[go: up one dir, main page]

TWM602260U - Real estate valuation system - Google Patents

Real estate valuation system Download PDF

Info

Publication number
TWM602260U
TWM602260U TW109207378U TW109207378U TWM602260U TW M602260 U TWM602260 U TW M602260U TW 109207378 U TW109207378 U TW 109207378U TW 109207378 U TW109207378 U TW 109207378U TW M602260 U TWM602260 U TW M602260U
Authority
TW
Taiwan
Prior art keywords
learning model
data
server
valuation
model
Prior art date
Application number
TW109207378U
Other languages
Chinese (zh)
Inventor
林永祥
陳靜宜
吳書帆
Original Assignee
兆豐國際商業銀行股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 兆豐國際商業銀行股份有限公司 filed Critical 兆豐國際商業銀行股份有限公司
Priority to TW109207378U priority Critical patent/TWM602260U/en
Publication of TWM602260U publication Critical patent/TWM602260U/en

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The present disclosure provides a real estate valuation system including a server and an electronic device coupled to the server. The server stores a valuation model, wherein the valuation model includes an ensemble learning model. The ensemble learning model includes multiple statistic models and the ensemble learning model receives input data and input the input data into the statistic models and generates a valuation value by a regression method. The server performs a validity verification to the ensemble learning model according to multiple refresh data in a time interval. When ensemble learning model does not pass the validity verification, the server refreshes multiple parameters corresponding to the ensemble learning model, and replace the ensemble learning model with a new ensemble learning model when the new ensemble learning model passes the validity verification. The electronic device performs an valuation operation using the valuation mode.

Description

不動產估價系統Real estate valuation system

本揭露是有關於一種不動產估價系統,且特別是有關於一種自動更新估價模型的不動產估價系統。This disclosure relates to a real estate appraisal system, and particularly to a real estate appraisal system that automatically updates the appraisal model.

對一般民眾而言購屋所費不貲,因此成交前常會挑選幾個標的物件做條件、價格確認與比較。例如,民眾可透過實價登錄網站、房仲業者、物件屋主報價等多種管道確認價格合理性。然而此類工作耗時費力且詢價對象亦可能有隱惡揚善或高報價格之情況。為解決上述購屋問題,線上不動產估價系統開始被推出。然而,現有的線上不動產估價系統大多因為參考數據不足導致估價結果與實際價格有較大落差,因此如何能提供一個高精準度的不動產估價系統是本領域技術人員應致力的目標。For the general public, the cost of buying a house is not expensive. Therefore, before the transaction is completed, several target items are often selected for condition, price confirmation and comparison. For example, the public can confirm the reasonableness of the price through various channels such as logging on the website at the actual price, real estate agents, and property owners quotations. However, this kind of work is time-consuming and laborious, and the inquiring object may also hide evil and promote good or overstate the price. In order to solve the above-mentioned housing purchase problem, an online real estate valuation system has been launched. However, most of the existing online real estate appraisal systems have a large gap between the appraisal results and the actual prices due to insufficient reference data. Therefore, how to provide a high-precision real estate appraisal system is a goal that those skilled in the art should strive for.

有鑑於此,本揭露提供一種不動產估價系統,能自動更新估價模型以提供更精確的估價結果。In view of this, the present disclosure provides a real estate valuation system that can automatically update the valuation model to provide more accurate valuation results.

本揭露提出一種不動產估價系統,包括:伺服器及電子裝置耦接到伺服器。伺服器儲存估價模型,其中估價模型包括集成學習模型。集成學習模型包括多個統計模型且集成學習模型接收輸入資料並將輸入資料輸入統計模型中並以迴歸方式產生估價值。伺服器在時間間隔根據多個更新資料對集成學習模型進行效度驗證。當集成學習模型不通過效度驗證時,伺服器更新對應集成學習模型的多個參數,並在更新參數後的新集成學習模型通過效度驗證時則以新集成學習模型取代集成學習模型。電子裝置使用估價模型進行估價操作。This disclosure proposes a real estate valuation system, which includes a server and an electronic device coupled to the server. The server stores an evaluation model, where the evaluation model includes an integrated learning model. The integrated learning model includes a plurality of statistical models, and the integrated learning model receives input data and inputs the input data into the statistical model to generate estimated value in a regression manner. The server verifies the validity of the integrated learning model based on multiple updated data at intervals. When the integrated learning model fails the validity verification, the server updates multiple parameters corresponding to the integrated learning model, and replaces the integrated learning model with the new integrated learning model when the updated parameters pass the validity verification. The electronic device uses the valuation model to perform valuation operations.

基於上述,本揭露的不動產估價系統利用集成學習模型作為估價模型。伺服器例如每月接收更新資料並將更新資料輸入估價模型以進行效度驗證。若估價模型不通過效度驗證則伺服器更新多個參數並再次進行效度驗證。若重新建模的估價模型通過效度驗證時伺服器就能以新集成學習模型取代原本的集成學習模型,讓使用者利用電子裝置進行估價操作。Based on the above, the real estate valuation system of the present disclosure uses an integrated learning model as the valuation model. For example, the server receives updated data every month and inputs the updated data into the evaluation model for validity verification. If the evaluation model fails the validity verification, the server updates multiple parameters and performs validity verification again. If the re-modeled evaluation model passes the validity verification, the server can replace the original integrated learning model with the new integrated learning model, allowing the user to use the electronic device to perform the evaluation operation.

圖1為根據本揭露一實施例的不動產估價系統的方塊圖。FIG. 1 is a block diagram of a real estate valuation system according to an embodiment of the present disclosure.

請參照圖1,本揭露一實施例的不動產估價系統100包括伺服器110及電子裝置120。電子裝置120透過有線或無線網路耦接到伺服器110。伺服器110例如是銀行伺服器且電子裝置120例如是使用者的個人電腦、筆記型電腦、智慧型手機、平板電腦或其他類似裝置。使用者可利用電子裝置120連線到伺服器110來進行不動產估價操作。Please refer to FIG. 1, the real estate appraisal system 100 of an embodiment of the present disclosure includes a server 110 and an electronic device 120. The electronic device 120 is coupled to the server 110 through a wired or wireless network. The server 110 is, for example, a bank server and the electronic device 120 is, for example, a user's personal computer, notebook computer, smart phone, tablet computer, or other similar devices. The user can use the electronic device 120 to connect to the server 110 to perform real estate valuation operations.

在一實施例中,伺服器110儲存估價模型,其中估價模型包括集成學習模型。集成學習模型包括多個統計模型且集成學習模型接收輸入資料並將輸入資料輸入統計模型中並以迴歸方式產生估價值。也就是說,集成學習模型中的多個統計模型輸出可組成線性迴歸(Linear Regression)的堆疊(stacking)模型。輸入資料可包括授信資料、實價登錄資料、興趣點資料(Point of Interest,POI)、經濟指標資料(例如,可包括多種經濟指標)、由建商房價資料整理成的房貸指數、政府潛勢區域勢官方資料、行內擔保品資料等與不動產相關的資料且輸出資料例如是不動產估價結果。輸入資料還可包含授信擔保品資料、一政府興趣點官方資料、房價資料(例如,包含多個建商資料且房價資料不限於建商提供,可同時包含多個建商房價資料整理成的多個房貸指數)、潛勢區域資料(可同時包含多種該類相關資料)、空屋指標資料(可同時包含多種該類相關資料)。伺服器110在時間間隔(例如,每一個月)根據多個更新資料對集成學習模型進行效度驗證。當集成學習模型不通過效度驗證時,伺服器110更新對應集成學習模型的多個參數,並在更新參數後的新集成學習模型通過效度驗證時則以新集成學習模型取代集成學習模型。舉例來說,伺服器110將估價模型佈署到應用程式主機以提供估價操作,並更新此估價模型應用程式介面(Application Program Interface,API)的模型檔以供前台呼叫最新估價結果。民眾利用可電子裝置120使用估價模型進行估價操作。In an embodiment, the server 110 stores an evaluation model, where the evaluation model includes an integrated learning model. The integrated learning model includes a plurality of statistical models, and the integrated learning model receives input data and inputs the input data into the statistical model to generate estimated value in a regression manner. In other words, the output of multiple statistical models in the integrated learning model can form a stacking model of Linear Regression. Input data can include credit information, real price registration data, point of interest data (POI), economic index data (for example, it can include a variety of economic indexes), mortgage index compiled by house price data, and government potential Regional official data, bank collateral data and other real estate-related data, and the output data is, for example, real estate valuation results. The input data can also include credit collateral data, official data of a government point of interest, and housing price data (for example, it contains data from multiple builders and the housing price data is not limited to those provided by the builder. It can also include the housing price data of multiple builders. Individual mortgage index), potential area data (can contain a variety of related data at the same time), and vacant home index data (can contain multiple related data of this type at the same time). The server 110 verifies the validity of the integrated learning model according to multiple updated data at time intervals (for example, every month). When the integrated learning model fails the validity verification, the server 110 updates multiple parameters corresponding to the integrated learning model, and replaces the integrated learning model with the new integrated learning model when the new integrated learning model after the updated parameters passes the validity verification. For example, the server 110 deploys the evaluation model to the application host to provide evaluation operations, and updates the model file of the evaluation model Application Program Interface (API) for the front desk to call the latest evaluation result. The public uses the electronic device 120 to use the valuation model to perform valuation operations.

在一實施例中,伺服器110可根據兩個階段建立估價模型。第一階段可包括透過利用多種具不同優勢的統計模型並參考多種影響價格的特徵參數,以某一價格參數來源為基底(不限制參數總數),並且可依外來輸入之物件資訊調整抽樣內容,自動化利用樣本重複抽樣(即,取後放回)方式,產生多個子資料集(Subsets)後,分配輸入建立之多個統計模型中,並以迴歸方式(不限演算法類型)得出各類統計模型估價預測均值。在第二階段中可設計另一模型用迴歸方式(不限演算法類型),自動化集成訓練上述各類統計模型並保有各類模型優勢。例如,如部分模型可使多個預測值的權重不同、部分模型可將基於先前模型調高錯誤的分類資料的權數跑迴歸進行優化來增強模型、部分模型線性獨立度較高。如此一來,藉由整合多類模型以產生較單類模型更高之估價預測精準度。In an embodiment, the server 110 may establish an evaluation model according to two stages. The first stage can include using a variety of statistical models with different advantages and referring to a variety of characteristic parameters that affect prices, using a certain price parameter source as the base (without limiting the total number of parameters), and adjusting the sampling content based on externally input object information. Automate the use of sample repeated sampling (that is, take and put it back) to generate multiple subsets (Subsets), distribute the input to multiple statistical models established, and use regression methods (without limitation on algorithm types) to obtain various types The statistical model estimates the predicted mean. In the second stage, another model can be designed to use regression methods (without limitation of algorithm types), and the above-mentioned various statistical models can be automatically integrated and trained and the advantages of various models can be maintained. For example, for example, some models can have different weights for multiple predicted values, and some models can optimize the weights of classification data based on the previous model to increase the error to enhance the model, and some models have higher linear independence. In this way, by integrating multiple types of models, higher accuracy of valuation and forecasting than a single type model can be generated.

在一實施例中,輸入資料可包括實價登錄、潛勢區域、房價指數、經濟指標、空屋指標、POI資料等。實價登錄為不動產實價登錄資料。潛勢區域包括土壤液化潛勢及淹水潛勢。房價指數例如包括信義房價指數及國泰房地產指數。經濟指標包括最近一月/一季/一年的平均經常性薪資、消費者物價指數、景氣燈號分數、失業率、購屋貸款利率、證券股價指數、景氣領先指標、工業生產指數、貨幣供給總計數、平均借貸額度、國內生產毛額及儲蓄率等。空屋指標可包括低度用電資料及新建餘屋資料等。POI資料可包括民生消費、教育機構、公共運輸、金融服務、生活休閒、醫療院所、嫌惡設施等。民生消費可包括金融卡特約商店、便利商店、無線熱點、網咖、電影院、停車場、市場等。教育機構可包括中高院校、大專院校、小學、幼教、圖書館、育嬰中心、補習補校等。公共運輸可包括台鐵站、自行車租賃站、公車站牌、高鐵站、捷運站等。金融服務可包括銀行、自動櫃員機等。生活休閒可包括一般旅館、國際觀光旅館、休閒公園等。醫療院所可包括醫療單位及藥局等。嫌惡設施可包括加油站、工業產業園區、殯葬設施、宗教場所、加氣站、垃圾場、寺廟神壇、焚化爐、發電廠、變電所、社會住宅、消防局、斷層資訊區域等。In one embodiment, the input data may include real price registration, potential area, housing price index, economic index, vacant house index, POI data, etc. The real price registration is the real property registration data. Potential areas include soil liquefaction potential and flooding potential. The house price index includes, for example, the Xinyi House Price Index and the Cathay Pacific Real Estate Index. Economic indicators include the average recurring salary of the most recent month/quarter/year, consumer price index, prosperity light score, unemployment rate, home loan interest rate, stock price index, leading indicators of prosperity, industrial production index, total money supply count , Average loan amount, gross domestic production and savings rate, etc. The index of vacant housing can include low electricity consumption data and new surplus housing data. POI data can include people's livelihood consumption, educational institutions, public transportation, financial services, life and leisure, medical institutions, aversion facilities, etc. People's livelihood consumption may include financial card special stores, convenience stores, wireless hotspots, Internet cafes, movie theaters, parking lots, markets, etc. Educational institutions can include middle and high schools, colleges, primary schools, preschool education, libraries, nursery centers, tuition schools, etc. Public transportation can include Taiwan Railway Station, bicycle rental station, bus stop sign, high-speed rail station, MRT station, etc. Financial services may include banks, automated teller machines, etc. Life and leisure can include general hotels, international tourist hotels, and leisure parks. Medical institutions may include medical units and pharmacies. Suspected facilities can include gas stations, industrial parks, funeral facilities, religious sites, gas stations, garbage dumps, temples and altars, incinerators, power plants, substations, social housing, fire stations, fault information areas, etc.

在一實施例中,實價登錄資料可包括鄉鎮市區、縣市別、經緯度、土地轉移坪數、土地使用分區、屋齡、交易筆數、轉移層次、總樓層數、建物形態、主要用途、主要建材、適用建築法規時間、建物轉移坪數、建物現況格局、有無管理組織、每坪單價、車位類別、車位轉移坪數、車位價格是否拆分等。In one embodiment, the actual price registration information may include township, city, county, latitude and longitude, number of land transfer pings, land use zoning, house age, number of transactions, transfer level, total number of floors, building form, and main purpose , Main building materials, applicable building regulations time, number of building transfers, current structure of the building, whether there is a management organization, unit price per ping, parking space category, number of parking spaces transferred, whether parking space prices are split, etc.

在一實施例中,伺服器110可根據網格搜尋演算法或基因演算法更新對應估價模型的多個參數。以網格搜尋(Grid Search)演算法為例,網格搜尋演算法可在所有候選的參數組合中透過迴圈方式嘗試每一種可能性,並以表現最好的參數組合作為最終結果。在一實施例中,隨機森林模型及極限梯度提升(eXtreme Gradient Boosting,XGBoost)模型都可利用網格搜尋演算法自動尋找估價模型的最佳參數組合。表一為網格搜尋的模型、參數及參數說明。In an embodiment, the server 110 may update multiple parameters corresponding to the valuation model according to a grid search algorithm or a genetic algorithm. Take the grid search algorithm as an example. The grid search algorithm can try every possibility in a loop among all candidate parameter combinations, and use the best performing parameter combination as the final result. In one embodiment, both the random forest model and the eXtreme Gradient Boosting (XGBoost) model can use a grid search algorithm to automatically find the best parameter combination of the evaluation model. Table 1 shows the model, parameters and parameter descriptions of the grid search.

表一 模型 參數 參數說明 隨機森林模型 n_estimators 隨機森林中樹的數量 max_depth 隨機森林中樹的最大深度 min_samples_split 分支所需樣本數下限 min_samples_leaf 葉節點的樣本數下限 極限梯度提升模型 eta 學習速率 max_depth 樹的最大深度 subsample 樣本抽樣比例 colsample_bytree 變數抽樣比例 gamma 損失函數值下限 min_child_weight 子節點樣本權重和 Table I model parameter Parameter Description Random forest model n_estimators Number of trees in random forest max_depth Maximum depth of trees in random forest min_samples_split Minimum number of samples required for branch min_samples_leaf Lower limit of the number of samples of leaf nodes Extreme gradient boosting model eta Learning rate max_depth Maximum depth of tree subsample Sample sampling ratio colsample_bytree Variable sampling ratio gamma Lower limit of loss function value min_child_weight Sum of sample weights of child nodes

另一方面,伺服器110也可根據基因演算法更新對應估價模型的多個參數。利用基因演算法在決定最適參數的效率遠大於網格搜尋。On the other hand, the server 110 may also update multiple parameters of the corresponding valuation model according to the genetic algorithm. The efficiency of using genetic algorithms to determine the most suitable parameters is much greater than grid search.

在一實施例中,更新資料包括多個不動產資料,當這些不動產資料輸入估價模型產生的輸出結果與些不動產資料對應的多個預定估價結果的差異小於等於門檻值,則輸出結果通過效度驗證。當輸出結果與預定估價結果的差異大於門檻值,則輸出結果不通過效度驗證。In one embodiment, the updated data includes a plurality of real estate data. When the difference between the output result of the real estate data input to the valuation model and the plurality of predetermined valuation results corresponding to the real property data is less than or equal to the threshold value, the output result passes the validity verification . When the difference between the output result and the predetermined evaluation result is greater than the threshold value, the output result does not pass the validity verification.

舉例來說,伺服器110可計算對應輸出結果的平均絕對誤差百分比(Mean Absolute Percentage Error,MAPE)及命中率。當平均絕對誤差百分比小於等於預定百分比(例如,15%)且誤差在第一百分比(例如,10%)內的命中率大於等於第二預定百分比(例如,50%)且誤差在第二百分比(例如,20%)內的命中率大於等於第三預定百分比(例如,80%),則輸出結果通過效度驗證。透過平均絕對誤差百分比及命中率的雙重驗證,可大幅增加效度驗證的準確性。For example, the server 110 may calculate the Mean Absolute Percentage Error (MAPE) and hit rate corresponding to the output result. When the average absolute error percentage is less than or equal to a predetermined percentage (for example, 15%) and the error is within the first percentage (for example, 10%), the hit rate is greater than or equal to the second predetermined percentage (for example, 50%) and the error is within the second If the hit rate in the percentage (for example, 20%) is greater than or equal to the third predetermined percentage (for example, 80%), the output result passes the validity verification. Through double verification of average absolute error percentage and hit rate, the accuracy of validity verification can be greatly increased.

平均絕對誤差百分比是用來衡量實際值與預測值之間差距與實際值的比值,誤差取絕對值,高估或低估幅度相等,誤差也不會彼此抵銷。平均絕對誤差百分比的計算公式為

Figure 02_image002
,其中y為估價結果實際值且ŷ為估價結果預測值且n為樣本數。命中率是指在特定誤差範圍內,預測值落於該區間的機率,命中率越高,表示預測值接近實際值的機率越高。命中率的計算公式為
Figure 02_image004
Figure 02_image006
,其中y為估價結果實際值且ŷ為估價結果預測值且
Figure 02_image008
為信心水準且N為測試樣本數且n為命中區間樣本數。 The average absolute error percentage is used to measure the ratio of the difference between the actual value and the predicted value to the actual value. The error is taken as the absolute value, and the magnitude of overestimation or underestimation is equal, and the errors will not offset each other. The formula for calculating the average absolute error percentage is
Figure 02_image002
, Where y is the actual value of the valuation result and ŷ is the predicted value of the valuation result and n is the number of samples. The hit rate refers to the probability that the predicted value falls within the interval within a certain error range. The higher the hit rate, the higher the probability that the predicted value is close to the actual value. The formula for calculating the hit rate is
Figure 02_image004
,
Figure 02_image006
, Where y is the actual value of the valuation result and ŷ is the predicted value of the valuation result and
Figure 02_image008
Is the confidence level and N is the number of test samples and n is the number of samples in the hit interval.

在一實施例中,伺服器110可建立多重統計模型,如此與單一模型相比可有效提升精準度。伺服器110透過集成學習(Ensemble Learning)技術將自助聚合(Bootstrap aggregating,又稱為Bagging)、提升(Boosting)、堆疊(Stacking)三類模型組合運用方式做為不動產估價的預測模型基底。運算方式可分成兩階段。第一階段主要運用不同特性的自助聚合模型衍生之隨機森林法及提升模型衍生之極限梯度提升法(eXtreme Gradient Boosting,XGBoosting)兩大模型架構輸出多個子模型預測值。第二階段則以堆疊模型整合第一階段兩大模型結果,以保有原先第一階段各模型優點並消彌單一模型缺點概念,進一步提升預測精準度而輸出最終預測結果。上述相關模型細節如下表一所示。In one embodiment, the server 110 can create multiple statistical models, which can effectively improve accuracy compared with a single model. The server 110 uses an integrated learning (Ensemble Learning) technology to use a combination of three types of models: Bootstrap aggregating (also known as Bagging), Boosting, and Stacking as a predictive model base for real estate valuation. The calculation method can be divided into two stages. The first stage mainly uses the random forest method derived from self-service aggregation models with different characteristics and the extreme gradient boosting method (eXtreme Gradient Boosting, XGBoosting) derived from the boosting model to output multiple sub-model prediction values. In the second stage, the stacking model is used to integrate the results of the two models in the first stage to preserve the advantages of the original first stage models and eliminate the shortcomings of the single model, further improve the prediction accuracy and output the final prediction results. The details of the above related models are shown in Table 1 below.

表一 兩階段運算 第一階段 第二階段 演算法 隨機森林法(自助聚合+決策樹) 極限梯度提升法(提升+決策樹+梯度下降法) 堆疊法 模型架構 自助聚合(強模型,子模型樣本取回重抽,彼此重複度高且容易干擾) 提升(弱模型,子模型依序漸進方式分離錯誤資料) 堆疊法 概念 同一資料源重複抽樣,將每次抽樣之子模型預測值加總平均 藉多個模型依序分離錯誤資料加權,降低偏差值,最後留存精準度高資料 可用利用線性回歸、支持向量回歸或決策樹,將第一階段兩類模型結果整合訓練 優點 變化度低、共線性低、可檢測各變數效度做刪減、可檢測變數及子模型最適數量、具迅速計算能力 偏差值低、變數解釋性問題較少、具迅速計算能力(正則化降低模型複雜度) 提供結合第一階段各類模型優點之預測結果 缺點 偏差值高 變化度高、噪訊多 N/A 資料驗證 k折交叉驗證法 Table I Two-stage operation The first stage second stage Algorithm Random forest method (self-service aggregation + decision tree) Limit gradient boosting method (boosting + decision tree + gradient descent method) Stacking method Model architecture Self-service aggregation (strong model, sub-model samples are retrieved and redrawn, with high repeatability and easy interference) Promotion (weak model, sub-models separate incorrect data in a progressive manner) Stacking method concept Repeat sampling from the same data source, and add the predicted values of the sub-models for each sampling Use multiple models to sequentially separate error data and weight, reduce deviation, and finally retain high-precision data Use linear regression, support vector regression or decision tree to integrate the results of the two types of models in the first stage of training advantage Low variability, low collinearity, can detect the validity of each variable for deletion, can detect the optimal number of variables and sub-models, and have rapid calculation capabilities Low deviation value, less variable explanatory problems, rapid calculation ability (regularization reduces model complexity) Provide prediction results combining the advantages of various models in the first stage Disadvantage High deviation High degree of change, more noise N/A Data verification k-fold cross validation

在一實施例中,伺服器110可建模以7大構面,包括:實價登錄、周遭設施種類(POI資料)、房價指數、潛勢區域資料、經濟指標、空屋指標、本行徵審系統(e-Loan系統)擔保品資訊及區域分級(貸款成數)資料。涵蓋多項參數、歷史資料及預期未來經濟等因子納入考量。In one embodiment, the server 110 can be modeled in 7 major dimensions, including: real price registration, types of surrounding facilities (POI data), housing price index, potential area data, economic indicators, vacant housing indicators, and local levy Approval system (e-Loan system) collateral information and regional classification (loan number) data. Factors including multiple parameters, historical data and expected future economy are taken into consideration.

在「實價登錄」構面中,依交易、標的、價格資訊,計130萬筆以上實價登錄資料,並在500公尺/1000公尺直徑範圍內全面性搜尋相近物件。In the "net registration" aspect, based on transaction, target, and price information, there are more than 1.3 million real price registration data, and a comprehensive search for similar objects within 500 meters/1000 meters in diameter.

在「POI資料」構面中,以串聯政府公開資料平台(例如,https://data.gov.tw/)設施資料,分7大類(例如,民生消費、教育機構、公共運輸、生活休閒、金融服務、醫療院所、嫌惡設施),對周遭進行全盤式搜尋,作增、減估值。In the "POI data" dimension, the facility data of the government open information platform (e.g. https://data.gov.tw/) is connected in 7 categories (e.g. people’s livelihood consumption, educational institutions, public transportation, life and leisure, Financial services, medical institutions, disgusting facilities), conduct a comprehensive search of the surrounding area to increase and decrease valuations.

在「房價指數」構面中,依信義房屋與國泰建設資料庫依成交量、價格、銷售率,得知各區域縣市房價走勢,依區增、減估值。In the "House Price Index" aspect, according to the database of Xinyi Housing and Cathay Pacific Construction, according to the transaction volume, price, and sales rate, the trend of housing prices in various regions, counties and cities is known, and the valuation increases and decreases according to the district.

在「潛勢區域資料」構面中,依政府公開資料平台(例如,https://data.gov.tw/)獲得土壤液化、淹水程度增、減估值。In the "potential area data" aspect, the estimation of soil liquefaction, flooding degree increase and decrease is obtained according to the government's public information platform (for example, https://data.gov.tw/).

在「經濟指標」構面中,依主計處總體統計資料庫(例如,http://statdb.dgbas.gov.tw/pxweb/Dialog/statfile9L.asp) 12種經濟指標(例如,消費者物價指數、景氣燈號分數、失業率、景氣領先指標、工業生產指數、貨幣供給、貨幣總計數、證券市場股價指數、國內生產毛額、儲蓄率、借貸額度平均薪資、購屋貸款利率),結合經濟趨勢變化並調整模型估值以提升精準度。In the "Economic Indicators" dimension, according to the overall statistical database (for example, http://statdb.dgbas.gov.tw/pxweb/Dialog/statfile9L.asp) 12 kinds of economic indicators (for example, the consumer price index) , Prosperity indicator score, unemployment rate, leading indicators of prosperity, industrial production index, money supply, total currency count, stock market stock price index, gross domestic production, savings rate, average salary of loan lines, interest rate of home loans), combined with economic trends Change and adjust model valuation to improve accuracy.

在「空屋指標」構面中,依內政部不動產資訊平台(例如,https://pip.moi.gov.tw/V2/E/SCRE0104.aspx)利用低度用電戶數、新建餘屋資訊判別周遭房屋供給需求。In the "Vacancy Index" dimension, the number of households with low electricity consumption is used to build vacant housing based on the real estate information platform of the Ministry of the Interior (e.g. https://pip.moi.gov.tw/V2/E/SCRE0104.aspx) The information determines the supply and demand of surrounding houses.

在「本行徵審系統擔保品資料及區域分級資料」構面中,依本行徵審系統(例如,e-Loan系統)獲得約10萬筆以上申貸估價資料並擇選臨近物件及該區對應可貸成數,其中區域分級資料指區域可貸成數。In the "Collateral Data and Regional Classification Data of the Bank's Collection and Approval System", we have obtained about 100,000 or more loan appraisal data based on the Bank's collection and review system (e.g. e-Loan system) and selected nearby objects and the The area corresponds to the loanable percentage, and the regional grade data refers to the regional loanable percentage.

綜上所述,本揭露的不動產估價系統利用集成學習模型作為估價模型。伺服器例如每月接收更新資料並將更新資料輸入估價模型以進行效度驗證。若估價模型不通過效度驗證則伺服器更新多個參數並再次進行效度驗證。若重新建模的估價模型通過效度驗證時伺服器就能以新集成學習模型取代原本的集成學習模型,讓使用者利用電子裝置進行估價操作。In summary, the real estate appraisal system disclosed in the present disclosure uses an integrated learning model as the appraisal model. For example, the server receives updated data every month and inputs the updated data into the evaluation model for validity verification. If the evaluation model fails the validity verification, the server updates multiple parameters and performs validity verification again. If the re-modeled evaluation model passes the validity verification, the server can replace the original integrated learning model with the new integrated learning model, allowing the user to use the electronic device to perform the evaluation operation.

雖然本揭露已以實施例揭露如上,然其並非用以限定本揭露,任何所屬技術領域中具有通常知識者,在不脫離本揭露的精神和範圍內,當可作些許的更動與潤飾,故本揭露的保護範圍當視後附的申請專利範圍所界定者為準。Although this disclosure has been disclosed in the above embodiments, it is not intended to limit the disclosure. Anyone with ordinary knowledge in the relevant technical field can make some changes and modifications without departing from the spirit and scope of this disclosure. Therefore, The scope of protection of this disclosure shall be subject to those defined by the attached patent scope.

100:不動產估價系統 110:伺服器 120:電子裝置 100: Real estate valuation system 110: server 120: electronic device

圖1為根據本揭露一實施例的不動產估價系統的方塊圖。FIG. 1 is a block diagram of a real estate valuation system according to an embodiment of the present disclosure.

100:不動產估價系統 100: Real estate valuation system

110:伺服器 110: server

120:電子裝置 120: electronic device

Claims (7)

一種不動產估價系統,包括: 一伺服器;以及 一電子裝置,耦接到該伺服器,其中 該伺服器儲存一估價模型,其中該估價模型包括一集成學習模型,該集成學習模型包括多個統計模型且該集成學習模型接收一輸入資料並將該輸入資料輸入該些統計模型中並以一迴歸方式產生一估價值; 該伺服器在一時間間隔根據多個更新資料對該集成學習模型進行一效度驗證; 當該集成學習模型不通過該效度驗證時,該伺服器更新對應該集成學習模型的多個參數,並在更新該些參數後的一新集成學習模型通過該效度驗證時則以該新集成學習模型取代該集成學習模型;以及 該電子裝置使用該估價模型進行一估價操作。 A real estate valuation system including: A server; and An electronic device coupled to the server, wherein The server stores an evaluation model, wherein the evaluation model includes an integrated learning model, the integrated learning model includes a plurality of statistical models, and the integrated learning model receives an input data and inputs the input data into the statistical models and uses a The return method produces an estimated value; The server performs a validity verification on the integrated learning model according to a plurality of updated data at a time interval; When the ensemble learning model fails the validity verification, the server updates multiple parameters corresponding to the ensemble learning model, and when a new ensemble learning model after updating the parameters passes the validity verification, the new The integrated learning model replaces the integrated learning model; and The electronic device uses the evaluation model to perform an evaluation operation. 如請求項1所述的不動產估價系統,其中該伺服器計算一平均絕對誤差百分比及一命中率,並根據一平均絕對誤差百分比及/或一命中率判斷該集成學習模型是否通過該效度驗證。The real estate appraisal system according to claim 1, wherein the server calculates an average absolute error percentage and a hit rate, and judges whether the integrated learning model passes the validity verification based on an average absolute error percentage and/or a hit rate . 如請求項2所述的不動產估價系統,其中該平均絕對誤差百分比為
Figure 03_image010
,其中y為估價結果實際值且ŷ為估價結果預測值且n為樣本數,該命中率為
Figure 03_image012
Figure 03_image014
,其中y為估價結果實際值且ŷ為估價結果預測值且
Figure 03_image016
為信心水準且N為測試樣本數且n為命中區間樣本數。
The real estate appraisal system described in claim 2, wherein the average absolute error percentage is
Figure 03_image010
, Where y is the actual value of the valuation result, ŷ is the predicted value of the valuation result and n is the number of samples, the hit rate is
Figure 03_image012
,
Figure 03_image014
, Where y is the actual value of the valuation result and ŷ is the predicted value of the valuation result and
Figure 03_image016
Is the confidence level and N is the number of test samples and n is the number of samples in the hit interval.
如請求項1所述的不動產估價系統,其中該伺服器根據一網格搜尋演算法或一基因演算法更新對應該集成學習模型的該些參數。The real estate appraisal system according to claim 1, wherein the server updates the parameters corresponding to the integrated learning model according to a grid search algorithm or a genetic algorithm. 如請求項1所述的不動產估價系統,其中該些統計模型包括一隨機森林模型。The real estate valuation system according to claim 1, wherein the statistical models include a random forest model. 如請求項1所述的不動產估價系統,其中該些統計模型包括一極限梯度提升(eXtreme Gradient Boosting,XGBoost)模型。The real estate valuation system according to claim 1, wherein the statistical models include an extreme gradient boosting (eXtreme Gradient Boosting, XGBoost) model. 如請求項1所述的不動產估價系統,其中該輸入資料包括一授信擔保品資料、一實價登錄資料、一政府興趣點官方資料、一經濟指標資料、一房價資料、一潛勢區域資料、一空屋指標資料。Such as the real estate appraisal system described in claim 1, wherein the input data includes a credit collateral data, a real price registration data, an official government point of interest data, an economic index data, a housing price data, a potential area data, Index data of an empty house.
TW109207378U 2020-06-12 2020-06-12 Real estate valuation system TWM602260U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109207378U TWM602260U (en) 2020-06-12 2020-06-12 Real estate valuation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109207378U TWM602260U (en) 2020-06-12 2020-06-12 Real estate valuation system

Publications (1)

Publication Number Publication Date
TWM602260U true TWM602260U (en) 2020-10-01

Family

ID=74094192

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109207378U TWM602260U (en) 2020-06-12 2020-06-12 Real estate valuation system

Country Status (1)

Country Link
TW (1) TWM602260U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI773575B (en) * 2021-11-03 2022-08-01 中國信託商業銀行股份有限公司 House Price Appraisal Equipment
TWI812967B (en) * 2021-06-21 2023-08-21 信義房屋股份有限公司 Regional price display device excluding special objects

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI812967B (en) * 2021-06-21 2023-08-21 信義房屋股份有限公司 Regional price display device excluding special objects
TWI773575B (en) * 2021-11-03 2022-08-01 中國信託商業銀行股份有限公司 House Price Appraisal Equipment

Similar Documents

Publication Publication Date Title
Du et al. Spatial and temporal effects of urban wetlands on housing prices: Evidence from Hangzhou, China
Ahlfeldt et al. Impact of sports arenas on land values: Evidence from Berlin
Tajani et al. Automated valuation models for real estate portfolios: A method for the value updates of the property assets
JP2001117973A (en) Device and method for evaluating real estate, recording medium storing real estate evaluation program and real estate information providing system
Snowball The economic, social and cultural impact of cultural heritage: methods and examples
US11816122B1 (en) Multi-use artificial intelligence-based ensemble model
Clark et al. A mass-market appraisal of the English housing rental market using a diverse range of modelling techniques
Alkay et al. Explaining spatial variation in housing construction activity in Turkey
Lo et al. Business vulnerability assessment: a firm-level analysis of micro-and small businesses in China
TWM602260U (en) Real estate valuation system
Rosenthal Efficiency and seasonality in the UK housing market, 1991–2001
Cho et al. Effects of Land‐Related Policies on Land Development during a Real Estate Boom and a Recession
KR20210074072A (en) Method and system for preparing real estate analysis report
CN113343681A (en) Enterprise financial service pushing method and device
Logan Quantifying changes in risk perception through house price differentials following the catastrophic Canterbury earthquake event
Butler et al. Structural model of agricultural markets in developing countries
Huang et al. The spatial spillover effect of local fiscal expenditure in regional housing market: the case of Taiwan
Cheung et al. Automated valuation model for residential rental markets: evidence from Japan
Liang et al. The contribution of spatial dependency to office building price indexes: A Melbourne case study
Valadkhani et al. House price cycles in Australia’s four largest capital cities
Baker The tourism satellite account: possibilities and potential benefits for the Eastern Caribbean islands tourism development
Mastromonaco A Dynamic General Equilibrium Analysis of School Quality Improvements
Sápi The international practice of statistical property valuation methods and the possibilities of introducing automated valuation models in Hungary
Rutkauskas Tax Morale and Public Sector Revenues in Baltic Countries
Avinash Singh et al. Predicting Real Estate Price Using Linear Regression