[go: up one dir, main page]

TWM605348U - Financial Commodity Recommendation System - Google Patents

Financial Commodity Recommendation System Download PDF

Info

Publication number
TWM605348U
TWM605348U TW109211303U TW109211303U TWM605348U TW M605348 U TWM605348 U TW M605348U TW 109211303 U TW109211303 U TW 109211303U TW 109211303 U TW109211303 U TW 109211303U TW M605348 U TWM605348 U TW M605348U
Authority
TW
Taiwan
Prior art keywords
data
analyzed
personal
server unit
cluster definition
Prior art date
Application number
TW109211303U
Other languages
Chinese (zh)
Inventor
陳鑑蓁
林建賢
陳品達
Original Assignee
中國信託商業銀行股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中國信託商業銀行股份有限公司 filed Critical 中國信託商業銀行股份有限公司
Priority to TW109211303U priority Critical patent/TWM605348U/en
Publication of TWM605348U publication Critical patent/TWM605348U/en

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一種金融商品推薦系統,包含伺服器單元及終端電子裝置。伺服器單元,儲存有分別相關於多個參考客戶的多個個人資料,並根據該等個人資料產生多個分別相關於該等參考客戶的個人特徵資料,該等個人特徵資料的每一者包含多個個人特徵值,並根據該等個人特徵資料,使用一預定分群演算法,產生多個群集定義資料。終端電子裝置傳送包含相關於一待分析客戶的一待分析個人資料的一商品建議請求給該伺服器單元。伺服器單元根據待分析個人資料,產生待分析個人特徵資料及該等群集定義資料,產生一相關於該等群集定義資料其中一者的分群結果。A financial product recommendation system includes a server unit and terminal electronic devices. The server unit stores multiple personal data related to multiple reference customers, and generates multiple personal characteristic data related to the reference customers based on the personal data, each of which includes A plurality of personal characteristic values, and based on the personal characteristic data, a predetermined clustering algorithm is used to generate a plurality of cluster definition data. The terminal electronic device transmits a product suggestion request containing a to-be-analyzed personal data related to a to-be-analyzed customer to the server unit. The server unit generates the to-be-analyzed personal characteristic data and the cluster definition data based on the to-be-analyzed personal data, and generates a clustering result related to one of the cluster definition data.

Description

金融商品推薦系統Financial Commodity Recommendation System

本新型是有關於一種推薦系統,特別是指一種金融商品推薦系統。This model relates to a recommendation system, especially a financial product recommendation system.

據統計,有近六成的民眾不清楚如何理財規劃,包含不清楚退休金制度、不了解自身退休金缺口、不知道從何開始規劃等。因此,便有可能因缺乏退休理財知識而造成錯估儲蓄目標與未來退休後的需求。According to statistics, nearly 60% of the people do not know how to plan financially, including not knowing the pension system, not knowing the gap in their pension, and not knowing where to start planning. Therefore, it is possible that the lack of knowledge of retirement financial management may cause miscalculation of savings goals and future needs after retirement.

目前,若民眾欲進一步了解相關於上述的理財規劃,通常必需要親自到銀行詢問理財專員,而可能出現耗費時間的問題。At present, if the public wants to learn more about the above-mentioned financial planning, they usually have to go to the bank to ask the financial specialist in person, and time-consuming problems may arise.

因此,本新型之目的,即在提供一種即在提供一種能改善上述先前技術中至少一缺點的金融商品推薦系統。Therefore, the purpose of the present invention is to provide a financial product recommendation system that can improve at least one of the disadvantages of the prior art.

於是,本新型所提供的金融商品推薦系統包含一伺服器單元,及能經由一通訊網路與該伺服器單元通訊的一終端電子裝置。該伺服器單元儲存有分別相關於多個參考客戶的多個個人資料,及多個分別相關於該等參考客戶的金融商品持有資料。該伺服器單元根據該等個人資料產生多個分別相關於該等參考客戶的個人特徵資料,該等個人特徵資料的每一者包含多個個人特徵值;該伺服器單元根據該等個人特徵資料,使用一預定分群演算法,產生多個群集定義資料,每一群集定義資料包含分別相關於該等個人特徵值的多個特徵值範圍;該終端電子裝置傳送包含相關於一待分析客戶的一待分析個人資料的一商品建議請求給該伺服器單元;該伺服器單元根據該待分析個人資料,產生一待分析個人特徵資料,該待分析個人特徵資料包含多個分別相關於該等群集定義資料的該等特徵值範圍的待分析個人特徵值;該伺服器單元根據該等待分析個人特徵值及該等群集定義資料,產生一相關於該等群集定義資料其中一者的分群結果,其中,該等待分析個人特徵值符合該分群結果所相關的該群集定義資料的該等特徵值範圍;該伺服器單元將對應於該分群結果所相關的該群集定義資料的一金融商品建議組合傳送給該終端電子裝置。Therefore, the financial product recommendation system provided by the present invention includes a server unit and a terminal electronic device capable of communicating with the server unit via a communication network. The server unit stores a plurality of personal data respectively related to a plurality of reference customers, and a plurality of financial product holding data respectively related to the reference customers. The server unit generates a plurality of personal characteristic data related to the reference customers according to the personal data, and each of the personal characteristic data includes a plurality of personal characteristic values; the server unit generates a plurality of personal characteristic data according to the personal characteristic data , Using a predetermined clustering algorithm to generate a plurality of cluster definition data, each cluster definition data includes a plurality of characteristic value ranges respectively related to the personal characteristic values; the terminal electronic device transmits a data that includes a client to be analyzed A product suggestion request of the personal data to be analyzed is sent to the server unit; the server unit generates a personal characteristic data to be analyzed based on the personal data to be analyzed, and the personal characteristic data to be analyzed includes multiple definitions respectively related to the clusters The individual characteristic values to be analyzed in the range of the characteristic values of the data; the server unit generates a clustering result related to one of the cluster definition data based on the waiting individual characteristic values and the cluster definition data, wherein, The characteristic value of the individual waiting to be analyzed conforms to the characteristic value range of the cluster definition data related to the grouping result; the server unit sends a suggested combination of financial products corresponding to the cluster definition data related to the grouping result to the Terminal electronic device.

在一些實施態樣中,該伺服器單元還根據該等群集定義資料,利用一非線性迴歸方式,建立分別對應該等群集定義資料的多個收入估算模型,並根據該分群結果將該分群結果所相關的該群集定義資料對應之該收入估算模型設定為一目標收入估算模型;該伺服器單元根據該待分析個人資料並利用該目標收入估算模型,估算出該待分析客戶的一估算個人收入;該伺服器單元根據該估算個人收入產生對應該金融商品建議組合的一金融商品投資金額。In some implementations, the server unit also uses a non-linear regression method based on the cluster definition data to establish a plurality of income estimation models corresponding to the cluster definition data, and the clustering result is based on the clustering result. The income estimation model corresponding to the related cluster definition data is set as a target income estimation model; the server unit estimates an estimated personal income of the client to be analyzed based on the personal data to be analyzed and using the target income estimation model ; The server unit generates a financial product investment amount corresponding to the recommended combination of financial products based on the estimated personal income.

在一些實施態樣中,每一個人資料包含相關於該參考客戶的一地理位置的一地理環境資料,及相關於該參考客戶且公開的一政府資料;該待分析個人資料包含相關於該待分析客戶的一待分析地理位置的一待分析地理環境資料及相關於該待分析客戶且公開的一待分析政府資料。In some implementation aspects, each personal data includes a geographic environment data related to a geographic location of the reference customer, and a public government data related to the reference customer; the personal data to be analyzed includes information related to the to-be-analyzed A to-be-analyzed geographical environment data of a customer's geographical location to be analyzed and a to-be-analyzed government data related to the to-be-analyzed customer.

在一些實施態樣中,該地理環境資料相關於地政狀況、公共設施狀況及私人設施狀況其中至少一者;及該政府資料相關於多個年齡的平均餘命、多個行政區的收入與支出,及就業狀況其中至少一者。In some implementation aspects, the geographic environment information is related to at least one of land administration status, public facility status, and private facility status; and the government information is related to average remaining life of multiple ages, income and expenditure of multiple administrative regions, At least one of and employment status.

在一些實施態樣中,該待分析個人資料所包含的該待分析政府資料是下載自一政府資料庫。In some implementation aspects, the government data to be analyzed included in the personal data to be analyzed is downloaded from a government database.

在一些實施態樣中,該預定分群演算法為k-平均演算法。In some implementation aspects, the predetermined grouping algorithm is a k-means algorithm.

本新型之功效在於:本新型之金融商品推薦系統藉由該伺服器單元根據該等參考客戶的該等個人特徵資料並利用k-平均演算法產生出該等群集定義資料,以便在接收到來自該終端電子裝置的該商品建議請求時,能根據該等群集定義資料及該商品建議請求所包含的該待分析個人資料產生出該分群結果,進而能夠根據該分群結果將對應之該金融商品建議組合傳送給該終端電子裝置,故確實能達成本新型的目的。The effect of the present invention is that the financial product recommendation system of the present invention uses the server unit to generate the cluster definition data based on the personal characteristic data of the reference customers and using the k-average algorithm, so as to receive data from When the terminal electronic device requests the product suggestion, the grouping result can be generated based on the cluster definition data and the personal data to be analyzed included in the product suggestion request, and then the corresponding financial product suggestion can be based on the grouping result The combination is transmitted to the terminal electronic device, so it can indeed achieve the purpose of new cost.

參閱圖1,本新型之金融商品推薦系統的一實施例,包含一伺服器單元10,及能經由一通訊網路200(例如為網際網路)與該伺服器單元10通訊的一終端電子裝置20。Referring to FIG. 1, an embodiment of the financial product recommendation system of the present invention includes a server unit 10 and a terminal electronic device 20 capable of communicating with the server unit 10 via a communication network 200 (for example, the Internet) .

該終端電子裝置可以是可攜式電子裝置(例如為智慧型手機、平板電腦、筆記型電腦等)或是個人電腦,但不以上述為限。The terminal electronic device can be a portable electronic device (for example, a smart phone, a tablet computer, a notebook computer, etc.) or a personal computer, but is not limited to the above.

於此實施例中,該伺服器單元10例如為歸屬於一銀行的一電腦主機,並適於與一政府資料庫300連線,且儲存有分別相關於多個參考客戶的多個個人資料,及多個分別相關於該等參考客戶的金融商品持有資料。In this embodiment, the server unit 10 is, for example, a computer host belonging to a bank, and is suitable for connecting to a government database 300, and stores a plurality of personal data respectively related to a plurality of reference customers. And a number of financial product holding data related to these reference customers.

每一個人資料包含所對應的該參考客戶相關的一個人基本資料、相關於該參考客戶的一地理位置的一地理環境資料,及相關於該參考客戶且公開的一政府資料。該個人基本資料可以是該參考客戶的性別、年齡、職業、職稱、收入…等,該地理位置可以是該參考客戶的戶籍地,而該地理環境資料相關於地政狀況、公共設施狀況及私人設施狀況其中至少一者,並例如為距離該地理位置一預設距離內有幾間醫院、該地理位置與最近的捷運站之間的距離、或距離該地理位置一預設距離內有幾個嫌惡設施…等,該政府資料相關於多個行政區的收入與支出,及就業狀況(就業率),上述僅為舉例說明,並例如為該地理位置位於的行政區的每人平均收入、每人平均支出、該地理位置位於的行政區的就業率…等,並不以上述為限。Each personal data includes the corresponding basic data of a person related to the reference customer, a geographic environment data related to a geographic location of the reference customer, and a public government information related to the reference customer. The basic personal information can be the reference customer’s gender, age, occupation, job title, income... etc. The geographic location can be the reference customer’s household registration, and the geographic environment information is related to the land administration, public facilities and private facilities At least one of the conditions, and for example, how many hospitals are within a preset distance from the geographic location, the distance between the geographic location and the nearest MRT station, or how many are within a preset distance from the geographic location Disgusting facilities...etc. The government information is related to the income and expenditure of multiple administrative regions, and the employment status (employment rate). The above is only an example, and for example, the average income per person and average per person of the administrative area where the geographical location is located Expenditure, employment rate of the administrative region where the geographic location is located, etc., are not limited to the above.

參閱圖1及圖2,以下說明本實施例執行之一分群程序的步驟。1 and FIG. 2, the following describes the steps of performing a one-grouping procedure in this embodiment.

首先,於步驟S11中,該伺服器單元10根據該等個人資料產生多個分別相關於該等參考客戶的個人特徵資料,該等個人特徵資料的每一者包含多個個人特徵值。First, in step S11, the server unit 10 generates a plurality of personal characteristic data respectively related to the reference customers according to the personal data, and each of the personal characteristic data includes a plurality of personal characteristic values.

更明確地說,每一個人特徵資料所包含的該等個人特徵值例如年齡、年收入、戶籍地與最近的捷運站之間的距離、距離戶籍地一預設距離內的醫院的數量、距離戶籍地一預設距離內的嫌惡設施的數量…等。More specifically, the personal characteristic values contained in each personal characteristic data, such as age, annual income, distance between the residence and the nearest MRT station, the number of hospitals within a preset distance from the residence, and distance The number of disgusting facilities within a preset distance from the household registration place...etc.

接著,於步驟S12中,該伺服器單元10根據該等個人特徵資料,使用一預定分群演算法,產生多個群集定義資料,每一群集定義資料包含分別相關於該等個人特徵值的多個特徵值範圍。Next, in step S12, the server unit 10 uses a predetermined clustering algorithm to generate a plurality of cluster definition data based on the personal characteristic data, and each cluster definition data includes a plurality of cluster definition data respectively related to the personal characteristic values. Characteristic value range.

於此實施例中,該預定分群演算法為k-平均演算法(k-means clustering),而該伺服器單元10所產生的該等群集定義資料每一者所包含的該等特徵值範圍可以是年收入界在150萬~200萬、戶籍地與最近的捷運站之間的距離界在300~500公尺、距離戶籍地一預設距離內的醫院的數量界在2~5間…等,但不以上述為限。更進一步地說,該伺服器單元10在產生出該等群集定義資料後,會再接著建立分別指示出多個金融商品建議組合與該等群集定義資料之間的多個對應關係。而該等金融商品建議組合是在該伺服器單元10產生出該等群集定義資料後,由專家分別針對該等群集定義資料所產生的。In this embodiment, the predetermined clustering algorithm is k-means clustering, and each of the cluster definition data generated by the server unit 10 includes the characteristic value ranges The number of hospitals whose annual income is between 1.5 million and 2 million, the distance between the household registration and the nearest MRT station is between 300 and 500 meters, and the number of hospitals within a preset distance from the household registration is between 2 and 5... Etc., but not limited to the above. Furthermore, after the server unit 10 generates the cluster definition data, it then creates a plurality of correspondences respectively indicating a plurality of suggested combinations of financial products and the cluster definition data. The suggested combinations of financial products are generated by experts for the cluster definition data after the server unit 10 generates the cluster definition data.

參閱圖1及圖3,以下說明本實施例執行之一金融商品推薦程序的步驟。1 and 3, the following describes the steps of a financial product recommendation program executed by this embodiment.

首先,於步驟S21中,該伺服器單元10接收到來自該終端電子裝置20且相關於一待分析客戶的一待分析個人資料的一商品建議請求。First, in step S21, the server unit 10 receives a product suggestion request from the terminal electronic device 20 related to a to-be-analyzed personal data of a to-be-analyzed customer.

更明確地說,該待分析個人資料包含相關於該待分析客戶的一待分析地理位置的一待分析地理環境資料及相關於該待分析客戶且公開的一待分析政府資料。如同前述,該待分析地理位置可以是該待分析客戶的戶籍地址,而相關於該待分析地理位置的該待分析地理環境資料可以是該待分析客戶的戶籍地址與最近的捷運站之間的距離、距離該待分析客戶的戶籍地址一預定距離內醫院的數量、距離該待分析客戶的戶籍地址一預定距離內嫌惡設施的數量…等。而該待分析政府資料可以是相關於該待分析客戶的戶籍地址的行政區的平均所得,並不以上述為限。於本實施例中,該待分析個人資料所包含的該待分析政府資料是該伺服器單元下載自該政府資料庫300。More specifically, the to-be-analyzed personal data includes a to-be-analyzed geographic environment data related to a to-be-analyzed geographic location of the to-be-analyzed customer and a to-be-analyzed government data that is publicly related to the to-be-analyzed customer. As mentioned above, the geographic location to be analyzed may be the residence address of the customer to be analyzed, and the geographic environment data to be analyzed related to the geographic location to be analyzed may be between the residence address of the customer to be analyzed and the nearest MRT station The number of hospitals within a predetermined distance from the household registration address of the client to be analyzed, the number of disgusting facilities within a predetermined distance from the household registration address of the client to be analyzed, etc. The government information to be analyzed may be the average income of the administrative region related to the household registration address of the client to be analyzed, and is not limited to the above. In this embodiment, the government data to be analyzed included in the personal data to be analyzed is downloaded from the government database 300 by the server unit.

接著,在步驟S22中,該終端電子裝置20傳送該商品建議請求給該伺服器單元10後,也就是該伺服器單元10接收到該商品建議請求後,該伺服器單元10根據該商品建議請求的該待分析個人資料,產生一待分析個人特徵資料,該待分析個人特徵資料包含多個分別相關於該等群集定義資料的該等特徵值範圍的待分析個人特徵值。接著執行步驟S23。Next, in step S22, after the terminal electronic device 20 transmits the product suggestion request to the server unit 10, that is, after the server unit 10 receives the product suggestion request, the server unit 10 responds to the product suggestion request The to-be-analyzed personal data generates a to-be-analyzed personal characteristic data, and the to-be-analyzed personal characteristic data includes a plurality of to-be-analyzed personal characteristic values respectively related to the characteristic value ranges of the cluster definition data. Then, step S23 is executed.

於步驟S23中,該伺服器單元10根據該等待分析個人特徵值及該等群集定義資料,產生一相關於該等群集定義資料其中一者的分群結果。而該伺服器單元10所產生的該分群結果所相關的該群集定義資料的該等特徵值範圍符合該等待分析個人特徵值。In step S23, the server unit 10 generates a clustering result related to one of the cluster definition data according to the waiting analysis personal characteristic value and the cluster definition data. The range of the characteristic values of the cluster definition data related to the clustering result generated by the server unit 10 meets the characteristic value of the waiting individual.

以下列表格舉例說明群集定義資料及該待分析個人資料。 群集定義資料A 戶籍地方圓3km內工廠數量 1~2 戶籍地方圓5km內設有大型醫院 0 戶籍地所屬行政區收入於全國排行 後20~25% 群集定義資料B 戶籍地方圓3km內工廠數量 0 戶籍地方圓5km內設有大型醫院 1~3 戶籍地所屬行政區收入於全國排行 前20~25% 待分析個人資料 戶籍地方圓3km內工廠數量 0 戶籍地方圓5km內設有大型醫院 2 戶籍地所屬行政區收入於全國排行 前22% The following table shows examples of cluster definition data and personal data to be analyzed. Cluster definition data A Number of factories within 3km of the household registration area 1~2 There is a large hospital within 5km of the household registration area 0 National income ranking of the administrative district to which the household registration place belongs Next 20~25% Cluster definition data B Number of factories within 3km of the household registration area 0 There is a large hospital within 5km of the household registration area 1~3 National income ranking of the administrative district to which the household registration place belongs Top 20~25% Personal data to be analyzed Number of factories within 3km of the household registration area 0 There is a large hospital within 5km of the household registration area 2 National income ranking of the administrative district to which the household registration place belongs Top 22%

根據以上所示的群集定義資料A及群集定義資料B,由於該待分析個人資料符合該群集定義資料B所包含的該等特徵值範圍,因此,該伺服器單元10所產生的該分群結果便會相關於該群集定義資料B。According to the cluster definition data A and cluster definition data B shown above, since the personal data to be analyzed conforms to the characteristic value ranges included in the cluster definition data B, the clustering result generated by the server unit 10 is Will be related to the cluster definition data B.

接著,於步驟S24中,該伺服器單元10將對應於該分群結果所相關的該群集定義資料的該金融商品建議組合傳送給該終端電子裝置20。承接前例,對應該群集定義資料A的該金融商品建議組合含有大額保障型保險,而對應該群集定義資料B的該金融商品建議組合含有年金險。Then, in step S24, the server unit 10 transmits the suggested combination of financial products corresponding to the cluster definition data related to the clustering result to the terminal electronic device 20. Following the previous example, the proposed combination of financial products corresponding to cluster definition data A contains large-value protection insurance, and the proposed combination of financial products corresponding to cluster definition data B contains annuity insurance.

參閱圖1及圖4,以下說明本實施例執行之一收入估算程序的步驟。1 and 4, the following describes the steps of an income estimation procedure executed by this embodiment.

在步驟S31中,該伺服器單元10根據該等群集定義資料,利用一非線性迴歸方式,建立分別對應該等群集定義資料的多個收入估算模型。In step S31, the server unit 10 uses a nonlinear regression method according to the cluster definition data to establish a plurality of income estimation models corresponding to the cluster definition data.

接著於步驟S32中,該伺服器單元10根據該分群結果將該分群結果所相關的該群集定義資料對應之該收入估算模型設定為一目標收入估算模型。Then in step S32, the server unit 10 sets the income estimation model corresponding to the cluster definition data related to the grouping result as a target income estimation model according to the grouping result.

承接前例,該伺服器單元10便會將該群集定義資料B所對應的該收入估算模型設定為該目標收入估算模型。接著,執行步驟S33。Following the previous example, the server unit 10 will set the revenue estimation model corresponding to the cluster definition data B as the target revenue estimation model. Then, step S33 is executed.

參閱步驟S33,該伺服器單元10設定該目標收入估算模型後,便根據該待分析個人資料並利用該目標收入估算模型,估算出該待分析客戶的一估算個人收入。接著,於步驟S34中,根據該估算個人收入產生對應該金融商品建議組合的一金融商品投資金額。Referring to step S33, after the server unit 10 sets the target income estimation model, it estimates an estimated personal income of the client to be analyzed based on the personal data to be analyzed and the target income estimation model. Next, in step S34, a financial product investment amount corresponding to the proposed combination of financial products is generated based on the estimated personal income.

舉例來說,該伺服器單元10會將例如為1/3的該估算個人收入設定為金融商品投資金額,並將該金融商品建議組合及該金融商品投資金額傳送給該終端電子裝置20。For example, the server unit 10 sets, for example, 1/3 of the estimated personal income as the financial product investment amount, and transmits the financial product recommended combination and the financial product investment amount to the terminal electronic device 20.

綜上所述,本新型之金融商品推薦系統藉由該伺服器單元10根據該等參考客戶的該等個人特徵資料並利用k-平均演算法產生出該等群集定義資料,以便在接收到來自該終端電子裝置20的該商品建議請求時,能根據該等群集定義資料及該商品建議請求所包含的該待分析個人資料產生出該分群結果,進而能夠根據該分群結果將對應之該金融商品建議組合傳送給該終端電子裝置20,故確實能達成本新型的目的。In summary, the new type of financial product recommendation system uses the server unit 10 to generate the cluster definition data based on the personal characteristic data of the reference customers and the k-average algorithm, so that it can receive data from When the terminal electronic device 20 requests the commodity suggestion, the grouping result can be generated based on the cluster definition data and the personal data to be analyzed contained in the commodity suggestion request, and then the corresponding financial commodity can be classified according to the grouping result The proposed combination is transmitted to the terminal electronic device 20, so it can indeed achieve the purpose of new cost.

惟以上所述者,僅為本新型之實施例而已,當不能以此限定本新型實施之範圍,凡是依本新型申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本新型專利涵蓋之範圍內。However, the above-mentioned are only examples of the present model, and should not be used to limit the scope of implementation of the present model, all simple equivalent changes and modifications made in accordance with the patent scope of the present model application and the contents of the patent specification still belong to This new patent covers the scope.

10:伺服器單元 20:終端電子裝置 200:通訊網路 300:政府資料庫 S11~S12:步驟 S21~S24:步驟 S31~S34:步驟 10: Server unit 20: Terminal electronics 200: Communication network 300: Government Database S11~S12: steps S21~S24: steps S31~S34: steps

本新型之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是本新型之金融商品推薦系統的一實施例的一硬體連接關係示意圖; 圖2是該實施例執行的一分群程序的一流程圖; 圖3是該實施例執行的一金融商品推薦程序的一流程圖;及 圖4是該實施例執行的一收入估算程序的一流程圖。 Other features and effects of the present invention will be clearly presented in the embodiments with reference to the drawings, in which: FIG. 1 is a schematic diagram of a hardware connection relationship of an embodiment of the new financial product recommendation system; Figure 2 is a flowchart of a grouping procedure executed by this embodiment; Figure 3 is a flowchart of a financial product recommendation program executed by this embodiment; and Fig. 4 is a flowchart of an income estimation procedure executed by this embodiment.

10:伺服器單元 10: Server unit

20:終端電子裝置 20: Terminal electronics

200:通訊網路 200: Communication network

300:政府資料庫 300: Government Database

Claims (6)

一種金融商品推薦系統,包含: 一伺服器單元,儲存有分別相關於多個參考客戶的多個個人資料,及多個分別相關於該等參考客戶的金融商品持有資料;及 一終端電子裝置,能經由一通訊網路與該伺服器單元通訊; 其中,該伺服器單元根據該等個人資料產生多個分別相關於該等參考客戶的個人特徵資料,該等個人特徵資料的每一者包含多個個人特徵值; 該伺服器單元根據該等個人特徵資料,使用一預定分群演算法,產生多個群集定義資料,每一群集定義資料包含分別相關於該等個人特徵值的多個特徵值範圍; 該終端電子裝置傳送包含相關於一待分析客戶的一待分析個人資料的一商品建議請求給該伺服器單元; 該伺服器單元根據該待分析個人資料,產生一待分析個人特徵資料,該待分析個人特徵資料包含多個分別相關於該等群集定義資料的該等特徵值範圍的待分析個人特徵值; 該伺服器單元根據該等待分析個人特徵值及該等群集定義資料,產生一相關於該等群集定義資料其中一者的分群結果,其中,該等待分析個人特徵值符合該分群結果所相關的該群集定義資料的該等特徵值範圍; 該伺服器單元將對應於該分群結果所相關的該群集定義資料的一金融商品建議組合傳送給該終端電子裝置。 A financial product recommendation system, including: A server unit storing a plurality of personal data related to a plurality of reference customers, and a plurality of financial product holding data related to the reference customers; and A terminal electronic device that can communicate with the server unit via a communication network; Wherein, the server unit generates a plurality of personal characteristic data respectively related to the reference customers according to the personal data, and each of the personal characteristic data includes a plurality of personal characteristic values; The server unit uses a predetermined clustering algorithm to generate a plurality of cluster definition data according to the personal characteristic data, and each cluster definition data includes a plurality of characteristic value ranges respectively related to the personal characteristic values; The terminal electronic device transmits a product suggestion request containing a to-be-analyzed personal data related to a to-be-analyzed customer to the server unit; The server unit generates a to-be-analyzed personal characteristic data based on the to-be-analyzed personal data, and the to-be-analyzed personal characteristic data includes a plurality of to-be-analyzed personal characteristic values respectively related to the characteristic value ranges of the cluster definition data; The server unit generates a grouping result related to one of the cluster definition data according to the waiting analysis personal characteristic value and the cluster definition data, wherein the waiting analysis personal characteristic value matches the grouping result related to the grouping result. The range of these characteristic values of the cluster definition data; The server unit sends a suggested combination of financial products corresponding to the cluster definition data related to the clustering result to the terminal electronic device. 如請求項1所述的金融商品推薦系統,其中,該伺服器單元還根據該等群集定義資料,利用一非線性迴歸方式,建立分別對應該等群集定義資料的多個收入估算模型,並根據該分群結果將該分群結果所相關的該群集定義資料對應之該收入估算模型設定為一目標收入估算模型; 該伺服器單元根據該待分析個人資料並利用該目標收入估算模型,估算出該待分析客戶的一估算個人收入;及 該伺服器單元根據該估算個人收入產生對應該金融商品建議組合的一金融商品投資金額。 The financial product recommendation system according to claim 1, wherein the server unit also uses a nonlinear regression method to establish a plurality of income estimation models corresponding to the cluster definition data according to the cluster definition data, and according to The grouping result sets the income estimation model corresponding to the cluster definition data related to the grouping result as a target income estimation model; The server unit estimates an estimated personal income of the client to be analyzed based on the personal data to be analyzed and using the target income estimation model; and The server unit generates a financial product investment amount corresponding to the recommended combination of financial products based on the estimated personal income. 如請求項1所述的金融商品推薦系統,其中,每一個人資料包含相關於該參考客戶的一地理位置的一地理環境資料,及相關於該參考客戶且公開的一政府資料; 該待分析個人資料包含相關於該待分析客戶的一待分析地理位置的一待分析地理環境資料及相關於該待分析客戶且公開的一待分析政府資料。 The financial product recommendation system according to claim 1, wherein each personal data includes a geographic environment data related to a geographic location of the reference customer, and a public government data related to the reference customer; The to-be-analyzed personal data includes a to-be-analyzed geographic environment data related to a to-be-analyzed geographic location of the to-be-analyzed customer and a to-be-analyzed government data that is related to the to-be-analyzed customer and is public. 如請求項3所述的金融商品推薦系統,其中,該地理環境資料相關於地政狀況、公共設施狀況及私人設施狀況其中至少一者;及 該政府資料相關於多個行政區的收入與支出,及就業狀況其中至少一者。 The financial product recommendation system according to claim 3, wherein the geographic environment data is related to at least one of land administration status, public facility status, and private facility status; and The government information is related to at least one of the income and expenditure of multiple administrative regions, and employment status. 如請求項3所述的金融商品推薦系統,其中,該待分析個人資料所包含的該待分析政府資料是下載自一政府資料庫。The financial product recommendation system according to claim 3, wherein the government data to be analyzed included in the personal data to be analyzed is downloaded from a government database. 如請求項1所述的金融商品推薦系統,其中,該預定分群演算法為k-平均演算法。The financial product recommendation system according to claim 1, wherein the predetermined grouping algorithm is a k-average algorithm.
TW109211303U 2020-08-28 2020-08-28 Financial Commodity Recommendation System TWM605348U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109211303U TWM605348U (en) 2020-08-28 2020-08-28 Financial Commodity Recommendation System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109211303U TWM605348U (en) 2020-08-28 2020-08-28 Financial Commodity Recommendation System

Publications (1)

Publication Number Publication Date
TWM605348U true TWM605348U (en) 2020-12-11

Family

ID=74670331

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109211303U TWM605348U (en) 2020-08-28 2020-08-28 Financial Commodity Recommendation System

Country Status (1)

Country Link
TW (1) TWM605348U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI756804B (en) * 2020-08-28 2022-03-01 中國信託商業銀行股份有限公司 Financial product recommendation system and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI756804B (en) * 2020-08-28 2022-03-01 中國信託商業銀行股份有限公司 Financial product recommendation system and method

Similar Documents

Publication Publication Date Title
US11968105B2 (en) Systems and methods for social graph data analytics to determine connectivity within a community
US20220012767A1 (en) Real-time digital asset sampling apparatuses, methods and systems
US20200252423A1 (en) Systems and methods for vulnerability assessment and remedy identification
US20160337217A1 (en) Social graph data analytics
JP6262909B1 (en) Calculation device, calculation method, and calculation program
JP6194092B1 (en) Calculation device, calculation method, and calculation program
JP2017016485A (en) Calculation device, calculation method, and calculation program
JP2021500659A (en) Automated attribution modeling and measurement
CN113627997A (en) Data processing method, device, electronic device and storage medium
CN114065042A (en) User demand prediction method and device, electronic equipment and readable storage medium
Gilmour Identification of hospital catchment areas using clustering: an example from the NHS
TWM605348U (en) Financial Commodity Recommendation System
US20180089774A1 (en) Method for automatic property valuation
TWI756804B (en) Financial product recommendation system and method
Hass et al. The modeling of medical expenditure data from a longitudinal survey using the generalized method of moments (GMM) approach
CN114842939A (en) Physical examination recommendation information determination method and device, computer equipment and storage medium
TWI657393B (en) Marketing customer group prediction system and method
CN115760287B (en) Recommended methods, devices, equipment and storage media for agent seating
US20150193377A1 (en) Sensitivity Analysis of an Independent Variable Based on Regression
TWI635451B (en) Similarity analysis method and system using virtual goods in recommendation system
JP2017016652A (en) Calculation device, calculation method, and calculation program
JP2025036067A (en) Information processing device and information processing method
CN114282674A (en) Employee state prediction method and device, electronic equipment and computer readable medium
CN114565398A (en) Electronic commerce data mining system based on internet
CN119847718A (en) Resource data interaction method, device, computer equipment and storage medium