[go: up one dir, main page]

TWM667558U - Retail system with composite tags for products - Google Patents

Retail system with composite tags for products Download PDF

Info

Publication number
TWM667558U
TWM667558U TW113214226U TW113214226U TWM667558U TW M667558 U TWM667558 U TW M667558U TW 113214226 U TW113214226 U TW 113214226U TW 113214226 U TW113214226 U TW 113214226U TW M667558 U TWM667558 U TW M667558U
Authority
TW
Taiwan
Prior art keywords
product
combination
tags
retail system
products
Prior art date
Application number
TW113214226U
Other languages
Chinese (zh)
Inventor
何英圻
李昆謀
李涵
洪翊書
Original Assignee
九易宇軒股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 九易宇軒股份有限公司 filed Critical 九易宇軒股份有限公司
Priority to TW113214226U priority Critical patent/TWM667558U/en
Publication of TWM667558U publication Critical patent/TWM667558U/en

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

A retail system with composite tags for products is provided. The retail system includes a retail system frontend that provides consumers the product information, a retail system backend that provides providers to set product texts, a database and a computing server. The computing server is used to generate composite tags for products. the computing server retrieves texts of a product from a product text library, segments the text for obtaining multiple keywords that form attribute tags of the product, and combines the multiple attribute tags so as to form multiple sets of candidate composite tags for the product. After duplicate attribute tags are excluded, multiple sets of composite tags for the product are generated. The retail system frontend shows multiple products and the multiple sets of composite tags with respect to each of the products.

Description

具有商品組合標籤的零售系統Retail system with product combination labeling

本新型關於一種電子商務平台,特別是一種將商品文本斷詞得出商品標籤並經組合形成組合標籤以產生商品組合標籤的零售系統。The invention relates to an e-commerce platform, in particular to a retail system for generating a product combination label by breaking up product text into words to obtain product labels and combining them to form a combination label.

除了到實體店面進行消費外,電子商務平台通過網路技術提供消費者更方便且可廣泛地搜尋有興趣的商品的消費方式,而電子商務平台更通過各種手段能夠精準地推薦商品給消費者,而能增加消費者購買商品的動機,並增加對電子商務平台的黏著度(stickiness)。In addition to shopping in physical stores, e-commerce platforms use Internet technology to provide consumers with a more convenient way to search for products of interest. E-commerce platforms can also accurately recommend products to consumers through various means, which can increase consumers' motivation to purchase products and increase their stickiness to the e-commerce platform.

常見推薦商品給消費者的方式是,針對每個商品設定符合商品的標籤(tag),再分析使用者瀏覽的商品而學習使用者喜好,即可通過比對標籤而提供符合使用者喜好的商品。另有方法是,通過智慧模型,如一種嵌入模型(embedding model),執行嵌入向量演算法(embedding vector algorithm),將商品文本轉換為嵌入向量,然後可在一個向量空間內進行相似度比對,能夠有效地向消費者推薦相似度高的商品。The common way to recommend products to consumers is to set a tag that matches the product for each product, and then analyze the products that users browse to learn the user's preferences, so that products that match the user's preferences can be provided by matching the tags. Another method is to use an intelligent model, such as an embedding model, to execute an embedding vector algorithm to convert the product text into an embedding vector, and then perform a similarity comparison in a vector space, which can effectively recommend highly similar products to consumers.

不同於習知技術建立商品相關標籤以推薦商品的方式,揭露書提出一種具有商品組合標籤零售系統。其中提出的零售系統主要包括有一零售系統前台,用以提供消費者取得多個商品的資訊、一零售系統後台,用以提供多個廠商設定多個商品個別的文本,以及設定上架多個商品,並包括一資料庫,資料庫內建或外接於零售系統後台,並設有資料庫一以及資料庫二。Different from the conventional method of establishing product-related labels to recommend products, the disclosure proposes a retail system with product combination labels. The retail system proposed mainly includes a retail system front desk for providing consumers with information on multiple products, a retail system back desk for providing multiple vendors with individual texts for multiple products, and setting multiple products on the shelves, and includes a database, which is built-in or external to the retail system back desk and has database 1 and database 2.

其中資料庫一設有商品文本庫、商品屬性標籤庫、零售字典與各品牌商針對旗下的多樣商品設定的黑白名單,其中商品文本庫記載每個商品的文本、該商品屬性標籤庫記載每個商品的多個屬性標籤,以及零售字典記載零售業的專門用語。Database 1 includes a product text library, a product attribute tag library, a retail dictionary, and black and white lists set by various brands for their various products. The product text library records the text of each product, the product attribute tag library records multiple attribute tags of each product, and the retail dictionary records specialized terms in the retail industry.

其中資料庫二設有商品/分類頁組合標籤庫,其中記載每個商品的一或多組的組合標籤。Database 2 includes a product/category page combination tag library, which records one or more sets of combination tags for each product.

零售系統設有運算伺服器,連接資料庫一與資料庫二,能自資料庫一中的商品文本庫中取得一商品的文本,根據零售字典並運用一斷詞模型對文本進行斷詞後取得多個關鍵詞,這些關鍵詞將形成商品的多個原生屬性標籤。取得原生屬性標籤,另取得品牌商設定的一或多個白名單屬性標籤、一或多個延伸屬性標籤與一或多個取代屬性標籤,排除品牌商設定的一或多個黑名單屬性標籤,共同形成商品的多個屬性標籤。之後,經組合多個屬性標籤可形成商品的多組候選組合標籤,其中每組候選組合標籤具有兩個或以上的屬性標籤,再經排除多組候選組合標籤中重複的組合標籤後,可依據一排序結果選擇排序在前的多組組合標籤,成為關聯此商品的多組組合標籤,據此可建立資料庫二中的商品/分類頁組合標籤庫。之後即可通過零售系統前台呈現多個商品,以及多個商品個別的多組組合標籤。The retail system is provided with a computing server, which is connected to database 1 and database 2, and can obtain the text of a product from the product text library in database 1, and obtain multiple keywords after segmenting the text according to the retail dictionary and using a segmentation model. These keywords will form multiple native attribute tags of the product. The native attribute tags are obtained, and one or more whitelist attribute tags, one or more extended attribute tags and one or more replacement attribute tags set by the brand are obtained, excluding one or more blacklist attribute tags set by the brand, and together form multiple attribute tags of the product. Afterwards, multiple attribute tags are combined to form multiple candidate combination tags for the product, wherein each candidate combination tag has two or more attribute tags. After excluding duplicate combination tags from the multiple candidate combination tags, multiple combination tags ranked first can be selected according to a sorting result to become multiple combination tags associated with the product, and the product/category page combination tag library in database 2 can be established accordingly. Afterwards, multiple products and multiple combination tags of multiple products can be presented through the retail system front end.

進一步地,當運算伺服器由文本得出的多個原生屬性標籤,還取得一或多個白名單屬性標籤、一或多個延伸屬性標籤以及一或多個取代屬性標籤,原生屬性標籤、一或多個白名單屬性標籤、一或多個延伸屬性標籤以及一或多個取代屬性標籤,移除一或多個黑名單屬性標籤,共同形成商品的該多個屬性標籤。Furthermore, when the computing server obtains multiple native attribute tags from the text, it also obtains one or more whitelist attribute tags, one or more extended attribute tags and one or more replacement attribute tags. The native attribute tags, one or more whitelist attribute tags, one or more extended attribute tags and one or more replacement attribute tags remove one or more blacklist attribute tags to form the multiple attribute tags of the product together.

進一步地,於形成多組候選組合標籤時,可自黑白名單引入組合標籤白名單,將組合標籤白名單中記載的一或多組組合標籤列為前台出現的第一順位組合標籤;另外,還可自黑白名單引入組合標籤黑名單,以自多組候選組合標籤中排除組合標籤黑名單中所記載的一或多組組合標籤。Furthermore, when forming multiple candidate combination labels, a combination label whitelist can be introduced from the black and white list to list one or more combination labels recorded in the combination label whitelist as the first-priority combination labels appearing in the foreground; in addition, a combination label blacklist can be introduced from the black and white list to exclude one or more combination labels recorded in the combination label blacklist from multiple candidate combination labels.

進一步地,根據每組組合標籤的網路搜尋量進行排序得出排序結果,以選擇排序在前的多組組合標籤,形成第二順位組合標籤。Furthermore, the ranking result is obtained by ranking each set of combination labels according to the web search volume, so as to select multiple sets of combination labels ranked first to form the second-ranked combination labels.

接著,可以第一順位組合標籤,或加上第二順位組合標籤,形成所述關聯商品的多組組合標籤。Then, the first-order combination tags or the second-order combination tags can be added to form multiple groups of combination tags for the related products.

進一步地,通過運算伺服器對關聯商品的該多組組合標籤的任一設定時效性,即可根據時效性自動更新關聯該商品的多組組合標籤。Furthermore, by calculating the timeliness of any of the multiple sets of combination tags associated with the product, the multiple sets of combination tags associated with the product can be automatically updated according to the timeliness.

進一步地,通過運算伺服器可定時或根據一排程檢查上架的每個商品與其文本是否異動,若檢查有異動,即重新產生或更新商品的組合標籤。Furthermore, the computing server can periodically or according to a schedule check whether each product on the shelf and its text have changed. If the check shows a change, the combination label of the product will be regenerated or updated.

其中,在重新產生或更新商品的組合標籤時,還可檢查黑白名單的時效,當黑白名單的時效到期,將根據更新後的黑白名單進行組合標籤的修正。When regenerating or updating the combination label of a product, the validity of the black and white list can also be checked. When the validity of the black and white list expires, the combination label will be modified according to the updated black and white list.

零售系統還設有一標籤推薦應用程式介面,運算伺服器基於此商品/分類頁組合標籤庫,通過標籤推薦應用程式介面在零售系統前台顯示推薦特定商品的組合標籤。進一步地,於零售系統前台進入一商品描述頁,其中顯示多個商品的內容,各商品的一或多組的組合標籤,以及通過標籤推薦應用程式介面所推薦的特定商品。The retail system also has a tag recommendation application program interface. Based on the product/category page combination tag library, the computing server displays the combination tags of recommended specific products on the retail system front end through the tag recommendation application program interface. Furthermore, a product description page is entered on the retail system front end, which displays the content of multiple products, one or more combination tags of each product, and the specific product recommended by the tag recommendation application program interface.

在一實施方式中,經排除該多組候選組合標籤中包括重複的組合標籤後,運用一自然語言處理技術計算各組候選組合標籤與商品的一標題的相似度,再根據多組候選組合標籤的多個相似度進行排序,以選擇出關聯商品的多組組合標籤。In one implementation, after excluding duplicate combination tags from the multiple sets of candidate combination tags, a natural language processing technique is used to calculate the similarity between each set of candidate combination tags and a title of a product, and then the multiple sets of candidate combination tags are sorted according to the multiple similarities to select multiple sets of combination tags for related products.

為使能更進一步瞭解本新型的特徵及技術內容,請參閱以下有關本新型的詳細說明與圖式,然而所提供的圖式僅用於提供參考與說明,並非用來對本新型加以限制。In order to further understand the features and technical contents of the present invention, please refer to the following detailed description and drawings of the present invention. However, the drawings provided are only used for reference and description and are not used to limit the present invention.

以下是通過特定的具體實施例來說明本創作的實施方式,本領域技術人員可由本說明書所公開的內容瞭解本創作的優點與效果。本創作可通過其他不同的具體實施例加以施行或應用,本說明書中的各項細節也可基於不同觀點與應用,在不悖離本創作的構思下進行各種修改與變更。另外,本創作的附圖僅為簡單示意說明,並非依實際尺寸的描繪,事先聲明。以下的實施方式將進一步詳細說明本創作的相關技術內容,但所公開的內容並非用以限制本創作的保護範圍。The following is a specific and concrete example to illustrate the implementation of this creation. The technical personnel in this field can understand the advantages and effects of this creation from the content disclosed in this manual. This creation can be implemented or applied through other different specific embodiments. The details in this manual can also be modified and changed in various ways based on different viewpoints and applications without deviating from the concept of this creation. In addition, the drawings of this creation are only for simple schematic illustrations and are not depicted according to actual size. Please note in advance. The following implementation will further explain the relevant technical content of this creation in detail, but the disclosed content is not used to limit the scope of protection of this creation.

應當可以理解的是,雖然本文中可能會使用到“第一”、“第二”、“第三”等術語來描述各種元件或者信號,但這些元件或者信號不應受這些術語的限制。這些術語主要是用以區分一元件與另一元件,或者一信號與另一信號。另外,本文中所使用的術語“或”,應視實際情況可能包括相關聯的列出項目中的任一個或者多個的組合。It should be understood that, although the terms "first", "second", "third", etc. may be used herein to describe various components or signals, these components or signals should not be limited by these terms. These terms are mainly used to distinguish one component from another component, or one signal from another signal. In addition, the term "or" used herein may include any one or more combinations of the associated listed items depending on the actual situation.

揭露書提出一種具有商品組合標籤的零售系統,其中零售系統通過商品組合標籤提供消費者通過網頁或應用程式取得商品資訊時,可以通過組合標籤連結到其他相關商品頁,或是品牌商有意讓消費者可以連結到的商品頁,達到以商品推薦商品的目的,可參考揭露書圖6至圖11所示具有組合標籤的商品描述頁、商品分類頁、標籤分類頁,甚至是搜尋無結果頁等實施例示意圖。The disclosure document proposes a retail system with product combination tags, wherein the retail system provides consumers with product information through web pages or applications through product combination tags, and can link to other related product pages through the combination tags, or product pages that the brand intends to allow consumers to link to, so as to achieve the purpose of recommending products with products. Please refer to the schematic diagrams of the product description page, product classification page, tag classification page, and even the search result-free page with combination tags shown in Figures 6 to 11 of the disclosure document.

運行一種商品組合標籤產生方法的零售系統可實作一電子商務平台,提供消費者通過網路瀏覽其中上架的商品,並可執行消費,其系統架構如圖1所示,零售系統架構上包括了以計算機軟硬體協作實現的後台11、前台12、資料庫(資料庫一13、資料庫二15)、伺服器14以及提供各端存取其中資料的應用程式介面16。A retail system that runs a method for generating a product combination label can be implemented as an e-commerce platform, allowing consumers to browse the products on the shelves through the Internet and to make purchases. The system architecture is shown in FIG1 . The retail system architecture includes a backend 11, a frontend 12, a database (database 1 13, database 2 15), a server 14, and an application programming interface 16 that provides each end with access to data, which is implemented by the collaboration of computer software and hardware.

其中前台12中提出一零售系統前台103,零售系統前台103可以網頁或執行於使用者終端裝置的應用程式等方式提供消費者取得零售系統中多個商品的資訊。後台11則如零售系統後台101,通過特定通道連線零售系統前台103,能提供多個廠商(如品牌商、製造商、經銷商等)設定多個商品個別的文本,以及提供設定上架提供消費者的多個商品。The front desk 12 provides a retail system front desk 103, which can provide consumers with information about multiple products in the retail system through a web page or an application program executed on a user terminal device. The back desk 11 is similar to the retail system back desk 101, and is connected to the retail system front desk 103 through a specific channel, and can provide multiple vendors (such as brand owners, manufacturers, distributors, etc.) with individual texts of multiple products, and provide multiple products that are set up for consumers.

根據實施例,資料庫連接(包括外接或內建)零售系統後台101,根據功能可分為資料庫一13與資料庫二15。資料庫一13至少設有商品文本庫105、商品屬性標籤庫107,並可設有零售字典109與品牌商設定的黑白名單110;資料庫二則設有商品/分類頁組合標籤庫113。According to the embodiment, the database is connected (including external or built-in) to the retail system backend 101, and can be divided into database 1 13 and database 2 15 according to the function. Database 1 13 is provided with at least a product text library 105, a product attribute tag library 107, and may be provided with a retail dictionary 109 and a black and white list 110 set by the brand; database 2 is provided with a product/category page combination tag library 113.

其中,從商品文本庫105記載各商品的文本,根據零售字典109中記載零售業的專門用語和斷詞模型,可得出商品原生屬性標籤,建立商品屬性標籤庫107。品牌商設定的黑名單屬性標籤32、白名單屬性標籤34、延伸屬性標籤31與取代屬性標籤33會進入黑白名單110優化商品屬性標籤庫107得出的原生屬性標籤,通過運算伺服器111處理各商品的候選組合標籤,再引入品牌商針對各商品或其品牌旗下的多樣商品設定的黑白名單110,將白名單組合標籤置頂,過濾黑名單組合標籤,經過演算後,即成為各商品頁面上的組合標籤。Among them, the product text library 105 records the text of each product, and according to the retail industry's specialized terms and word-breaking models recorded in the retail dictionary 109, the product native attribute tags can be obtained to establish the product attribute tag library 107. The blacklist attribute tags 32, whitelist attribute tags 34, extended attribute tags 31 and replacement attribute tags 33 set by the brand will enter the blacklist 110 to optimize the native attribute tags obtained by the product attribute tag library 107, and the candidate combination tags of each product will be processed by the calculation server 111, and then the blacklist 110 set by the brand for each product or multiple products under its brand will be introduced, the whitelist combination tags will be placed on the top, and the blacklist combination tags will be filtered. After calculation, they will become the combination tags on each product page.

零售系統的伺服器14實際上如所述運算伺服器111,運算伺服器111如具有數據處理能力的處理器、記憶體與相關周邊的電腦系統,其中運行各種提供各端服務的伺服程式,並執行商品組合標籤產生方法以及商品推薦方法。The server 14 of the retail system is actually the computing server 111, which is a computer system such as a processor with data processing capabilities, a memory and related peripherals, in which various server programs that provide terminal services are run, and a method for generating a product combination label and a method for recommending products are executed.

根據實施例,運算伺服器111前後連接資料庫一13與資料庫二15,因此可自資料庫一13中的商品文本庫105取得每個商品的文本,以及取得各品牌商針對旗下的多樣商品設定的黑白名單110,並且還可自商品屬性標籤庫107取得每個商品的多個屬性標籤。之後經運算伺服器111執行商品組合標籤產生方法得出各商品具有多組的組合標籤,建立資料庫二15中的商品/分類頁組合標籤庫113。According to the embodiment, the computing server 111 is connected to the database 1 13 and the database 2 15 in sequence, so that the text of each product can be obtained from the product text library 105 in the database 1 13, and the black and white lists 110 set by each brand for its various products can be obtained, and multiple attribute tags of each product can also be obtained from the product attribute tag library 107. After that, the computing server 111 executes the product combination tag generation method to obtain multiple sets of combination tags for each product, and establishes the product/category page combination tag library 113 in the database 2 15.

根據需求,組合標籤與向量化數值先暫存於快取記憶模組115中,再通過標籤推薦應用程式介面117輸出至零售系統前台103,再經由零售系統前台103存取商品文本庫105,如此,通過結合商品文本、組合標籤與推薦商品,形成提供給消費者的商品頁內容。According to the needs, the combined label and the vectorized value are first temporarily stored in the cache memory module 115, and then output to the retail system front end 103 through the label recommendation application program interface 117, and then access the product text library 105 through the retail system front end 103. In this way, by combining the product text, the combined label and the recommended product, the product page content provided to the consumer is formed.

通過以上描述的零售系統,運用商品組合標籤可有效地在電子商務平台中提供消費者有興趣的商品類別外,還可執行商品推薦,並能有效提升搜尋引擎的搜尋量,相關流程可參考圖2。Through the retail system described above, the use of product combination tags can effectively provide consumers with product categories of interest in the e-commerce platform, perform product recommendations, and effectively increase the search volume of search engines. The relevant process can be referred to in Figure 2.

通過商品組合標籤,使得消費者運用搜尋引擎201搜尋商品時,可以有效搜尋到有興趣的商品,並能進入相關品牌主頁203中,從中可連結到商品分類頁205,其中顯示商品資訊外,還提供各商品的組合標籤與相關商品;進一步地,可點選其中分類頁組合標籤207後,進入標籤分類頁209,其中除了針對商品的組合標籤外,還能獲得零售系統推薦的商品。Through the product combination tags, when consumers use the search engine 201 to search for products, they can effectively search for products of interest and enter the related brand homepage 203, from which they can link to the product classification page 205, which displays product information and also provides combination tags and related products of each product; further, after clicking on the classification page combination tag 207, they can enter the tag classification page 209, where in addition to the combination tags for the product, they can also obtain products recommended by the retail system.

當消費者運用搜尋引擎201搜尋商品時,可以基於搜尋字進入相關商品的標籤分類頁209,其中記載有商品組合標籤211及商品,點擊商品可進入特定商品頁213,或者在組合標籤的運用下,增加一個品牌網站內多種商品之間的循環瀏覽率。值得一提的是,不論是標籤分類頁209或是商品頁213,都可讓消費者在運用組合標籤的情況下得到零售系統的商品推薦215。When consumers use search engines 201 to search for products, they can enter the tag classification page 209 of related products based on the search words, which contains product combination tags 211 and products. Clicking on a product can enter a specific product page 213, or by using combination tags, the circulation rate between multiple products in a brand website can be increased. It is worth mentioning that whether it is a tag classification page 209 or a product page 213, consumers can get product recommendations 215 from the retail system when using combination tags.

其中關於組合標籤的產生,可參考圖3顯示由運算伺服器111(通過其中處理器運行相關軟體程式)執行的商品組合標籤產生方法的實施例流程圖,其中運用的元件可參考圖1所示實施例圖。Regarding the generation of the combination label, reference may be made to FIG3 which shows a flow chart of an embodiment of a method for generating a product combination label executed by the computing server 111 (through a processor therein running a related software program), and the components used therein may refer to the embodiment diagram shown in FIG1 .

流程一開始,運算伺服器(圖1,111)自圖1顯示的資料庫一(圖1,13)的商品文本庫(圖1,105)取得商品相關文本(步驟S301),商品文本庫中記載品牌商(或是製造商或經銷商)通過零售系統後台101針對各商品提供的標題、文本資料。At the beginning of the process, the computing server (FIG. 1, 111) obtains the product-related text from the product text library (FIG. 1, 105) of the database 1 (FIG. 1, 13) shown in FIG. 1 (step S301). The product text library records the title and text data provided by the brand (or manufacturer or distributor) for each product through the retail system backend 101.

接著,根據商品文本庫(圖1,105)中的零售商品名稱與描述等文本,根據零售字典(並可運用斷詞模型)進行斷詞,斷詞後還可參考其他周邊資訊取得多個關鍵詞(步驟S303),這些關鍵詞將形成商品的多個屬性標籤,並且是精準提供符合商品屬性與增加瀏覽率的屬性標籤,形成原生屬性標籤(步驟S305),並可記載至商品屬性標籤庫(圖1,107)。進一步地,在形成原生屬性標籤時,可以引入由品牌商要求或特定需求建立的延伸屬性標籤31、黑名單屬性標籤32、取代屬性標籤33與白名單屬性標籤34,其中,除原生屬性標籤外,加上品牌商設定不屬於自商品文本得出的原生屬性標籤之外的延伸屬性標籤31與白名單屬性標籤34,藉此可以增加商品涵蓋的屬性標籤,另還可設定取代屬性標籤33,針對原生屬性標籤中特定用語以其他用語取代,形成取代屬性標籤33,再自原生屬性標籤中排除黑名單屬性標籤32,建立商品屬性標籤庫(圖1,107)。經上述步驟引入延伸屬性標籤31、黑名單屬性標籤32、取代屬性標籤33與白名單屬性標籤34的其中之一或任意組合,形成商品的多個屬性標籤,經排列組合根據商品屬性產生的多個屬性標籤後,形成商品的多組候選組合標籤(candidate composite tags)(步驟S307),其中每組候選組合標籤具有兩個或以上的屬性標籤。Next, based on the retail product names and descriptions in the product text library (Figure 1, 105), word segmentation is performed according to the retail dictionary (and the word segmentation model can be used). After word segmentation, other peripheral information can be referenced to obtain multiple keywords (step S303). These keywords will form multiple attribute tags for the product, and accurately provide attribute tags that meet the product attributes and increase the browsing rate, forming native attribute tags (step S305), which can be recorded in the product attribute tag library (Figure 1, 107). Furthermore, when forming native attribute tags, extended attribute tags 31, blacklist attribute tags 32, replacement attribute tags 33 and whitelist attribute tags 34 established by brand owners' requirements or specific needs can be introduced. In addition to native attribute tags, extended attribute tags 31 and whitelist attribute tags 34 set by brand owners that are not native attribute tags derived from product texts are added to increase the attribute tags covered by the products. Replacement attribute tags 33 can also be set to replace specific terms in native attribute tags with other terms to form replacement attribute tags 33, and then blacklist attribute tags 32 are excluded from native attribute tags to establish a product attribute tag library (Figure 1, 107). Through the above steps, one or any combination of the extended attribute tag 31, the blacklist attribute tag 32, the replacement attribute tag 33 and the whitelist attribute tag 34 is introduced to form multiple attribute tags of the product. After arranging and combining the multiple attribute tags generated according to the product attributes, multiple groups of candidate composite tags of the product are formed (step S307), wherein each group of candidate composite tags has two or more attribute tags.

在此一提的是,品牌商可通過零售系統後台(圖1,101)設定商品其他不包括根據文本得出的原生屬性標籤的白名單屬性標籤34、取代屬性標籤33與延伸屬性標籤31,通過運算伺服器(圖1,111)處理,可擴大商品涵蓋的屬性標籤。進一步地,所述白名單屬性標籤34、取代屬性標籤33與延伸屬性標籤31可能與當頁商品無關,而可藉此引導消費者取得額外的商品資訊,不拘泥在當下商品文本庫105斷出的原生屬性標籤。舉例來說,當需要藉著節日促銷商品時,如情人節、聖誕節,即便商品文本並不會演算出與這些節日相關的屬性標籤,或是商品並非直接相關,但卻在特定假日中賦予特定意義,即可通過延伸屬性標籤31設定商品具有額外的屬性標籤,達到行銷的目的。所述取代屬性標籤33以非從原生屬性標籤取得的屬性標籤,取代原生屬性標籤中特定的屬性標籤,例如特定口紅商品文本得出的名稱為口紅,但是品牌商希望以唇膏取代口紅,因此即以唇膏作為此商品的取代屬性標籤。It is worth mentioning that the brand owner can set other whitelist attribute tags 34, replacement attribute tags 33 and extended attribute tags 31 of the product that do not include the original attribute tags derived from the text through the retail system backend (Figure 1, 101), and through the processing of the computing server (Figure 1, 111), the attribute tags covered by the product can be expanded. Furthermore, the whitelist attribute tags 34, replacement attribute tags 33 and extended attribute tags 31 may be irrelevant to the product on the current page, and can be used to guide consumers to obtain additional product information, not limited to the original attribute tags derived from the current product text library 105. For example, when it is necessary to promote a product through a holiday, such as Valentine's Day or Christmas, even if the product text does not calculate attribute tags related to these holidays, or the product is not directly related, but a specific meaning is given to the specific holiday, the product can be set with an additional attribute tag through the extended attribute tag 31 to achieve the purpose of marketing. The replacement attribute tag 33 replaces a specific attribute tag in the native attribute tag with an attribute tag not obtained from the native attribute tag. For example, the name derived from the product text of a specific lipstick is lipstick, but the brand owner wants to replace lipstick with lipstick, so lipstick is used as the replacement attribute tag of this product.

值得注意的是,在所提出的商品組合標籤產生方法中,通過解析商品文本(包括商品的名稱與描述文本)與運用斷詞模型得出關鍵詞,並根據關鍵詞的重要性排序,重要性可參考文本中關鍵詞出現次數,或是根據零售字典等外部資訊判斷重要性,使排序在前的多個關鍵詞為商品的原生屬性標籤,還通過上述由品牌商或特定需求設定的延伸屬性標籤31、取代屬性標籤33、黑名單屬性標籤32與白名單屬性標籤34的其中之一或任意組合調整或增加商品屬性標籤。進一步地,還可由系統另提供品牌商設定變更屬性標籤的排程或賦予時效性,或設定為永久有效。It is worth noting that in the proposed method for generating product combination labels, keywords are obtained by parsing product text (including product name and description text) and applying a word-breaking model, and are sorted according to the importance of the keywords. The importance can refer to the number of times the keywords appear in the text, or the importance can be judged based on external information such as retail dictionaries, so that the top keywords are the native attribute labels of the products, and the product attribute labels are adjusted or added through one or any combination of the extended attribute labels 31, replacement attribute labels 33, blacklist attribute labels 32 and whitelist attribute labels 34 set by the brand or specific needs. Furthermore, the system can also provide the brand with the ability to set a schedule for changing the attribute labels or give them timeliness, or set them to be permanently valid.

在圖3的流程中,於形成多組候選組合標籤後(步驟S307),可運用組合標籤白名單35產出第一順位組合標籤(步驟S309),從候選組合標籤中排除組合標籤黑名單36中所記載組合標籤,形成調整後的最終候選組合標籤(步驟S311)。In the process of FIG. 3 , after forming a plurality of candidate combination tags (step S307 ), the combination tag whitelist 35 may be used to generate the first-rank combination tag (step S309 ), and the combination tags recorded in the combination tag blacklist 36 may be excluded from the candidate combination tags to form the adjusted final candidate combination tags (step S311 ).

進一步地,參考特定外部資訊37,例如搜尋引擎中針對各個組合標籤統計得出的搜尋量,並排除多組候選組合標籤中包括重複的候選組合標籤,更進一步運用自然語言處理(NLP)技術以理解搜尋引擎中消費者運用各式各樣的搜尋字進行搜尋的語意,計算各組候選組合標籤與商品的標題的相似度,再根據多組候選組合標籤的多個相似度進行排序,以選擇出關聯商品的多組組合標籤。從上述步驟得出的最終候選組合標籤決定第二順位組合標籤(步驟S313),第一順位組合標籤加上第二順位組合標籤即成為關聯商品的多組組合標籤(步驟S315)。Furthermore, referring to specific external information 37, such as the search volume for each combination tag in the search engine, and excluding duplicate candidate combination tags in multiple candidate combination tags, natural language processing (NLP) technology is further used to understand the semantics of consumers using various search words in the search engine to search, and the similarity between each group of candidate combination tags and the title of the product is calculated, and then multiple groups of combination tags of related products are selected according to the multiple similarities of the multiple groups of candidate combination tags. The final candidate combination tags obtained from the above steps determine the second-order combination tags (step S313), and the first-order combination tags plus the second-order combination tags become multiple groups of combination tags of related products (step S315).

根據所述第一順位組合標籤,或加上第二順位組合標籤,形成關聯商品的多組組合標籤,此時,可以通過人工或是電腦軟體方式對組合標籤進行審核,排除其中不適當的屬性標籤和組合標籤,產生商品組合標籤(步驟S317),並可據此建立所述商品/分類頁組合標籤庫(圖1,113),商品/分類頁組合標籤庫即記載了每個商品的一或多組的組合標籤。Based on the first-order combination tag, or adding the second-order combination tag, multiple groups of combination tags of related products are formed. At this time, the combination tags can be reviewed manually or by computer software to exclude inappropriate attribute tags and combination tags, generate product combination tags (step S317), and the product/category page combination tag library (Figure 1, 113) can be established based on this. The product/category page combination tag library records one or more groups of combination tags for each product.

當取得商品的多組組合標籤後,組合標籤將可依照實際狀況動態更新,根據實施例之一,可通過運算伺服器對關聯商品的多組組合標籤的任一設定其時效性,使得系統將根據組合標籤的時效性自動更新關聯商品的多組組合標籤,可參考圖4所示零售系統中運算伺服器(圖1,111)所執行的商品組合標籤的更新方法實施例流程圖。After obtaining multiple sets of combination tags of a product, the combination tags can be dynamically updated according to the actual situation. According to one of the embodiments, the timeliness of any of the multiple sets of combination tags of related products can be set through the computing server, so that the system will automatically update the multiple sets of combination tags of related products according to the timeliness of the combination tags. Please refer to the flowchart of the embodiment of the method for updating the product combination tags executed by the computing server (Figure 1, 111) in the retail system shown in Figure 4.

當取得商品組合標籤並建立商品/分類頁組合標籤庫(圖1,113)(步驟S401),系統通過運算伺服器定時或根據一排程檢查上架的每個商品與其文本是否異動?(步驟S403),若有產生異動(是),包括品牌商下架商品、更新商品名稱或文本,或是其他設定的異動,將重新執行商品組合標籤產生方法以產生或更新組合標籤,如執行圖4描述的流程(步驟S407)。其中,在重新產生或更新組合標籤的過程中更進行時效檢查(步驟S405),若有特定黑白名單110的時效到期,將根據更新後黑白名單110進行組合標籤的修正。反之,若檢查商品、文本或其屬性標籤並沒有異動(否),則無需執行任何更新,系統即繼續定時或根據排程檢查商品與其文本的異動(步驟S403)。When the product combination label is obtained and the product/category page combination label library (Figure 1, 113) is established (step S401), the system checks whether each product on the shelf and its text have changed through the computing server on a regular basis or according to a schedule? (Step S403), if there is a change (yes), including the brand removing the product from the shelf, updating the product name or text, or other changes in settings, the product combination label generation method will be re-executed to generate or update the combination label, such as executing the process described in Figure 4 (step S407). In the process of regenerating or updating the combination label, a time limit check is further performed (step S405). If the time limit of a specific black and white list 110 expires, the combination label will be modified according to the updated black and white list 110. On the contrary, if the checked product, text or its attribute tags have not changed (No), no update is required and the system continues to check the changes of the product and its text regularly or according to the schedule (step S403).

圖5接著顯示運用上述方法產生各商品的多組組合標籤推薦商品的方法實施例流程圖。FIG5 then shows a flow chart of an embodiment of a method for generating multiple sets of combination labels for each product to recommend products using the above method.

首先,運算伺服器(圖1,111)取得商品頁中的商品內容(商品頁「商品」51)、從使用者搜尋無結果時的搜尋詞(搜尋無結果頁「搜尋詞」52),以及從商品網頁中得到的組合標籤(標籤分類頁「組合標籤」53),接著執行向量演算法(步驟S501),另取得所有商品的向量,以創建商品向量集合(步驟S503),並可先儲存至特定資料庫,如一種商品向量資料庫。因此可運用商品/搜尋詞/組合標籤和所有商品的向量計算出相似度,包括計算商品和所有商品之間的相似度(步驟S505)、計算搜尋詞和所有商品之間的相似度(步驟S507),以及計算組合標籤和所有商品之間的相似度(步驟S509),再根據相似度排序(步驟S511),得出相似商品順序(步驟S513),並顯示在商品頁/搜尋無結果頁/標籤分類頁,如以下實施例的描述,也可參考圖6、7、8、9、10的示意圖。First, the computing server ( FIG. 1 , 111 ) obtains the product content in the product page (product page “product” 51), the search term when the user searches without results (search without results page “search term” 52), and the combination tag obtained from the product web page (tag classification page “combination tag” 53), and then executes the vector algorithm (step S501), and obtains the vectors of all products to create a product vector set (step S503), which can be first stored in a specific database, such as a product vector database. Therefore, the similarity can be calculated using the vectors of the product/search term/combination tag and all products, including calculating the similarity between the product and all products (step S505), calculating the similarity between the search term and all products (step S507), and calculating the similarity between the combination tag and all products (step S509), and then sorting according to the similarity (step S511), obtaining the order of similar products (step S513), and displaying it on the product page/search no result page/tag classification page, as described in the following embodiments, and also referring to the schematic diagrams of Figures 6, 7, 8, 9, and 10.

因此,當零售系統通過商品頁展示其中之一商品時,可根據商品的相似商品順序顯示推薦的一或多個其他商品,例如在商品頁上顯示系統推薦給消費者的一或多個商品(步驟S515)。當消費者進入搜尋無結果頁時,可根據與搜尋詞的相似度順序,顯示推薦的一或多個其他商品,例如在搜尋無結果頁上顯示系統推薦給消費者的一或多個商品(步驟S517)。當零售系統通過標籤分類頁展示商品時,可根據與組合標籤的相似度順序,顯示推薦的一或多個其他商品,例如在標籤分類頁上顯示系統推薦給消費者的一或多個商品(步驟S519)。Therefore, when the retail system displays one of the products through the product page, it can display one or more other recommended products according to the order of similar products of the product, for example, display one or more products recommended to the consumer by the system on the product page (step S515). When the consumer enters the search result page, it can display one or more other recommended products according to the order of similarity with the search term, for example, display one or more products recommended to the consumer by the system on the search result page (step S517). When the retail system displays products through the tag classification page, it can display one or more other recommended products according to the order of similarity with the combined tag, for example, display one or more products recommended to the consumer by the system on the tag classification page (step S519).

參考圖1顯示的零售系統架構示意圖,運算伺服器(圖1,111)基於所建立的商品/分類頁組合標籤庫(圖1,113),通過標籤推薦應用程式介面(圖1,117)在零售系統前台(圖1,103)顯示推薦某商品的組合標籤,目的之一是推薦商品,相關範例可參考以下所示的網頁或是行動裝置上應用程式提供的使用者介面實施例圖。Referring to the retail system architecture diagram shown in FIG1 , the computing server ( FIG1 , 111 ) displays a combination tag for recommending a certain product on the retail system front end ( FIG1 , 103 ) through a tag recommendation application program interface ( FIG1 , 117 ) based on the established product/category page combination tag library ( FIG1 , 113 ). One of the purposes is to recommend the product. For related examples, please refer to the user interface implementation diagram provided by the web page or application on the mobile device shown below.

圖6顯示商品描述頁實施例示意圖,其中顯示進入某品牌商網頁後,可通過搜尋字搜尋商品,消費者於零售系統前台進入商品描述頁60,其中主要內容如示意圖所顯示的商品照片601、商品描述603,以及通過上述商品組合標籤產生方法所產生的組合標籤605,以及通過標籤推薦應用程式介面所推薦的推薦商品607,示意顯示有推薦商品一、推薦商品二、推薦商品三與推薦商品四。FIG6 is a schematic diagram showing an implementation example of a product description page, wherein it is shown that after entering a brand's website, products can be searched by search words, and consumers enter the product description page 60 at the front desk of the retail system, wherein the main contents include a product photo 601, a product description 603, and a combination tag 605 generated by the above-mentioned product combination tag generation method, and a recommended product 607 recommended by the tag recommendation application program interface, which schematically shows recommended product 1, recommended product 2, recommended product 3, and recommended product 4.

接著,消費者可在商品描述頁60點入其中之一組合標籤605,顯示的網頁內容可參考圖7顯示標籤分類頁實施例示意圖,其中顯示的是標籤分類頁70,其中包括此分類下的組合標籤701,以及多個基於此組合標籤向量計算相似度得出的推薦商品,如推薦商品703,示意顯示有推薦商品一、推薦商品二、推薦商品三以及推薦商品四,以及可以帶出商品屬性標籤庫107中具有與組成此組合標籤之相同屬性標籤之相關商品,如示意圖顯示的相關商品705,示意顯示有商品一、商品二、商品三與商品四,用以推薦更多商品選擇,實現以物找物的推薦方法。Next, the consumer can click on one of the combination tags 605 on the product description page 60. The displayed web page content can refer to Figure 7, which shows a schematic diagram of an implementation example of a tag classification page, wherein a tag classification page 70 is displayed, including a combination tag 701 under this category, and multiple recommended products obtained by calculating the similarity based on this combination tag vector, such as recommended product 703, which schematically shows recommended product one, recommended product two, recommended product three and recommended product four, and can bring out related products in the product attribute tag library 107 that have the same attribute tags as those that constitute this combination tag, such as related products 705 shown in the schematic diagram, which schematically shows product one, product two, product three and product four, to recommend more product options, thereby realizing a recommendation method of finding products by products.

接著圖8顯示另一標籤分類頁80實施例示意圖,其中包括此標籤分類頁下的組合標籤801,以及根據頁面的設計反覆地顯繪示推薦商品805(示意顯示有推薦商品一至四)與相關商品803、相關商品807(示意顯示有商品一至八)。Next, FIG8 shows another schematic diagram of an embodiment of a tag classification page 80, which includes a combination tag 801 under the tag classification page, and according to the design of the page, recommended products 805 (showing recommended products one to four) and related products 803 and related products 807 (showing products one to eight) are repeatedly displayed.

圖9顯示商品描述頁的另一實施例示意圖,圖中顯示的商品描述頁90包括有商品內容901,其中展示商品與其描述,商品描述頁90中還可經過捲動後顯示有關聯此商品的組合標籤903,以及推薦商品905,示意顯示有推薦商品一、推薦商品二、推薦商品三。FIG9 is a schematic diagram showing another embodiment of a product description page. The product description page 90 shown in the figure includes product content 901, in which the product and its description are displayed. The product description page 90 can also display a combination tag 903 related to the product after scrolling, and recommended products 905, which schematically display recommended product 1, recommended product 2, and recommended product 3.

然而,經以搜尋字或其他搜尋方法搜尋全站商品時,可能為搜尋無結果,如圖10顯示搜尋無結果頁實施例示意圖,其中示意顯示搜尋無結果頁100,除了本頁表示為搜尋無結果頁100外,還提供熱門搜尋詞1001,以及與搜尋詞向量相似的推薦商品1003,示意顯示有推薦商品一、推薦商品二、推薦商品三。However, when searching for products in the entire site using a search word or other search method, no results may be found. FIG10 is a schematic diagram of an implementation example of a search no results page, in which a search no results page 100 is schematically displayed. In addition to this page being represented as a search no results page 100, a popular search term 1001 and recommended products 1003 similar to the search term vector are also provided, and recommended product 1, recommended product 2, and recommended product 3 are schematically displayed.

最後,圖11顯示商品分類頁實施例示意圖,其中顯示為商品分類頁110,其中包括在此分類頁下的組合標籤1101以及相關商品1103,示意顯示有商品一、商品二。Finally, FIG. 11 shows a schematic diagram of an implementation example of a product classification page, which shows a product classification page 110, including a combination tag 1101 and related products 1103 under this classification page, schematically showing product one and product two.

綜上所述,根據上述實施例所描述的具有商品組合標籤的零售系統,經過演算得出的每個商品的組合標籤提供消費者更準確地瀏覽有興趣的商品,並增加站內瀏覽循環次數。進一步地,利用向量來計算相似商品則是提供更有彈性的商品推薦空間,而不是傳統比對標籤得出的推薦商品,傳統方式的推薦空間比較缺乏彈性,再者,決定商品的組合標籤還可參考品牌商在搜尋引擎(如Google™搜尋器)中自然搜尋組合標籤得到的搜尋量。In summary, according to the retail system with product combination tags described in the above embodiments, the calculated combination tags of each product provide consumers with more accurate browsing of products of interest and increase the number of browsing cycles in the site. Furthermore, using vectors to calculate similar products provides a more flexible product recommendation space, rather than the recommended products obtained by traditional comparison tags. The traditional recommendation space is relatively inflexible. Moreover, the combination tags of products can also refer to the search volume obtained by the brand in the search engine (such as Google™ search engine) by naturally searching for the combination tags.

以上所公開的內容僅為本新型的優選可行實施例,並非因此侷限本新型的申請專利範圍,所以凡是運用本新型說明書及圖式內容所做的等效技術變化,均包含於本新型的申請專利範圍內。The above disclosed contents are only the preferred feasible embodiments of the present invention, and do not limit the scope of the patent application of the present invention. Therefore, all equivalent technical changes made by using the contents of the specification and drawings of the present invention are included in the scope of the patent application of the present invention.

11:後台 12:前台 13:資料庫一 14:伺服器 15:資料庫二 16:應用程式介面 101:零售系統後台 103:零售系統前台 105:商品文本庫 107:商品屬性標籤庫 109:零售字典 110:黑白名單 111:運算伺服器 113:商品/分類頁組合標籤庫 115:快取記憶模組 117:標籤推薦應用程式介面 201:搜尋引擎 203:品牌主頁 205:商品分類頁 207:分類頁組合標籤 209:標籤分類頁 211:商品組合標籤 213:商品頁 215:商品推薦 31:延伸屬性標籤 32:黑名單屬性標籤 33:取代屬性標籤 34:白名單屬性標籤 35:組合標籤白名單 36:組合標籤黑名單 37:外部資訊 38:審核 51:商品頁「商品」 52:搜尋無結果頁「搜尋詞」 53:標籤分類頁「組合標籤」 60:商品描述頁 601:商品照片 603:商品描述 605:組合標籤 607:推薦商品 70:標籤分類頁 701:組合標籤 703:推薦商品 705:相關商品 80:標籤分類頁 801:組合標籤 803:相關商品 805:推薦商品 807:相關商品 90:商品描述頁 901:商品內容 903:組合標籤 905:推薦商品 100:搜尋無結果頁 1001:熱門搜尋詞 1003:推薦商品 110:商品分類頁 1101:組合標籤 1103:相關商品 步驟S301~S317:產生商品組合標籤的流程 步驟S401~S407:商品組合標籤的更新流程 步驟S501~S519:商品推薦流程 11:Backstage 12:Frontstage 13:Database 1 14:Server 15:Database 2 16:Application Programming Interface 101:Retail System Backstage 103:Retail System Frontstage 105:Product Text Library 107:Product Attribute Tag Library 109:Retail Dictionary 110:Black and White List 111:Computation Server 113:Product/Category Page Combination Tag Library 115:Cache Memory Module 117:Tag Recommendation Application Programming Interface 201:Search Engine 203:Brand Homepage 205:Product Category Page 207:Category Page Combination Tag 209:Tag Category Page 211:Product Combination Tag 213:Product Page 215: Product recommendation 31: Extended attribute tag 32: Blacklist attribute tag 33: Replace attribute tag 34: Whitelist attribute tag 35: Combination tag whitelist 36: Combination tag blacklist 37: External information 38: Review 51: Product page "Product" 52: Search no results page "Search term" 53: Tag classification page "Combination tag" 60: Product description page 601: Product photo 603: Product description 605: Combination tag 607: Recommended products 70: Tag classification page 701: Combination tag 703: Recommended products 705: Related products 80: Tag classification page 801: Combination tag 803: Related products 805: Recommended products 807: Related products 90: Product description page 901: Product content 903: Combination tags 905: Recommended products 100: Search no results page 1001: Popular search terms 1003: Recommended products 110: Product classification page 1101: Combination tags 1103: Related products Steps S301~S317: Process of generating product combination tags Steps S401~S407: Product combination tag update process Steps S501~S519: Product recommendation process

圖1顯示零售系統的架構實施例流程圖;FIG1 is a flowchart showing an example of a retail system architecture;

圖2顯示執行商品推薦的流程實施例;FIG2 shows an example of a process for performing product recommendation;

圖3顯示商品組合標籤的產生方法實施例流程圖;FIG3 is a flow chart showing an embodiment of a method for generating a product combination label;

圖4顯示商品組合標籤的更新方法實施例流程圖;FIG4 is a flow chart showing an embodiment of a method for updating a product combination label;

圖5顯示商品推薦方法的實施例流程圖;FIG5 is a flow chart showing an embodiment of a product recommendation method;

圖6顯示商品描述頁網頁版實施例示意圖;FIG6 is a schematic diagram showing an embodiment of a web page version of a product description page;

圖7顯示標籤分類頁網頁版實施例示意圖;FIG. 7 is a schematic diagram showing an embodiment of a web page version of a tag classification page;

圖8顯示標籤分類頁行動裝置版實施例示意圖;FIG8 is a schematic diagram showing an implementation example of the mobile device version of the tag classification page;

圖9顯示商品描述頁行動裝置版實施例示意圖;FIG9 is a schematic diagram showing an implementation example of a mobile device version of a product description page;

圖10顯示搜尋無結果頁行動裝置版實施例示意圖;以及FIG. 10 is a schematic diagram showing an implementation example of a search result-free page for mobile devices; and

圖11顯示商品分類頁行動裝置版實施例示意圖。FIG11 is a schematic diagram showing an implementation example of a mobile device version of a product category page.

11:後台 11: Backstage

12:前台 12: Front Desk

13:資料庫一 13: Database 1

14:伺服器 14: Server

15:資料庫二 15: Database 2

16:應用程式介面 16: Application Programming Interface

101:零售系統後台 101: Retail system backend

103:零售系統前台 103: Retail system front desk

105:商品文本庫 105: Product text library

107:商品屬性標籤庫 107: Product attribute tag library

109:零售字典 109: Retail Dictionary

110:黑白名單 110: Black and White List

111:運算伺服器 111: Computing Server

113:商品/分類頁組合標籤庫 113: Product/category page combination tag library

115:快取記憶模組 115: Cache memory module

117:標籤推薦應用程式介面 117: Tag recommendation API

Claims (10)

一種零售系統,包括: 一零售系統前台,提供消費者取得多個商品的資訊; 一零售系統後台,連線零售系統前台,提供多個廠商設定該多個商品個別的文本,以及設定上架提供消費者的該多個商品; 一資料庫,內建或外接於該零售系統後台,該資料庫設有資料庫一以及資料庫二,其中: 該資料庫一設有一商品文本庫、一商品屬性標籤庫、一零售字典與各品牌商針對旗下的多樣商品設定的一黑白名單,其中該商品文本庫記載每個商品的文本、該商品屬性標籤庫記載每個商品的多個屬性標籤,以及該零售字典記載零售業的專門用語;以及 該資料庫二設有一商品/分類頁組合標籤庫,其中該商品/分類頁組合標籤庫記載每個商品的一或多組的組合標籤;以及 一運算伺服器,連接該資料庫一與該資料庫二,自該資料庫一中的該商品文本庫中取得一商品的一文本,根據該零售字典並運用一斷詞模型對該文本進行斷詞後取得多個關鍵詞,使該多個關鍵詞形成該商品的多個屬性標籤,再組合該多個屬性標籤以形成該商品的多組候選組合標籤,其中每組候選組合標籤具有兩個或以上的屬性標籤,接著排除該多組候選組合標籤中包括重複的組合標籤,以及依據一排序結果選擇排序在前的多組組合標籤,成為關聯該商品的該多組組合標籤,以建立該資料庫二中的該商品/分類頁組合標籤庫,以及通過該零售系統的該零售系統前台呈現給消費者該多個商品,以及該多個商品個別的該多組組合標籤。 A retail system, comprising: A retail system front desk, providing consumers with information on multiple products; A retail system back desk, connected to the retail system front desk, providing multiple vendors with individual texts for the multiple products, and setting up the multiple products for consumers; A database, built-in or external to the retail system back desk, the database includes database 1 and database 2, wherein: Database 1 includes a product text library, a product attribute label library, a retail dictionary, and a black and white list set by each brand for its various products, wherein the product text library records the text of each product, the product attribute label library records multiple attribute labels of each product, and the retail dictionary records specialized terms in the retail industry; and The database 2 is provided with a product/category page combination tag library, wherein the product/category page combination tag library records one or more combination tags for each product; and a computing server, connected to the database 1 and the database 2, obtains a text of a product from the product text library in the database 1, performs word segmentation on the text according to the retail dictionary and uses a word segmentation model to obtain multiple keywords, so that the multiple keywords form multiple attribute tags of the product, and then combines the multiple attribute tags to form multiple groups of candidate combination tags of the product, wherein each group of candidate combination tags has two or more , then exclude the multiple sets of candidate combination tags including duplicate combination tags, and select the multiple sets of combination tags ranked first according to a sorting result to become the multiple sets of combination tags associated with the product, so as to establish the product/category page combination tag library in the second database, and present the multiple products and the multiple sets of combination tags of the multiple products to consumers through the retail system front end of the retail system. 如請求項1所述之零售系統,其中,當該運算伺服器由該文本得出多個原生屬性標籤,還取得一或多個白名單屬性標籤、一或多個延伸屬性標籤以及一或多個取代屬性標籤,該原生屬性標籤、該一或多個白名單屬性標籤、該一或多個延伸屬性標籤以及該一或多個取代屬性標籤,移除一或多個黑名單屬性標籤,共同形成該商品的該多個屬性標籤。A retail system as described in claim 1, wherein when the computing server derives multiple native attribute tags from the text, it also obtains one or more whitelist attribute tags, one or more extended attribute tags, and one or more replacement attribute tags. The native attribute tags, the one or more whitelist attribute tags, the one or more extended attribute tags, and the one or more replacement attribute tags, remove one or more blacklist attribute tags, and together form the multiple attribute tags of the product. 如請求項1所述之零售系統,其中,於形成該多組候選組合標籤時,自該黑白名單引入一組合標籤白名單,將該組合標籤白名單中記載的一或多組組合標籤列為一第一順位組合標籤;以及/或自該黑白名單引入一組合標籤黑名單,以自該多組候選組合標籤中排除該組合標籤黑名單中所記載的一或多組組合標籤。A retail system as described in claim 1, wherein, when forming the multiple sets of candidate combination labels, a combination label white list is introduced from the black and white list, and one or more combination labels recorded in the combination label white list are listed as a first-priority combination label; and/or a combination label black list is introduced from the black and white list to exclude one or more combination labels recorded in the combination label black list from the multiple sets of candidate combination labels. 如請求項3所述之零售系統,其中,係根據每組組合標籤的網路搜尋量進行排序得出該排序結果,以選擇排序在前的該多組組合標籤,形成一第二順位組合標籤,其中該第一順位組合標籤,或加上該第二順位組合標籤,形成關聯該商品的該多組組合標籤。A retail system as described in claim 3, wherein the ranking result is obtained by ranking each set of combination tags according to the online search volume, so as to select the multiple sets of combination tags ranked first to form a second-rank combination tag, wherein the first-rank combination tag, or the second-rank combination tag plus the multiple sets of combination tags associated with the product. 如請求項1所述之零售系統,其中,通過該運算伺服器對關聯該商品的該多組組合標籤的任一設定一時效性,即根據該時效性自動更新關聯該商品的該多組組合標籤。A retail system as described in claim 1, wherein a timeliness is set for any of the multiple sets of combination tags associated with the product through the computing server, that is, the multiple sets of combination tags associated with the product are automatically updated according to the timeliness. 如請求項1所述之零售系統,其中,通過該運算伺服器定時或根據一排程檢查上架的每個商品與其文本是否異動,若檢查有異動,即重新產生或更新該商品的組合標籤。A retail system as described in claim 1, wherein the computing server periodically or according to a schedule checks whether each product on the shelf and its text have changed. If the check shows a change, the combination label of the product is regenerated or updated. 如請求項6所述之零售系統,其中,在重新產生或更新該商品的組合標籤時,還檢查該黑白名單的時效,當該黑白名單的時效到期,將根據更新後的黑白名單進行組合標籤的修正。A retail system as described in claim 6, wherein when the combination label of the product is regenerated or updated, the validity of the black and white list is also checked. When the validity of the black and white list expires, the combination label will be modified according to the updated black and white list. 如請求項1所述之零售系統,其中該零售系統還設有一標籤推薦應用程式介面,該運算伺服器基於該商品/分類頁組合標籤庫,通過該標籤推薦應用程式介面在該零售系統前台顯示推薦特定商品的組合標籤。A retail system as described in claim 1, wherein the retail system is further provided with a tag recommendation application program interface, and the computing server displays the combination tag of recommended specific products on the front end of the retail system through the tag recommendation application program interface based on the product/category page combination tag library. 如請求項8所述之零售系統,其中,於該零售系統前台進入一商品描述頁,其中顯示該多個商品的內容,各商品的一或多組的組合標籤,以及通過該標籤推薦應用程式介面所推薦的該特定商品。A retail system as described in claim 8, wherein a product description page is entered at the front end of the retail system, which displays the contents of the multiple products, one or more sets of combined tags for each product, and the specific product recommended by the tag recommendation application program interface. 如請求項1至9中任一項所述之零售系統,其中,經排除該多組候選組合標籤中包括重複的組合標籤後,運用一自然語言處理技術計算各組候選組合標籤與該商品的一標題的相似度,再根據該多組候選組合標籤的多個相似度進行排序,以選擇出關聯該商品的該多組組合標籤。A retail system as described in any one of claim items 1 to 9, wherein after excluding duplicate combination tags from the multiple sets of candidate combination tags, a natural language processing technology is used to calculate the similarity between each set of candidate combination tags and a title of the product, and then the multiple sets of candidate combination tags are sorted according to the multiple similarities to select the multiple sets of combination tags associated with the product.
TW113214226U 2024-12-25 2024-12-25 Retail system with composite tags for products TWM667558U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW113214226U TWM667558U (en) 2024-12-25 2024-12-25 Retail system with composite tags for products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW113214226U TWM667558U (en) 2024-12-25 2024-12-25 Retail system with composite tags for products

Publications (1)

Publication Number Publication Date
TWM667558U true TWM667558U (en) 2025-03-01

Family

ID=95829386

Family Applications (1)

Application Number Title Priority Date Filing Date
TW113214226U TWM667558U (en) 2024-12-25 2024-12-25 Retail system with composite tags for products

Country Status (1)

Country Link
TW (1) TWM667558U (en)

Similar Documents

Publication Publication Date Title
US12062073B2 (en) System and method allowing social fashion selection in an electronic marketplace
Wu et al. Turning clicks into purchases: Revenue optimization for product search in e-commerce
US8589429B1 (en) System and method for providing query recommendations based on search activity of a user base
US9171088B2 (en) Mining for product classification structures for internet-based product searching
JP6301958B2 (en) Method and apparatus for configuring search terms, delivering advertisements, and retrieving product information
CN101203856B (en) System for generating relevant search queries
US10409821B2 (en) Search result ranking using machine learning
JP6022056B2 (en) Generate search results
US9613371B2 (en) Dynamic taxonomy generation with demand-based product groups
KR100857049B1 (en) Automatic targeting of web-based ads
US9727906B1 (en) Generating item clusters based on aggregated search history data
US20100274753A1 (en) Methods for filtering data and filling in missing data using nonlinear inference
US20100306249A1 (en) Social network systems and methods
JP5859606B2 (en) Ad source and keyword set adaptation in online commerce platforms
CN110909536A (en) System and method for automatically generating articles for a product
CN118193806A (en) A target retrieval method, device, electronic device and storage medium
CN113744019A (en) Commodity recommendation method, commodity recommendation device, commodity recommendation equipment and storage medium
US20230104661A1 (en) System and method for improving e-commerce
KR101355945B1 (en) On line context aware advertising apparatus and method
TWM667558U (en) Retail system with composite tags for products
CN112214641A (en) Commodity cluster title generation method and device, computer system and readable storage medium
JP7571337B1 (en) SEO information acquisition system, SEO information acquisition method, and program
EP1797499A2 (en) System and method for document analysis, processing and information extraction