobin, deoxyhemoglobin and methemoglobin using hyperspectral imaging methods within the visible range or infrared range of the electromagnetic spectrum; determining total hematocrit by calculating the area under the oxyhemoglobin, deoxyhemoglobin and methemoglobin spectrum or the intensity at their respective wavelengths; and pairing this with perfusion data from broad band thermal camera to permit assessment of total blood volume.
- the invention may be used to determine blood flow within a patient.
- a thermal camera demonstrates a state of perfusion and a hyperspectral camera demonstrates a state of oxygen extraction.
- Spatial characteristics relative to blood vessel assist diagnosis, i.e., like mottling visible in skin, and can see more or less heterogeneity under certain thermal, neurohumoral, physiological or pathological circumstances and in specific spatial patterns.
- the present invention may be used to determine a static or dynamic response of tissue or musculature when applying an active stimulus, such as a thermal change, drug injection, and electromagnetic or mechanical stimulus.
- Venous occlusion causes an increase in total hemoglobin, hematocrit, and an increase in deoxyhemoglobin/oxyhemoglobin ratio. The time course also varies with arterial occlusion and oxyhemoglobin/deoxyhemoglobin ratios.
- Artery and vein measurements can be used as internal calibration on a given picture for tissue levels of oxyhemoglobin/deoxyhemoglobin or thermal image or signature. Further, one can add thermal data by fusing thermal image just as one of the wavelengths in series in hyperspectral cube, i.e., an extra plane. Alternatively, thermal images can be fused to each wavelength image in series. Alternatively or in addition, generic processed analysis of thermal image (degree of variation) weights an image of each wavelength plane or impacts hyperspectral algorithmic analysis. Scalar data presenting physiologic or other relevant data can be also incorporated as described above.
- correction for a patient's motion is done by tissue stabilization or in the case of repetitive motions by gating image frames with a patient's cardiac or respiration cycle.
- Frames at the specific wavelengths selected for a particular diagnostic module are acquired at the same position in sequential cardiac cycles.
- the timing of the cardiac cycle is provided by electrocardiogram or cardiac ultrasound or other method.
- the respiratory variation is timed with an external sensor of respiration or with either the ventilating mechanism or a sensor mechanism of an artificial respirator.
- the present invention may be used to provide signatures of tissue viability or cancer. Markers of cell viability include hyperspectral signatures of oxyhemoglobin and deoxyhemoglobin or other chromaphores, thermal signatures, or fused signatures.
- the present invention is used to determine drug impact on vasodilitation, neurohumoral response, physiology, and pathology.
- the present invention is used to identify and classify a large variety of chemical species, for example, those other than oxyhemoglobin and deoxyhemoglobin.
- Sensor/image fusion permits additional data acquisition and incorporation into diagnostic assessment. This is facilitated by the use of multiple optical paths properly aligned to optimize registration. Inclusion of simultaneous recording of standard video camera images facilitates registration and provides additional data.
- False color imaging may be added real-time to facilitate the rapid understanding of the data presented to the surgeon or other user.
- On board CCD chip filters can be provided to increase processing speed.
- Input for physiologic monitoring systems, such as blood pressure, heart rate, peripheral oxygenation, can be added to the data acquired and fed into diagnostic algorithms.
- a recording system can be included to log the real-time or near real-time output of imaging systems.
- a split frame video display is used to show all modes simultaneously.
- parameters of wound healing may be displayed, such as: oxyhemoglobin or deoxyhemoglobin independently or as a ratio; signatures associated with rapidly dividing cells or dead cells, or particular types of cells; fluid content; hydration/dehydration or edema of tissue; or tissue performance.
- Tissue perfusion data provided by a thermal camera increases accuracy, delivers information about underlying vascular, beds, and/or provides data that will minimize the hyperspectral data processing requirements.
- Thermal images are used provide a baseline to track oxygen extraction or signature changes induced by tissue exposure.
- Increased heterogeneity and spatial features can be important in a diagnosis. For example, in vasoconstriction, it allows identification of areas that are less well perfused small micro areas that manifest as heterogeneity, to be diagnosed. Differences in oxyhemoglobin and deoxyhemoglobin ratios with spatial characteristics provide an image of micromottling. If vasodilated are more uniform, the patterns of vasoconstriction are helpful in diagnosis of infection in general and can aid in the identification of specific infection. Other patterns of heterogeneity are seen with cancers, and for example are associated with areas of increased metabolism or necrosis.
- the present invention may be used to analyze tissue health mapping; skin sebum level mapping; skin dryness, skin texture, skin feel or skin color mapping; skin damage detection and mapping (UV damage, frostbite, burns, cuts, abrasions) impact of cosmetics or other substances applied to the skin bruise age, force of impact, peripheral vascular disease diagnosis, extent, determination or regionalization of ischemia, varicose veins or hemorrhage detection, local detection and mapping, systemic infection detection, differentiation between viral, bacterial and fungal, and more specific identification, such as between gram negative and gram positive bacterial infection, venous occlusion increase in total hemoglobin, hematocrit, and change in deoxyhemoglobin/oxyhemoglobin ratio, differentiate between ischemia and hypoxia, burn depth and wound healing evaluation, non-invasive diagnosis of shock by imaging uninjured skin, hemorrhagic shock, septic shock, bum shock, changes in a dynamic system as a function of time or other parameter, vascular oc
- motion artifacts of the measurements are used to measure heterogeneity.
- a homogeneous tissue will continue to produce the same spectral signature, whereas heterogeneous tissue will demonstrate a variety of different signatures.
- Extraneous motion artifacts can be reduced by mechanical stabilization of field of regard, for example, by clamping tissue or region of interest. Even in the absence of discrete spatial information, the simple range of spectra obtained, demonstrating the heterogeneity per se can be useful. Dilation makes thermal imaging more uniform and constriction more heterogeneous. The latter correlates with ischemia, microvascular mottling or the edge of larger vessels. Different changes would be detected in association with tumors, immunologic response to infection or other stimulus.
- Motion artifacts are used as an indicator of inhomogeneous distributions of oxygenation and perfusion. Increases or decreases in artifacts not related to motion are used to assess heterogeneity of oxygenation and perfusion, and, hence, viability.
- the present invention may be used to look for signs of perfusion vs. viability. Integration of spatial and spectral and temporal features allows for the diagnosis of viability by creating a perfusion viability matrix. Because blood flow has a temporal component, the amount of blood that gets to tissue may be measured. This can be useful in the assessment of viability, cancer or infection.
- images are correlated with pain and drug response to provide pain feedback with infusion; other drug levels, to provide positive/negative feedback.
- Surface heterogeneity is correlated with infection, to provide determine time of infection, severity, systemic vs. local infection, type of organism, bacterial vs. viral, gram positive versus gram negative
- the present invention is also used to detect drug usage.
- the present invention may also be used for the assessment of metabolism and nutrition. Tissue structure and function, and hence signature, are influenced by nutritional status.
- the present invention may also be used to define adequacy of regional anesthesia or evaluation of pain response and the response to drug therapy with or without an automatic feedback component. It may also be used to identify and evaluate the presence of a drug substance and evaluate the initial response and/or therapeutic efficacy of a variety of pharmaceuticals. It can be used to track die agents and quantify their presence in association with blood flow parameters.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Public Health (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Dermatology (AREA)
- Immunology (AREA)
- Vascular Medicine (AREA)
- Optics & Photonics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Endocrinology (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Image Input (AREA)
- Image Processing (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
The invention is directed to imaging apparatus for performing real-time or near real-time assessment and monitoring. Embodiments of the device are useful in a plurality of settings including surgery, clinical procedures, tissue assessment, diagnostic procedures, forensic, health monitoring and medical evaluations.
Description
- This application claims priority to U.S. Provisional Patent Application, Serial No. 60/142,067, filed Jul. 2, 1999.
- 1. Field of the Invention
- The invention is directed to an imaging apparatus and methods for performing assessment and monitoring with interpreted imaging. Embodiments of the invention are particularly useful in surgery, clinical procedures, tissue assessment, diagnostic procedures, health monitoring, and medical evaluations.
- 2. Description of the Background
- Spectroscopy, whether it is visible, near infrared, infrared or Raman, is an enormously powerful tool for the analysis of biomedical samples. The medical community, however, has a definite preference for imaging methods, as exemplified by methods such as MRI and CT scanning as well as standard X-ray photography and ultrasound imaging. This is entirely understandable as many factors need to be taken into account for a physician to make a clinical diagnosis. Imaging methods potentially can provide far more information to a physician than their non-imaging counterparts. With this medical reality in mind, there has been considerable effort put into combining the power and versatility of imaging method with the specificity of spectroscopic methods.
- Near-infrared (near-IR) spectroscopy and spectroscopic imaging can measure the balance between oxygen delivery and tissue oxygen utilization by monitoring the hemoglobin oxygen saturation in tissues (Sowa, M. G. et al., 1998,Proc. SPIE 3252, pp. 199-207; Sowa, G. W. et al., 1999, Journal of Surgical Research, 86:62-29; Sow, G. W. et al., 1999, Journal of Biomedical Optics, 4:474-481; Mansfield, J. R., et al., 2000, International Society of Optical Engineers, 3920:99-197). For in-vivo human studies, the forearm or leg has been the investigational site for many of the noninvasive near-IR studies. Non-imaging near-IR applications have examined the local response of tissue to manipulations of blood flow (De-Blasi, R. A. et al., 1992, Adv. Exp. Med. Biol, 317:771-777). Clinically, there are situations where the regional variations in oxygenation saturation are of interest (Stranc, M. F. et al, 1998, British Journal of Plastic Surgery, 51:210-218). Near-IR imaging offers a means of accessing the spatial heterogeneity of the hemoglobin oxygenation saturation response to tissue perfusion. (Mansfield, J. R. et al., 1997, Analytical Chemistry, 69:3370-3374; Mansfield, J. R., et al., 1997, Computerized Medical Imaging and Graphics, 21:299-308; Salzer, R., et al., 2000, Fresenius Journal of Analytical Chemistry, 366:712- 726 ; Shaw, R. A., et al., 2000, Journal of Molecular Structure (Theochem), 500:129-138; Shaw, R. A., et al., 2000, Journal of Inorganic Biochemistry, 79:285-293; Mansfield, J. R., et al., 1999, Proc. SPIE Int. Soc. Opt. Eng., 3597:222-233; Mansfield, J. R., et al., 1999, Applied Spectroscopy, 53:1323-1330; McIntosh, L. M., et al., 1999, Biospectroscopy, 5:265-275; Mansfield, R., et al., Vibrational Spectroscopy, 19:33-45; Payette, J. R., et al., 1999, American Clinical Laboratory, 18:4-6; Mansfield, J. R., et al., 1998, IEEE Transactions on Medical Imaging, 6:1011-1018
- Non-invasive monitoring of hemoglobin oxygenation exploits the differential absorption of HbO2 and Hb, along with the fact that near-IR radiation can penetrate relatively deeply into tissues. Pulse oximetry routinely supplies a noninvasive measure of arterial hemoglobin oxygenation based on the differential red-visible and near infrared absorption of Hb and HbO2. Visible/near-IR multispectral imaging permits the regional variations in tissue perfusion to be mapped on macro and micro scale. Unlike infrared thermography, hyperspectral imaging alone does not map the thermal emission of the tissues. Instead, this imaging method relies on the differential absorption of light by a chromophore, such as, Hb and HbO2, resulting in differences in the wavelength dependence of the tissue reflectance depending on the hemoglobin oxygen saturation of the tissue. (Sowa, M. G., et al., 1997, Applied Spectroscopy, 51:143-152; Leventon, M., 2000, MIT Ph.D. Thesis)
- Spectroscopic imaging methodologies and data are becoming increasingly common in analytical laboratories, whether it be magnetic resonance (MRI), mid-IR, Raman, fluorescence and optical microscopy, or near-IR/visible-based imaging. However, the volume of information contained in spectroscopic images can make standard data processing techniques cumbersome. Furthermore, there are few techniques that can demarcate which regions of a spectroscopic image contain similar spectra without a priori knowledge of either the spectral data or the sample's composition. The objective of analyzing spectroscopic images is not only to determine what the spectrum is at any particular pixel in the sample, but also to determine which regions of the sample contain similar spectra; i.e., what regions of the sample contain chemically related compounds. Multivariate analysis methodologies can be used to determine both the spectral and spatial characteristics of a sample within a spectroscopic imaging data set. These techniques can also be used to analyze variations in the temporal shape of a time series of images either derived for extracted from a time series of spectroscopic images.
- There are few techniques that can demarcate which regions of a sample contain similar substances without a priori knowledge of the sample's composition. Spectroscopic imaging provides the specificity of spectroscopy while at the same time relaying spatial information by providing images of the sample that convey some chemical meaning. Usually the objective in analyzing heterogeneous systems is to identify not only the components present in the system, but their spatial distribution. The true power of this technique relative to traditional imaging methods lies in its inherent multivariate nature. Spatial relationships among many parameters can be assessed simultaneously. Thus, the chemical heterogeneity or regional similarity within a sample is captured in a high dimensional representation which can be projected onto a number of meaningful low dimensional easily interpretable representations which typically comprise a set of composite images each having a specific meaning.
- While it is now clear that both spectroscopy and spectroscopic imaging can play roles in providing medically relevant information, the raw spectral or imaging measurement seldom reveals directly the property of clinical interest. For example using spectroscopy, one cannot easily determine whether the tissue is cancerous, or determine blood glucose concentrations and the adequacy of tissue perfusion. Instead, pattern recognition algorithms, clustering methods, regression and other theoretical methods provide the means to distill diagnostic information from the original analytical measurements.
- There are however various methods for the collection of spectroscopic images. In all such cases, the result of a spectroscopic imaging experiment is something termed a spectral image cube, spectroscopic imaging data cube or just hypercube. This is a three dimensional array of data, consisting of two spatial dimensions (the imaging component), and one spectral dimension. It can be thought of as an array of spatially resolved individual spectra, with every pixel in the first image consisting of an entire spectrum, or as a series of spectrally resolved images. In either representation, the 3D data cube can be treated as a single entity containing enormous amounts of spatial and spectral information about the sample from which it was acquired.
- As an extension of the three dimensional array acquired in a spectroscopic imaging experiment, one can collect data cubes as a function of additional parameters such as time, temperature or pH. Numerous algorithms can be used to analyze these multi-dimensional data sets so that chemical and spectral variations can be studied as additional parameters. However, taken together, they can allow one to more fully understand the variations in the data. This can be done in a gated or sequential fashion.
- Multi-modal image fusion, or image registration, is an important problem frequently addressed in medical image analysis. Registration is the process of aligning data that arise from different sources into one consistent coordinate frame. For example, various tissues appear more clearly in different types of imaging methods. Soft tissue, for example, is imaged well in MR scans, while bone is more easily discernible in CT scans. Blood vessels are often highlighted better in an MR angiogram than in a standard MR scan. Multiple scans of the same patient will generally be unregistered when acquired, as the patient may be in different positions in each scanner, and each scanner has its own coordinate system. In order to fuse the information from all scans into one coherent frame, the scans must be registered. The very reason why multiple scans are useful is what makes the registration process difficult. As each modality images tissue differently and has its own artifacts and noise characteristics, accurately modeling the intensity relationship between the scans, and subsequently aligning them, is difficult.
- The registration of two images consists of finding the transformation that best maps one image into the other. If I1 and I2 are two images of the same tissue and T is the correct transformation, then the voxel I1(x) corresponds to the same position in the sample as the voxel I2(T(x)). In the simplest case, T is a rigid transformation consisting of three degrees of freedom of rotation and three degrees of freedom of translation. The need for rigid registration arises primarily from the patient being in different positions in the scanning devices used to image the anatomy. The information from all the images is best used when presented in one unified coordinate system. Without such image fusion, the clinician must mentally relate the information from the disparate coordinate frames.
- One method of aligning the two images is to define an intermediate, patient-centered coordinate system, instead of trying to directly register the images to one another. An example of a patient-centered reference frame is the use of fiducial markers attached to a patient throughout the various image acquisitions. The fiducial markers define a coordinate system specific to the patient, independent of the scanner or choice of imaging modality. If the markers remain fixed and can be accurately localized in all the images, then the volumes can be registered by computing the best alignment of the corresponding fiducials (Hom, B. K. P., 1987,Journal of the Optical Society of America A, 4:629-642; Mandava, V. R., et al., Proc SPIE, 1992, 1652:271-282; Haralick, R. M., et al., 1993, Computer and Robot Vision). The main drawback of this method is that the markers must remain attached to the patient at the same positions throughout all image acquisitions. For applications such as change detection over months or years, this registration method is not suitable. Fiducial registration is typically used as ground-truth to evaluate the accuracy of other methods as careful placement and localization of the markers can provide very accurate alignment (West, J. et al., 1996, Proc SPIE, Newport Beach, Calif.).
- When fiducial markers are not available to define the patient coordinate frame, corresponding anatomical feature points can be extracted from the images and used to compute the best alignment (Maintz, J. B. Antione, et al., 1995Computer Vision, Virtual Reality and Robotics in Medicine, pp. 219-228; Maguire, Jr., G., et al., 1991, IEEE Computer Graphics Applications, 11:20-29). This approach depends greatly on the ability to automatically and accurately extract reliable image features. In general, methods of feature extraction such as intensity thresholding or edge detection do not work well on medical scans, due to non-linear gain fields and highly textured structures. Even manual identification of corresponding 3D anatomical points can be unreliable. Without the ability to accurately localize corresponding features in the images, alignment in this manner is difficult.
- Instead of localizing feature points in the images, richer structures such as object surfaces can be extracted and used as a basis of registration. A common method of registering MR and CT of the head involves extracting the skin (or skull) surfaces from both images, and aligning the 3D head models (Jiang, H., et al., 1992Proc. SPIE, 1808:196-213; Lemoine, D. et al., 1994, Proc. SPIE, 2164:46-56). For PET/MR registration, the brain surface is typically used since the skull is not clearly visible in PET (Pelizzari, C., et al., J Comput Assist. Tomogr., 1989, 13:20-26). The 3D models are then rigidly registered using surface-based registration techniques (Ettinger, G., 1997, MIT Ph.D Thesis). The success of such methods relies on the structures being accurately and consistently segmented across modalities and the surfaces having rich enough structure to be unambiguously registered.
- Voxel-based approaches to registration do not extract any features from the images, but use the intensities themselves to register the two images. Such approaches model the relationships between intensities of the two images when they are registered, and then search through the transformation space to find an alignment that best agrees with the model. Various intensity models are discussed, including correlation, mutual information, and joint intensity priors.
- Correlation is a measure commonly used to compare two images or regions of images for computer vision problems such as alignment or matching. Given the intensity values of two image patches stacked in the vectors u and v, the normalized correlation measure is the dot product of unit vectors in the directions of u and v:
- (u·v)/(∥u∥ ∥v∥)
- An advantage of correlation-based methods is that they can be computed quite efficiently using convolution operators. Correlation is applicable when one expects a linear relationship between the intensities in the two images. In computer vision problems, normalized correlation provides some amount of robustness to lighting variation over a measure such as sum of square differences (SSD), ∥u−v∥2. The primary reason for acquiring more than one medical scan of a patient stems from the fact that each scan provides different information to the clinician. Therefore, two images that have a simple linear intensity relationship may be straightforward to register, but do not provide any additional information than one scan by itself. On the other hand, if the images are completely independent (e.g. no intensity relationship exists between them), then they cannot be registered using voxel-based methods. In general, there is some dependence between images of different modalities and each modality does provide additional information.
- One simplified model of the medical imaging process is that an internal image is a rendering function R of underlying tissue properties, P(x), over positions x. An image of modality A could be represented as a function RA(P) and a registered image of modality B of the same patient would be another function, say RB(P). Suppose a function F(x) could be computed relating the two rendering functions such that the following is true (with the possible addition of some Gaussian noise, N):
- F(R B(P))=R A(P)+N
- The function F would predict the intensity at a point in Image A given the intensity at the corresponding point in Image B. Such a function could be used to align a pair of images that are initially in different coordinate systems using SSD:
- T*=argminT Σx(F(R B(P(x)))−R A(P(x)))2
- where T is the transformation between the two sets of image coordinates. Van den Elsen et al. compute such a mapping that makes a CT image appear more like an MR, and then register the images using correlation (van den Elsen, P., et al., 1994, “Visualization in Biomedical Computing,” 1994Proc SPIE, 2359:227-237). In general, explicitly computing the function F that relates two imaging modalities is difficult and under-constrained.
- Maximization of mutual information (MI) is a general approach applicable to a wide range of multi-modality registration applications (Bell, A. J., et al., 1995Advances in Neural Information Processing 7; Collignon, D., et al., 1995, First Conf. on Computer Vision, Virtual Reality and Robotics in Medicine Springer; Maes, F. et al, 1996, Mathematical Methods in Biomedical Image Analysis; Wells, W. M., et al., 1996, Medical Image Analysis, 1(1):35-51). One of the strengths of using mutual information is that MI does not use any prior information about the relationship between joint intensity distributions. While mutual information does not explicitly model the function F that relates the two imaging modalities, it assumes that when the images are aligned, each image should explain the other better than when the images are not aligned.
- Given two random variables U and V, mutual information is defined as (Bell, 1995):
- MI(U, V)=H(U)+H(V)−H(U, V)
- where H(U) and H(V) are the entropies of the two variables, and H(U,V) is the joint entropy. The entropy of a discrete random variable is defined as:
- H(U)=−Σ P u(u)log P u(u)
- where Pu(u) is the probability mass function associated with U. Similarly, the expression for joint entropy entropy operates over the joint PDF:
- H(U, V)=−ΣΣ P u,v(u,v)log P u,v(u,v)
- When U and V are independent, H(U, V)=H(U)+H(V), which implies the mutual information is zero. When there is a one-to-one functional relationship between U and V, (i.e. they are completely dependent), the mutual information is maximized as:
- MI(U, V)=H(U)=H(V)=H(U, V)
- To operate on images over a transformation, we consider the two images, I1(x) and I2(x) to be random variables under a spatial parameterization, x. We seek to find the value of the transformation T that maximizes the mutual information (Wells, 1996):
- T*=argmaxT MI(I 1(x), I 2(T(x)))
- T*=argmaxT H(I i(x))+H(I 2(T(x)))−H(I 1(x), I 2(T(x))
- The entropies of the two images encourage transformations that project II onto complex parts of I2. The third term, the (negative) joint entropy of I1 and I2, takes on large values when X explains Y well. Derivatives of the entropies with respect to the pose parameters can be calculated and used to perform stochastic gradient ascent (Wells, 1996). West et al. compare many multi-modal registration techniques and find mutual information to be one of the most accurate across all pairs of modalities (West, 1996).
- Leventon et al. introduced an approach to multi-modal registration using statistical models derived from a training set of images (Leventon, M., et al., 1998, Medical Image Computing and Computer-assisted Intervention). The method involved building a prior model of the intensity relationship between the two scans being registered. The method requires a pair of registered training images of the same modalities as those to be registered in order to build the joint intensity model. To align a novel pair of images, the likelihood of the two images given a certain pose based on our model by sampling the intensities at corresponding points is computed. This current hypothesis can be improved by ascending the log likelihood function. In essence, one computes a probabilistic estimate of the function F (that relates the two imaging modalities) based on intensity co-occurrence. To align the novel images, the pose is found that maximizes the likelihood that those images arose from the same relation F.
- Building a joint-intensity model does require having access to a registered pair of images of the same modality and approximately the same coverage as the novel pair to be registered. Mutual information approaches do not need to draw upon previously registered scans. However, when this information is available, the prior joint intensity model provides the registration algorithm with additional guidance which results in convergence on the correct alignment more quickly, more reliably and from more remote initial starting points.
- The present invention overcomes problems and disadvantages associated with current strategies and designs and provides methods and apparatus for imaging using real-time or near real-time assessment and monitoring. Embodiments of the device are useful in a plurality of settings including surgery, clinical procedures, tissue assessment, diagnostic procedures, forensic, health monitoring and medical evaluations.
- One embodiment of the invention is directed to an imaging apparatus comprising integrating spatial, spectral and temporal features, and optionally other physiologic or relevant data, such as room temperature or ambient light, in a spectral and temporal multimodal imaging system for the evaluation of biological systems and stimuli and fusing one or more thermal images or other imaging modalities and hyperspectral data cube for assessment of biological processes. The integrated features may comprise two or more of visible or infrared hyperspectral images, visible or infrared brightfield images, thermal images, fluorescence images, Raman images and/or other relevant imaging modalities. The imaging apparatus may further comprise a specific UV, visible and/or infrared light source, and means for collecting two or more of visible or infrared hyperspectral images, visible or infrared brightfield images, thermal images, fluorescence images, Raman images, or standard video images.
- Another embodiment of the invention is directed to methods for detecting a diseased condition comprising acquiring thermal images from a target, acquiring visible or infrared hyperspectral images from the same target, fusing the thermal images and visible or infrared hyperspectral images to analyze spatial distributions and/or feature determination of the target. Thermal images or hyperspectral images of the target and/or other data can be interlaced with a time dependent reference to determine changes which could influence and be correlated with results from other imaging modalities. Wavelengths can be selected to maximize diagnostic information for a specific tissue state or anticipated end diagnostic goal. The selection step involves performing multivariate image and spectral processing using multivariate image and spectral processing algorithms to extract information from the plurality of images and spectra for real-time or near real-time assessment. Multiple hyperspectral collection devices in a variety of wavelength regimens could be used simultaneously or sequentially or on an as needed basis. For instance a visible hyperspectral images could be combined with a near infrared hyperspectral imager (plus or minus a broad band thermal camera) to provide combined information from both wavelength regions. In this way, one can analyze tissue health mapping; skin sebum level mapping; skin dryness, skin texture, skin feel or skin color mapping; skin damage detection and mapping (UV damage, frostbite, burns, cuts, abrasions) impact of cosmetics or other substances applied to the skin bruise age, force of impact, peripheral vascular disease diagnosis, extent, determination or regionalization of ischemia, varicose veins or hemorrhage detection, local detection and mapping, systemic infection detection, differentiation between viral, bacterial and fungal, and more specific identification, such as between gram negative and gram positive bacterial infection, venous occlusion increase in total hemoglobin, hematocrit, and change in deoxyhemoglobin/oxyhemoglobin ratio, differentiate between ischemia and hypoxia, burn depth and wound healing evaluation, non-invasive diagnosis of shock by imaging uninjured skin, hemorrhagic shock, septic shock, burn shock, changes in a dynamic system as a function of time or other parameter, vascular occlusion, vaso-dilation and vaso-constriction changes related to the presence of cancer in primary tissue or lymph nodes, either surface or subsurface, changes related to a specific chemical, mechanical, thermal, pharmacological or physiological stimulus. Different levels of microvascular constriction and relaxation lead to different ratios of oxyhemoglobin/deoxyhemoglobin, to tissue perfusion, tissue abnormality, disease state or diagnostic condition, total hematocrit, differentiate differences in reperfusion state following occlusion where oxygenation levels may remain low although there is good perfusion.
- Other technical advantages of the present invention are set forth in or will be apparent from drawings and the description of the invention which follows, or may be learned from the practice of the invention.
- FIG. 1 A schematic diagram of a common optical path shared by multiple modalities.
- As embodied and broadly described herein, the present invention is directed to an imaging apparatus and methods for performing real-time or near real-time assessment and monitoring. Embodiments of the device are useful in a plurality of settings including surgery, clinical procedures, tissue assessment, diagnostic procedures, forensic, health monitoring and medical evaluations.
- It has been surprisingly found that the pairing of hyperspectral imaging data with data obtained from other single-image imaging methodologies, (examples of which include thermal imaging or fluorescence imaging) provides a sensitive and accurate assessment measure of a physiological condition. This is particularly appealing in terms of tissue assessment in that both thermal perfusion assessments and various multi-modal tissue signatures which incorporate things such as oxyhemoglobin/deoxyhemoglobin ratios and other indices of tissue physiology, pathology or function are interrelated. By fusing data from multiple collection devices and multiple spectral modalities, such as a broad band thermal camera and one or more hyperspectral cameras, or a single imaging device that can respond in multiple discreet bands, data can be obtained to provide medically relevant information. Additionally, pixel to pixel registration for fusion will benefit from methodologies designed to permit this. Included among these technologies are Automatic Target Recognition (ATR), a technology developed within the military for automatic analysis and pattern recognition of signature data, and gating of images relative to repetitive physiological parameters such as heart rate or respiration. In an embodiment of the invention, an ATR is used to maintain image centering. The addition of such novel features as a common optical path optimizes data collection and minimizes processing requirements for a fused image. Image fusion between hyperspectral image datasets (also referred to as cubes) and other imaging modalities would allow for the extraction of more medically-relevant features and diagnostic information than any of the modalities alone. Addition of physiologically or medically related scalar variables to the data set of one or more hyperspectral imaging sets with or without formal image fusion being required allows for the enhancement of diagnostic algorithms.
- Incorporation of a stable broad band light source with the ability to be filtered to provide illumination, either singly or in multiples of different spectral regions, an electronically tunable imaging spectrometer, a video camera, a CCD, and a parfocal infrared focal plane array or other camera with the same field of view as the CCD.
- Image fusion using beam splitters for the simultaneous acquisition of multiple discreet images incorporating spectral data, each discreet image providing a unique information set, and these various information sets are combined in a variety of manners to allow for enhanced and more unique signatures. Enhancement results in a broader and more discernible identification methodology. If desired, data analysis can be enhanced by triangulation with two cameras. Polarizing imagers may be used as desired to enhance signatures for various targets. Temporal analysis is included in a signature. Temporal alterations or heterogeneity, with or without a meaningful pattern, is acquired with or without gating.
- Thermal images or hyperspectral images, either singly or in combination with other modal images, may be used as an interlaced, time dependent reference to identify changes in the dynamic system. These changes may influence and be correlated with the results from all modalities.
- Referring to FIG. 1,
signal beam 110 is acquired and IR Beam-splitter 160 is placed in the path ofsignal beam 110 and accordingly, splits or diverts a portion of the infra-red signal beam 110 to infra-redfocal plane array 120. 90/10 Visible Beam-splitter 130 is placed insignal beam 110 behindIR Beamsplitter 160. Visible Beam-splitter 130 splits the visible spectrum ofsignal beam 110 into two portions, wherein one portion is received byvideo camera 150, and the other is received byvisible camera 150. One or multiple mirrors can be used for the beam splitter. This allows for the simultaneous acquisition of data from multiple modalities. - Fusion of broad band infrared and hyperspectral imaging methodologies may be useful to devise algorithms for wavelength selection that maximize the diagnostic information for a specific tissue state; employ various multivariate image processing algorithms to extract information from the hyperspectral images and spectra and the thermal images for real-time or near real-time assessment of tissue state; devise image processing algorithms to assess the size and shape of abnormal tissue regions or domains; acquire sequential hyperspectral imaging cubes, thermal images or other physiological data to examine changes in a dynamic system as a function of time. Utility is extended by pairing more superficial data from hyperspectral imaging cubes with deeper perfusion data.
- According to an embodiment of the present invention, a method for determining a total hematocrit comprises measuring a spatial distribution of oxyhemoglobin, deoxyhemoglobin and methemoglobin using hyperspectral imaging methods within the visible range or infrared range of the electromagnetic spectrum; determining total hematocrit by calculating the area under the oxyhemoglobin, deoxyhemoglobin and methemoglobin spectrum or the intensity at their respective wavelengths; and pairing this with perfusion data from broad band thermal camera to permit assessment of total blood volume.
- Alternatively, the invention may be used to determine blood flow within a patient. For example, a thermal camera demonstrates a state of perfusion and a hyperspectral camera demonstrates a state of oxygen extraction. Spatial characteristics relative to blood vessel assist diagnosis, i.e., like mottling visible in skin, and can see more or less heterogeneity under certain thermal, neurohumoral, physiological or pathological circumstances and in specific spatial patterns. In addition, the present invention may be used to determine a static or dynamic response of tissue or musculature when applying an active stimulus, such as a thermal change, drug injection, and electromagnetic or mechanical stimulus.
- Different levels of microvascular constriction lead to different ratios of blood oxy/deoxygenation or signature of tissue vs. artery vs. vein. In addition to heme and heme-containing or related components, many chemicals and substances can be identified including, for example, glucose, enzymes and metabolic effluents, and moisture content and distribution can be determined and calibrated with artery verses vein. Arterial occlusion causes a decrease in perfusion and total hemoglobin and increase in deoxyhemoglobin/oxyhemoglobin ratio. The time course will be useful as well as including both first and second derivatives. Arterial reperfusion causes increase in perfusion and total hemoglobin. This increase in perfusion, leads to decreased differences between artery and tissue and vein for both hemoglobin saturation and thermal differences. This is due to a decreased resistance to flow at the arteriolar level. Venous occlusion causes an increase in total hemoglobin, hematocrit, and an increase in deoxyhemoglobin/oxyhemoglobin ratio. The time course also varies with arterial occlusion and oxyhemoglobin/deoxyhemoglobin ratios.
- Artery and vein measurements can be used as internal calibration on a given picture for tissue levels of oxyhemoglobin/deoxyhemoglobin or thermal image or signature. Further, one can add thermal data by fusing thermal image just as one of the wavelengths in series in hyperspectral cube, i.e., an extra plane. Alternatively, thermal images can be fused to each wavelength image in series. Alternatively or in addition, generic processed analysis of thermal image (degree of variation) weights an image of each wavelength plane or impacts hyperspectral algorithmic analysis. Scalar data presenting physiologic or other relevant data can be also incorporated as described above.
- According to an embodiment of the present invention, correction for a patient's motion is done by tissue stabilization or in the case of repetitive motions by gating image frames with a patient's cardiac or respiration cycle. Frames at the specific wavelengths selected for a particular diagnostic module are acquired at the same position in sequential cardiac cycles. The timing of the cardiac cycle is provided by electrocardiogram or cardiac ultrasound or other method. The respiratory variation is timed with an external sensor of respiration or with either the ventilating mechanism or a sensor mechanism of an artificial respirator.
- The present invention may be used to provide signatures of tissue viability or cancer. Markers of cell viability include hyperspectral signatures of oxyhemoglobin and deoxyhemoglobin or other chromaphores, thermal signatures, or fused signatures. The present invention is used to determine drug impact on vasodilitation, neurohumoral response, physiology, and pathology. The present invention is used to identify and classify a large variety of chemical species, for example, those other than oxyhemoglobin and deoxyhemoglobin. Sensor/image fusion permits additional data acquisition and incorporation into diagnostic assessment. This is facilitated by the use of multiple optical paths properly aligned to optimize registration. Inclusion of simultaneous recording of standard video camera images facilitates registration and provides additional data. False color imaging may be added real-time to facilitate the rapid understanding of the data presented to the surgeon or other user. On board CCD chip filters can be provided to increase processing speed. Input for physiologic monitoring systems, such as blood pressure, heart rate, peripheral oxygenation, can be added to the data acquired and fed into diagnostic algorithms. A recording system can be included to log the real-time or near real-time output of imaging systems.
- In an embodiment of the present invention, a split frame video display is used to show all modes simultaneously. For example, parameters of wound healing may be displayed, such as: oxyhemoglobin or deoxyhemoglobin independently or as a ratio; signatures associated with rapidly dividing cells or dead cells, or particular types of cells; fluid content; hydration/dehydration or edema of tissue; or tissue performance. Tissue perfusion data provided by a thermal camera increases accuracy, delivers information about underlying vascular, beds, and/or provides data that will minimize the hyperspectral data processing requirements. Thermal images are used provide a baseline to track oxygen extraction or signature changes induced by tissue exposure.
- Increased heterogeneity and spatial features can be important in a diagnosis. For example, in vasoconstriction, it allows identification of areas that are less well perfused small micro areas that manifest as heterogeneity, to be diagnosed. Differences in oxyhemoglobin and deoxyhemoglobin ratios with spatial characteristics provide an image of micromottling. If vasodilated are more uniform, the patterns of vasoconstriction are helpful in diagnosis of infection in general and can aid in the identification of specific infection. Other patterns of heterogeneity are seen with cancers, and for example are associated with areas of increased metabolism or necrosis.
- The present invention may be used to analyze tissue health mapping; skin sebum level mapping; skin dryness, skin texture, skin feel or skin color mapping; skin damage detection and mapping (UV damage, frostbite, burns, cuts, abrasions) impact of cosmetics or other substances applied to the skin bruise age, force of impact, peripheral vascular disease diagnosis, extent, determination or regionalization of ischemia, varicose veins or hemorrhage detection, local detection and mapping, systemic infection detection, differentiation between viral, bacterial and fungal, and more specific identification, such as between gram negative and gram positive bacterial infection, venous occlusion increase in total hemoglobin, hematocrit, and change in deoxyhemoglobin/oxyhemoglobin ratio, differentiate between ischemia and hypoxia, burn depth and wound healing evaluation, non-invasive diagnosis of shock by imaging uninjured skin, hemorrhagic shock, septic shock, bum shock, changes in a dynamic system as a function of time or other parameter, vascular occlusion, vaso-dilation and vaso-constriction changes related to the presence of cancer in primary tissue or lymph nodes, either surface or subsurface, changes related to a specific chemical, mechanical, thermal, pharmacological or physiological stimulus. Different levels of microvascular constriction and relaxation lead to different ratios of oxyhemoglobin/deoxyhemoglobin, to tissue perfusion, tissue abnormality, disease state or diagnostic condition, total hematocrit, differentiate differences in reperfusion state following occlusion where oxygenation levels may remain low although there is good perfusion.
- In an embodiment of the present invention, motion artifacts of the measurements are used to measure heterogeneity. With motion, a homogeneous tissue will continue to produce the same spectral signature, whereas heterogeneous tissue will demonstrate a variety of different signatures. Extraneous motion artifacts can be reduced by mechanical stabilization of field of regard, for example, by clamping tissue or region of interest. Even in the absence of discrete spatial information, the simple range of spectra obtained, demonstrating the heterogeneity per se can be useful. Dilation makes thermal imaging more uniform and constriction more heterogeneous. The latter correlates with ischemia, microvascular mottling or the edge of larger vessels. Different changes would be detected in association with tumors, immunologic response to infection or other stimulus. Spatial patterns will vary with pathological or physiological differences. Motion artifacts are used as an indicator of inhomogeneous distributions of oxygenation and perfusion. Increases or decreases in artifacts not related to motion are used to assess heterogeneity of oxygenation and perfusion, and, hence, viability.
- The present invention may be used to look for signs of perfusion vs. viability. Integration of spatial and spectral and temporal features allows for the diagnosis of viability by creating a perfusion viability matrix. Because blood flow has a temporal component, the amount of blood that gets to tissue may be measured. This can be useful in the assessment of viability, cancer or infection.
- In an embodiment of the present invention, images are correlated with pain and drug response to provide pain feedback with infusion; other drug levels, to provide positive/negative feedback. Surface heterogeneity is correlated with infection, to provide determine time of infection, severity, systemic vs. local infection, type of organism, bacterial vs. viral, gram positive versus gram negative The present invention is also used to detect drug usage.
- The present invention may also be used for the assessment of metabolism and nutrition. Tissue structure and function, and hence signature, are influenced by nutritional status. The present invention may also be used to define adequacy of regional anesthesia or evaluation of pain response and the response to drug therapy with or without an automatic feedback component. It may also be used to identify and evaluate the presence of a drug substance and evaluate the initial response and/or therapeutic efficacy of a variety of pharmaceuticals. It can be used to track die agents and quantify their presence in association with blood flow parameters.
- Other embodiments and uses of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. All references cited herein, including all international, United States and foreign patents and patent applications, for what ever reason, are specifically and entirely incorporated by reference including U.S. Pat. Nos. 5,441,053, 5,553,614, 5,377,003 and 5,528,368, and U.S. patent application Ser. Nos. 09/182,898, 09/389,342 and 60/165,970, and International Application Nos. PCT/US98/22961 and PCT/US99/20321. The specification and examples should be considered exemplary only within the true scope and spirit of the invention.
Claims (13)
1. An imaging apparatus comprising:
means for integration of spatial, spectral and temporal features, and optionally other physiologic data or calibration data, in a spectral and temporal multi modal imaging system for the evaluation of biological systems and stimuli; and
means for fusing a thermal image or other imaging modalities and hyperspectral data cube for assessment of biological processes.
2. The imaging apparatus of claim 1 wherein the integrated features are two or more of visible or infrared hyperspectral images, visible or infrared brightfield images, thermal images, fluorescence images, Raman images, or combinations thereof.
3. The imaging apparatus of claim 1 further comprising:
a specific UV, visible or infrared light source, and
means for collecting two or more of visible or infrared hyperspectral images, visible or infrared brightfield images, thermal images, fluorescence images, Raman images, or combinations thereof.
4. The imaging apparatus of claim 1 wherein the light source can be controlled to limit the illumination to only a single or group of spectral bands.
5. The imaging apparatus of claim 1 wherein the multimodal imaging systems includes a collection optic that is an endoscope.
6. The imaging apparatus of claim 1 further comprising inputs for signals from instruments monitoring a biological function to allow the synchronization of the collection of images to the biological process.
7. The imaging apparatus of claim 1 further comprising:
on-board CCD chip filter and processing electronics to perform data operations prior to transmission of signal to increase processing speed; and
inputs for a physiological monitoring system.
8. The imaging apparatus of claim 1 further comprising:
sensors for image fusion and alignment;
alignment mechanisms for aligning multiple optical paths;
normal color video for displaying data and for camera alignment and aiming; and
a storage system for recording and logging of real-time or near real-time output.
9. The imaging apparatus of claim 1 further comprising means for stabilizing and integrating imagery and data sets in a temporally and geometrically dynamic environment in such a way that the integrated data sets can be interpreted.
10. The imaging apparatus of claim 1 further comprising an image registration device to maintain image centering.
11. The imaging apparatus of claim 1 further comprising a reference frame device that is visible in the images across multiple spectra as well as in thennal images for multi-modal fusion.
12. The imaging apparatus of claim 1 further comprising:
a tracked imaging apparatus comprising a means of creating a unified spatial mosaic of individual hyperspectral image cubes taken at various locations and times.
13-30. (Delete)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/678,651 US20040236229A1 (en) | 1999-07-02 | 2003-10-06 | Integrated imaging apparatus |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14206799P | 1999-07-02 | 1999-07-02 | |
US09/609,544 US6640130B1 (en) | 1999-07-02 | 2000-07-03 | Integrated imaging apparatus |
US10/678,651 US20040236229A1 (en) | 1999-07-02 | 2003-10-06 | Integrated imaging apparatus |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/609,544 Division US6640130B1 (en) | 1999-07-02 | 2000-07-03 | Integrated imaging apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040236229A1 true US20040236229A1 (en) | 2004-11-25 |
Family
ID=22498432
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/609,544 Expired - Lifetime US6640130B1 (en) | 1999-07-02 | 2000-07-03 | Integrated imaging apparatus |
US10/678,651 Abandoned US20040236229A1 (en) | 1999-07-02 | 2003-10-06 | Integrated imaging apparatus |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/609,544 Expired - Lifetime US6640130B1 (en) | 1999-07-02 | 2000-07-03 | Integrated imaging apparatus |
Country Status (6)
Country | Link |
---|---|
US (2) | US6640130B1 (en) |
EP (1) | EP1196081B1 (en) |
JP (1) | JP4849755B2 (en) |
AU (1) | AU5783900A (en) |
CA (1) | CA2374040C (en) |
WO (1) | WO2001001854A2 (en) |
Cited By (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040095349A1 (en) * | 2000-10-12 | 2004-05-20 | Hitachi America, Ltd. | Method for visualizing multidimensional data |
US20060111631A1 (en) * | 2004-11-19 | 2006-05-25 | Kelliher Timothy P | System, apparatus and method for forensic facial approximation |
US20070024946A1 (en) * | 2004-12-28 | 2007-02-01 | Panasyuk Svetlana V | Hyperspectral/multispectral imaging in determination, assessment and monitoring of systemic physiology and shock |
US20070035815A1 (en) * | 2005-08-12 | 2007-02-15 | Edgar Albert D | System and method for applying a reflectance modifying agent to improve the visual attractiveness of human skin |
US20070167836A1 (en) * | 2005-07-25 | 2007-07-19 | Massachusetts Institute Of Technology | Multi modal spectroscopy |
US20080194971A1 (en) * | 2007-02-12 | 2008-08-14 | Edgar Albert D | System and method for applying a reflectance modifying agent electrostatically to improve the visual attractiveness of human skin |
US20080192999A1 (en) * | 2007-02-12 | 2008-08-14 | Edgar Albert D | System and method for applying a reflectance modifying agent to change a person's appearance based on a digital image |
US20090025747A1 (en) * | 2007-05-29 | 2009-01-29 | Edgar Albert D | Apparatus and method for the precision application of cosmetics |
US20090134331A1 (en) * | 2005-09-02 | 2009-05-28 | Yuta Miyamae | Method of evaluating skin conditions and method of estimating skin thickness |
WO2010064179A1 (en) | 2008-12-05 | 2010-06-10 | Koninklijke Philips Electronics N.V. | Device, system, and method for combined optical and thermographic detection of the condition of joints |
US20100311109A1 (en) * | 2009-06-03 | 2010-12-09 | Salaimeh Ahmad A | Non-contact method for quantifying changes in the dynamics of microbial populations |
US20100310113A1 (en) * | 2009-06-05 | 2010-12-09 | Air Products And Chemicals, Inc. | System And Method For Temperature Data Acquisition |
US20110113993A1 (en) * | 2009-11-19 | 2011-05-19 | Air Products And Chemicals, Inc. | Method of Operating a Furnace |
US20110124989A1 (en) * | 2006-08-14 | 2011-05-26 | Tcms Transparent Beauty Llc | Handheld Apparatus And Method For The Automated Application Of Cosmetics And Other Substances |
US20110150322A1 (en) * | 2009-12-22 | 2011-06-23 | Honeywell International Inc. | Three-dimensional multilayer skin texture recognition system and method |
CN102128817A (en) * | 2010-12-09 | 2011-07-20 | 中国石油集团川庆钻探工程有限公司长庆录井公司 | Three-dimensional quantitative fluorescence spectrum total volume integral method |
US20110208018A1 (en) * | 2006-05-15 | 2011-08-25 | Kiani Massi E | Sepsis monitor |
US20120229796A1 (en) * | 2010-03-09 | 2012-09-13 | Chemlmage Corporation | System and method for detecting contaminants in a sample using near-infrared spectroscopy |
US8295548B2 (en) | 2009-06-22 | 2012-10-23 | The Johns Hopkins University | Systems and methods for remote tagging and tracking of objects using hyperspectral video sensors |
US8644911B1 (en) * | 2006-06-30 | 2014-02-04 | Hypermed Imaging, Inc. | OxyVu-1 hyperspectral tissue oxygenation (HTO) measurement system |
US8734440B2 (en) | 2007-07-03 | 2014-05-27 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Magnetically guided catheter |
US20150002647A1 (en) * | 2013-06-26 | 2015-01-01 | LinkSens Technology Inc. | Vein projector capable of image calibration and method of image calibration |
AU2013200395B2 (en) * | 2005-08-12 | 2015-03-26 | Tcms Transparent Beauty Llc | System and method for applying a reflectance modifying agent to improve the visual attractiveness of human skin |
US9042967B2 (en) | 2008-05-20 | 2015-05-26 | University Health Network | Device and method for wound imaging and monitoring |
US9107567B2 (en) | 2012-12-27 | 2015-08-18 | Christie Digital Systems Usa, Inc. | Spectral imaging with a color wheel |
WO2015143417A1 (en) * | 2014-03-21 | 2015-09-24 | Hypermed Imaging, Inc. | Systems and methods for measuring tissue oxygenation |
US20160022181A1 (en) * | 2014-07-25 | 2016-01-28 | Christie Digital Systems Usa, Inc. | Multispectral medical imaging devices and methods thereof |
CN105354851A (en) * | 2015-11-20 | 2016-02-24 | 中国安全生产科学研究院 | Infrared and visible light video fusion method and fusion system adaptive to distance |
US9326715B1 (en) | 2007-07-02 | 2016-05-03 | Hypermed Imaging, Inc. | OxyVu-1 hyperspectral tissue oxygenation (HTO) measurement system |
AU2013202796B2 (en) * | 2004-12-28 | 2016-06-09 | Hypermed Imaging, Inc. | Hyperspectral/multispectral imaging in determination, assessment and monitoring of systemic physiology and shock |
US9451882B2 (en) | 2009-12-15 | 2016-09-27 | Emory University | Integrated system and methods for real-time anatomical guidance in a diagnostic or therapeutic procedure |
US20160331239A1 (en) * | 2014-02-03 | 2016-11-17 | The Board Of Trustees Of The Leland Stanford Junior University | Contact-free physiological monitoring during simultaneous magnetic resonance imaging |
CN106361281A (en) * | 2016-08-31 | 2017-02-01 | 北京数字精准医疗科技有限公司 | Fluorescent real-time imaging and fusing method and device |
CN106999131A (en) * | 2014-11-27 | 2017-08-01 | 皇家飞利浦有限公司 | Imaging device and method for the image that generates patient |
US10010278B2 (en) | 2014-03-21 | 2018-07-03 | Hypermed Imaging, Inc. | Systems and methods for measuring tissue oxygenation |
US10039598B2 (en) | 2007-07-03 | 2018-08-07 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Magnetically guided catheter |
EP2345994B1 (en) * | 2009-11-20 | 2018-09-05 | Fluke Corporation | Comparison of infrared images |
US10321869B2 (en) | 2004-11-29 | 2019-06-18 | Hypermed Imaging, Inc. | Systems and methods for combining hyperspectral images with color images |
US10438356B2 (en) | 2014-07-24 | 2019-10-08 | University Health Network | Collection and analysis of data for diagnostic purposes |
US10467747B2 (en) | 2014-07-11 | 2019-11-05 | Nikon Corporation | Image analysis apparatus, imaging system, surgery support system, image analysis method, storage medium, and detection system |
US10733442B2 (en) | 2017-05-09 | 2020-08-04 | Vision Engineering Solutions, LLC | Optical surveillance system |
US10746470B2 (en) | 2017-06-29 | 2020-08-18 | Air Products & Chemicals, Inc. | Method of operating a furnace |
US10779773B2 (en) | 2005-04-04 | 2020-09-22 | Hypermed Imaging, Inc. | Hyperspectral imaging in diabetes and peripheral vascular disease |
US10943092B2 (en) | 2018-05-23 | 2021-03-09 | ClairLabs Ltd. | Monitoring system |
WO2022093696A1 (en) * | 2020-10-26 | 2022-05-05 | Epilog Imaging Systems, Inc. | Imaging method and device |
US11561294B2 (en) | 2018-07-27 | 2023-01-24 | Vision Engineering Solutions, LLC | Laser safety system |
Families Citing this family (102)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7219086B2 (en) * | 1999-04-09 | 2007-05-15 | Plain Sight Systems, Inc. | System and method for hyper-spectral analysis |
US6734962B2 (en) * | 2000-10-13 | 2004-05-11 | Chemimage Corporation | Near infrared chemical imaging microscope |
US6640132B1 (en) * | 1999-11-17 | 2003-10-28 | Hypermed, Inc. | Forensic hyperspectral apparatus and method |
JP3807721B2 (en) * | 2000-02-21 | 2006-08-09 | シャープ株式会社 | Image synthesizer |
US8360973B2 (en) * | 2000-11-29 | 2013-01-29 | L'oreal | Process for acquiring scanned image data relating to an external body portion and/or a product applied thereto |
KR100622649B1 (en) * | 2002-02-14 | 2006-09-18 | 토시노리 카토 | Biological Function Diagnosis Device |
US7117026B2 (en) * | 2002-06-12 | 2006-10-03 | Koninklijke Philips Electronics N.V. | Physiological model based non-rigid image registration |
US20060078037A1 (en) * | 2003-04-16 | 2006-04-13 | Tzong-Sheng Lee | Thermometer with image display |
JP2004317393A (en) * | 2003-04-18 | 2004-11-11 | Shimadzu Corp | Two-color radiation thermometer |
US7265350B2 (en) * | 2004-03-03 | 2007-09-04 | Advanced Biophotonics, Inc. | Integrated multi-spectral imaging systems and methods of tissue analyses using same |
CN1311783C (en) * | 2004-03-10 | 2007-04-25 | 刘忠齐 | Method for evaluating effect of edjustment of physiological and mental state |
DE102004016435B4 (en) * | 2004-03-31 | 2009-05-28 | Imedos Gmbh | Method for the spectrophotometric determination of the oxygen saturation of the blood in optically accessible blood vessels |
US7394542B2 (en) | 2004-08-18 | 2008-07-01 | Chemimage Corporation | Method and apparatus for chemical imaging in a microfluidic circuit |
US7046359B2 (en) * | 2004-06-30 | 2006-05-16 | Chemimage Corporation | System and method for dynamic chemical imaging |
US20060098194A1 (en) * | 2004-11-08 | 2006-05-11 | David Tuschel | Method and apparatus for determining change in an attribute of a sample during nucleation, aggregation, or chemical interaction |
US7580126B2 (en) * | 2004-06-30 | 2009-08-25 | Chemimage Corp. | Method and apparatus for producing a streaming Raman image of nucleation, aggregation, and chemical interaction |
JP4625809B2 (en) * | 2004-07-20 | 2011-02-02 | 俊徳 加藤 | Biological function diagnostic apparatus, biological function diagnostic method, biological probe, biological probe mounting tool, biological probe support tool, and biological probe mounting support tool |
US7519210B2 (en) * | 2004-09-09 | 2009-04-14 | Raphael Hirsch | Method of assessing localized shape and temperature of the human body |
US7525654B2 (en) * | 2004-10-20 | 2009-04-28 | Duquesne University Of The Holy Spirit | Tunable laser-based chemical imaging system |
CA3031088A1 (en) * | 2004-11-29 | 2006-06-01 | Hypermed Imaging, Inc. | Medical hyperspectral imaging for evaluation of tissue and tumor |
US8224425B2 (en) * | 2005-04-04 | 2012-07-17 | Hypermed Imaging, Inc. | Hyperspectral imaging in diabetes and peripheral vascular disease |
EP1681015A1 (en) * | 2005-01-17 | 2006-07-19 | Imasys SA | Temperature mapping on structural data |
US8971984B2 (en) | 2005-04-04 | 2015-03-03 | Hypermed Imaging, Inc. | Hyperspectral technology for assessing and treating diabetic foot and tissue disease |
US7738683B2 (en) * | 2005-07-22 | 2010-06-15 | Carestream Health, Inc. | Abnormality detection in medical images |
US8194946B2 (en) * | 2005-07-28 | 2012-06-05 | Fujifilm Corporation | Aligning apparatus, aligning method, and the program |
US20070081703A1 (en) * | 2005-10-12 | 2007-04-12 | Industrial Widget Works Company | Methods, devices and systems for multi-modality integrated imaging |
US20070090310A1 (en) * | 2005-10-24 | 2007-04-26 | General Electric Company | Methods and apparatus for inspecting an object |
US20070161922A1 (en) * | 2006-01-09 | 2007-07-12 | Medical Optical Imaging Systems Ltd. | Method of infrared tomography, active and passive, for earlier diagnosis of breast cancer |
EP1933276B1 (en) | 2006-12-11 | 2010-06-30 | BrainLAB AG | Multiband tracking and calibration system |
US20090018414A1 (en) * | 2007-03-23 | 2009-01-15 | Mehrdad Toofan | Subcutanous Blood Vessels Imaging System |
EP1982652A1 (en) * | 2007-04-20 | 2008-10-22 | Medicim NV | Method for deriving shape information |
US20080306337A1 (en) * | 2007-06-11 | 2008-12-11 | Board Of Regents, The University Of Texas System | Characterization of a Near-Infrared Laparoscopic Hyperspectral Imaging System for Minimally Invasive Surgery |
US8368741B2 (en) * | 2007-06-27 | 2013-02-05 | General Instrument Corporation | Apparatus and system for improving image quality |
JP2009039280A (en) * | 2007-08-08 | 2009-02-26 | Arata Satori | Endoscopic system and method of detecting subject using endoscopic system |
AU2009225547A1 (en) | 2008-03-19 | 2009-09-24 | Hypermed Imaging, Inc. | Miniaturized multi-spectral imager for real-time tissue oxygenation measurement |
JP5283415B2 (en) * | 2008-03-28 | 2013-09-04 | 富士フイルム株式会社 | Imaging apparatus and exposure control method |
WO2009139879A1 (en) | 2008-05-13 | 2009-11-19 | Spectral Image, Inc. | Systems and methods for hyperspectral medical imaging using real-time projection of spectral information |
WO2009142758A1 (en) * | 2008-05-23 | 2009-11-26 | Spectral Image, Inc. | Systems and methods for hyperspectral medical imaging |
US9117133B2 (en) | 2008-06-18 | 2015-08-25 | Spectral Image, Inc. | Systems and methods for hyperspectral imaging |
US8473024B2 (en) * | 2008-08-12 | 2013-06-25 | Brainscope Company, Inc. | Flexible headset for sensing brain electrical activity |
CN102470251B (en) | 2009-07-09 | 2015-08-05 | 皇家飞利浦电子股份有限公司 | Skin radiation apparatus and method |
FR2949154B1 (en) * | 2009-08-13 | 2011-09-09 | Snecma | DEVICE FOR CONTROLLING PIECES OF AN AIRCRAFT ENGINE BY INFRARED THERMOGRAPHY |
WO2011127247A2 (en) * | 2010-04-07 | 2011-10-13 | Sanjay Krishna | Apparatus and techniques of non-invasive analysis |
WO2011134083A1 (en) | 2010-04-28 | 2011-11-03 | Ryerson University | System and methods for intraoperative guidance feedback |
US8988680B2 (en) | 2010-04-30 | 2015-03-24 | Chemimage Technologies Llc | Dual polarization with liquid crystal tunable filters |
US7884933B1 (en) | 2010-05-05 | 2011-02-08 | Revolutionary Business Concepts, Inc. | Apparatus and method for determining analyte concentrations |
US9025850B2 (en) * | 2010-06-25 | 2015-05-05 | Cireca Theranostics, Llc | Method for analyzing biological specimens by spectral imaging |
US20130162796A1 (en) * | 2010-10-14 | 2013-06-27 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Methods and apparatus for imaging, detecting, and monitoring surficial and subdermal inflammation |
EP2690425B1 (en) * | 2011-03-24 | 2018-08-08 | Nikon Corporation | Optical coherence tomography observation device, method for determining relative position between images, and program for determining relative position between images |
US10426356B2 (en) | 2011-07-09 | 2019-10-01 | Gauss Surgical, Inc. | Method for estimating a quantity of a blood component in a fluid receiver and corresponding error |
US9652655B2 (en) | 2011-07-09 | 2017-05-16 | Gauss Surgical, Inc. | System and method for estimating extracorporeal blood volume in a physical sample |
WO2013036771A1 (en) * | 2011-09-08 | 2013-03-14 | Indicator Systems International, Inc. | Infection activated wound caring compositions and devices |
WO2013044182A1 (en) | 2011-09-22 | 2013-03-28 | The George Washington University | Systems and methods for visualizing ablated tissue |
EP2757933B1 (en) | 2011-09-22 | 2019-02-06 | The George Washington University | Systems for visualizing ablated tissue |
US8868157B1 (en) | 2011-11-09 | 2014-10-21 | VisionQuest Biomedical LLC | Thermal optical imager system and method for detection of peripheral neuropathy |
US8761476B2 (en) | 2011-11-09 | 2014-06-24 | The Johns Hopkins University | Hyperspectral imaging for detection of skin related conditions |
JP2015500344A (en) | 2011-12-14 | 2015-01-05 | インディケイター システムズ インターナショナル インコーポレイテッド | Trisubstituted methyl alcohols and their polymerizable derivatives |
EP2850559B1 (en) | 2012-05-14 | 2021-02-24 | Gauss Surgical, Inc. | System and method for estimating a quantity of a blood component in a fluid canister |
CN104661582B (en) | 2012-05-14 | 2018-07-27 | 高斯外科公司 | System and method for managing blood loss in a patient |
US9329086B2 (en) | 2012-05-30 | 2016-05-03 | Chemimage Technologies Llc | System and method for assessing tissue oxygenation using a conformal filter |
WO2014036470A1 (en) | 2012-08-31 | 2014-03-06 | Sloan-Kettering Institute For Cancer Research | Particles, methods and uses thereof |
US20140092255A1 (en) * | 2012-10-03 | 2014-04-03 | Bae Systems Information And Electronic Systems Integration Inc. | Auto correlation between camera bands |
HK1216143A1 (en) | 2012-12-19 | 2016-10-21 | Sloan Kettering Institute For Cancer Research | Multimodal particles, methods and uses thereof |
CA2900138A1 (en) * | 2013-02-01 | 2014-08-07 | Daniel L. Farkas | Method and system for characterizing tissue in three dimensions using multimode optical measurements |
US11653874B2 (en) | 2013-02-01 | 2023-05-23 | Acceleritas Corporation | Method and system for characterizing tissue in three dimensions using multimode optical measurements |
JP6635791B2 (en) * | 2013-02-20 | 2020-01-29 | スローン − ケタリング・インスティテュート・フォー・キャンサー・リサーチ | Wide-field Raman imaging apparatus and related method |
BR112015023545B1 (en) * | 2013-03-15 | 2022-05-10 | Synaptive Medical Inc. | surgical imaging system |
US9987093B2 (en) | 2013-07-08 | 2018-06-05 | Brainlab Ag | Single-marker navigation |
US20150094600A1 (en) * | 2013-10-01 | 2015-04-02 | Yale University | System And Method For Imaging Myelin |
JP6737705B2 (en) | 2013-11-14 | 2020-08-12 | ザ・ジョージ・ワシントン・ユニバーシティThe George Washingtonuniversity | Method of operating system for determining depth of injury site and system for generating images of heart tissue |
CN105744883B (en) | 2013-11-20 | 2022-03-01 | 乔治华盛顿大学 | System and method for hyperspectral analysis of cardiac tissue |
WO2015112932A1 (en) * | 2014-01-25 | 2015-07-30 | Handzel Amir Aharon | Automated histological diagnosis of bacterial infection using image analysis |
US10912947B2 (en) | 2014-03-04 | 2021-02-09 | Memorial Sloan Kettering Cancer Center | Systems and methods for treatment of disease via application of mechanical force by controlled rotation of nanoparticles inside cells |
WO2015160997A1 (en) | 2014-04-15 | 2015-10-22 | Gauss Surgical, Inc. | Method for estimating a quantity of a blood component in a fluid canister |
WO2016018896A1 (en) | 2014-07-28 | 2016-02-04 | Memorial Sloan Kettering Cancer Center | Metal(loid) chalcogen nanoparticles as universal binders for medical isotopes |
CN106572820B (en) * | 2014-08-18 | 2020-09-15 | Epat有限公司 | Pain assessment system |
JP2017537681A (en) | 2014-11-03 | 2017-12-21 | ザ・ジョージ・ワシントン・ユニバーシティThe George Washingtonuniversity | Damage evaluation system and method |
US10143517B2 (en) | 2014-11-03 | 2018-12-04 | LuxCath, LLC | Systems and methods for assessment of contact quality |
WO2017004301A1 (en) | 2015-07-01 | 2017-01-05 | Memorial Sloan Kettering Cancer Center | Anisotropic particles, methods and uses thereof |
US10779904B2 (en) | 2015-07-19 | 2020-09-22 | 460Medical, Inc. | Systems and methods for lesion formation and assessment |
US10460439B1 (en) | 2015-08-12 | 2019-10-29 | Cireca Theranostics, Llc | Methods and systems for identifying cellular subtypes in an image of a biological specimen |
US11217009B2 (en) | 2015-11-30 | 2022-01-04 | Photopotech LLC | Methods for collecting and processing image information to produce digital assets |
US10706621B2 (en) | 2015-11-30 | 2020-07-07 | Photopotech LLC | Systems and methods for processing image information |
US10306156B2 (en) | 2015-11-30 | 2019-05-28 | Photopotech LLC | Image-capture device |
US10778877B2 (en) | 2015-11-30 | 2020-09-15 | Photopotech LLC | Image-capture device |
US10114467B2 (en) | 2015-11-30 | 2018-10-30 | Photopotech LLC | Systems and methods for processing image information |
EP3736771A1 (en) * | 2015-12-23 | 2020-11-11 | Gauss Surgical, Inc. | Method for estimating blood component quantities in surgical textiles |
EP3257947B1 (en) * | 2016-06-16 | 2018-12-19 | Biomérieux | Method and system for identifying the gram type of a bacterium |
WO2018009670A1 (en) * | 2016-07-06 | 2018-01-11 | Chemimage Corporation | Systems and methods for detecting edema |
CA3034761A1 (en) | 2016-08-24 | 2018-03-01 | Mimosa Diagnostics Inc. | Multispectral mobile tissue assessment |
US11229368B2 (en) | 2017-01-13 | 2022-01-25 | Gauss Surgical, Inc. | Fluid loss estimation based on weight of medical items |
FR3071124B1 (en) * | 2017-09-12 | 2019-09-06 | Carbon Bee | DEVICE FOR CAPTURING A HYPERSPECTRAL IMAGE |
CN107991591A (en) * | 2017-12-04 | 2018-05-04 | 云南电网有限责任公司普洱供电局 | One kind is based on the modified image interfusion method of the unimodal interpolation of Kaiser windows FFT |
CN109034213B (en) * | 2018-07-06 | 2021-08-03 | 华中师范大学 | Method and system for hyperspectral image classification based on correlation entropy principle |
WO2020018451A1 (en) | 2018-07-16 | 2020-01-23 | Bruin Biometrics, Llc | Perfusion and oxygenation measurement |
US11537832B2 (en) | 2018-11-12 | 2022-12-27 | Hewlett-Packard Development Company, L.P. | Multiple-pattern fiducial for heterogeneous imaging sensor systems |
TWI664582B (en) * | 2018-11-28 | 2019-07-01 | 靜宜大學 | Method, apparatus and system for cell detection |
CN119769992A (en) | 2019-02-04 | 2025-04-08 | 麻省理工学院 | Systems and methods for lymph node and blood vessel imaging |
US12295743B2 (en) | 2019-02-04 | 2025-05-13 | Chemimage Corporation | Quantification of heart failure using molecular chemical imaging |
DE102019123356B4 (en) * | 2019-08-30 | 2025-02-27 | Schölly Fiberoptic GmbH | Sensor arrangement, method for calculating a color image and a hyperspectral image, method for performing a white balance and use of the sensor arrangement in medical imaging |
CN115103647A (en) | 2020-01-08 | 2022-09-23 | 460医学股份有限公司 | Systems and methods for optical interrogation of ablative lesions |
EP4486198A1 (en) | 2022-03-01 | 2025-01-08 | Mimosa Diagnostics Inc. | Releasable portable imaging device for multispectral moblie tissue assessment |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4751571A (en) * | 1987-07-29 | 1988-06-14 | General Electric Company | Composite visible/thermal-infrared imaging apparatus |
US5568384A (en) * | 1992-10-13 | 1996-10-22 | Mayo Foundation For Medical Education And Research | Biomedical imaging and analysis |
US5760899A (en) * | 1996-09-04 | 1998-06-02 | Erim International, Inc. | High-sensitivity multispectral sensor |
US5782770A (en) * | 1994-05-12 | 1998-07-21 | Science Applications International Corporation | Hyperspectral imaging methods and apparatus for non-invasive diagnosis of tissue for cancer |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5553614A (en) | 1988-12-21 | 1996-09-10 | Non-Invasive Technology, Inc. | Examination of biological tissue using frequency domain spectroscopy |
US5490516A (en) * | 1990-12-14 | 1996-02-13 | Hutson; William H. | Method and system to enhance medical signals for real-time analysis and high-resolution display |
US5936731A (en) * | 1991-02-22 | 1999-08-10 | Applied Spectral Imaging Ltd. | Method for simultaneous detection of multiple fluorophores for in situ hybridization and chromosome painting |
US5784162A (en) * | 1993-08-18 | 1998-07-21 | Applied Spectral Imaging Ltd. | Spectral bio-imaging methods for biological research, medical diagnostics and therapy |
US5991028A (en) * | 1991-02-22 | 1999-11-23 | Applied Spectral Imaging Ltd. | Spectral bio-imaging methods for cell classification |
US5441053A (en) | 1991-05-03 | 1995-08-15 | University Of Kentucky Research Foundation | Apparatus and method for multiple wavelength of tissue |
JPH0556918A (en) * | 1991-09-05 | 1993-03-09 | Olympus Optical Co Ltd | Endoscope device |
US5528368A (en) | 1992-03-06 | 1996-06-18 | The United States Of America As Represented By The Department Of Health And Human Services | Spectroscopic imaging device employing imaging quality spectral filters |
US5377003A (en) | 1992-03-06 | 1994-12-27 | The United States Of America As Represented By The Department Of Health And Human Services | Spectroscopic imaging device employing imaging quality spectral filters |
US5871013A (en) * | 1995-05-31 | 1999-02-16 | Elscint Ltd. | Registration of nuclear medicine images |
EP0830789A4 (en) * | 1995-06-07 | 1998-12-02 | Stryker Corp | IMAGING SYSTEM WITH INDEPENDENT ENERGY PROCESSING OF VISIBLE LIGHT AND INFRARED LIGHT |
US5910816A (en) * | 1995-06-07 | 1999-06-08 | Stryker Corporation | Imaging system with independent processing of visible an infrared light energy |
JPH09178566A (en) * | 1995-12-26 | 1997-07-11 | Tokai Carbon Co Ltd | Thermal image display method and display device |
GB9606124D0 (en) * | 1996-03-22 | 1996-05-22 | Rogers Gary | System for detecting cancers |
JPH1073412A (en) * | 1996-08-30 | 1998-03-17 | Tokimec Inc | Far infrared image pickup device |
JPH1189789A (en) * | 1997-09-24 | 1999-04-06 | Olympus Optical Co Ltd | Fluorescent image device |
AU751456B2 (en) * | 1997-10-30 | 2002-08-15 | Hypermed Imaging, Inc. | Multispectral/hyperspectral medical instrument |
US6198957B1 (en) * | 1997-12-19 | 2001-03-06 | Varian, Inc. | Radiotherapy machine including magnetic resonance imaging system |
WO2000013578A1 (en) | 1998-09-03 | 2000-03-16 | Hypermed Imaging, Inc. | Infrared endoscopic balloon probes |
US6173201B1 (en) * | 1999-02-22 | 2001-01-09 | V-Target Ltd. | Stereotactic diagnosis and treatment with reference to a combined image |
-
2000
- 2000-07-03 WO PCT/US2000/018221 patent/WO2001001854A2/en active Application Filing
- 2000-07-03 JP JP2001507361A patent/JP4849755B2/en not_active Expired - Lifetime
- 2000-07-03 AU AU57839/00A patent/AU5783900A/en not_active Abandoned
- 2000-07-03 US US09/609,544 patent/US6640130B1/en not_active Expired - Lifetime
- 2000-07-03 EP EP00943361.6A patent/EP1196081B1/en not_active Expired - Lifetime
- 2000-07-03 CA CA2374040A patent/CA2374040C/en not_active Expired - Fee Related
-
2003
- 2003-10-06 US US10/678,651 patent/US20040236229A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4751571A (en) * | 1987-07-29 | 1988-06-14 | General Electric Company | Composite visible/thermal-infrared imaging apparatus |
US5568384A (en) * | 1992-10-13 | 1996-10-22 | Mayo Foundation For Medical Education And Research | Biomedical imaging and analysis |
US5782770A (en) * | 1994-05-12 | 1998-07-21 | Science Applications International Corporation | Hyperspectral imaging methods and apparatus for non-invasive diagnosis of tissue for cancer |
US5760899A (en) * | 1996-09-04 | 1998-06-02 | Erim International, Inc. | High-sensitivity multispectral sensor |
Cited By (94)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040095349A1 (en) * | 2000-10-12 | 2004-05-20 | Hitachi America, Ltd. | Method for visualizing multidimensional data |
US7693564B2 (en) * | 2004-11-19 | 2010-04-06 | General Electric Company | System, apparatus and method for forensic facial approximation |
US20060111631A1 (en) * | 2004-11-19 | 2006-05-25 | Kelliher Timothy P | System, apparatus and method for forensic facial approximation |
US10321869B2 (en) | 2004-11-29 | 2019-06-18 | Hypermed Imaging, Inc. | Systems and methods for combining hyperspectral images with color images |
EP2319406A1 (en) | 2004-12-28 | 2011-05-11 | Hyperspectral Imaging, Inc | Hyperspectral/multispectral imaging in determination, assessment and monitoring of systemic physiology and shock |
US20070024946A1 (en) * | 2004-12-28 | 2007-02-01 | Panasyuk Svetlana V | Hyperspectral/multispectral imaging in determination, assessment and monitoring of systemic physiology and shock |
AU2013202796B2 (en) * | 2004-12-28 | 2016-06-09 | Hypermed Imaging, Inc. | Hyperspectral/multispectral imaging in determination, assessment and monitoring of systemic physiology and shock |
US9078619B2 (en) * | 2004-12-28 | 2015-07-14 | Hypermed Imaging, Inc. | Hyperspectral/multispectral imaging in determination, assessment and monitoring of systemic physiology and shock |
US10779773B2 (en) | 2005-04-04 | 2020-09-22 | Hypermed Imaging, Inc. | Hyperspectral imaging in diabetes and peripheral vascular disease |
US20070167836A1 (en) * | 2005-07-25 | 2007-07-19 | Massachusetts Institute Of Technology | Multi modal spectroscopy |
AU2013200395B2 (en) * | 2005-08-12 | 2015-03-26 | Tcms Transparent Beauty Llc | System and method for applying a reflectance modifying agent to improve the visual attractiveness of human skin |
US20070049832A1 (en) * | 2005-08-12 | 2007-03-01 | Edgar Albert D | System and method for medical monitoring and treatment through cosmetic monitoring and treatment |
US20070035815A1 (en) * | 2005-08-12 | 2007-02-15 | Edgar Albert D | System and method for applying a reflectance modifying agent to improve the visual attractiveness of human skin |
US8915562B2 (en) | 2005-08-12 | 2014-12-23 | Tcms Transparent Beauty Llc | System and method for applying a reflectance modifying agent to improve the visual attractiveness of human skin |
US11445802B2 (en) | 2005-08-12 | 2022-09-20 | Tcms Transparent Beauty, Llc | System and method for applying a reflectance modifying agent to improve the visual attractiveness of human skin |
US8007062B2 (en) * | 2005-08-12 | 2011-08-30 | Tcms Transparent Beauty Llc | System and method for applying a reflectance modifying agent to improve the visual attractiveness of human skin |
AU2006279652B2 (en) * | 2005-08-12 | 2012-10-25 | Tcms Transparent Beauty Llc | System and method for applying a reflectance modifying agent to improve the visual attractiveness of human skin |
US9247802B2 (en) * | 2005-08-12 | 2016-02-02 | Tcms Transparent Beauty Llc | System and method for medical monitoring and treatment through cosmetic monitoring and treatment |
US11147357B2 (en) | 2005-08-12 | 2021-10-19 | Tcms Transparent Beauty, Llc | System and method for applying a reflectance modifying agent to improve the visual attractiveness of human skin |
US10016046B2 (en) | 2005-08-12 | 2018-07-10 | Tcms Transparent Beauty, Llc | System and method for applying a reflectance modifying agent to improve the visual attractiveness of human skin |
US7820972B2 (en) * | 2005-09-02 | 2010-10-26 | Pola Chemical Industries Inc. | Method of evaluating skin conditions and method of estimating skin thickness |
US20090134331A1 (en) * | 2005-09-02 | 2009-05-28 | Yuta Miyamae | Method of evaluating skin conditions and method of estimating skin thickness |
US10226576B2 (en) | 2006-05-15 | 2019-03-12 | Masimo Corporation | Sepsis monitor |
US8663107B2 (en) * | 2006-05-15 | 2014-03-04 | Cercacor Laboratories, Inc. | Sepsis monitor |
US20110208018A1 (en) * | 2006-05-15 | 2011-08-25 | Kiani Massi E | Sepsis monitor |
US20180092540A1 (en) * | 2006-06-30 | 2018-04-05 | Hypermed Imaging, Inc. | Oxyvu-1 hyperspectral tissue oxygenation (hto) measurement system |
US9770173B2 (en) | 2006-06-30 | 2017-09-26 | Hypermed Imaging, Inc. | OxyVu-1 hyperspectral tissue oxygenation (HTO) measurement system |
US11026582B2 (en) * | 2006-06-30 | 2021-06-08 | Hypermed Imaging, Inc. | OxyVu-1 hyperspectral tissue oxygenation (HTO) measurement system |
US8644911B1 (en) * | 2006-06-30 | 2014-02-04 | Hypermed Imaging, Inc. | OxyVu-1 hyperspectral tissue oxygenation (HTO) measurement system |
US10043292B2 (en) | 2006-08-14 | 2018-08-07 | Tcms Transparent Beauty Llc | System and method for applying a reflectance modifying agent to change a person's appearance based on a digital image |
US8942775B2 (en) | 2006-08-14 | 2015-01-27 | Tcms Transparent Beauty Llc | Handheld apparatus and method for the automated application of cosmetics and other substances |
US20110124989A1 (en) * | 2006-08-14 | 2011-05-26 | Tcms Transparent Beauty Llc | Handheld Apparatus And Method For The Automated Application Of Cosmetics And Other Substances |
US20140050377A1 (en) * | 2006-08-14 | 2014-02-20 | Albert D. Edgar | System and Method for Applying a Reflectance Modifying Agent to Change a Persons Appearance Based on a Digital Image |
US9449382B2 (en) * | 2006-08-14 | 2016-09-20 | Tcms Transparent Beauty, Llc | System and method for applying a reflectance modifying agent to change a persons appearance based on a digital image |
US10163230B2 (en) | 2007-02-12 | 2018-12-25 | Tcms Transparent Beauty Llc | System and method for applying a reflectance modifying agent to change a person's appearance based on a digital image |
US10486174B2 (en) | 2007-02-12 | 2019-11-26 | Tcms Transparent Beauty Llc | System and method for applying a reflectance modifying agent electrostatically to improve the visual attractiveness of human skin |
US20080194971A1 (en) * | 2007-02-12 | 2008-08-14 | Edgar Albert D | System and method for applying a reflectance modifying agent electrostatically to improve the visual attractiveness of human skin |
US10467779B2 (en) | 2007-02-12 | 2019-11-05 | Tcms Transparent Beauty Llc | System and method for applying a reflectance modifying agent to change a person's appearance based on a digital image |
US8184901B2 (en) | 2007-02-12 | 2012-05-22 | Tcms Transparent Beauty Llc | System and method for applying a reflectance modifying agent to change a person's appearance based on a digital image |
US8582830B2 (en) | 2007-02-12 | 2013-11-12 | Tcms Transparent Beauty Llc | System and method for applying a reflectance modifying agent to change a persons appearance based on a digital image |
US20080192999A1 (en) * | 2007-02-12 | 2008-08-14 | Edgar Albert D | System and method for applying a reflectance modifying agent to change a person's appearance based on a digital image |
US10092082B2 (en) * | 2007-05-29 | 2018-10-09 | Tcms Transparent Beauty Llc | Apparatus and method for the precision application of cosmetics |
US20090025747A1 (en) * | 2007-05-29 | 2009-01-29 | Edgar Albert D | Apparatus and method for the precision application of cosmetics |
US9326715B1 (en) | 2007-07-02 | 2016-05-03 | Hypermed Imaging, Inc. | OxyVu-1 hyperspectral tissue oxygenation (HTO) measurement system |
US10039598B2 (en) | 2007-07-03 | 2018-08-07 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Magnetically guided catheter |
US8734440B2 (en) | 2007-07-03 | 2014-05-27 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Magnetically guided catheter |
US11375898B2 (en) | 2008-05-20 | 2022-07-05 | University Health Network | Method and system with spectral filtering and thermal mapping for imaging and collection of data for diagnostic purposes from bacteria |
US12226186B2 (en) | 2008-05-20 | 2025-02-18 | University Health Network | Devices, methods, and systems with spectral filtering for detecting wound and identifying bacteria based on fluorescence signature |
US11284800B2 (en) | 2008-05-20 | 2022-03-29 | University Health Network | Devices, methods, and systems for fluorescence-based endoscopic imaging and collection of data with optical filters with corresponding discrete spectral bandwidth |
US9042967B2 (en) | 2008-05-20 | 2015-05-26 | University Health Network | Device and method for wound imaging and monitoring |
US12251191B2 (en) | 2008-05-20 | 2025-03-18 | University Health Network | Diagnostic method and system with optical and temperature sensors for imaging and mapping fluorescence intensities of tissue |
US11154198B2 (en) | 2008-05-20 | 2021-10-26 | University Health Network | Method and system for imaging and collection of data for diagnostic purposes |
US20110237957A1 (en) * | 2008-12-05 | 2011-09-29 | Koninklijke Philips Electronics N.V. | Device, system, and method for combined optical and thermographic detection of the condition ofjoints |
WO2010064179A1 (en) | 2008-12-05 | 2010-06-10 | Koninklijke Philips Electronics N.V. | Device, system, and method for combined optical and thermographic detection of the condition of joints |
US20100311109A1 (en) * | 2009-06-03 | 2010-12-09 | Salaimeh Ahmad A | Non-contact method for quantifying changes in the dynamics of microbial populations |
US8300880B2 (en) | 2009-06-05 | 2012-10-30 | Ali Esmaili | System and method for temperature data acquisition |
US20100310113A1 (en) * | 2009-06-05 | 2010-12-09 | Air Products And Chemicals, Inc. | System And Method For Temperature Data Acquisition |
US8295548B2 (en) | 2009-06-22 | 2012-10-23 | The Johns Hopkins University | Systems and methods for remote tagging and tracking of objects using hyperspectral video sensors |
US20110113993A1 (en) * | 2009-11-19 | 2011-05-19 | Air Products And Chemicals, Inc. | Method of Operating a Furnace |
US8219247B2 (en) | 2009-11-19 | 2012-07-10 | Air Products And Chemicals, Inc. | Method of operating a furnace |
EP2345994B1 (en) * | 2009-11-20 | 2018-09-05 | Fluke Corporation | Comparison of infrared images |
US9451882B2 (en) | 2009-12-15 | 2016-09-27 | Emory University | Integrated system and methods for real-time anatomical guidance in a diagnostic or therapeutic procedure |
US20110150322A1 (en) * | 2009-12-22 | 2011-06-23 | Honeywell International Inc. | Three-dimensional multilayer skin texture recognition system and method |
US8634596B2 (en) | 2009-12-22 | 2014-01-21 | Honeywell International Inc. | Three-dimensional multilayer skin texture recognition system and method |
US20120229796A1 (en) * | 2010-03-09 | 2012-09-13 | Chemlmage Corporation | System and method for detecting contaminants in a sample using near-infrared spectroscopy |
US8993964B2 (en) * | 2010-03-09 | 2015-03-31 | Chemimage Technologies Llc | System and method for detecting contaminants in a sample using near-infrared spectroscopy |
CN102128817A (en) * | 2010-12-09 | 2011-07-20 | 中国石油集团川庆钻探工程有限公司长庆录井公司 | Three-dimensional quantitative fluorescence spectrum total volume integral method |
US9107567B2 (en) | 2012-12-27 | 2015-08-18 | Christie Digital Systems Usa, Inc. | Spectral imaging with a color wheel |
US20150002647A1 (en) * | 2013-06-26 | 2015-01-01 | LinkSens Technology Inc. | Vein projector capable of image calibration and method of image calibration |
US10993621B2 (en) * | 2014-02-03 | 2021-05-04 | The Board Of Trustees Of The Leland Stanford Junior University | Contact-free physiological monitoring during simultaneous magnetic resonance imaging |
US20160331239A1 (en) * | 2014-02-03 | 2016-11-17 | The Board Of Trustees Of The Leland Stanford Junior University | Contact-free physiological monitoring during simultaneous magnetic resonance imaging |
CN106456045A (en) * | 2014-02-03 | 2017-02-22 | 小利兰·斯坦福大学托管委员会 | Contact-free physiological monitoring during simultaneous magnetic resonance imaging |
US9480424B2 (en) | 2014-03-21 | 2016-11-01 | Hypermed Imaging, Inc. | Systems and methods for measuring tissue oxygenation |
US10470694B2 (en) | 2014-03-21 | 2019-11-12 | Hypermed Imaging, Inc. | Systems and methods for measuring tissue oxygenation |
WO2015143417A1 (en) * | 2014-03-21 | 2015-09-24 | Hypermed Imaging, Inc. | Systems and methods for measuring tissue oxygenation |
US10010278B2 (en) | 2014-03-21 | 2018-07-03 | Hypermed Imaging, Inc. | Systems and methods for measuring tissue oxygenation |
US10467747B2 (en) | 2014-07-11 | 2019-11-05 | Nikon Corporation | Image analysis apparatus, imaging system, surgery support system, image analysis method, storage medium, and detection system |
US11676276B2 (en) | 2014-07-24 | 2023-06-13 | University Health Network | Collection and analysis of data for diagnostic purposes |
US12387335B2 (en) | 2014-07-24 | 2025-08-12 | University Health Network | Systems, devices, and methods for visualization of tissue and collection and analysis of data regarding same |
US12169935B2 (en) | 2014-07-24 | 2024-12-17 | University Health Network | Systems, devices, and methods for visualization of tissue and collection and analysis of data regarding same |
US10438356B2 (en) | 2014-07-24 | 2019-10-08 | University Health Network | Collection and analysis of data for diagnostic purposes |
US11961236B2 (en) | 2014-07-24 | 2024-04-16 | University Health Network | Collection and analysis of data for diagnostic purposes |
US11954861B2 (en) | 2014-07-24 | 2024-04-09 | University Health Network | Systems, devices, and methods for visualization of tissue and collection and analysis of data regarding same |
US9968285B2 (en) * | 2014-07-25 | 2018-05-15 | Christie Digital Systems Usa, Inc. | Multispectral medical imaging devices and methods thereof |
US20160022181A1 (en) * | 2014-07-25 | 2016-01-28 | Christie Digital Systems Usa, Inc. | Multispectral medical imaging devices and methods thereof |
CN106999131A (en) * | 2014-11-27 | 2017-08-01 | 皇家飞利浦有限公司 | Imaging device and method for the image that generates patient |
CN105354851A (en) * | 2015-11-20 | 2016-02-24 | 中国安全生产科学研究院 | Infrared and visible light video fusion method and fusion system adaptive to distance |
CN106361281A (en) * | 2016-08-31 | 2017-02-01 | 北京数字精准医疗科技有限公司 | Fluorescent real-time imaging and fusing method and device |
US10733442B2 (en) | 2017-05-09 | 2020-08-04 | Vision Engineering Solutions, LLC | Optical surveillance system |
US10746470B2 (en) | 2017-06-29 | 2020-08-18 | Air Products & Chemicals, Inc. | Method of operating a furnace |
US10943092B2 (en) | 2018-05-23 | 2021-03-09 | ClairLabs Ltd. | Monitoring system |
US11561294B2 (en) | 2018-07-27 | 2023-01-24 | Vision Engineering Solutions, LLC | Laser safety system |
WO2022093696A1 (en) * | 2020-10-26 | 2022-05-05 | Epilog Imaging Systems, Inc. | Imaging method and device |
US12328489B2 (en) | 2020-10-26 | 2025-06-10 | Epilog Imaging Systems, Inc. | Imaging method and device |
Also Published As
Publication number | Publication date |
---|---|
EP1196081A2 (en) | 2002-04-17 |
JP4849755B2 (en) | 2012-01-11 |
CA2374040A1 (en) | 2001-01-11 |
AU5783900A (en) | 2001-01-22 |
WO2001001854A2 (en) | 2001-01-11 |
EP1196081B1 (en) | 2013-08-21 |
CA2374040C (en) | 2010-10-19 |
US6640130B1 (en) | 2003-10-28 |
JP2003503135A (en) | 2003-01-28 |
WO2001001854A3 (en) | 2001-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2374040C (en) | Integrated imaging apparatus | |
US20020173723A1 (en) | Dual imaging apparatus | |
EP2271901B1 (en) | Miniaturized multi-spectral imager for real-time tissue oxygenation measurement | |
JP2003503135A5 (en) | ||
US11278220B2 (en) | Determining peripheral oxygen saturation (SpO2) and hemoglobin concentration using multi-spectral laser imaging (MSLI) methods and systems | |
CA2592691C (en) | Hyperspectral/multispectral imaging in determination, assessment and monitoring of systemic physiology and shock | |
US7013172B2 (en) | Hyperspectral imaging calibration device | |
CA2979384C (en) | Systems and methods for measuring tissue oxygenation | |
US20150078642A1 (en) | Method and system for non-invasive quantification of biologial sample physiology using a series of images | |
EP1931262B1 (en) | Disposable calibration-fiducial mark for hyperspectral imaging | |
US20200294228A1 (en) | Non-Contact Multispectral Imaging for Blood Oxygen Level and Perfusion Measurement and Related Systems and Computer Program Products | |
CN113261953B (en) | Multispectral surface diagnosis measuring method | |
Peng et al. | Analysis of ischemic intestinal tissue composition based on visible and near-infrared reflectance hyperspectral imaging and multivariate curve resolution | |
Vilaseca et al. | Asian Journal of Physics | |
Giggin et al. | ADVANCEMENTS IN IMAGING FOR CUTANEOUS WOUND EVALUATION | |
HK1251431B (en) | Systems and methods for measuring tissue oxygenation | |
HK1183425B (en) | Hyperspectral/multispectral imaging in determination, assessment and monitoring of systemic physiology and shock |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |