[go: up one dir, main page]

TWM658166U - Service System - Google Patents

Service System Download PDF

Info

Publication number
TWM658166U
TWM658166U TW113202156U TW113202156U TWM658166U TW M658166 U TWM658166 U TW M658166U TW 113202156 U TW113202156 U TW 113202156U TW 113202156 U TW113202156 U TW 113202156U TW M658166 U TWM658166 U TW M658166U
Authority
TW
Taiwan
Prior art keywords
processing unit
image
recognition result
warning
verification
Prior art date
Application number
TW113202156U
Other languages
Chinese (zh)
Inventor
曾子家
邱建中
宋政隆
王俊權
Original Assignee
中國信託商業銀行股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中國信託商業銀行股份有限公司 filed Critical 中國信託商業銀行股份有限公司
Priority to TW113202156U priority Critical patent/TWM658166U/en
Publication of TWM658166U publication Critical patent/TWM658166U/en

Links

Images

Landscapes

  • Collating Specific Patterns (AREA)

Abstract

一種服務系統包含一處理單元及一電連接該處理單元的儲存單元。該儲存單元儲存有一人臉影像驗證模型,其被配置為辨識影像所呈現出的人臉是否屬於活體。該處理單元用於:將一待驗證影像資料中一第一人臉影像部分輸入該人臉影像驗證模型以獲得一辨識結果;判斷該辨識結果為一肯定性辨識結果還是一否定性判斷結果;在判定該辨識結果為該肯定性辨識結果的情況下准予一服務請求,並執行一對應於該服務請求的服務程序;在判定該辨識結果為該否定性判斷結果的情況下拒絕該服務請求,並將該否定性判斷結果所包含的一文字訊息資料訊息輸出。A service system includes a processing unit and a storage unit electrically connected to the processing unit. The storage unit stores a face image verification model, which is configured to identify whether the face presented by the image belongs to a living body. The processing unit is used to: input a first face image part in an image data to be verified into the face image verification model to obtain a recognition result; determine whether the recognition result is a positive recognition result or a negative judgment result; if the recognition result is determined to be the positive recognition result, grant a service request and execute a service program corresponding to the service request; if the recognition result is determined to be the negative judgment result, reject the service request and output a text message data message contained in the negative judgment result.

Description

服務系統Service System

本新型是有關於一種服務系統,特別是指一種適用於透過網路提供使用者線上服務的服務系統。The present invention relates to a service system, and in particular to a service system suitable for providing online services to users through the Internet.

隨著網路技術的迅速發展及普及,網路已成為人們日常生活中不可或缺的一部分。從金融交易、線上購物到社交媒體互動,網路為使用者提供了無限的便利和機會。With the rapid development and popularization of Internet technology, the Internet has become an indispensable part of people's daily life. From financial transactions, online shopping to social media interactions, the Internet provides users with unlimited convenience and opportunities.

然而,這些便利性同時也導致了個人資料安全性及隱私保護的挑戰,例如,在一些須要使用者先進行註冊才能使用的網路服務上,便可能發生個人資料被有心人士冒用來進行註冊的情形。However, these conveniences also lead to challenges in personal data security and privacy protection. For example, on some online services that require users to register before using them, personal data may be used by malicious persons to register.

以網路服務提供者的立場而言,現有技術中讓使用者以電子郵件位址、手機號碼甚至身分證號碼等資料進行註冊的做法,實質上已無法確認是否存在冒用他人名義註冊的情形,主因在於上述的個人資料極易外流而被有心人士冒用。因此,要如何改善上述問題,便成為本案所欲探討之議題。From the perspective of Internet service providers, the existing technology allows users to register with information such as email addresses, mobile phone numbers, and even ID numbers. In essence, it is impossible to confirm whether there is a situation where someone has registered in someone else's name. The main reason is that the above personal information is very easy to leak out and be used by someone with ulterior motives. Therefore, how to improve the above problem has become the issue to be discussed in this case.

為了避免有心人士冒用他人的個資進行偽冒註冊,本新型的目的,便在於提供一種能針對臉部影像進行驗證的服務系統。In order to prevent someone from using other people's personal information to register fraudulently, the purpose of this invention is to provide a service system that can verify facial images.

本新型服務系統包含一處理單元及一電連接該處理單元的儲存單元。該儲存單元儲存有一利用機器學習技術預先訓練的人臉影像驗證模型,其中,該人臉影像驗證模型是以一視覺語言模型實現,且被配置為辨識被輸入之影像所呈現出的人臉是否屬於活體,以及在辨識結果為否時產生並輸出以自然語言呈現且與辨識結果相關的說明文字訊息。該處理單元用於:在獲得一對應於一服務請求的待驗證影像資料之後,將該待驗證影像資料所包括的一第一人臉影像部分輸入該人臉影像驗證模型,以獲得一由該人臉影像驗證模型根據該第一人臉影像部分所產生並輸出的辨識結果;判斷該辨識結果為一表示驗證成功的肯定性辨識結果,還是一表示驗證失敗且包含一文字訊息資料的否定性判斷結果;在判定該辨識結果為該肯定性辨識結果的情況下准予該服務請求,並執行一對應於該服務請求的服務程序;在判定該辨識結果為該否定性判斷結果的情況下拒絕該服務請求,並將該否定性判斷結果所包含的該文字訊息資料訊息輸出。The novel service system includes a processing unit and a storage unit electrically connected to the processing unit. The storage unit stores a face image verification model pre-trained by machine learning technology, wherein the face image verification model is implemented by a visual language model and is configured to identify whether the face presented by the input image belongs to a living body, and when the recognition result is negative, generate and output an explanatory text message presented in natural language and related to the recognition result. The processing unit is used to: after obtaining an image data to be verified corresponding to a service request, input a first face image portion included in the image data to be verified into the face image verification model to obtain a recognition result generated and output by the face image verification model based on the first face image portion; determine whether the recognition result is a positive recognition result indicating successful verification or a negative recognition result indicating successful verification. a negative judgment result indicating a verification failure and including a text message data; if the recognition result is determined to be the positive recognition result, the service request is granted and a service procedure corresponding to the service request is executed; if the recognition result is determined to be the negative judgment result, the service request is rejected and the text message data message included in the negative judgment result is output.

在本新型服務系統的一些實施態樣中,該處理單元適用於與一客戶端電子裝置電連接。其中,該處理單元是從該客戶端電子裝置接收該待驗證影像資料,並且,在該文字訊息資料包括一指示出建議調整拍攝方式的提示說明文字訊息的情況下,該處理單元輸出該文字訊息資料的方式,包含將該提示說明文字訊息傳送至該客戶端電子裝置,以使該提示說明文字訊息能被該客戶端電子裝置所顯示。In some embodiments of the novel service system, the processing unit is adapted to be electrically connected to a client electronic device. The processing unit receives the image data to be verified from the client electronic device, and, when the text message data includes a prompting instruction text message indicating a suggested adjustment of the shooting method, the processing unit outputs the text message data in a manner including transmitting the prompting instruction text message to the client electronic device so that the prompting instruction text message can be displayed by the client electronic device.

在本新型服務系統的一些實施態樣中,該儲存單元還儲存有一警示資料庫。在該文字訊息資料包括一指示出特定之影像偽冒類型的警示說明文字訊息的情況下,該處理單元輸出該文字訊息資料的方式,包含產生一包含該警示說明文字訊息及一警示特徵資料的警示驗證紀錄,並將該警示驗證紀錄提供至該儲存單元,以使該警示驗證紀錄被加入該警示資料庫中,其中,該警示特徵資料是由該處理單元根據該待驗證影像資料所產生。In some implementations of the novel service system, the storage unit further stores a warning database. When the text message data includes a warning description text message indicating a specific type of image counterfeiting, the processing unit outputs the text message data in a manner that includes generating a warning verification record including the warning description text message and a warning feature data, and providing the warning verification record to the storage unit so that the warning verification record is added to the warning database, wherein the warning feature data is generated by the processing unit based on the image data to be verified.

在本新型服務系統的一些實施態樣中,該處理單元適用於與一服務端電子裝置電連接。該儲存單元還儲存有一適合被應用於人臉影像辨識的臉部特徵比對規則。該處理單元在判定該辨識結果為該肯定性辨識結果的情況下准予該服務請求並執行該服務程序的方式包含:在判斷出該辨識結果為該肯定性辨識結果的情況下,根據該臉部特徵比對規則判斷該第一人臉影像部分是否與該待驗證影像資料所包括的一第二人臉影像部分匹配,其中,該第二人臉影像部分呈現出一證件上的臉部圖像;在判定該第一人臉影像部分與該第二人臉影像部分匹配時,將該第一人臉影像部分及該第二人臉影像部分的其中一者作為一待查驗影像資料,並判斷該警示資料庫中是否存在任何一筆與該待查驗影像資料匹配的警示驗證紀錄;在判定該警示資料庫中不存在任何與該待查驗影像資料匹配的警示驗證紀錄時,准予該服務請求並執行該服務程序;在判定該警示資料庫中存在一筆與該待查驗影像資料匹配的警示驗證紀錄時,不准予該服務請求,且產生並傳送一對應於該服務請求的人工審核通知至該服務端電子裝置。In some implementations of the novel service system, the processing unit is adapted to be electrically connected to a service-end electronic device. The storage unit also stores a facial feature matching rule suitable for application to facial image recognition. The processing unit, when determining that the recognition result is the affirmative recognition result, grants the service request and executes the service program in a manner including: when determining that the recognition result is the affirmative recognition result, determining, according to the facial feature matching rule, whether the first facial image portion matches a second facial image portion included in the image data to be verified, wherein the second facial image portion presents a facial image on a certificate; when determining that the first facial image portion matches the second facial image portion, the first facial image portion and the second facial image portion are matched. One of the facial image parts is used as an image data to be checked, and it is determined whether there is any warning verification record matching the image data to be checked in the warning database; when it is determined that there is no warning verification record matching the image data to be checked in the warning database, the service request is approved and the service program is executed; when it is determined that there is a warning verification record matching the image data to be checked in the warning database, the service request is not approved, and a manual review notification corresponding to the service request is generated and transmitted to the service-end electronic device.

在本新型服務系統的一些實施態樣中,該儲存單元還儲存有一適合被應用於證件影像辨識且指示出一證件適格條件的證件檢核規則。該處理單元還用於在獲得該待驗證影像資料之後,根據該證件檢核規則判斷該待驗證影像資料是否呈現出一符合該證件適格條件的證件,並且,該處理單元是在判定該待驗證影像資料有呈現出符合該證件適格條件的證件,且還判定該辨識結果為該肯定性辨識結果的情況下,才准予該服務請求並執行該服務程序。In some implementations of the novel service system, the storage unit further stores a certificate verification rule suitable for being applied to certificate image recognition and indicating a certificate eligibility condition. The processing unit is also used to determine whether the image data to be verified presents a certificate that meets the certificate eligibility condition according to the certificate verification rule after obtaining the image data to be verified, and the processing unit only approves the service request and executes the service procedure when it is determined that the image data to be verified presents a certificate that meets the certificate eligibility condition and the recognition result is the positive recognition result.

本新型之功效在於:該處理單元在獲得對應於該服務請求的該待驗證影像資料之後,能利用該人臉影像驗證模型判斷該第一人臉影像部分中的人臉是否屬於活體,並且在該人臉影像驗證模型輸出肯定性辨識結果的情況下准予該服務請求,否則便拒絕該服務請求。藉此,該服務系統能藉由對人臉影像進行活體偵測來決定是否准予服務請求,故有助於遏止有心人士冒用他人的資料來發送服務請求。The effect of the present invention is that after the processing unit obtains the image data to be verified corresponding to the service request, it can use the face image verification model to determine whether the face in the first face image part is alive, and if the face image verification model outputs a positive recognition result, the service request is granted, otherwise the service request is rejected. In this way, the service system can determine whether to grant a service request by performing liveness detection on the face image, so it helps to prevent malicious people from using other people's data to send service requests.

在本新型被詳細描述之前應當注意:在未特別定義的情況下,本專利說明書中所述的「電連接(electrically connected)」是用來描述電腦硬體(例如電子系統、設備、裝置、單元、元件)之間的「耦接(coupled)」關係,且泛指複數電腦硬體之間透過導體/半導體材料彼此實體相連而實現的「有線電連接」,以及利用無線通訊技術(例如但不限於無線網路、藍芽及電磁感應等)而實現無線資料傳輸的「無線電連接」。另一方面,在未特別定義的情況下,本專利說明書中所述的「電連接」也泛指複數電腦硬體之間彼此直接耦接而實現的「直接電連接」,以及複數電腦硬體之間是透過其他電腦硬體間接耦接而實現的「間接電連接」。Before the present invention is described in detail, it should be noted that, unless otherwise specifically defined, the term "electrically connected" in this patent specification is used to describe the "coupled" relationship between computer hardware (e.g., electronic systems, equipment, devices, units, components), and generally refers to "wired electrical connections" achieved by physically connecting multiple computer hardware through conductors/semiconductor materials, and "radio connections" that achieve wireless data transmission using wireless communication technology (e.g., but not limited to wireless networks, Bluetooth, and electromagnetic induction, etc.). On the other hand, unless otherwise specifically defined, the "electrical connection" described in this patent specification also generally refers to a "direct electrical connection" achieved by directly coupling multiple computer hardware to each other, and an "indirect electrical connection" achieved by indirectly coupling multiple computer hardware through other computer hardware.

本專利說明書中所述的「單元(unit)」是代表電腦硬體而非軟體,舉例來說,「處理單元」是用來代表具備資料處理功能的電腦硬體。另一方面,本專利說明書中所述的「單元」可以是指具備特定功能的單一個電腦硬體,也可以是指具備類似功能的一群電腦硬體,舉例來說,「處理單元」可以是指具備資料處理功能的單一個處理器,但也可以是指一群處理器的集合。The "unit" described in this patent specification represents computer hardware rather than software. For example, a "processing unit" is used to represent computer hardware with data processing capabilities. On the other hand, the "unit" described in this patent specification can refer to a single computer hardware with a specific function, or a group of computer hardware with similar functions. For example, a "processing unit" can refer to a single processor with data processing capabilities, but it can also refer to a collection of a group of processors.

參閱圖1,本新型服務系統1的一實施例歸屬於一服務機構,在本實施例的應用中,該服務機構例如是一個金融服務機構(例如商業銀行),並且,該服務系統1適合於與多個客戶端電子裝置10(圖1僅示出其中一者)以及一服務端電子裝置20配合應用。為了便於理解,以下的描述中僅以圖1所示出的該客戶端電子裝置10對本實施例進行說明 Referring to FIG. 1 , an embodiment of the novel service system 1 belongs to a service institution. In the application of the embodiment, the service institution is, for example, a financial service institution (e.g., a commercial bank), and the service system 1 is suitable for use with multiple client electronic devices 10 (only one of which is shown in FIG. 1 ) and a service-side electronic device 20. For ease of understanding, the following description only uses the client electronic device 10 shown in FIG. 1 to illustrate the embodiment .

該客戶端電子裝置10歸屬於一位使用者,而且,該客戶端電子裝置10可以是一台智慧型手機或者平板電腦,也可以是具備拍攝鏡頭的筆記型電腦或者桌上型電腦。另一方面,該服務端電子裝置20例如是一台桌上型電腦,而用於供在該金融服務機構任職的業務人員進行操作。The client electronic device 10 belongs to a user, and can be a smart phone or a tablet computer, or a laptop or a desktop computer with a camera. On the other hand, the service electronic device 20 is, for example, a desktop computer, and is used by the business personnel working in the financial service institution to operate.

在本實施例中,該服務系統1整體被實施為一台伺服設備,而且,該服務系統1包含一處理單元11,以及一電連接該處理單元11的儲存單元12,並且,該處理單元11適用於與該客戶端電子裝置10及該服務端電子裝置20透過網路電連接,而藉此與該客戶端電子裝置10及該服務端電子裝置20進行通訊。In this embodiment, the service system 1 is implemented as a server device as a whole, and the service system 1 includes a processing unit 11 and a storage unit 12 electrically connected to the processing unit 11, and the processing unit 11 is suitable for being electrically connected to the client electronic device 10 and the server electronic device 20 through a network, thereby communicating with the client electronic device 10 and the server electronic device 20.

更具體地說,在本實施例中,該處理單元11是一個以積體電路實現且具有資料運算及指令收發功能的處理器,該儲存單元12則是一個用於儲存數位資料的資料儲存裝置(例如硬碟,或者是其他種類的電腦可讀取記錄媒體)。但是,在類似的實施態樣中,該處理單元11也可以是一包括有處理器及電路板的電路組件,而該儲存單元12也可以是多個相同或相異種類之儲存裝置的集合。進一步地,在其他實施例中,該服務系統1也可被實施為多台彼此電連接的伺服設備(相當於一伺服設備集合),在此情況下,該處理單元11可被實施為該等伺服設備所分別具有之多個處理器/電路組件的集合,而該儲存單元12則可被實施為該等伺服設備所分別具有之多個儲存裝置的集合。基於上述,該服務系統1在電腦硬體方面的實際實施態樣並不以本實施例為限。More specifically, in this embodiment, the processing unit 11 is a processor implemented by an integrated circuit and having data operation and instruction transmission and reception functions, and the storage unit 12 is a data storage device for storing digital data (such as a hard disk, or other types of computer-readable recording media). However, in similar embodiments, the processing unit 11 can also be a circuit component including a processor and a circuit board, and the storage unit 12 can also be a collection of multiple storage devices of the same or different types. Furthermore, in other embodiments, the service system 1 may also be implemented as a plurality of mutually electrically connected server devices (equivalent to a server device set), in which case the processing unit 11 may be implemented as a set of a plurality of processors/circuit components respectively possessed by the server devices, and the storage unit 12 may be implemented as a set of a plurality of storage devices respectively possessed by the server devices. Based on the above, the actual implementation of the service system 1 in terms of computer hardware is not limited to this embodiment.

在本實施例中,如圖1所示,該儲存單元12儲存有一人臉影像驗證模型M、一證件檢核規則R2、一臉部特徵比對規則R1、一註冊資料庫DB1,以及一警示資料庫DB2。In this embodiment, as shown in FIG. 1 , the storage unit 12 stores a face image verification model M, a document verification rule R2, a face feature matching rule R1, a registration database DB1, and a warning database DB2.

該人臉影像驗證模型M是結合活體偵測(Liveness Detection)技術及自然語言處理(Natural Language Processing)技術,並利用機器學習(或稱深度學習)技術所預先訓練而成。更明確地說,該人臉影像驗證模型M是一個視覺語言模型(Vision-Language Model),其內部包括一卷積神經網路(Convolutional Neural Network)部分以及一變換器(Transformer) 部分,其中,該卷積神經網路部分是用於處理、分析被輸入於該人臉影像驗證模型M的影像,該變換器部分則是用於根據該卷積神經網路部分對影像的分析結果生成用來描述影像的自然語言文字訊息。進一步地,所述的視覺語言模型可採用例如GPT-4V、Gemini、CLIP或LLaVA等具備多模態(Multi-Modal)能力的模型,但並不以此為限。The face image verification model M is pre-trained by combining liveness detection technology and natural language processing technology and using machine learning (or deep learning) technology. More specifically, the face image verification model M is a vision-language model, which includes a convolutional neural network part and a transformer part, wherein the convolutional neural network part is used to process and analyze the image input to the face image verification model M, and the transformer part is used to generate natural language text messages used to describe the image according to the analysis results of the convolutional neural network part on the image. Furthermore, the visual language model may adopt a model with multi-modal capabilities such as GPT-4V, Gemini, CLIP or LLaVA, but is not limited thereto.

在本實施例中,該人臉影像驗證模型M被配置為:根據被輸入至該人臉影像驗證模型M本身的影像,辨識影像中所呈現出的人臉是否屬於活體,以及在辨識結果為否時(亦即辨識為非活體時及/或辨識的信心分數不足時),產生並輸出以自然語言形式呈現且與辨識結果相關聯的說明文字訊息。更明確地說,基於活體偵測技術,該人臉影像驗證模型M能用於辨識影像中呈現出的人臉是屬於活體人類的臉部、平面人臉面具、立體人臉面具、以深度偽造(deepfake)技術生成的虛擬人臉,還是對臉部影像(例如臉部照片或影片)進行翻拍的結果,因此,前述的「辨識被輸入之影像所呈現出的人臉是否屬於活體」,相當於依據影像中所呈現出的人臉,來判斷影像本身是否屬於「對真實的活體人類直接拍攝的照片」。In this embodiment, the facial image verification model M is configured to: identify whether the face presented in the image is a living body based on the image input into the facial image verification model M itself, and when the recognition result is negative (that is, when it is recognized as non-living and/or the recognition confidence score is insufficient), generate and output an explanatory text message presented in natural language and related to the recognition result. To be more specific, based on liveness detection technology, the facial image verification model M can be used to identify whether the face presented in the image is a face of a living human, a flat face mask, a three-dimensional face mask, a virtual face generated by deepfake technology, or the result of reshooting a facial image (such as a facial photo or video). Therefore, the aforementioned "identifying whether the face presented in the input image is a living person" is equivalent to judging whether the image itself is a "photograph directly taken of a real living human" based on the face presented in the image.

進一步地,當該人臉影像驗證模型M判定影像中之人臉並非活體時,該人臉影像驗證模型M所產生的說明文字訊息,是用於指示出其所辨識出的一種特定的影像偽冒類型,例如「圖像翻拍」、「立體面具」或「深偽變造」,但並不以此為限。另一方面,當影像本身的成像品質不佳,導致該人臉影像驗證模型M之辨識結果的信心分數不足時,該人臉影像驗證模型M所產生並輸出的說明文字訊息,則會指示出至少一種建議調整拍攝方式,例如「移動至光源充足的地方」或者「保持鏡頭穩定」,但並不以此為限。Furthermore, when the facial image verification model M determines that the face in the image is not alive, the explanatory text message generated by the facial image verification model M is used to indicate a specific type of image forgery that it has identified, such as "image copying", "3D mask" or "deep fake", but not limited to this. On the other hand, when the imaging quality of the image itself is poor, resulting in an insufficient confidence score in the recognition result of the facial image verification model M, the explanatory text message generated and output by the facial image verification model M will indicate at least one recommended adjustment method for shooting, such as "move to a place with sufficient light" or "keep the lens stable", but not limited to this.

此外,在該人臉影像驗證模型M的訓練階段,該人臉影像驗證模型M進行機器學習時所利用的資料例如包含一群視覺語言訓練資料,而且,該群視覺語言訓練資料包括一群第一類視覺語言訓練資料,以及一群第二類視覺語言訓練資料。In addition, during the training phase of the face image verification model M, the data used by the face image verification model M for machine learning includes, for example, a group of visual language training data, and the group of visual language training data includes a group of first-category visual language training data and a group of second-category visual language training data.

具體而言,對於每一筆第一類視覺語言訓練資料,該第一類視覺語言訓練資料包括一經過影像預處理的第一類訓練影像部分,以及一對應於該第一類訓練影像部分的第一類訓練文字部分。其中,該第一類訓練影像部分是一張呈現出一人臉的照片,而該第一類訓練文字部分則是以自然語言描述該第一類訓練影像部分中的人臉是屬於活體人類的臉部、平面人臉面具、立體人臉面具、以深度偽造技術生成之人臉,還是對臉部影像翻拍的結果。換言之,該第一類訓練文字部分是用來註記該第一類訓練影像部分的實際屬性。Specifically, for each first-category visual language training data, the first-category visual language training data includes a first-category training image portion that has undergone image preprocessing, and a first-category training text portion corresponding to the first-category training image portion. The first-category training image portion is a photo showing a human face, and the first-category training text portion describes in natural language whether the human face in the first-category training image portion is a face of a living human, a flat face mask, a three-dimensional face mask, a face generated by deep fake technology, or a result of reshooting a facial image. In other words, the first-category training text portion is used to annotate the actual attributes of the first-category training image portion.

另一方面,對於每一筆第二類視覺語言訓練資料,該第二類視覺語言訓練資料包括一經過影像預處理的第二類訓練影像部分,以及一對應於該一第二類訓練影像部分的第二類訓練文字部分。其中,該第二類訓練影像部分是一張呈現出一人臉的照片,而該第二類訓練文字部分則是以自然語言描述該第二類訓練影像的影像品質特徵,以及適用的建議調整拍攝方式,例如「影像清晰,無須調整」、「臉部亮度不足,建議移動至光源充足處重拍」,或者「臉部模糊,建議在拍攝時維持鏡頭穩定」。On the other hand, for each second-category visual language training data, the second-category visual language training data includes a second-category training image portion that has undergone image preprocessing, and a second-category training text portion corresponding to the second-category training image portion. The second-category training image portion is a photo showing a face, and the second-category training text portion describes the image quality characteristics of the second-category training image in natural language, as well as the applicable recommended adjustment shooting method, such as "the image is clear, no adjustment is required", "the face is not bright enough, it is recommended to move to a place with sufficient light and reshoot", or "the face is blurred, it is recommended to keep the lens stable when shooting".

藉由利用該群第一類視覺語言訓練資料進行機器學習,該人臉影像驗證模型M能夠學習該等第一類訓練影像部分與對應之該等第一類訓練文字部分之間的關聯,從而建立影像特徵與自然語言文義之間在向量空間中的映射關係,以具備對影像中的人臉進行活體偵測、並以自然語言描述偵測結果的能力。另一方面,藉由利用該群第二類視覺語言訓練資料進行機器學習,該人臉影像驗證模型M能夠學習該等第二類訓練影像部分與對應之該等第二類訓練文字部分之間的關聯,從而建立影像特徵與自然語言文義之間在向量空間中的映射關係,進而具備評估影像品質並產生建議調整拍攝方式的能力。By using the group of first-category visual language training data for machine learning, the face image verification model M is able to learn the relationship between the first-category training image parts and the corresponding first-category training text parts, thereby establishing a mapping relationship between image features and natural language context in vector space, so as to have the ability to perform liveness detection on faces in images and describe the detection results in natural language. On the other hand, by using the group of second-category visual language training data for machine learning, the face image verification model M is able to learn the relationship between the second-category training image parts and the corresponding second-category training text parts, thereby establishing a mapping relationship between image features and natural language meanings in vector space, and thus having the ability to evaluate image quality and generate recommendations for adjusting the shooting method.

應當理解,本實施例中所述的活體偵測、自然語言處理及視覺語言模型等技術,皆已存在諸多現有的解決方案。並且,有關視覺語言模型的訓練方式,亦已存在諸多參考文獻,例如「 Alec et al., Learning Transferable Visual Models From Natural Language Supervision (2021)」或者「 Andrej Karpathy, Li Fei-Fei, Department of Computer Science, Stanford University, “Deep Visual-Semantic Alignments for Generating Image Descriptions” (2014)」等論文著作。因此,對於該人臉影像驗證模型M的訓練方式,本實施例不再過度詳述其細節。 It should be understood that there are many existing solutions for the technologies such as liveness detection, natural language processing, and visual language models described in this embodiment. In addition, there are many references on the training methods of visual language models, such as " Alec et al., " Learning Transferable Visual Models From Natural Language Supervision " (2021) " or " Andrej Karpathy, Li Fei-Fei, Department of Computer Science, Stanford University, "Deep Visual-Semantic Alignments for Generating Image Descriptions" (2014) " and other papers. Therefore, this embodiment will not go into too much detail about the training method of the face image verification model M.

該臉部特徵比對規則R1用於供該處理單元11對影像進行人臉影像辨識,而能用於供該處理單元11從影像中辨識出人臉,以及比對同一影像或不同影像中之兩個人臉的臉部特徵是否相互匹配,從而判斷兩個人臉是否屬於同一人的臉部。進一步地,該臉部特徵比對規則R1可例如是以基於人臉特徵點的辨識演算法(feature-based recognition algorithms)來實現,也可以是利用神經網路進行辨識的演算法(recognition algorithms using neural network)來實現。由於該臉部特徵比對規則R1可利用眾多不同的現有技術來達成,且其技術細節並非本專利之技術重點,故在此不再過度詳述。The facial feature matching rule R1 is used for the processing unit 11 to perform facial image recognition on the image, and can be used for the processing unit 11 to recognize a face from an image, and to compare whether the facial features of two faces in the same image or different images match each other, thereby determining whether the two faces belong to the same person. Furthermore, the facial feature matching rule R1 can be implemented, for example, by a recognition algorithm based on facial feature points (feature-based recognition algorithms), or by a recognition algorithm using a neural network (recognition algorithms using neural network). Since the facial feature matching rule R1 can be achieved using many different existing technologies, and its technical details are not the technical focus of this patent, it will not be described in detail here.

該證件檢核規則R2指示出一對應於一或多種特定證件(例如但不限於身分證及/或健保卡)的證件適格條件,而能用於供該處理單元11對影像進行證件影像辨識,以從影像中辨識出證件,並檢核其是否符合特定證件的格式規範。更具體地說,在一種實施態樣中,該證件檢核規則R2是一個能被該處理單元11載入並執行的軟體模組,其包含根據特定證件的外觀特徵(例如證件的版面格式)而被設定的辨識條件及檢核條件,並且是以基於規則(Rule-based)的方式實現。或者,在另一種實施態樣中,該證件檢核規則R2也可以是被包含在一個能被該處理單元11所運行的證件影像辨識模型中,且該證件影像辨識模型可例如是預先以呈現出特定證件的影像進行機器學習而成。由於該證件檢核規則R2可利用眾多不同的現有技術來達成,且其技術細節並非本專利之技術重點,故在此不再過度詳述。The document verification rule R2 indicates a document eligibility condition corresponding to one or more specific documents (such as but not limited to identity cards and/or health insurance cards), and can be used for the processing unit 11 to perform document image recognition on the image to identify the document from the image and verify whether it meets the format specifications of the specific document. More specifically, in one embodiment, the document verification rule R2 is a software module that can be loaded and executed by the processing unit 11, which includes recognition conditions and verification conditions set according to the appearance characteristics of the specific document (such as the layout format of the document), and is implemented in a rule-based manner. Alternatively, in another embodiment, the document verification rule R2 may also be included in a document image recognition model that can be run by the processing unit 11, and the document image recognition model may be, for example, pre-trained by machine learning with images of specific documents. Since the document verification rule R2 can be achieved using many different existing technologies, and its technical details are not the technical focus of this patent, it will not be described in detail here.

該註冊資料庫DB1是針對該金融服務機構所提供的一種線上服務而被建立。具體而言,在本實施例的應用中,該種線上服務例如是用於供使用者註冊一新帳號(例如但不限於金融帳戶帳號)的線上註冊服務。並且,該註冊資料庫DB1是用來儲存註冊成功之使用者的註冊資料。The registration database DB1 is established for an online service provided by the financial service institution. Specifically, in the application of this embodiment, the online service is, for example, an online registration service for a user to register a new account (such as but not limited to a financial account). Furthermore, the registration database DB1 is used to store the registration information of the successfully registered user.

該警示資料庫DB2也是針對該金融服務機構所提供的該種線上服務而被建立。然而,與該註冊資料庫DB1不同的是,該警示資料庫DB2是用來儲存使用者因驗證失敗而導致註冊不成功的紀錄。更具體地說,在本實施例中,該警示資料庫DB2是用來儲存一或多筆警示驗證紀錄,並且,每一筆警示驗證紀錄是一位使用者曾利用該線上註冊服務但因驗證失敗而未能成功註冊的紀錄。The warning database DB2 is also established for the online service provided by the financial service institution. However, unlike the registration database DB1, the warning database DB2 is used to store the record of the user's unsuccessful registration due to verification failure. More specifically, in this embodiment, the warning database DB2 is used to store one or more warning verification records, and each warning verification record is a record of a user who has used the online registration service but failed to register successfully due to verification failure.

配合參閱圖2,以下以該客戶端電子裝置10及該服務端電子裝置20為例,示例性地說明本實施例的該服務系統1如何實施一臉部影像驗證方法。With reference to FIG. 2 , the following uses the client electronic device 10 and the server electronic device 20 as examples to exemplarily explain how the service system 1 of this embodiment implements a facial image verification method.

首先,在步驟S1中,當該處理單元11接收到一來自於該客戶端電子裝置10的服務請求時,該處理單元11產生一對應於該服務請求的影像要求,並且回應於該服務請求地將該影像要求傳送至該客戶端電子裝置10。First, in step S1, when the processing unit 11 receives a service request from the client electronic device 10, the processing unit 11 generates an image request corresponding to the service request, and transmits the image request to the client electronic device 10 in response to the service request.

具體而言,在本實施例中,該服務請求是由該客戶端電子裝置10根據一使用者的手動操作所產生,並且是一個對應於該線上註冊服務的註冊服務請求。另一方面,該影像要求例如包含一影像驗證提示訊息,而且,該影像驗證提示訊息例如是用來提示該使用者利用該客戶端電子裝置10拍攝其自身的臉部(即自拍),以及拍攝該使用者所持有的一張特定證件(例如該使用者的身分證),並且將拍攝結果回傳至該處理單元11。Specifically, in this embodiment, the service request is generated by the client electronic device 10 according to a manual operation of a user, and is a registration service request corresponding to the online registration service. On the other hand, the image request, for example, includes an image verification prompt message, and the image verification prompt message, for example, is used to prompt the user to use the client electronic device 10 to take a picture of his own face (i.e., a selfie), and to take a picture of a specific certificate held by the user (e.g., the user's ID card), and the shooting result is returned to the processing unit 11.

在該處理單元11將該影像要求傳送至該客戶端電子裝置10之後,流程進行至步驟S2。After the processing unit 11 transmits the image request to the client electronic device 10, the process proceeds to step S2.

在步驟S2中,當該處理單元11接收到一來自於該客戶端電子裝置10且對應於該影像要求的拍攝結果時,該處理單元11將該拍攝結果作為一對應於該服務請求的待驗證影像資料,並且從該待驗證影像資料中獲得一呈現出一人臉的第一人臉影像部分,以及一呈現出一證件的證件影像部分。In step S2, when the processing unit 11 receives a shooting result from the client electronic device 10 and corresponding to the image request, the processing unit 11 uses the shooting result as image data to be verified corresponding to the service request, and obtains a first facial image portion showing a human face and a document image portion showing an ID from the image data to be verified.

更具體地說,在本實施例中,該待驗證影像資料例如包含一具有該第一人臉影像部分的第一影像檔,以及一具有該證件影像部分的第二影像檔,因此,該處理單元11是從該第一影像檔中擷取出該第一人臉影像部分,以及從該第二影像檔中擷取出該證件影像部分。補充說明的是,基於該第一人臉影像部分及該證件影像部分皆是從影像中被擷取出的一部分,該第一人臉影像部分及該證件影像部分也各自為一影像檔。More specifically, in this embodiment, the image data to be verified includes, for example, a first image file having the first facial image portion, and a second image file having the ID image portion, so the processing unit 11 extracts the first facial image portion from the first image file, and extracts the ID image portion from the second image file. It should be noted that, since both the first facial image portion and the ID image portion are portions extracted from an image, the first facial image portion and the ID image portion are also each an image file.

進一步說明的是,在正常的應用情況下,該第一影像檔及該第二影像檔皆是由該客戶端電子裝置10進行拍攝所產生的照片,而且,該第一影像檔是該使用者利用該客戶端電子裝置10自拍的照片,該第二影像檔則是該使用者利用該客戶端電子裝置10拍攝該特定證件的照片。進一步地,該證件影像部分具有一呈現出另一人臉的第二人臉影像部分,其中,該第二人臉影像部分中的人臉是形成在該特定證件上的臉部圖像,也就是該特定證件上的大頭照。It is further explained that, in normal application, the first image file and the second image file are both photos taken by the client electronic device 10, and the first image file is a self-photographed photo of the user using the client electronic device 10, and the second image file is a photo of the specific ID card taken by the user using the client electronic device 10. Furthermore, the ID card image portion has a second face image portion showing another face, wherein the face in the second face image portion is a face image formed on the specific ID card, that is, a headshot on the specific ID card.

然而,在「非」正常的應用情況下,該第一影像檔也有可能是人臉面具的照片、對臉部影像進行翻拍的照片,或者是利用深度偽造技術生成的虛擬人臉圖像,另一方面,該第二影像檔所呈現出的證件,也有可能並非該使用者本人的證件,而是一位被冒用者的證件。However, in "abnormal" application situations, the first image file may also be a photo of a face mask, a photo of a facial image, or a virtual face image generated using deep fake technology. On the other hand, the ID card presented by the second image file may not be the user's own ID card, but the ID card of a person whose ID card is being used.

在該處理單元11獲得該第一人臉影像部分及該證件影像部分(包括該證件影像部分中的第二人臉影像部分)之後,如圖2所示,流程一併進行至步驟S3及步驟S6。After the processing unit 11 obtains the first facial image portion and the ID image portion (including the second facial image portion in the ID image portion), as shown in FIG. 2 , the process proceeds to step S3 and step S6 together.

在步驟S3中,該處理單元11將該第一人臉影像部分輸入該人臉影像驗證模型M以供其對該第一人臉影像部分進行辨識,並藉此獲得一由該人臉影像驗證模型M根據該第一人臉影像部分所產生並輸出的辨識結果。接著,流程進行至步驟S4。In step S3, the processing unit 11 inputs the first facial image portion into the facial image verification model M for it to recognize the first facial image portion, and thereby obtains a recognition result generated and outputted according to the first facial image portion by the facial image verification model M. Then, the process proceeds to step S4.

在步驟S4中,該處理單元11判斷該人臉影像驗證模型M所輸出的該辨識結果為一表示驗證成功的肯定性辨識結果,還是一表示驗證失敗且包含一文字訊息資料的否定性判斷結果。In step S4, the processing unit 11 determines whether the recognition result output by the face image verification model M is a positive recognition result indicating successful verification or a negative recognition result indicating failed verification and including a text message data.

具體而言,在一種實施態樣中,該辨識結果例如具有一指示字元資料(可例如為文字、代碼或符號),而且,該處理單元11是根據該指示字元資料,來判斷該辨識結果是肯定性辨識結果還是否定性判斷結果。或者,在另一種實施態樣中,該處理單元11也可以是根據該辨識結果包含該文字訊息資料與否,來判斷該辨識結果是肯定性辨識結果還是否定性判斷結果。Specifically, in one embodiment, the recognition result has, for example, an indicator character data (which may be, for example, text, code, or symbol), and the processing unit 11 determines whether the recognition result is a positive recognition result or a negative judgment result based on the indicator character data. Alternatively, in another embodiment, the processing unit 11 may also determine whether the recognition result is a positive recognition result or a negative judgment result based on whether the recognition result includes the text message data.

補充說明的是,若該辨識結果為肯定性辨識結果,表示該人臉影像驗證模型M判定該第一人臉影像部分中的人臉確實為活體人類的臉部,而若該辨識結果為否定性辨識結果,則表示該人臉影像驗證模型M判定該第一人臉影像中的人臉部分「非」為活體人類的臉部,或者是表示該人臉影像驗證模型M辨識的信心分數不足。It should be noted that if the recognition result is a positive recognition result, it means that the facial image verification model M determines that the face in the first facial image part is indeed the face of a living human being. If the recognition result is a negative recognition result, it means that the facial image verification model M determines that the facial part in the first facial image is "not" the face of a living human being, or it means that the confidence score of the facial image verification model M in the recognition is insufficient.

若該處理單元11在步驟S4中的判斷結果為否定性辨識結果,流程進行至步驟S5。若該處理單元11的判斷結果為肯定性辨識結果,流程則進行至步驟S8。If the determination result of the processing unit 11 in step S4 is a negative identification result, the process proceeds to step S5. If the determination result of the processing unit 11 is a positive identification result, the process proceeds to step S8.

在接續於步驟S4之後的步驟S5中,一旦該處理單元11判定該辨識結果為該否定性辨識結果,該處理單元11判定對該待驗證影像資料的驗證失敗。在此情況下,該處理單元11拒絕該服務請求,並將該否定性判斷結果所包含的該文字訊息資料訊息輸出。In step S5 following step S4, once the processing unit 11 determines that the recognition result is the negative recognition result, the processing unit 11 determines that the verification of the image data to be verified has failed. In this case, the processing unit 11 rejects the service request and outputs the text message data message included in the negative judgment result.

更具體地說,在本實施例的一種示例性情況中,該否定性辨識結果的文字訊息資料包括一提示說明文字訊息,以及一警示說明文字訊息。其中,該提示說明文字訊息是以自然語言指示出一種由該人臉影像驗證模型M所判定的建議調整拍攝方式,而該警示說明文字訊息則是以自然語言指示出一種由該人臉影像驗證模型M所判定之特定的影像偽冒類型。舉例來說,該提示說明文字訊息可例如為「請至光線充足處重新拍攝」或者「請重新拍攝並減少鏡頭晃動」,而該警示說明文字訊息可例如為「人臉面具」或者「深偽變造」,但並不以此為限。More specifically, in an exemplary case of the present embodiment, the text message data of the negative recognition result includes a prompt explanation text message and a warning explanation text message. The prompt explanation text message indicates a recommended adjustment shooting method determined by the face image verification model M in natural language, and the warning explanation text message indicates a specific image forgery type determined by the face image verification model M in natural language. For example, the prompt explanation text message may be, for example, "Please reshoot in a well-lit place" or "Please reshoot and reduce lens shaking", and the warning explanation text message may be, for example, "face mask" or "deep fake", but is not limited to this.

進一步地,在此種示例性情況中,該處理單元11輸出該文字訊息資料的方式是執行一第一輸出處理及一第二輸出處理。其中,該第一輸出處理是將該提示說明文字訊息傳送至該客戶端電子裝置10,以使該提示說明文字訊息能被該客戶端電子裝置10所顯示,藉此提示該使用者適當調整拍攝方式重新拍攝,並重新提供新的待驗證影像資料。另一方面,該第二輸出處理是產生一包含該警示說明文字訊息及一警示特徵資料的警示驗證紀錄,並將該警示驗證紀錄提供至該儲存單元12,以使該警示驗證紀錄被加入至該警示資料庫DB2中。其中,該警示特徵資料是由該處理單元11根據該待驗證影像資料所產生,更具體地說,該警示特徵資料至少包含該第一人臉影像部分,且可選地還包含該證件影像部分。此外,可選地,該第二輸出處理可以更包含將該警示驗證紀錄傳送至該服務端電子裝置20輸出,藉此通知相關的業務人員進行適當處理(例如通報相關調查單位)。Furthermore, in this exemplary case, the processing unit 11 outputs the text message data by executing a first output process and a second output process. The first output process is to transmit the prompt instruction text message to the client electronic device 10 so that the prompt instruction text message can be displayed by the client electronic device 10, thereby prompting the user to appropriately adjust the shooting method to reshoot and re-provide new image data to be verified. On the other hand, the second output process is to generate a warning verification record including the warning instruction text message and a warning feature data, and provide the warning verification record to the storage unit 12 so that the warning verification record is added to the warning database DB2. The warning feature data is generated by the processing unit 11 according to the image data to be verified. More specifically, the warning feature data at least includes the first face image portion, and optionally also includes the ID image portion. In addition, optionally, the second output processing may further include transmitting the warning verification record to the service end electronic device 20 for output, thereby notifying relevant business personnel to perform appropriate processing (e.g., notifying relevant investigation units).

在本實施例的其他示例性情況中,依據該人臉影像驗證模型M判定的結果,該文字訊息資料也可能只包括該提示說明文字訊息及該警示說明文字訊息的其中單一者。其中,若該文字訊息資料只包括該提示說明文字訊息,該處理單元11輸出該文字訊息資料的方式,便是只執行該第一輸出處理。另一方面,若該文字訊息資料只包括該警示說明文字訊息,則該處理單元11輸出該文字訊息資料的方式,便是只執行該第二輸出處理。In other exemplary cases of this embodiment, according to the result determined by the face image verification model M, the text message data may also include only one of the prompt description text message and the warning description text message. If the text message data only includes the prompt description text message, the processing unit 11 outputs the text message data by only performing the first output process. On the other hand, if the text message data only includes the warning description text message, the processing unit 11 outputs the text message data by only performing the second output process.

值得說明的是,由於該人臉影像驗證模型M是以視覺語言模型實現,因此其能在辨識結果為非活體的情況下,輸出以自然語言形式呈現的提示說明文字訊息及/或警示說明文字訊息,從而使操作該客戶端電子裝置10的該使用者及/或該金融服務機構的業務人員能夠了解該人臉影像驗證模型M判斷為非活體的原因。藉此,本實施例相較於直接輸出信心分數,或者只會輸出兩種相反結果(即肯定結果或否定結果)的做法,能夠對活體偵測結果提供更豐富的回饋,而有利於該服務機構進一步分析使用者行為,或者進一步優化該服務系統1整體的驗證機制。It is worth noting that, since the face image verification model M is implemented as a visual language model, it can output a prompt explanation text message and/or a warning explanation text message in the form of natural language when the recognition result is non-live, so that the user operating the client electronic device 10 and/or the business personnel of the financial service institution can understand the reason why the face image verification model M determines that it is non-live. In this way, compared with the method of directly outputting confidence scores or only outputting two opposite results (i.e., positive results or negative results), this embodiment can provide richer feedback on the live detection results, which is beneficial for the service institution to further analyze user behavior or further optimize the overall verification mechanism of the service system 1.

在該處理單元11根據該否定性辨識結果判定驗證失敗,並將該文字訊息資料訊息輸出之後,本實施例的流程結束。After the processing unit 11 determines that the verification has failed based on the negative recognition result and outputs the text message data, the process of this embodiment ends.

在接續於步驟S2之後的步驟S6中,該處理單元11根據該證件檢核規則R2,判斷從該待驗證影像資料中所擷取出的該證件影像部分是否呈現出一符合該證件適格條件的證件,亦即判斷該證件影像部分中所呈現出的證件是否符合該證件適格條件。In step S6 following step S2, the processing unit 11 determines, based on the certificate verification rule R2, whether the certificate image portion extracted from the image data to be verified presents a certificate that meets the certificate eligibility conditions, that is, whether the certificate presented in the certificate image portion meets the certificate eligibility conditions.

在一種實施態樣中,該證件適格條件例如是代表該證件影像部分所呈現出的證件是屬於該種特定證件。或者,在另一種實施態樣中,該證件適格條件也可以是代表該證件影像部分所呈現出的證件上存在人臉圖像及/或特定的身分識別資料(例如身分證字號、出生年月日等)。該證件適格條件的實際態樣可依實際上的需求而進行設定與調整,因此,本實施例對該證件適格條件不做特別限制。In one embodiment, the certificate eligibility condition, for example, means that the certificate presented by the image portion of the certificate belongs to the specific certificate. Alternatively, in another embodiment, the certificate eligibility condition may also mean that the certificate presented by the image portion of the certificate has a face image and/or specific identification information (such as ID number, date of birth, etc.). The actual form of the certificate eligibility condition can be set and adjusted according to actual needs, so this embodiment does not impose any special restrictions on the certificate eligibility condition.

若該處理單元11在步驟S6中的判斷結果為否,流程進行至步驟S7。若該處理單元11的判斷結果為是,流程則進行至步驟S8。If the determination result of the processing unit 11 in step S6 is no, the process proceeds to step S7. If the determination result of the processing unit 11 is yes, the process proceeds to step S8.

在接續於步驟S6之後的步驟S7中,一旦該處理單元11判定該待驗證影像資料並未呈現出符合該證件適格條件的證件,該處理單元11判定對該待驗證影像資料的驗證失敗。在此情況下,該處理單元11拒絕該服務請求,且產生並傳送一證件驗證失敗通知至該客戶端電子裝置10,以使該客戶端電子裝置10顯示該證件驗證失敗通知供該使用者瀏覽。可選地,該處理單元11還根據該證件適格條件並未符合的判斷結果產生一警示驗證紀錄,並將該警示驗證紀錄加入至該警示資料庫DB2中。至此,本實施例的流程結束。In step S7 following step S6, once the processing unit 11 determines that the image data to be verified does not present a certificate that meets the certificate qualification conditions, the processing unit 11 determines that the verification of the image data to be verified has failed. In this case, the processing unit 11 rejects the service request, and generates and transmits a certificate verification failure notification to the client electronic device 10, so that the client electronic device 10 displays the certificate verification failure notification for the user to browse. Optionally, the processing unit 11 also generates a warning verification record based on the judgment result that the certificate qualification conditions are not met, and adds the warning verification record to the warning database DB2. At this point, the process of this embodiment ends.

在接續於步驟S4及步驟S6之後的步驟S8中,一旦該處理單元11在步驟S4中判定該辨識結果為該肯定性辨識結果,且也在步驟S6中判定該待驗證影像資料中的證件影像部分有呈現出符合該證件適格條件的證件,該處理單元11根據該臉部特徵比對規則R1,判斷該第一人臉影像部分中之人臉的臉部特徵,是否與該證件影像部分中之該第二人臉影像部分的人臉的臉部特徵匹配。應注意的是,此處所述的「匹配」,指的是該第一人臉影像部分中的人臉與該第二人臉影像部分中的人臉實質上為同一人的臉部。In step S8 following step S4 and step S6, once the processing unit 11 determines in step S4 that the recognition result is the positive recognition result, and also determines in step S6 that the ID image portion in the image data to be verified presents an ID that meets the ID qualification condition, the processing unit 11 determines, based on the facial feature matching rule R1, whether the facial features of the face in the first facial image portion match the facial features of the face in the second facial image portion in the ID image portion. It should be noted that the "match" mentioned here means that the face in the first facial image portion and the face in the second facial image portion are substantially the same person's face.

若該處理單元11在步驟S8中的判斷結果為否,流程進行至步驟S9。若該處理單元11的判斷結果為是,流程則進行至步驟S10。If the determination result of the processing unit 11 in step S8 is no, the process proceeds to step S9. If the determination result of the processing unit 11 is yes, the process proceeds to step S10.

在接續於步驟S8之後的步驟S9中,一旦該處理單元11判定該第一人臉影像部分與該第二人臉影像部分不匹配(亦即判定該第一人臉影像部分中的人臉與該第二人臉影像部分中的人臉並非同一人的臉部),該處理單元11判定對該待驗證影像資料的驗證失敗。在此情況下,該處理單元11拒絕該服務請求,且產生並傳送一臉部比對失敗通知至該客戶端電子裝置10,以使該客戶端電子裝置10顯示該臉部比對失敗通知供該使用者瀏覽。可選地,該處理單元11還根據該第一人臉影像部分與該第二人臉影像部分不匹配的判斷結果產生一警示驗證紀錄,並將該警示驗證紀錄加入至該警示資料庫DB2中。至此,本實施例的流程結束。In step S9 following step S8, once the processing unit 11 determines that the first face image portion does not match the second face image portion (i.e., determines that the face in the first face image portion and the face in the second face image portion are not the same person), the processing unit 11 determines that the verification of the image data to be verified has failed. In this case, the processing unit 11 rejects the service request, and generates and transmits a facial matching failure notification to the client electronic device 10, so that the client electronic device 10 displays the facial matching failure notification for the user to browse. Optionally, the processing unit 11 also generates a warning verification record according to the judgment result that the first face image part does not match the second face image part, and adds the warning verification record to the warning database DB2. At this point, the process of this embodiment ends.

在接續於步驟S8之後的步驟S10中,一旦該處理單元11判定該第一人臉影像部分與該第二人臉影像部分匹配(即判定該第一人臉影像部分中的人臉與該第二人臉影像部分中的人臉確實為同一人),該處理單元11將該第一人臉影像部分及該第二人臉影像部分的其中一者作為一待查驗影像資料,並判斷該警示資料庫DB2中是否存在任何一筆與該待查驗影像資料匹配的警示驗證紀錄。在本實施例中,該處理單元11是將該第一人臉影像部分作為該待查驗影像資料,但並不以此為限。In step S10 following step S8, once the processing unit 11 determines that the first face image portion matches the second face image portion (i.e., determines that the face in the first face image portion and the face in the second face image portion are indeed the same person), the processing unit 11 uses one of the first face image portion and the second face image portion as image data to be checked, and determines whether there is any warning verification record matching the image data to be checked in the warning database DB2. In this embodiment, the processing unit 11 uses the first face image portion as the image data to be checked, but is not limited thereto.

若該處理單元11在步驟S10中的判斷結果為是,流程進行至步驟S11。若該處理單元11的判斷結果為否,流程則進行至步驟S12。If the determination result of the processing unit 11 in step S10 is yes, the process proceeds to step S11. If the determination result of the processing unit 11 is no, the process proceeds to step S12.

在接續於步驟S10之後的步驟S11中,一旦該處理單元11判定該警示資料庫DB2中存在任一筆與該待查驗影像資料匹配的警示驗證紀錄,表示該使用者可能曾經嘗試利用該線上註冊服務但未能成功,或是該使用者的身分可能曾遭冒用。在此情況下,該處理單元11不准予該服務請求,且產生並傳送一對應於該服務請求的人工審核通知至該服務端電子裝置20,以提示業務人員有一項服務請求須以人工審核的方式進行後續處理。In step S11 following step S10, once the processing unit 11 determines that there is any warning verification record matching the image data to be checked in the warning database DB2, it means that the user may have tried to use the online registration service but failed, or the user's identity may have been impersonated. In this case, the processing unit 11 does not approve the service request, and generates and transmits a manual review notification corresponding to the service request to the service-end electronic device 20 to remind the business personnel that there is a service request that needs to be manually reviewed for subsequent processing.

在接續於步驟S10之後的步驟S12中,一旦該處理單元11判定該警示資料庫DB2中並不存在任何一筆與該待查驗影像資料匹配的警示驗證紀錄,該處理單元11判定對該待驗證影像資料的驗證程供而准予該服務請求,並執行一對應於該服務請求的服務程序。在本實施例中,該服務程序是一個用來實現該線上註冊服務的註冊服務程序,而且,該處理單元11執行該服務程序的方式,例如包含將該使用者所提供的註冊資料(例如該證件影像部分中所呈現出的資料)加入至該註冊資料庫DB1。至此,本實施例的流程結束。In step S12 following step S10, once the processing unit 11 determines that there is no warning verification record matching the image data to be checked in the warning database DB2, the processing unit 11 determines the verification process for the image data to be verified and approves the service request, and executes a service program corresponding to the service request. In this embodiment, the service program is a registration service program for implementing the online registration service, and the processing unit 11 executes the service program in a manner that includes, for example, adding the registration data provided by the user (such as the data presented in the image portion of the ID card) to the registration database DB1. At this point, the process of this embodiment ends.

總結來說,在本實施例中,該處理單元11是在判定該人臉影像驗證模型M所輸出的該辨識結果為該肯定性辨識結果、判定該待驗證影像資料的證件影像部分有呈現出符合該證件適格條件的證件,且還判定該第一人臉影像部分與該第二人臉影像部分相互匹配的情況下,才會准予該服務請求並執行該服務程序。In summary, in the present embodiment, the processing unit 11 will approve the service request and execute the service procedure only when it determines that the recognition result output by the facial image verification model M is the affirmative recognition result, that the ID card image portion of the image data to be verified presents an ID card that meets the ID card eligibility conditions, and that the first facial image portion matches the second facial image portion.

以上即為本實施例之服務系統1如何實施該臉部影像驗證方法的示例說明。The above is an example of how the service system 1 of this embodiment implements the facial image verification method.

補充說明的是,在另一種實施例中,該待驗證影像資料也可以是單一個影像檔,而且,在正常的應用情況下,該影像檔是該使用者手持該特定證件自拍的照片。換言之,在該另一種實施例中,該第一人臉影像部分及該證件影像部分也可以是來自於同一張照片,而並不以本實施例為限。It is to be noted that in another embodiment, the image data to be verified may also be a single image file, and in normal application, the image file is a selfie of the user holding the specific ID. In other words, in the other embodiment, the first face image portion and the ID image portion may also be from the same photo, and this is not limited to the present embodiment.

應當注意,本實施例的步驟S1至步驟S12及圖2的流程圖僅是用於示例說明本新型臉部影像驗證方法的其中一種可實施方式。應當理解,即便將步驟S1至步驟S12進行合併、拆分或順序調整,若合併、拆分或順序調整之後的流程與本實施例相比是以實質相同的方式達成實質相同的功效,便仍屬於本新型臉部影像驗證方法的可實施態樣,因此,本實施例的步驟S1至步驟S12及圖2的流程圖並非用於限制本新型的可實施範圍。It should be noted that steps S1 to S12 of the present embodiment and the flowchart of FIG2 are only used to illustrate one of the practicable modes of the present novel facial image verification method. It should be understood that even if steps S1 to S12 are merged, split or adjusted in sequence, if the process after merging, splitting or adjusting in sequence achieves substantially the same effect as the present embodiment in substantially the same manner, it still belongs to the practicable mode of the present novel facial image verification method. Therefore, steps S1 to S12 of the present embodiment and the flowchart of FIG2 are not used to limit the practicable scope of the present novel.

綜上所述,藉由實施該臉部影像驗證方法,該服務系統1的該處理單元11會要求使用者提供自拍的照片及證件的照片來進行驗證,而且,在該處理單元11獲得包含該第一人臉影像部分及該第二人臉影像部分的該待驗證影像資料之後,該處理單元11能利用該人臉影像驗證模型M判斷該第一人臉影像部分中的人臉是否屬於活體、利用該證件檢核規則R2判斷從該待驗證影像資料中呈現的證件是否符合該證件適格條件,以及判斷該第一人臉影像部分中的臉部特徵是否與該第二人臉影像部分中的臉部特徵匹配,並且在上述的判斷結果皆為肯定的情況下,才准予該服務請求並執行該服務程序。尤其,當該人臉影像驗證模型M判定該第一人臉影像中的人臉部分「非」為活體或辨識信心分數不足時,該人臉影像驗證模型M能輸出以自然語言形式呈現的說明文字訊息以供使用者或業務人員參考,以利釐清活體驗證未能成功的原因。如此一來,本實施例不但能確認使用者提供的自拍照並非偽冒的非活體照片,也能確認該使用者確實是以其本人的資料來請求服務,更能在偵測到非活體照片時提供豐富的語意回饋。藉此,本實施例提供了相較於現有技術更加安全、可靠的驗證機制,而能有效避免有心人士隨意冒用他人的資料來請求服務,故確實能達成本新型之目的。In summary, by implementing the facial image verification method, the processing unit 11 of the service system 1 will require the user to provide a selfie and a photo of the ID for verification, and after the processing unit 11 obtains the image data to be verified including the first facial image portion and the second facial image portion, the processing unit 11 can use the facial image verification model M to determine whether the face in the first facial image portion is a living body, use the ID verification rule R2 to determine whether the ID presented in the image data to be verified meets the ID qualification conditions, and determine whether the facial features in the first facial image portion match the facial features in the second facial image portion, and only when the above judgment results are all affirmative, will the service request be approved and the service program be executed. In particular, when the facial image verification model M determines that the facial part in the first facial image is "not" alive or the recognition confidence score is insufficient, the facial image verification model M can output an explanatory text message in natural language for the user or business personnel to refer to, so as to clarify the reason why the liveness verification failed. In this way, this embodiment can not only confirm that the selfie provided by the user is not a fake non-live photo, but also confirm that the user is indeed requesting services with his own information, and can provide rich semantic feedback when a non-live photo is detected. In this way, this embodiment provides a more secure and reliable verification mechanism compared to the existing technology, and can effectively prevent people with bad intentions from arbitrarily using other people's information to request services, so it can indeed achieve the purpose of this novel technology.

惟以上所述者,僅為本新型之實施例而已,當不能以此限定本新型實施之範圍,凡是依本新型申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本新型專利涵蓋之範圍內。However, the above is only an example of the implementation of the present invention, and it cannot be used to limit the scope of the implementation of the present invention. All simple equivalent changes and modifications made according to the scope of the patent application of the present invention and the content of the patent specification are still within the scope of the present patent.

1:服務系統 11:處理單元 12:儲存單元 M:人臉影像驗證模型 R1:臉部特徵比對規則 R2:證件檢核規則 DB1:註冊資料庫 DB2:警示資料庫 10:客戶端電子裝置 20:服務端電子裝置 S1~S12:步驟1: Service system 11: Processing unit 12: Storage unit M: Face image verification model R1: Facial feature matching rules R2: Document verification rules DB1: Registration database DB2: Alert database 10: Client electronic device 20: Server electronic device S1~S12: Steps

本新型之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是一方塊示意圖,示例性地表示本新型服務系統的一實施例,以及適合與該實施例配合應用的一客戶端電子裝置及一服務端電子裝置;及 圖2是一流程圖,用於示例性地說明該實施例如何實施一臉部影像驗證方法。 Other features and functions of the present invention will be clearly presented in the implementation method of the reference figures, wherein: FIG. 1 is a block diagram, which exemplarily represents an implementation example of the present service system, and a client electronic device and a server electronic device suitable for use with the implementation example; and FIG. 2 is a flow chart, which exemplarily illustrates how the implementation example implements a facial image verification method.

1:服務系統 1: Service system

11:處理單元 11: Processing unit

12:儲存單元 12: Storage unit

M:人臉影像驗證模型 M: Face image verification model

R1:臉部特徵比對規則 R1: Facial feature matching rules

R2:證件檢核規則 R2: Certificate verification rules

DB1:註冊資料庫 DB1: Register database

DB2:警示資料庫 DB2: Alert database

10:客戶端電子裝置 10: Client electronic devices

20:服務端電子裝置 20: Server-side electronic devices

Claims (5)

一種服務系統,包含: 一處理單元;及 一儲存單元,電連接該處理單元,且儲存有一利用機器學習技術預先訓練的人臉影像驗證模型,其中,該人臉影像驗證模型是以一視覺語言模型實現,且被配置為辨識被輸入之影像所呈現出的人臉是否屬於活體,以及在辨識結果為否時產生並輸出以自然語言呈現且與辨識結果相關的說明文字訊息; 其中,該處理單元用於: 在獲得一對應於一服務請求的待驗證影像資料之後,將該待驗證影像資料所包括的一第一人臉影像部分輸入該人臉影像驗證模型,以獲得一由該人臉影像驗證模型根據該第一人臉影像部分所產生並輸出的辨識結果; 判斷該辨識結果為一表示驗證成功的肯定性辨識結果,還是一表示驗證失敗且包含一文字訊息資料的否定性判斷結果; 在判定該辨識結果為該肯定性辨識結果的情況下准予該服務請求,並執行一對應於該服務請求的服務程序;及 在判定該辨識結果為該否定性判斷結果的情況下拒絕該服務請求,並將該否定性判斷結果所包含的該文字訊息資料訊息輸出。 A service system, comprising: a processing unit; and a storage unit, electrically connected to the processing unit, and storing a face image verification model pre-trained using machine learning technology, wherein the face image verification model is implemented as a visual language model and is configured to identify whether the face presented by the input image belongs to a living body, and when the recognition result is negative, generate and output an explanatory text message presented in natural language and related to the recognition result; wherein the processing unit is used to: After obtaining an image data to be verified corresponding to a service request, a first facial image portion included in the image data to be verified is input into the facial image verification model to obtain a recognition result generated and output by the facial image verification model based on the first facial image portion; Determine whether the recognition result is a positive recognition result indicating successful verification or a negative judgment result indicating failed verification and including a text message data; If the recognition result is determined to be the positive recognition result, the service request is granted, and a service procedure corresponding to the service request is executed; and If the identification result is determined to be a negative judgment result, the service request is rejected, and the text message data message included in the negative judgment result is output. 如請求項1所述的服務系統,該處理單元適用於與一客戶端電子裝置電連接;其中,該處理單元是從該客戶端電子裝置接收該待驗證影像資料,並且,在該文字訊息資料包括一指示出建議調整拍攝方式的提示說明文字訊息的情況下,該處理單元輸出該文字訊息資料的方式,包含將該提示說明文字訊息傳送至該客戶端電子裝置,以使該提示說明文字訊息能被該客戶端電子裝置所顯示。In the service system as described in claim 1, the processing unit is adapted to be electrically connected to a client electronic device; wherein the processing unit receives the image data to be verified from the client electronic device, and, when the text message data includes a prompt instruction text message indicating a recommended adjustment of the shooting method, the processing unit outputs the text message data in a manner that includes transmitting the prompt instruction text message to the client electronic device so that the prompt instruction text message can be displayed by the client electronic device. 如請求項1所述的服務系統,其中: 該儲存單元還儲存有一警示資料庫;及 在該文字訊息資料包括一指示出特定之影像偽冒類型的警示說明文字訊息的情況下,該處理單元輸出該文字訊息資料的方式,包含產生一包含該警示說明文字訊息及一警示特徵資料的警示驗證紀錄,並將該警示驗證紀錄提供至該儲存單元,以使該警示驗證紀錄被加入該警示資料庫中,其中,該警示特徵資料是由該處理單元根據該待驗證影像資料所產生。 A service system as described in claim 1, wherein: The storage unit further stores a warning database; and When the text message data includes a warning description text message indicating a specific type of image counterfeiting, the processing unit outputs the text message data in a manner that includes generating a warning verification record including the warning description text message and a warning feature data, and providing the warning verification record to the storage unit so that the warning verification record is added to the warning database, wherein the warning feature data is generated by the processing unit based on the image data to be verified. 如請求項3所述的服務系統,該處理單元適用於與一服務端電子裝置電連接;其中: 該儲存單元還儲存有一適合被應用於人臉影像辨識的臉部特徵比對規則;及 該處理單元在判定該辨識結果為該肯定性辨識結果的情況下准予該服務請求並執行該服務程序的方式包含: 在判斷出該辨識結果為該肯定性辨識結果的情況下,根據該臉部特徵比對規則判斷該第一人臉影像部分是否與該待驗證影像資料所包括的一第二人臉影像部分匹配,其中,該第二人臉影像部分呈現出一證件上的臉部圖像; 在判定該第一人臉影像部分與該第二人臉影像部分匹配時,將該第一人臉影像部分及該第二人臉影像部分的其中一者作為一待查驗影像資料,並判斷該警示資料庫中是否存在任何一筆與該待查驗影像資料匹配的警示驗證紀錄; 在判定該警示資料庫中不存在任何與該待查驗影像資料匹配的警示驗證紀錄時,准予該服務請求並執行該服務程序;及 在判定該警示資料庫中存在一筆與該待查驗影像資料匹配的警示驗證紀錄時,不准予該服務請求,且產生並傳送一對應於該服務請求的人工審核通知至該服務端電子裝置。 As described in claim 3, the processing unit is suitable for being electrically connected to a service-end electronic device; wherein: The storage unit also stores a facial feature matching rule suitable for being applied to facial image recognition; and The processing unit grants the service request and executes the service program in the case where the recognition result is determined to be the positive recognition result, including: In the case where the recognition result is determined to be the positive recognition result, judging whether the first facial image portion matches a second facial image portion included in the image data to be verified according to the facial feature matching rule, wherein the second facial image portion presents a facial image on a certificate; When it is determined that the first facial image portion matches the second facial image portion, one of the first facial image portion and the second facial image portion is used as an image data to be checked, and it is determined whether there is any warning verification record matching the image data to be checked in the warning database; When it is determined that there is no warning verification record matching the image data to be checked in the warning database, the service request is approved and the service procedure is executed; and When it is determined that there is a warning verification record matching the image data to be checked in the warning database, the service request is not approved, and a manual review notification corresponding to the service request is generated and transmitted to the service end electronic device. 如請求項1所述的服務系統,其中: 該儲存單元還儲存有一適合被應用於證件影像辨識且指示出一證件適格條件的證件檢核規則;及 該處理單元還用於在獲得該待驗證影像資料之後,根據該證件檢核規則判斷該待驗證影像資料是否呈現出一符合該證件適格條件的證件,並且,該處理單元是在判定該待驗證影像資料有呈現出符合該證件適格條件的證件,且還判定該辨識結果為該肯定性辨識結果的情況下,才准予該服務請求並執行該服務程序。 A service system as described in claim 1, wherein: The storage unit also stores a certificate verification rule suitable for being applied to certificate image recognition and indicating a certificate eligibility condition; and The processing unit is also used to determine whether the image data to be verified presents a certificate that meets the certificate eligibility condition according to the certificate verification rule after obtaining the image data to be verified, and the processing unit only approves the service request and executes the service procedure when it is determined that the image data to be verified presents a certificate that meets the certificate eligibility condition and also determines that the recognition result is the positive recognition result.
TW113202156U 2024-03-04 2024-03-04 Service System TWM658166U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW113202156U TWM658166U (en) 2024-03-04 2024-03-04 Service System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW113202156U TWM658166U (en) 2024-03-04 2024-03-04 Service System

Publications (1)

Publication Number Publication Date
TWM658166U true TWM658166U (en) 2024-07-21

Family

ID=92930493

Family Applications (1)

Application Number Title Priority Date Filing Date
TW113202156U TWM658166U (en) 2024-03-04 2024-03-04 Service System

Country Status (1)

Country Link
TW (1) TWM658166U (en)

Similar Documents

Publication Publication Date Title
US20240403470A1 (en) Systems and Methods for Sharing Verified Identity Documents
US11023107B2 (en) Virtual teller systems and methods
TWI246663B (en) Method and system for detecting and eliminating fraud
CN112424791B (en) Information processing device, information processing method, and information processing program
CN110322317B (en) Transaction data processing method and device, electronic equipment and medium
KR102447899B1 (en) System and method for non-face-to-face identification kyc solution
WO2023243623A1 (en) Avatar authenticity registration method, avatar authenticity registration system, expression data management system, and expression data management method
US11430283B2 (en) Methods and systems for delivering a document
US12158933B2 (en) Apparatus and methods for content-based biometric authentication
WO2019209291A1 (en) Systems and methods for providing a universal decentralized solution for verification of users with cross-verification features
JP2023182552A (en) Avatar authenticity registration method, avatar authenticity registration system, expression data management system, and expression data management method
TWI901026B (en) Service system and facial image verification method
TWM658166U (en) Service System
US11488416B2 (en) Certificate recognition system, certificate recognition method, and program of verifying certificate
JP7575521B2 (en) Information processing system, information processing method, and program
JP7492358B2 (en) Financial information processing device
JP2008040607A (en) Person introduction server, person introduction system, and method and program therefor
JP7764984B1 (en) Authentication terminal, system, authentication terminal control method and program
US12475206B2 (en) Identity verification with reusable profiles
TWI774977B (en) Method for online identity confirmation and online financial service system
CN109544325A (en) Switching method, device and the computer equipment of face label system based on data processing
Yeh et al. A Smart Reminder for Social Purposes Using a Deep Learning‐Based Face Recognition Technique
US20250047664A1 (en) System, authentication terminal, control method of authentication terminal, and storage medium
JP2025159477A (en) Server device, system, server device control method and program
WO2024254643A1 (en) Generation and sharing of secure data records for point-in-time verification of identity and location, including for enabling robust event recordal, secure execution of documents via external user verification process which generates unique check-in event data and/or identity exchange via external user verification process which generates unique check-in event data