[go: up one dir, main page]

TWI910791B - A scanning electron microscope for examining measurement models and a method for correcting measurement models. - Google Patents

A scanning electron microscope for examining measurement models and a method for correcting measurement models.

Info

Publication number
TWI910791B
TWI910791B TW113132338A TW113132338A TWI910791B TW I910791 B TWI910791 B TW I910791B TW 113132338 A TW113132338 A TW 113132338A TW 113132338 A TW113132338 A TW 113132338A TW I910791 B TWI910791 B TW I910791B
Authority
TW
Taiwan
Prior art keywords
aforementioned
range
measurement model
inspection
electron microscope
Prior art date
Application number
TW113132338A
Other languages
Chinese (zh)
Other versions
TW202514700A (en
Inventor
笠井啓晃
由香
鈴木誠
Original Assignee
日商日立全球先端科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2023/034173 external-priority patent/WO2025062546A1/en
Application filed by 日商日立全球先端科技股份有限公司 filed Critical 日商日立全球先端科技股份有限公司
Publication of TW202514700A publication Critical patent/TW202514700A/en
Application granted granted Critical
Publication of TWI910791B publication Critical patent/TWI910791B/en

Links

Abstract

提供一種具有檢查計測模型的掃描型電子顯微鏡及檢查計測模型之修正方法,可令使用者認知到檢查或計測結果的可靠性的降低,同時可有效率地進行調整。具有檢查計測模型之掃描型電子顯微鏡,具備:特徵量解析部,其輸入所檢查或計測的樣品的電子顯微鏡影像或波形並求出第1特徵量,同時輸入校正用樣本的電子顯微鏡像或波形並求出第2特徵量;學習部,其基於前述第2特徵量,利用學習而生成檢查計測模型;以及校正部,其基於前述第1特徵量與前述檢查計測模型,將前述第1特徵量與既定的校正範圍進行比較,在前述第1特徵量脫離前述校正範圍的情況下,發出警報。A scanning electron microscope with an inspection measurement model and a method for correcting the inspection measurement model are provided, which allows users to recognize the decrease in the reliability of the inspection or measurement results and make adjustments efficiently. A scanning electron microscope with an inspection and measurement model includes: a feature quantity analysis unit that takes as input an electron microscope image or waveform of the sample to be inspected or measured and calculates a first feature quantity, and simultaneously takes as input an electron microscope image or waveform of a calibration sample and calculates a second feature quantity; a learning unit that generates an inspection and measurement model based on the aforementioned second feature quantity; and a calibration unit that compares the aforementioned first feature quantity with a predetermined calibration range based on the aforementioned first feature quantity and the aforementioned inspection and measurement model, and issues an alarm when the aforementioned first feature quantity deviates from the aforementioned calibration range.

Description

具有檢查計測模型之掃描型電子顯微鏡及檢查計測模型之修正方法A scanning electron microscope for examining measurement models and a method for correcting measurement models.

本發明,有關掃描型電子顯微鏡,尤其有關具有檢查計測模型的掃描型電子顯微鏡及檢查計測模型之修正方法。This invention relates to scanning electron microscopes, and more particularly to scanning electron microscopes with inspection measurement models and methods for correcting inspection measurement models.

本技術領域的先前技術方面,已知專利文獻1。於專利文獻1,已記載一種影像處理系統,將帶電粒子束裝置所具有的檢測器的檢測可能範圍預先儲存於記憶裝置,使用該檢測可能範圍而生成3維形狀圖案的模擬影像,預先學習該模擬影像與3維形狀圖案之間的關係。 [先前技術文獻] [專利文獻]Prior art in this field is known in Patent 1. Patent 1 describes an image processing system that pre-stores the detection range of a detector in a charged particle beam device in a memory device, uses this detection range to generate a simulated image of a 3D shape pattern, and pre-learns the relationship between the simulated image and the 3D shape pattern. [Prior Art Documents] [Patent Documents]

[專利文獻1] 日本特開2022-29505號公報[Patent Document 1] Japanese Patent Application Publication No. 2022-29505

[發明所欲解決之問題]   於專利文獻1,已有記載關於推定3維形狀的影像處理,已記載使用3維形狀為已知的校正圖案的影像而反映於3維形狀的輸出。然而,在專利文獻1,存在以下情況:無法檢測出作為計測對象的實際樣本的特徵是否脫離了校正範圍,在無法進行正確的校正之下,在3維形狀的輸出方面產生誤差。[Problem to be Solved by the Invention] Patent Document 1 describes image processing for presumed 3D shapes, and describes the use of images with known correction patterns of 3D shapes as output in 3D shapes. However, Patent Document 1 has the following drawback: it cannot detect whether the features of the actual sample being measured have deviated from the correction range, resulting in errors in the output of 3D shapes due to the inability to perform correct correction.

於是,本發明,提供一種具有檢查計測模型的掃描型電子顯微鏡及檢查計測模型之修正方法,可令使用者認知到檢查或計測結果的可靠性的降低,同時可有效率地進行調整。 [解決問題之技術手段]Therefore, this invention provides a scanning electron microscope for inspecting measurement models and a method for correcting these models, allowing users to recognize the decrease in the reliability of inspection or measurement results and to make efficient adjustments. [Technical Means for Solving the Problem]

為了解決上述課題,本發明所關聯的具有檢查計測模型的掃描型電子顯微鏡,具備:特徵量解析部,其輸入所檢查或計測的樣品的電子顯微鏡影像或波形並求出第1特徵量,同時輸入校正用樣本的電子顯微鏡像或波形並求出第2特徵量;學習部,其基於前述第2特徵量,利用學習而生成檢查計測模型;以及校正部,其基於前述第1特徵量與前述檢查計測模型,將前述第1特徵量與既定的校正範圍進行比較,在前述第1特徵量脫離前述校正範圍的情況下,發出警報。To solve the above problems, the scanning electron microscope with an inspection and measurement model associated with the present invention comprises: a feature quantity analysis unit, which inputs an electron microscope image or waveform of the sample to be inspected or measured and calculates a first feature quantity, and simultaneously inputs an electron microscope image or waveform of a calibration sample and calculates a second feature quantity; a learning unit, which generates an inspection and measurement model based on the aforementioned second feature quantity; and a calibration unit, which compares the aforementioned first feature quantity with a predetermined calibration range based on the aforementioned first feature quantity and the aforementioned inspection and measurement model, and issues an alarm when the aforementioned first feature quantity deviates from the aforementioned calibration range.

此外,本發明所關聯的檢查計測模型的修正方法,具有以下步驟:特徵量解析部,輸入所檢查或計測的樣品的電子顯微鏡影像或波形並求出第1特徵量,同時輸入校正用樣本的電子顯微鏡像或波形並求出第2特徵量;學習部,基於前述第2特徵量,利用學習而生成檢查計測模型;以及校正部,以前述檢查計測模型的輸出一致於前述第2特徵量的方式進行校正,修正前述檢查計測模型。 [發明功效]Furthermore, the method for correcting the inspection and measurement model associated with this invention includes the following steps: a feature quantity analysis unit, which inputs an electron microscope image or waveform of the sample to be inspected or measured and calculates a first feature quantity, and simultaneously inputs an electron microscope image or waveform of a calibration sample and calculates a second feature quantity; a learning unit, which generates an inspection and measurement model based on the aforementioned second feature quantity; and a correction unit, which corrects the aforementioned inspection and measurement model by ensuring that the output of the aforementioned inspection and measurement model is consistent with the aforementioned second feature quantity. [Invention Benefits]

依本發明時,可提供一種具有檢查計測模型的掃描型電子顯微鏡及檢查計測模型之修正方法,可令使用者認知到檢查或計測結果的可靠性的降低,同時可有效率地進行調整。   上述以外的課題、構成及功效,利用以下的實施方式的說明而闡明。According to the present invention, a scanning electron microscope with an inspection measurement model and a method for correcting the inspection measurement model can be provided, allowing the user to recognize the decrease in the reliability of the inspection or measurement results and to make adjustments efficiently. Other problems, structures, and effects not mentioned above will be explained by the following description of embodiments.

針對實施方式,參照圖式進行說明。另外,在以下說明的實施方式不限定於申請專利範圍的發明,此外在實施方式之中所說明的諸要素及其組合的全部不見得為發明的解決手段所必須。   以下,使用圖式針對本發明的實施例進行說明。 [實施例1]The embodiments are described with reference to the drawings. Furthermore, the embodiments described below are not limited to the invention within the scope of the patent application, and not all elements and combinations described in the embodiments are necessarily necessary for the solutions of the invention. The following describes embodiments of the invention using drawings. [Implement 1]

圖1,為本發明的實施例1所關聯的具有檢查計測模型的掃描型電子顯微鏡的整體示意構成圖。如示於圖1,具有檢查計測模型的掃描型電子顯微鏡1,具備掃描型電子顯微鏡100、控制裝置120、電源裝置121、電源裝置122及計算機200。Figure 1 is an overall schematic diagram of a scanning electron microscope with an inspection measurement model associated with Embodiment 1 of the present invention. As shown in Figure 1, the scanning electron microscope 1 with an inspection measurement model includes a scanning electron microscope 100, a control device 120, a power supply device 121, a power supply device 122, and a computer 200.

掃描型電子顯微鏡100,對樣品108照射電子束(電子束)103。掃描型電子顯微鏡100,輸出基於電子束103的照射而獲得的檢測訊號。具有檢查計測模型的掃描型電子顯微鏡1,具備為了基於來自掃描型電子顯微鏡100的檢測訊號而形成訊號波形、影像所需的構成要素。首先,參照圖1,具體地論述掃描型電子顯微鏡100的一例。A scanning electron microscope 100 irradiates a sample 108 with an electron beam (electron beam) 103. The scanning electron microscope 100 outputs a detection signal obtained based on the irradiation of the electron beam 103. The scanning electron microscope 100, having an inspection measurement model, possesses the necessary components for forming signal waveforms and images based on the detection signal from the scanning electron microscope 100. First, referring to FIG. 1, an example of the scanning electron microscope 100 will be specifically discussed.

從電子源101被利用引出電極102而引出的電子束103,被利用未圖示的加速電極而加速。所加速的電子束103,被利用為聚焦透鏡的一形態的聚焦透鏡104而縮聚。所縮聚的電子束103,利用掃描電極105,將樣品108上一維或二維地進行掃描。電子束103,被利用對在樣品台109內所設置的電極所施加的負電壓(retarding voltage)而減速,同時被利用接物鏡106的透鏡效應而聚焦,照射於樣品108上。An electron beam 103, drawn from an electron source 101 using an extraction electrode 102, is accelerated using an accelerating electrode (not shown). The accelerated electron beam 103 is focused using a focusing lens 104, which functions as a focusing lens. The focused electron beam 103 is then used to scan the sample 108 in one or two dimensions using a scanning electrode 105. The electron beam 103 is decelerated by applying a negative voltage to an electrode located within the sample stage 109, and simultaneously focused using the lens effect of the objective lens 106, illuminating the sample 108.

電子束103,被照射於樣品108時,從所照射之處(照射部位),散射至樣品108的內部,作為如二次電子(Secondary Electron:SE)及背向散射電子(Backscattered Electron:BSE)的電子110而被放出。此所放出的電子110,因基於對樣品108所施加的負電壓(retarding voltage)之加速作用,被加速於電子源101的方向,衝撞於轉換電極112,予以產生二次電子111。從轉換電極112所放出的二次電子111,被利用檢測器113而捕捉,檢測訊號(檢測器113的輸出)因所捕捉的二次電子111的量而產生變化。When the electron beam 103 is irradiated onto the sample 108, it is scattered from the irradiated area into the interior of the sample 108, and emitted as electrons 110, such as secondary electrons (SE) and backscattered electrons (BSE). These emitted electrons 110 are accelerated in the direction of the electron source 101 due to the retarding voltage applied to the sample 108, and collide with the switching electrode 112, generating secondary electrons 111. The secondary electrons 111 emitted from the switching electrode 112 are captured by a detector 113, and the detection signal (output of the detector 113) changes according to the amount of secondary electrons 111 captured.

從檢測器113輸出的檢測訊號,被利用控制裝置120,供應至計算機200。計算機200,具有後述的顯示裝置。於此顯示裝置所顯示的影像的亮度,因檢測訊號而變化。亦即,利用檢測器113而捕捉到的電子的量(電子量),以亮度的方式,在顯示裝置被顯示。   例如,於顯示裝置,在顯示二維影像的情況下,在供應至掃描電極105的偏轉訊號與從檢測器113輸出的檢測訊號之間取得同步,以偏轉訊號進行了掃描的掃描區域中的影像的亮度被顯示於顯示裝置。The detection signal output from detector 113 is supplied to computer 200 via control device 120. Computer 200 has a display device described later. The brightness of the image displayed on this display device varies due to the detection signal. That is, the amount of electrons (electron quantity) captured by detector 113 is displayed on the display device in the form of brightness. For example, in the case of displaying a two-dimensional image, synchronization is achieved between the deflection signal supplied to scanning electrode 105 and the detection signal output from detector 113, and the brightness of the image in the scanned area scanned by the deflection signal is displayed on the display device.

此外,示於圖1的掃描型電子顯微鏡100方面,雖無特別限制,惟具備使電子束103的掃描區域進行移動的未圖示的偏轉器。此偏轉器,用於將存在於不同的位置的相同形狀的圖案的影像等顯示於顯示裝置上。此偏轉器,亦稱為影像位移偏轉器,可在不進行利用使樣品108移動的樣品台(例如,樣品台)109所為的樣品108的移動等之下,進行掃描型電子顯微鏡100的視野(Field of View:FOV)位置的移動。亦可作成為,使影像位移偏轉器與掃描電極105為共通的偏轉器,將影像位移用的訊號與偏轉訊號進行重疊,供應至偏轉器。Furthermore, regarding the scanning electron microscope 100 shown in FIG1, although there are no particular limitations, it is equipped with a deflector (not shown) that moves the scanning area of the electron beam 103. This deflector is used to display images of patterns of the same shape existing at different positions on a display device. This deflector, also called an image shift deflector, can move the field of view (FOV) position of the scanning electron microscope 100 without moving the sample 108 using a sample stage (e.g., sample stage) 109 that moves the sample 108. It is also possible to make the image shift deflector and the scanning electrode 105 common deflector, and to superimpose the image shift signal and the deflection signal to the deflector.

來自掃描型電子顯微鏡100的檢測訊號(影像、亮度分布、亮度等),經由控制裝置120而供應至計算機200。計算機200,基於所供應的檢測訊號,計算和檢查或計測對象的注目形狀的形狀的變化關聯之值,將該計算值輸出1個以上。另外,計算機200,亦可作成為和掃描型電子顯微鏡100一體。Detection signals (images, brightness distribution, brightness, etc.) from the scanning electron microscope 100 are supplied to the computer 200 via the control device 120. The computer 200, based on the supplied detection signals, calculates and outputs at least one value relating to changes in the shape of the object being examined or measured. Alternatively, the computer 200 may be integrated with the scanning electron microscope 100.

控制裝置120,依來自計算機200的指示,對電源裝置121及122進行控制。對電源裝置122進行控制,使得施加於引出電極102及加速電極(未圖示的)的電壓發生變化。同樣地,對電源裝置121進行控制,使得施加於樣品108的電壓(retarding voltage)發生變化。再者,控制裝置120,依來自計算機200的指示,對供應至掃描電極105的偏轉訊號進行控制,對供應至接物鏡106的訊號進行控制。再者,控制裝置120,如上述,將從檢測器113輸出的檢測訊號,往計算機200進行供應。Control device 120 controls power supply devices 121 and 122 according to instructions from computer 200. Controlling power supply device 122 causes a change in the voltage applied to lead-out electrode 102 and accelerating electrode (not shown). Similarly, controlling power supply device 121 causes a change in the retarding voltage applied to sample 108. Furthermore, control device 120, according to instructions from computer 200, controls the deflection signal supplied to scanning electrode 105 and the signal supplied to objective lens 106. Furthermore, as described above, control device 120 supplies the detection signal output from detector 113 to computer 200.

<計算機的構成>   接著,針對構成本實施例所關聯的具有檢查計測模型的掃描型電子顯微鏡1的計算機200,利用圖式進行說明。圖2,為示於圖1的計算機的功能方塊圖。   如示於圖2,構成本實施例所關聯的具有檢查計測模型的掃描型電子顯微鏡1的計算機200,具有疑似SEM波形計算部201、特徵量解析部202、學習部203、校正部204、計測部205、記憶部206、通訊I/F207、輸出入I/F208、記憶媒體223及檢查計測模型230,此等被經由內部匯流排209而相互連接。此外,經由輸出入I/F208,輸出入裝置221及顯示裝置222被連接。此處,疑似SEM波形計算部201、特徵量解析部202、學習部203、校正部204及計測部205構成處理部,例如以未圖示的CPU等處理器、儲存各種程式的ROM、暫時地儲存運算過程的資料的RAM、外部記憶裝置等記憶裝置而實現,同時CPU等處理器讀取並執行儲存於ROM的各種程式,將為執行結果的運算結果經由RAM、外部記憶裝置或網路連接等而儲存於雲端儲存。<Computer Configuration> Next, the computer 200 of the scanning electron microscope 1 with a test measurement model associated with this embodiment will be explained using diagrams. Figure 2 is a functional block diagram of the computer shown in Figure 1. As shown in Figure 2, the computer 200 of the scanning electron microscope 1 with a test measurement model associated with this embodiment includes a suspected SEM waveform calculation unit 201, a feature quantity analysis unit 202, a learning unit 203, a correction unit 204, a measurement unit 205, a memory unit 206, a communication I/O unit 207, an input/output I/O unit 208, a memory medium 223, and a test measurement model 230, which are interconnected via an internal bus 209. Furthermore, the input/output device 221 and the display device 222 are connected via the input/output I/F 208. Here, the processing unit is composed of a suspected SEM waveform calculation unit 201, a feature analysis unit 202, a learning unit 203, a correction unit 204, and a measurement unit 205. It is implemented, for example, by a processor such as a CPU (not shown), a ROM that stores various programs, RAM that temporarily stores data of the calculation process, an external memory device, or other memory devices. At the same time, the processor such as the CPU reads and executes various programs stored in the ROM, and stores the calculation results of the execution results in the cloud via RAM, an external memory device, or a network connection.

輸出入裝置221,例如為滑鼠、鍵盤等,用於令使用者對處理部輸入資料、指示等。顯示裝置222,用於顯示利用處理部而求出的資料等。此外,記憶部206,用於在處理部執行程式之際儲存資料等。處理部,讀取並執行儲存於記憶媒體223的程式。圖3,為針對儲存在示於圖2的記憶媒體中的程式進行繪示的圖。記憶媒體223,將疑似SEM波形計算程式211、特徵量解析程式212、學習程式213、校正程式214及計測程式215,儲存於既定的區域。Input/output device 221, such as a mouse or keyboard, is used to allow the user to input data and give instructions to the processing unit. Display device 222 is used to display data obtained by the processing unit. In addition, memory unit 206 is used to store data while the processing unit is executing programs. The processing unit reads and executes the program stored in memory medium 223. Figure 3 is a diagram illustrating the program stored in the memory medium shown in Figure 2. Memory medium 223 stores the suspected SEM waveform calculation program 211, feature analysis program 212, learning program 213, calibration program 214, and measurement program 215 in a predetermined area.

疑似SEM(Scanning Electron Microscope:掃描電子顯微鏡)波形計算部201,經由內部匯流排209對記憶媒體223進行存取,讀取並執行疑似SEM波形計算程式211。疑似SEM波形計算部201,例如包含圖案形狀與材料的資訊、加速電壓等入射電子的資訊、檢測器的配置、檢測能量濾波器的資訊,以模擬模型為輸入,例如利用蒙地卡羅計算,輸出疑似SEM影像或波形。關於模擬模型的形狀、疑似SEM影像、波形,在圖6的說明時詳述。The suspected SEM (Scanning Electron Microscope) waveform calculation unit 201 accesses the memory medium 223 via the internal bus 209, reads and executes the suspected SEM waveform calculation program 211. The suspected SEM waveform calculation unit 201, for example, includes information such as pattern shape and material, information on incident electrons such as accelerating voltage, detector configuration, and detection energy filter information. Using a simulation model as input, for example, Monte Carlo calculations, it outputs a suspected SEM image or waveform. The shape of the simulation model, the suspected SEM image, and the waveform are described in detail in Figure 6.

特徵量解析部202,經由內部匯流排209,對記憶媒體223進行存取,讀取並執行特徵量解析程式212。特徵量解析部202,以掃描型電子顯微鏡100所攝像的SEM影像、波形,或以疑似SEM波形計算部201所生成的影像波形經由內部匯流排209作為輸入,輸出影像、波形的特徵量fi(i=1~n)。特徵量fi,例如為捕捉了影像的最大亮度、波形的峰值亮度、峰值的寬度等波形的特徵之值。The feature quantity analysis unit 202 accesses the memory medium 223 via the internal bus 209, reads and executes the feature quantity analysis program 212. The feature quantity analysis unit 202 takes the SEM image or waveform captured by the scanning electron microscope 100, or the image waveform generated by the suspected SEM waveform calculation unit 201, as input via the internal bus 209, and outputs the feature quantities fi (i=1 to n) of the image or waveform. The feature quantity fi is, for example, a value capturing the maximum brightness of the image, the peak brightness of the waveform, the width of the peak, and other characteristic values of the waveform.

學習部203,經由內部匯流排209,對記憶媒體223進行存取,讀取並執行學習程式213。學習部203,例如將用於疑似SEM波形計算部201的計算的圖案形狀,以及將針對疑似SEM波形計算部201的輸出以特徵量解析部202進行解析而獲得的特徵量fi,經由內部匯流排209而輸入。並且,以特徵量fi為輸入,利用學習而生成以圖案形狀的尺寸為輸出的檢查計測模型230,例如儲存於記錄媒體(未圖示)。另外,亦可構成為將檢查計測模型230儲存於記憶媒體223。The learning unit 203 accesses the memory medium 223 via the internal bus 209, reads and executes the learning program 213. The learning unit 203 inputs, for example, the pattern shape used for calculation by the suspected SEM waveform calculation unit 201, and the feature quantity fi obtained by analyzing the output of the suspected SEM waveform calculation unit 201 using the feature quantity analysis unit 202, via the internal bus 209. Furthermore, using the feature quantity fi as input, it generates an inspection and measurement model 230 with the size of the pattern shape as output through learning, and stores it, for example, on a recording medium (not shown). Alternatively, the inspection and measurement model 230 can also be configured to be stored in the memory medium 223.

校正部204,經由內部匯流排209,對記憶媒體223進行存取,讀取並執行校正程式214。校正部204,將以特徵量解析部202對以掃描型電子顯微鏡100對圖案形狀的尺寸為已知的校正用樣本進行了攝像的SEM影像、波形進行解析而獲得的特徵量fi,將校正用樣本的圖案形狀的尺寸,以及將檢查計測模型230經由內部匯流排209而輸入。並且,以檢查計測模型230的輸出與校正用樣本的圖案形狀的尺寸成為一致的方式,進行校正,進行檢查計測模型230的修正。校正的詳細,在圖9的說明時詳述。The calibration unit 204 accesses the memory medium 223 via the internal bus 209, reads and executes the calibration program 214. The calibration unit 204 takes the feature quantity fi obtained by the feature quantity analysis unit 202 from analyzing the SEM image and waveform of the calibration sample (with known pattern shape dimensions) captured by the scanning electron microscope 100, and inputs the pattern shape dimensions of the calibration sample and the inspection measurement model 230 via the internal bus 209. Furthermore, it performs calibration to ensure that the output of the inspection measurement model 230 matches the pattern shape dimensions of the calibration sample, thus correcting the inspection measurement model 230. Details of the calibration are described in Figure 9.

計測部205,經由內部匯流排209,對記憶媒體223進行存取,讀取並執行計測程式215。計測部205,以檢查計測模型230,以及以將針對欲檢查或計測的樣品108(圖1)以掃描型電子顯微鏡100進行了攝像的SEM影像、波形以特徵量解析部202進行解析而獲得的特徵量fi,作為輸入,輸出樣品108(圖1)的尺寸。The measurement unit 205 accesses the memory medium 223 via the internal bus 209, reads and executes the measurement program 215. The measurement unit 205 examines the measurement model 230 and takes as input the feature quantity fi obtained by analyzing the SEM image and waveform of the sample 108 (FIG. 1) to be examined or measured by the scanning electron microscope 100 and the feature quantity fi obtained by the feature quantity analysis unit 202. The measurement unit 205 outputs the dimensions of the sample 108 (FIG. 1).

亦可構成為,將此等疑似SEM波形計算部201、特徵量解析部202、學習部203、校正部204及計測部205的整體或其一部分以和計算機200不同的計算機進行實施,將結果輸出至計算機200。Alternatively, the entirety or a portion thereof of the suspected SEM waveform calculation unit 201, feature analysis unit 202, learning unit 203, correction unit 204 and measurement unit 205 may be implemented in a computer different from the computer 200, and the results may be output to the computer 200.

<檢查計測模型作成(學習與校正)的流程>   圖4,為針對利用本實施例所關聯的具有檢查計測模型的掃描型電子顯微鏡所為的檢查計測模型作成(學習與修正)的動作進行繪示的流程圖。   如示於圖4,在步驟S301,經由構成計算機200的輸出入裝置221而輸入模擬模型及尺寸參數。輸出入裝置221,將經由輸出入I/F208及內部匯流排209所輸入的模擬模型及尺寸參數往疑似SEM波形計算部201轉送。   在步驟S302,構成計算機200的疑似SEM波形計算部201,依由輸出入裝置221所轉送的模擬模型及尺寸參數,執行模擬,生成疑似SEM影像。疑似SEM波形計算部201,經由內部匯流排209將所生成的疑似SEM影像往特徵量解析部202轉送。   在步驟S303,構成計算機200的特徵量解析部202,針對由疑似SEM波形計算部201所轉送的疑似SEM影像的特徵量進行解析。特徵量解析部202,經由內部匯流排209將所解析的特徵量fi與尺寸參數往學習部203轉送。   在步驟S304,構成計算機200的學習部203,作成以經由內部匯流排209所轉送的特徵量fi與尺寸參數為組的學習資料。   在步驟S305,學習部203,基於學習資料,利用學習而作成檢查計測模型230。將步驟S302~S305的步驟統稱為學習步驟(S311)。<Flowchart for Creating (Learning and Correcting) the Inspection Measurement Model> Figure 4 is a flowchart illustrating the process of creating (learning and correcting) the inspection measurement model using a scanning electron microscope with an inspection measurement model associated with this embodiment. As shown in Figure 4, in step S301, the simulation model and dimensional parameters are input via the input/output device 221 constituting the computer 200. The input/output device 221 transfers the simulation model and dimensional parameters input via the input/output I/F 208 and the internal bus 209 to the suspected SEM waveform calculation unit 201. In step S302, the suspected SEM waveform calculation unit 201, which constitutes the computer 200, performs a simulation based on the simulation model and dimensional parameters transmitted by the input/output device 221, generating a suspected SEM image. The suspected SEM waveform calculation unit 201 transmits the generated suspected SEM image to the feature quantity analysis unit 202 via the internal bus 209. In step S303, the feature quantity analysis unit 202, which constitutes the computer 200, analyzes the features of the suspected SEM image transmitted by the suspected SEM waveform calculation unit 201. The feature quantity analysis unit 202 transmits the analyzed feature quantity fi and dimensional parameters to the learning unit 203 via the internal bus 209. In step S304, the learning unit 203, which constitutes the computer 200, generates learning data consisting of characteristic quantities fi and dimensional parameters transmitted via the internal busbar 209. In step S305, the learning unit 203, based on the learning data, uses learning to create a test model 230. Steps S302 to S305 are collectively referred to as the learning steps (S311).

一旦在步驟S306取得實際樣本,在S307,以掃描型電子顯微鏡100進行攝像。此處,實際樣本的尺寸為不明的情況下,以截面TEM(Transmission Electron Microscopy:穿透式電子顯微鏡)等其他的裝置而取得尺寸的基準真相(ground truth)值(步驟S308)。實際樣本的尺寸為已知的情況、使用設計資訊作為基準真相值的情況下,步驟S308可省略。   將基於步驟S307的利用掃描型電子顯微鏡100所為的攝像結果,由控制裝置120經由通訊I/F207而輸入。通訊I/F207,經由內部匯流排209將以掃描型電子顯微鏡100所為的攝像結果往特徵量解析部202轉送。特徵量解析部202,經由內部匯流排209將進行了特徵量解析的結果往校正部204轉送。   在步驟S309,校正部204,將由特徵量解析部202所轉送的進行了特徵量解析的結果輸入至檢查計測模型230而獲得的尺寸,以及將尺寸的基準真相值進行比較,從而修正檢查計測模型。之後,校正部204,將修正後的檢查計測模型230與校正範圍330輸出。將步驟S306~S309統稱為校正步驟(步驟S310)。Once the actual sample is obtained in step S306, it is imaged using a scanning electron microscope 100 in step S307. Here, if the size of the actual sample is unknown, a ground truth value for the size is obtained using a cross-sectional TEM (Transmission Electron Microscopy) or other device (step S308). If the size of the actual sample is known and design information is used as the ground truth value, step S308 can be omitted. The imaging results obtained using the scanning electron microscope 100 in step S307 are input by the control device 120 via communication I/F 207. The communication I/F207 transmits the imaging results from the scanning electron microscope 100 to the feature quantity analysis unit 202 via the internal bus 209. The feature quantity analysis unit 202 then transmits the feature quantity analysis results to the calibration unit 204 via the internal bus 209. In step S309, the calibration unit 204 inputs the feature quantity analysis results transmitted from the feature quantity analysis unit 202 to the dimensions obtained from the inspection measurement model 230, and compares these dimensions with the baseline true value to correct the inspection measurement model. Afterwards, the calibration unit 204 outputs the corrected inspection measurement model 230 and the calibration range 330. Steps S306 to S309 are collectively referred to as the calibration steps (step S310).

<計測的流程>   圖5,為針對利用本實施例所關聯的具有檢查計測模型的掃描型電子顯微鏡所為的計測的動作進行繪示的流程圖。利用在檢查計測模型作成的流程所作成的檢查計測模型230與校正範圍330,掃描型電子顯微鏡100進行計測。<Measurement Flowchart> Figure 5 is a flowchart illustrating the measurement process performed using a scanning electron microscope with an inspection measurement model associated with this embodiment. The scanning electron microscope 100 performs measurements using the inspection measurement model 230 and calibration range 330 created in the inspection measurement model creation process.

如示於圖5,在步驟S401,掃描型電子顯微鏡100,對於應檢查或計測的樣品108(圖1)進行攝像。   在步驟S402,特徵量解析部202,經由控制裝置120及通訊I/F207以及內部匯流排209而輸入所攝像的SEM影像、波形,進行特徵量解析。   之後,在步驟S403,利用特徵量解析部202所為的特徵量解析結果,被經由內部匯流排209而轉送至計測部205,計測部205輸出計測值。   之後,在步驟S404,校正部204,把將特徵量解析結果輸入至檢查計測模型230而獲得的計測值或特徵量解析結果,以及把校正範圍330進行比較,判斷是否脫離校正範圍330。另外,關於校正範圍330的詳細,後述之。判斷的結果,脫離校正範圍330的情況下,發出警報(步驟S405),促使調整(步驟S406)。另外,調整(步驟S406),表示使用在發出警報時的應檢查或計測的樣品108(圖1)而再度執行校正步驟(步驟S310)。另一方面,未脫離的情況下,顯示在校正範圍內(步驟S407)。 <樣本、SEM影像、分布、特徵量之例>   接著,針對形成於樣品108的圖案形狀之例,以及針對在將該圖案形狀以掃描型電子顯微鏡100進行了攝像(觀察)之際所獲得的電子顯微鏡影像之例,利用圖式進行說明。   圖6,為針對形成於樣品的圖案形狀與該電子顯微鏡影像進行繪示的圖。此處,圖6的左上圖,示出圖案形狀的斜視圖,圖6的右上圖,示出電子顯微鏡影像。圖6的左下圖,示出在圖6的左上圖所示的圖案形狀的截面圖;圖6的右下圖,為針對在圖6的右上圖所示的電子顯微鏡影像中的亮度分布(依座標變化之亮度的變化)進行繪示的圖。As shown in Figure 5, in step S401, the scanning electron microscope 100 images the sample 108 (Figure 1) to be inspected or measured. In step S402, the feature quantity analysis unit 202 receives the captured SEM image and waveform via the control device 120, communication I/F 207, and internal bus 209, and performs feature quantity analysis. Then, in step S403, the feature quantity analysis results performed by the feature quantity analysis unit 202 are transferred to the measurement unit 205 via the internal bus 209, and the measurement unit 205 outputs the measured value. Next, in step S404, the calibration unit 204 inputs the characteristic quantity analysis results into the measured values or characteristic quantity analysis results obtained by checking the measurement model 230, and compares them with the calibration range 330 to determine whether it has deviated from the calibration range 330. Details regarding the calibration range 330 will be described later. If the determination result indicates that it has deviated from the calibration range 330, an alarm is issued (step S405), prompting adjustment (step S406). Furthermore, the adjustment (step S406) indicates that the calibration steps are repeated using the sample 108 (Fig. 1) that should have been checked or measured when the alarm was issued (step S310). On the other hand, if it is not separated, it is displayed within the correction range (step S407). <Examples of Sample, SEM Image, Distribution, and Feature Quantity> Next, examples of the pattern shape formed on sample 108 and examples of the electron microscope image obtained when the pattern shape is photographed (observed) with a scanning electron microscope 100 will be explained using diagrams. Figure 6 is a diagram illustrating the pattern shape formed on the sample and the electron microscope image. Here, the upper left view of Figure 6 shows an oblique view of the pattern shape, and the upper right view of Figure 6 shows the electron microscope image. The lower left of Figure 6 shows a cross-sectional view of the pattern shape shown in the upper left of Figure 6; the lower right of Figure 6 is a diagram illustrating the brightness distribution (the change in brightness with coordinates) in the electron microscope image shown in the upper right of Figure 6.

此處,樣品108方面,以用於半導體裝置的製造的半導體晶圓為一例進行說明。為半導體晶圓,故樣品108的材料為矽(Si)。將樣品108進行蝕刻,從而形成如示於圖6的左上圖的圖案形狀500。此處,圖案形狀500的圖案方面,以具有內凹形狀的L/S(Line and Space:線及間隔)為一例進行說明。Here, regarding sample 108, a semiconductor wafer used for manufacturing semiconductor devices will be used as an example for explanation. Since it is a semiconductor wafer, the material of sample 108 is silicon (Si). Sample 108 is etched to form a pattern shape 500 as shown in the upper left image of Figure 6. Here, regarding the pattern of pattern shape 500, an L/S (Line and Space) with a concave shape will be used as an example for explanation.

於圖6的左上圖,UP表示圖案形狀500的線(Line)L的主面(第1表面),SD表示線L之側壁(第2表面)。此外,DW,表示和主面UP相向的樣品108的背面。   圖6的右上圖的電子束顯微鏡影像510,為從樣品108的垂直上方利用掃描型電子顯微鏡100所攝像的影像。亦即,從主面UP的垂直上方朝向樣品108將電子束103進行照射從而攝像的影像,為電子顯微鏡影像510。In the upper left of Figure 6, UP represents the main surface (first surface) of the line L of pattern shape 500, and SD represents the sidewall (second surface) of line L. Furthermore, DW represents the back surface of sample 108 facing the main surface UP. The electron beam microscope image 510 in the upper right of Figure 6 is an image captured by a scanning electron microscope 100 from directly above sample 108. That is, it is an image captured by irradiating sample 108 with an electron beam 103 from directly above the main surface UP; this is electron microscope image 510.

圖6的左下圖,示出在示於圖6的左上圖中的圖案形狀500中在截面位置501的圖案形狀500的截面502。此外,圖6的右下圖,示出在示於圖6的右上圖的電子顯微鏡影像510中在截面位置511的亮度分布512。   特徵量fi,例如為在圖案頂部503的圖案頂部亮度513、為圖案邊緣504附近的亮度之峰值亮度514、分布的寬515等。The lower left view of Figure 6 shows the cross-section 502 of the pattern shape 500 at section position 501 in the pattern shape 500 shown in the upper left view of Figure 6. Furthermore, the lower right view of Figure 6 shows the brightness distribution 512 at section position 511 in the electron microscope image 510 shown in the upper right view of Figure 6. Characteristic quantities fi include, for example, the brightness at the top of the pattern 503 513, the peak brightness near the edge of the pattern 504 514, the width of the distribution, etc.

<學習與校正的詳細>   接著,針對學習與校正的詳細進行說明。   圖7,為針對供於作成學習資料用的尺寸參數進行繪示的圖。以尺寸A與尺寸B的比量產時的尺寸變動範圍的想定區域601大的區域,準備尺寸參數集602。此處,圖示準備6×5=30個的尺寸參數集602的一例。雖為了圖示而僅顯示尺寸A與尺寸B,惟有時亦予以變動其他的尺寸而準備更多的尺寸參數集602。此外,有時亦在參數空間中非等間隔地準備尺寸參數集602。此處,將學習資料的尺寸參數的範圍稱為學習範圍603。另外,圖7中的尺寸A與尺寸B,例如尺寸A為圖案的高度,尺寸B為圖案頂部的寬度。然而,不限於此。<Details of Learning and Correction> Next, details of learning and correction will be explained. Figure 7 is a diagram illustrating the dimensional parameters used to create learning data. A set of dimensional parameters 602 is prepared for the region 601 larger than the assumed range of dimensional variation during mass production, representing the ratio of dimension A to dimension B. Here, an example of preparing 6 × 5 = 30 dimensional parameter sets 602 is shown. Although only dimensions A and B are shown for illustration purposes, sometimes other dimensions are varied to prepare more dimensional parameter sets 602. Furthermore, sometimes dimensional parameter sets 602 are prepared at non-equidistant intervals in the parameter space. Here, the range of dimensional parameters in the learning data is referred to as the learning range 603. Additionally, in Figure 7, dimensions A and B represent, for example, the height of the pattern and the width of the top of the pattern. However, this is not the only limitation.

將使用圖7的尺寸參數集602而生成疑似SEM影像並進行了特徵量解析的結果之例,示於圖8。如示於圖8,對應於尺寸參數集602而獲得特徵量資料集702。此時,將在特徵量空間的最外點進行了連接的內部的區域稱為學習範圍703。   學習,例如利用特徵量fi的線形或非線形迴歸而進行。此時,檢查計測模型230,例如如以下的式(1)般,以加權的特徵量的非線形組合而表示。An example of generating a suspected SEM image using the size parameter set 602 of Figure 7 and performing feature analysis is shown in Figure 8. As shown in Figure 8, a feature dataset 702 is obtained corresponding to the size parameter set 602. At this time, the inner region connected at the outermost point of the feature space is called the learning range 703. Learning is performed, for example, using linear or nonlinear regression of the feature fi. At this time, the measurement model 230 is examined, for example, as shown in the following equation (1), represented by a weighted nonlinear combination of features.

  此時,n為特徵量的數,a0,aij為係數(一定值),fi j為特徵量,N為考慮的非線形組合的次數。將n=3、N=1時之例示於以下的式(2),將n=2、N=2時之例示於以下的式(3)。另外,亦可代替式(1)而以更複雜的多項式而表現,亦可使用採用了不以數式而表現的例如深層學習模型的手法。 Here, n is the number of eigenvalues, a <sub>0 </sub> and a <sub>ij </sub> are coefficients (constant values), f <sub> ij </sub> are eigenvalues, and N is the number of nonlinear combinations considered. Examples of n=3 and N=1 are shown in equation (2) below, and examples of n=2 and N=2 are shown in equation (3) below. Alternatively, equation (1) can be replaced with a more complex polynomial, or methods employing non-numerical representations, such as deep learning models, can be used.

  針對校正之例,利用圖9進行說明。為了簡單化,示出式(2)的線形組合的數式下的一例。假設構成計算機200的學習部203(圖2)已將學習資料801進行學習,已獲得檢查計測模型801。使計測了校正用樣本時的推定值p與尺寸A的基準真相值的繪圖為繪圖803。在圖9的左圖,保持直線的傾斜僅修正偏移,獲得修正後的檢查計測模型804。在圖9的右圖,修正直線的傾斜與偏移,獲得修正後的檢查計測模型805。此處,雖示出線形組合的簡單的情況,雖如此般稱為根據校正樣本的實測資料與基準真相值而對檢查計測模型進行修正(有時亦稱為校正),惟除針對檢查計測模型進行修正以外,亦可進行將特徵量fi以任意函數轉換為特報量fi’的修正。一般而言要進行高次的修正,需要更多的校正樣本的計測資料。 For the example of correction, Figure 9 will be used for explanation. For simplicity, an example of the linear combination of equation (2) is shown. Assume that the learning unit 203 (Figure 2) constituting the computer 200 has learned the learning data 801 and obtained the inspection measurement model 801. The plot of the estimated value p and the reference truth value of size A when the calibration sample was measured is plot 803. In the left figure of Figure 9, the tilt of the line is kept and only the offset is corrected to obtain the corrected inspection measurement model 804. In the right figure of Figure 9, the tilt and offset of the line are corrected to obtain the corrected inspection measurement model 805. Here, although a simplified case of linear combination is shown, and although this is generally referred to as correcting the inspection measurement model based on the measured data of the calibration sample and the benchmark truth value (sometimes also called correction), in addition to correcting the inspection measurement model, it is also possible to perform correction by transforming the characteristic quantity fi into the reporting quantity fi' using any function. Generally speaking, to perform higher-order corrections, more measurement data of the calibration sample is required.

針對和校正時同時作成的校正範圍進行說明。圖10,為針對以特徵量空間而表現的校正範圍的一例進行繪示的圖。圖10的左圖,示出以在針對校正樣本進行了計測之際的各特徵量fi的範圍901為校正範圍之例。圖10的右圖,為從針對校正樣本進行了計測之際的複數個特徵量間的存在範圍以複數特徵量的關係性而定義校正範圍902之例。另外,圖10的右圖雖為了圖示而作成為2維圖形,惟亦能以高次的多維空間定義校正範圍902。此外,不僅將校正範圍以特徵量空間進行定義,亦能以尺寸的值進行定義。圖11的左圖,為以校正樣本的基準真相尺寸的最大值與最小值而定義計測值p的校正範圍1001之例。再者,如圖11的右圖,亦能以複數個尺寸(pi與pj)而定義校正範圍1002。另外,圖11的右圖雖為了圖示而作成為2維圖形,惟亦能以高次的多維空間定義校正範圍。The correction range, which is simultaneously established during calibration, will be explained. Figure 10 is a diagram illustrating an example of the correction range expressed in feature space. The left diagram of Figure 10 shows an example of a correction range 901 defined by the range of each feature fi at the time of measurement of the calibration sample. The right diagram of Figure 10 shows an example of a correction range 902 defined by the relationship between the multiple features based on the existence range between the multiple features at the time of measurement of the calibration sample. Furthermore, although the right diagram of Figure 10 is presented as a 2D graph for illustration purposes, the correction range 902 can also be defined in a higher-order multidimensional space. Moreover, the correction range can be defined not only in feature space but also by dimensional values. The left image of Figure 11 shows an example of defining the correction range 1001 of the measured value p using the maximum and minimum values of the reference truth size of the correction sample. Furthermore, as shown in the right image of Figure 11, the correction range 1002 can also be defined using multiple dimensions (pi and pj). Additionally, although the right image of Figure 11 is presented as a 2D graph for illustration purposes, the correction range can also be defined in a higher-order multidimensional space.

<關於在計測的校正範圍脫離>   圖12,為關於校正範圍的脫離的說明圖。此處,使用圖10的右圖、圖11的右圖的校正範圍902與校正範圍1002進行說明。脫離校正範圍,表示從對應檢查或計測的樣品108進行了攝像的影像所求出的特徵量f、推定值p在校正範圍902、校正範圍1002外。在圖12,計測資料1101、計測資料1111脫離校正範圍(902、1002),計測資料1102與計測資料1112未脫離校正範圍(902、1002)。<Regarding Deviation from the Calibration Range of Measurements> Figure 12 is an explanatory diagram regarding deviation from the calibration range. Here, the calibration ranges 902 and 1002 from the right-hand images of Figure 10 and Figure 11 are used for explanation. Deviation from the calibration range means that the characteristic quantity f and the estimated value p obtained from the image captured from the corresponding sample 108 being inspected or measured are outside the calibration ranges 902 and 1002. In Figure 12, measured data 1101 and measured data 1111 are outside the calibration range (902, 1002), while measured data 1102 and measured data 1112 are not outside the calibration range (902, 1002).

迄今,為了說明的簡略化,進行了校正範圍的脫離的說明,惟有時對樣品108進行計測而獲得的資料不僅校正範圍而亦脫離學習範圍,此情況下產生比校正範圍的脫離大的計測誤差的可能性高。在以下,針對學習範圍的脫離進行說明,示出在最後包含了學習範圍的脫離的流程圖。So far, for the sake of simplicity, the explanation of deviation from the calibration range has been provided. However, sometimes the data obtained from measuring sample 108 deviates from both the calibration range and the learning range. In this case, the possibility of measurement errors larger than those caused by deviation from the calibration range is high. Below, the deviation from the learning range will be explained, and a flowchart showing the deviation from the learning range will be shown at the end.

<關於在計測的學習範圍的脫離>   圖13,為針對校正範圍902與學習範圍703的關係進行繪示的圖。在校正時所取得的資料超過學習範圍703的情況下,需要複查步驟S301(圖4)的尺寸參數而再度執行學習步驟S311(圖4),故計測時,校正範圍902內包於學習範圍703中。<Regarding the separation from the learning range during measurement> Figure 13 is a diagram illustrating the relationship between the calibration range 902 and the learning range 703. If the data obtained during calibration exceeds the learning range 703, it is necessary to review the dimensional parameters of step S301 (Figure 4) and repeat the learning step S311 (Figure 4). Therefore, during measurement, the calibration range 902 is contained within the learning range 703.

於圖14,示出有關學習範圍703的脫離的說明圖。脫離學習範圍703,表示從針對應檢查或計測的樣品108進行了攝像的影像所求出的特徵量f、推定值p在學習範圍703及/或學習範圍603(圖7)外。在圖14,計測資料1301脫離學習範圍703,計測資料1302脫離校正範圍902,學習範圍703未脫離。計測資料1303未脫離校正範圍902及學習範圍703。Figure 14 illustrates the separation from the learning range 703. Separation from the learning range 703 means that the characteristic quantity f and the estimated value p derived from the image captured of the corresponding sample 108 being inspected or measured are outside the learning range 703 and/or the learning range 603 (Figure 7). In Figure 14, measurement data 1301 is separated from the learning range 703, measurement data 1302 is separated from the correction range 902, and the learning range 703 is not separated. Measurement data 1303 is not separated from either the correction range 902 or the learning range 703.

<考慮了學習範圍的脫離的情況下的檢查計測模型作成(學習與校正)的流程>   圖15,為針對利用本實施例所關聯的具有檢查計測模型的掃描型電子顯微鏡所為的考慮了學習範圍的脫離的情況下的檢查計測模型作成的流程圖。此處,僅說明和圖4的不同部分。構成計算機200的學習部203(圖2),在學習資料作成時步驟S304後,和步驟S305並行,進行學習範圍作成(步驟S1401),作成學習範圍1401。包含步驟S302~S305與步驟S1401,稱為學習步驟S1402。<Flowchart for Creating an Inspection Measurement Model Considering the Detachment from the Learning Range (Learning and Correction)> Figure 15 is a flowchart illustrating the creation of an inspection measurement model considering the detachment from the learning range for a scanning electron microscope with an inspection measurement model associated with this embodiment. Here, only the parts different from Figure 4 will be explained. The learning unit 203 (Figure 2) constituting the computer 200, after step S304 during learning data creation, performs learning range creation (step S1401) in parallel with step S305, creating learning range 1401. It includes steps S302 to S305 and step S1401, and is called learning step S1402.

<考慮了學習範圍的脫離的情況下的計測流程>   圖16,為利用本實施例所關聯的具有檢查計測模型的掃描型電子顯微鏡所為的考慮了學習範圍的脫離的情況下的計測流程圖。此處,僅說明和圖5的不同部分。校正部204判斷是否脫離校正範圍330(步驟S404),判斷為已脫離的情況下,進一步判斷是否脫離學習範圍1401(步驟S1501),未脫離的情況下,發出已脫離校正範圍330的警報(步驟S405),促使調整(步驟S406)。另一方面,已脫離學習範圍1401的情況下,發出已脫離學習範圍1401的警報(S1502),促使再學習(步驟S1503)。此處,再學習,表示複查步驟S301(圖15)的模擬模型與尺寸參數而再度執行步驟S1402(圖15)的學習步驟。<Measurement Flowchart Considering the Detachment from the Learning Scope> Figure 16 is a measurement flowchart considering the detachment from the learning scope, using a scanning electron microscope associated with the measurement model described in this embodiment. Only the parts different from Figure 5 are explained here. The correction unit 204 determines whether the device has deviated from the correction range 330 (step S404). If it has, it further determines whether the device has deviated from the learning range 1401 (step S1501). If the device has not deviated, it issues an alarm indicating that it has deviated from the correction range 330 (step S405), prompting adjustment (step S406). On the other hand, if the device has deviated from the learning range 1401, it issues an alarm indicating that it has deviated from the learning range 1401 (S1502), prompting relearning (step S1503). Here, "learn again" means to review the simulation model and dimensional parameters of step S301 (Figure 15) and then execute the learning step S1402 (Figure 15) again.

圖17,為針對計測資料已脫離校正範圍的一例進行繪示的圖。如圖17的左圖,對於校正範圍902,計測資料群1601已脫離的情況下,發出警報。此時,如示於圖17的右圖,針對校正範圍902與計測資料群1601的分布進行分析,以全計測資料點群1601被包含的方式,選擇追加的校正點。此處,利用計測資料1602、計測資料1603、計測資料1604作為追加的校正資料,重新定義新的校正範圍1605。Figure 17 illustrates an example where the measured data has fallen outside the calibration range. As shown in the left image of Figure 17, an alarm is issued when the measured data group 1601 has fallen outside the calibration range 902. At this point, as shown in the right image of Figure 17, an analysis is performed on the distribution of the calibration range 902 and the measured data group 1601. Additional calibration points are selected so that all measured data points 1601 are included. Here, measured data 1602, measured data 1603, and measured data 1604 are used as additional calibration data to redefine the new calibration range 1605.

實施校正的情況下,需要針對取得了計測資料之處以截面TEM、AFM(Atomic Force Microscope:原子力顯微鏡)等進行計測。如本實施例,針對校正範圍902與計測資料群1601進行分析,以少的校正點進行調整,從而可減少基準真相資料的取得的工夫。When calibration is required, measurements need to be performed using cross-sectional TEM, AFM (Atomic Force Microscope), or similar instruments at the point where the measurement data is obtained. In this embodiment, the calibration range 902 and the measurement data group 1601 are analyzed, and adjustments are made with fewer calibration points, thereby reducing the effort required to obtain the baseline truth data.

圖18,為針對示於圖2的顯示裝置的畫面顯示例(GUI:Graphical User Interface)進行繪示的圖。如示於圖18,GUI,由各程式的執行鈕群1710、疑似SEM波形計算程式211的模擬模型及參數的設定區域1720、特徵量解析程式212的設定區域1730、學習程式213的設定區域1740、校正程式214的設定區域1750、計測程式215的設定區域1760及顯示區域1770構成。Figure 18 is a diagram illustrating the graphical user interface (GUI) of the display device shown in Figure 2. As shown in Figure 18, the GUI consists of execution button group 1710 for each program, simulation model and parameter setting area 1720 for the suspected SEM waveform calculation program 211, setting area 1730 for the feature analysis program 212, setting area 1740 for the learning program 213, setting area 1750 for the calibration program 214, setting area 1760 for the measurement program 215, and display area 1770.

在模擬模型及參數的設定區域1720,輸入模型的形狀與模型的參數的設定值。在特徵量解析程式的設定區域1730,在顯示要抽出波形的何部分的特徵量的情況下進行指定,或雖未圖示於GUI上惟以特徵量的計算式進行定義。在學習程式的設定區域1740,選擇迴歸、深層學習等學習方法,同時針對使用的模型例如線形、非線形由下拉選單進行選擇,或以數式進行定義。在校正程式的設定區域1750,由下拉選單選擇對於在學習程式的設定區域1740所選擇的模型之校正的方法例如偏移等(其他的方法參照圖9的說明)。在計測程式的設定區域1760,從按圖案形狀(Line and space、Hole等)、圖案的代表尺寸而定義的複數個模型由下拉選單選擇使用的模型。In the simulation model and parameter setting area 1720, input the shape of the model and the parameter settings. In the eigenvalue analysis program setting area 1730, specify which part of the waveform's eigenvalues to extract, either displayed or defined by eigenvalue calculation formulas, even if not graphically shown on the GUI. In the learning program setting area 1740, select learning methods such as regression or deep learning, and choose from drop-down menus for the model used, such as linear or nonlinear, or define it numerically. In the calibration program setting area 1750, select from drop-down menus the calibration method for the model selected in the learning program setting area 1740, such as offset (other methods are explained in Figure 9). In the settings area 1760 of the measurement program, the model to be used is selected from a drop-down menu from multiple models defined by pattern shape (Line and space, Hole, etc.) and representative dimensions of the pattern.

在顯示區域1770,顯示各種程式的執行結果。於圖18,示出計測程式215執行時之例,顯示計測值1771,同時顯示校正範圍脫離的警報1772。用於調整的追加的校正資料,例如要重新針對晶圓圖1773上的何晶片進行計測,顯示當下的計測座標資訊1774。另外,晶圓圖1773上的晶片1775~1777對應於追加的校正資料1602~1604(圖17的右圖)。使用者基於此等顯示,實施調整。另外,雖以特徵量空間進行了說明,惟以示於圖11的右圖的推定值(計測值)的空間而將校正範圍與計測資料群的分布進行比較亦可。In display area 1770, the execution results of various programs are displayed. Figure 18 shows an example of the execution of measurement program 215, displaying the measured value 1771 and simultaneously displaying an alarm 1772 indicating that the calibration range has deviated. Additional calibration data used for adjustment, such as re-measuring a specific chip on wafer map 1773, displays the current measurement coordinate information 1774. Furthermore, chips 1775–1777 on wafer map 1773 correspond to the additional calibration data 1602–1604 (right view of Figure 17). The user performs adjustments based on these displays. Although the explanation uses a feature space, it is also possible to compare the calibration range with the distribution of the measurement data set using the space of the estimated values (measured values) shown in the right view of Figure 11.

實施校正的情況下,需要針對取得了計測資料之處以截面TEM、AFM(Atomic Force Microscope:原子力顯微鏡)等進行計測。如本實施例,針對校正範圍902與計測資料群1601(圖17的左圖)進行分析,以少的校正點進行調整,從而可減少基準真相資料的取得的工夫。When calibration is required, measurements need to be performed using cross-sectional TEM, AFM (Atomic Force Microscope), etc., at the locations where measurement data has been obtained. In this embodiment, the calibration range 902 and measurement data group 1601 (left panel of Figure 17) are analyzed, and adjustments are made with fewer calibration points, thereby reducing the effort required to obtain the reference truth data.

在本實施例,雖將學習與校正分開而記述,惟學習資料方面,準備多數個校正用樣本,取得校正用樣本的SEM影像並作成特徵量的資料集702(圖8),針對校正用樣本以例如截面TEM、AFM等進行計測並取得尺寸參數集602(圖7),使用尺寸參數集602(圖7)與特徵量的資料集702(圖8)而執行式(1)~式(3)、深層學習模型的學習亦可。此情況下,學習範圍與校正範圍相等。In this embodiment, although learning and calibration are described separately, regarding the learning data, several calibration samples are prepared, SEM images of the calibration samples are obtained, and a feature set 702 (Fig. 8) is created. Measurements are performed on the calibration samples using, for example, cross-sectional TEM, AFM, etc., and a set of dimensional parameters 602 (Fig. 7) is obtained. Equations (1) to (3) are executed using the set of dimensional parameters 602 (Fig. 7) and the set of feature data 702 (Fig. 8). Deep learning model learning can also be performed. In this case, the learning range and the calibration range are equal.

此外,在本實施例,雖以尺寸計測為事例進行了說明,惟學習範圍、校正範圍的脫離的監視(警報)與有效率地調整的觀測點的定時,在使用了數式、模型的處理,廣泛地使用,尺寸計測方面不受限定。亦可應用於缺陷檢查、缺陷分類、圖案辨識、影像轉換(畫質改善、高倍推定)。Furthermore, although this embodiment uses dimensional measurement as an example for explanation, the monitoring (alarm) of the learning range and correction range separation, and the timing of the observation point for efficient adjustment, are widely used and not limited in dimensional measurement due to the use of formulas and models for processing. It can also be applied to defect inspection, defect classification, pattern recognition, and image conversion (image quality improvement, high-magnification estimation).

如以上般依本實施例時,可提供一種具有檢查計測模型的掃描型電子顯微鏡及檢查計測模型之修正方法,可令使用者認知到檢查或計測結果的可靠性的降低,同時可有效率地進行調整。 [實施例2]As described above, this embodiment provides a scanning electron microscope with an inspection measurement model and a method for correcting the inspection measurement model. This allows users to recognize the decrease in the reliability of the inspection or measurement results and to make adjustments efficiently. [Embodiment 2]

在本實施例,說明不僅在脫離了學習範圍之際發出警報而亦建議適於再學習的學習範圍的計算機200之例。This embodiment illustrates a computer 200 that not only issues a warning when a user goes out of the learning scope but also suggests a suitable learning scope for relearning.

考慮了上述的圖15的學習範圍的脫離的情況下的檢查計測模型作成的流程圖、考慮了圖16的學習範圍的脫離的情況下的計測流程圖,和實施例1同樣。不同的點,在於步驟S1502(圖16)的發出警報時的動作。The flowcharts for checking the measurement model considering the case of the learning range being disengaged in Figure 15 above, and the measurement flowcharts considering the case of the learning range being disengaged in Figure 16, are the same as in Embodiment 1. The difference lies in the action taken when issuing an alarm in step S1502 (Figure 16).

圖19,為針對在本實施例所關聯的具有檢查計測模型的掃描型電子顯微鏡中計測資料脫離了學習範圍的一例進行繪示的圖。如示於圖19的左上圖,發出和學習範圍脫離有關的警報(步驟S1502(圖16))的情況下,亦即在計測資料群1801位於學習範圍703的外側的情況下,針對從示於圖19的右上圖的計測資料群1801所推定的尺寸群1811位於在尺寸參數的空間的學習範圍603的何位置進行分析,以包含尺寸群1811的方式定義新的學習範圍1812。並且,如示於圖19的下圖,建議供於學習新的學習範圍1812用的尺寸參數集1813。Figure 19 is a diagram illustrating an example where measurement data in a scanning electron microscope with a test measurement model associated with this embodiment has deviated from the learning range. As shown in the upper left of Figure 19, in the case of an alarm related to deviating from the learning range (step S1502 (Figure 16)), that is, when the measurement data group 1801 is located outside the learning range 703, an analysis is performed on the position of the size group 1811 in the learning range 603 in the space of the size parameters, which is inferred from the measurement data group 1801 shown in the upper right of Figure 19, in order to define a new learning range 1812 in a manner that includes the size group 1811. Furthermore, as shown in the lower part of Figure 19, a set of dimensional parameters 1813 is proposed for use in learning the new learning range 1812.

可進行如此可謂,即使學習模型在學習範圍的外側,仍有可推定尺寸(亦即可外插)的情況,如此的情況下,可根據在學習範圍的外側的尺寸的推定結果,大致掌握新的學習範圍。This means that even if the learning model is outside the learning range, there are still situations where the size can be estimated (i.e., extrapolation). In such cases, the new learning range can be roughly grasped based on the estimated size outside the learning range.

依本實施例時,除實施例1的效果以外,可容易得知再度重新模擬時要追加何程度的模擬資料。In accordance with this embodiment, in addition to the effects of Embodiment 1, it is easy to know what level of simulation data needs to be added when resimulating.

另外,本發明非限定於上述之實施例者,包含各式各樣的變形例。例如,上述之實施例,係為了以容易理解的方式說明本發明而詳細說明者,未必限定於具備所說明之全部的構成。此外,可將其中一個實施例的構成的一部分置換為其他實施例的構成,此外亦可對某一實施例的構成追加其他實施例的構成。Furthermore, the present invention is not limited to the embodiments described above, but includes various variations. For example, the embodiments described above are detailed for the purpose of explaining the present invention in an easily understandable manner, and are not necessarily limited to having all the described components. In addition, a part of the components of one embodiment may be replaced with the components of other embodiments, and the components of other embodiments may be added to the components of a certain embodiment.

此外,上述的各構成,亦可將該等之一部分或全部,例如以積體電路進行設計等從而以硬體而實現。此外,上述的各構成,亦可處理器解譯並執行實現個別的功能的程式從而以軟體而實現。實現各功能的程式、表、檔案等資訊,可置於記憶體、硬碟、SSD(Solid State Drive:固態硬碟)等記錄裝置,或可置於IC卡、SD卡、DVD等記錄媒體。Furthermore, the aforementioned components can also be implemented in hardware, either partially or entirely, for example, by designing integrated circuits. Additionally, the aforementioned components can be implemented in software by a processor interpreting and executing programs that implement individual functions. The programs, tables, files, and other information implementing each function can be stored on recording devices such as memory, hard drives, and SSDs (Solid State Drives), or on recording media such as IC cards, SD cards, and DVDs.

此外,控制線、資訊線等,示出應為在說明上需要者,不見得產品上必定示出全部的控制線、資訊線等。亦可想成實際上幾乎全部的構成互相連接。Furthermore, control lines, information lines, etc., are only shown as required in the description; it is not necessarily true that all control lines, information lines, etc., are shown on the product. They can also be considered as almost all components actually interconnected.

1:具有檢查計測模型的掃描型電子顯微鏡 100:掃描型電子顯微鏡 101:電子源 102:引出電極 103:電子束 104:聚焦透鏡 105:掃描電極 106:接物鏡 108:樣品 109:樣品台 110:電子 111:二次電子 112:轉換電極 113:檢測器 120:控制裝置 121,122:電源裝置 200:計算機 201:疑似SEM波形計算部 202:特徵量解析部 203:學習部 204:校正部 205:計測部 206:記憶部 207:通訊I/F 208:輸出入I/F 209:內部匯流排 211:疑似SEM波形計算程式 212:特徵量解析程式 213:學習程式 214:校正程式 215:計測程式 221:輸出入裝置 222:顯示裝置 223:記憶媒體 230:檢查計測模型 330,902,1002:校正範圍 500:圖案形狀 501:截面位置 502:截面 510:電子束顯微鏡影像 511:截面位置 512:亮度分布 601:想定區域 602:尺寸參數集 603,703:學習範圍 702:特徵量資料集 901:各特徵量fi的範圍(校正範圍) 902:以複數特徵量的關係性而定義的校正範圍 1001:計測值p的校正範圍 1002:以複數個尺寸(pi與pj)而定義的校正範圍 1101,1102,1111,1112:計測資料 1801:計測資料群 1811:所推定的尺寸群 1812:新的學習範圍 1813:尺寸參數集1: Scanning electron microscope with inspection and measurement model 100: Scanning electron microscope 101: Electron source 102: Lead-out electrode 103: Electron beam 104: Focusing lens 105: Scanning electrode 106: Objective lens 108: Sample 109: Sample stage 110: Electron 111: Secondary electron 112: Conversion electrode 113: Detector 120: Control device 121, 122: Power supply device 200: Computer 201: Suspected SEM waveform calculation unit 202: Feature quantity analysis unit 203: Learning unit 204: Calibration unit 205: Measurement unit 206: Memory unit 207: Communication I/F 208: Input/Output I/F 209: Internal Bus 211: Suspected SEM Waveform Calculation Program 212: Feature Analysis Program 213: Learning Program 214: Calibration Program 215: Measurement Program 221: Input/Output Device 222: Display Device 223: Memory Media 230: Check Measurement Model 330, 902, 1002: Calibration Range 500: Pattern Shape 501: Cross-Section Position 502: Cross-Section 510: Electron Beam Microscope Image 511: Cross-Section Position 512: Brightness Distribution 601: Desired Region 602: Size Parameter Set 603, 703: Learning Range 702: Feature Data Set 901: Range of Each Feature fi (Calibration Range) 902: Correction range defined by the relational nature of complex eigenvalues 1001: Correction range for measured value p 1002: Correction range defined by a complex number of dimensions (pi and pj) 1101, 1102, 1111, 1112: Measured data 1801: Measured data set 1811: Estimated dimension set 1812: New learning range 1813: Dimensional parameter set

[圖1]為本發明的實施例1所關聯的具有檢查計測模型的掃描型電子顯微鏡的整體示意構成圖。   [圖2]為示於圖1的計算機的功能方塊圖。   [圖3]為針對儲存在示於圖2的記憶媒體中的程式進行繪示的圖。   [圖4]為針對利用實施例1所關聯的具有檢查計測模型的掃描型電子顯微鏡所為的檢查計測模型作成(學習與修正)的動作進行繪示的流程圖。   [圖5]為針對利用實施例1所關聯的具有檢查計測模型的掃描型電子顯微鏡所為的計測的動作進行繪示的流程圖。   [圖6]為針對形成於樣品的圖案形狀與該電子顯微鏡影像進行繪示的圖。   [圖7]為針對供於作成學習資料用的尺寸參數進行繪示的圖。   [圖8]為針對特徵量進行了解析的結果的一例進行繪示的圖。   [圖9]為針對校正的一例進行繪示的圖。   [圖10]為針對以特徵量空間而表現的校正範圍的一例進行繪示的圖。   [圖11]為針對以尺寸值而定義的校正範圍的一例進行繪示的圖。   [圖12]為關於校正範圍的脫離的說明圖。   [圖13]為針對校正範圍與學習範圍的關係進行繪示的圖。   [圖14]為關於學習範圍的脫離的說明圖。   [圖15]為針對利用實施例1所關聯的具有檢查計測模型的掃描型電子顯微鏡所為的考慮了學習範圍的脫離的情況下的檢查計測模型作成的流程圖。   [圖16]為利用實施例1所關聯的具有檢查計測模型的掃描型電子顯微鏡所為的考慮了學習範圍的脫離的情況下的計測流程圖。   [圖17]為針對計測資料已脫離校正範圍的一例進行繪示的圖。   [圖18]為針對示於圖2的顯示裝置的畫面顯示例(GUI)進行繪示的圖。   [圖19]為針對在本發明的實施例2所關聯的具有檢查計測模型的掃描型電子顯微鏡中計測資料脫離了學習範圍的一例進行繪示的圖。[Figure 1] is an overall schematic diagram of the scanning electron microscope with an inspection measurement model associated with Embodiment 1 of the present invention. [Figure 2] is a function block diagram of the computer shown in Figure 1. [Figure 3] is a diagram illustrating the program stored in the memory medium shown in Figure 2. [Figure 4] is a flowchart illustrating the actions of creating (learning and correcting) the inspection measurement model using the scanning electron microscope with the inspection measurement model associated with Embodiment 1. [Figure 5] is a flowchart illustrating the measurement actions performed using the scanning electron microscope with the inspection measurement model associated with Embodiment 1. [Figure 6] is a diagram illustrating the pattern shape formed on the sample and the electron microscope image. [Figure 7] is a diagram illustrating the dimensional parameters used to create learning data. [Figure 8] is a diagram illustrating an example of the results of eigenvalue analysis. [Figure 9] is a diagram illustrating an example of correction. [Figure 10] is a diagram illustrating an example of the correction range expressed in eigenvalue space. [Figure 11] is a diagram illustrating an example of the correction range defined by dimensional values. [Figure 12] is an explanatory diagram regarding the separation of the correction range. [Figure 13] is a diagram illustrating the relationship between the correction range and the learning range. [Figure 14] is an explanatory diagram regarding the separation of the learning range. [Figure 15] is a flowchart illustrating the inspection measurement model using a scanning electron microscope with an inspection measurement model associated with Embodiment 1, taking into account the separation of the learning range. [Figure 16] is a measurement flowchart using a scanning electron microscope with an inspection measurement model associated with Embodiment 1, taking into account the separation of the learning range. [Figure 17] is a diagram illustrating an example where the measurement data has separated from the calibration range. [Figure 18] is a diagram illustrating a screen display example (GUI) of the display device shown in Figure 2. [Figure 19] is a diagram illustrating an example in which measurement data in a scanning electron microscope with a measurement model associated with Embodiment 2 of the present invention has deviated from the learning scope.

120:控制裝置 120: Control Device

200:計算機 200: Computer

201:疑似SEM波形計算部 201: Suspected SEM waveform calculation department

202:特徵量解析部 202: Eigenvalue Analysis Section

203:學習部 203: Study Department

204:校正部 204:Correction Department

205:計測部 205: Measurement Department

206:記憶部 206: Memory Department

207:通訊I/F 207: Communications I/F

208:輸出入I/F 208: Input/Output I/F

209:內部匯流排 209: Internal Busbar

221:輸出入裝置 221: Input/output device

222:顯示裝置 222: Display Device

223:記憶媒體 223: Memory Media

230:檢查計測模型 230: Inspect the measurement model

Claims (13)

一種具有檢查計測模型之掃描型電子顯微鏡,   具備:   特徵量解析部,其輸入所檢查或計測的樣品的電子顯微鏡影像或波形並求出第1特徵量,同時輸入校正用樣本的電子顯微鏡像或波形並求出第2特徵量;   學習部,其基於前述第2特徵量,利用學習而生成前述檢查計測模型;以及   校正部,其基於前述第1特徵量與前述檢查計測模型,將前述第1特徵量與既定的校正範圍進行比較,在前述第1特徵量脫離前述校正範圍的情況下,發出警報。A scanning electron microscope with an inspection and measurement model includes: a feature quantity analysis unit that takes an electron microscope image or waveform of the sample to be inspected or measured as input and calculates a first feature quantity, and simultaneously takes an electron microscope image or waveform of a calibration sample as input and calculates a second feature quantity; a learning unit that generates the inspection and measurement model based on the second feature quantity; and a calibration unit that compares the first feature quantity with a predetermined calibration range based on the first feature quantity and the inspection and measurement model, and issues an alarm when the first feature quantity deviates from the calibration range. 如請求項1的具有檢查計測模型之掃描型電子顯微鏡,其中,   前述校正部,以前述檢查計測模型的輸出一致於前述第2特徵量的方式進行校正,修正前述檢查計測模型。As in claim 1, a scanning electron microscope with an inspection measurement model, wherein the aforementioned correction unit corrects the aforementioned inspection measurement model by ensuring that the output of the aforementioned inspection measurement model is consistent with the aforementioned second characteristic quantity. 如請求項1的具有檢查計測模型之掃描型電子顯微鏡,其中,   前述校正部,在前述第1特徵量脫離前述校正範圍,且在脫離內包前述既定的校正範圍或比前述既定的校正範圍廣的學習範圍的情況下,發出警報。As in claim 1, a scanning electron microscope with an inspection measurement model, wherein the aforementioned calibration unit issues an alarm when the aforementioned first characteristic quantity deviates from the aforementioned calibration range, and deviates from a learning range that includes the aforementioned predetermined calibration range or is wider than the aforementioned predetermined calibration range. 如請求項1的具有檢查計測模型之掃描型電子顯微鏡,其中,   前述校正部,在前述第1特徵量脫離前述校正範圍的情況下,以包含前述第1特徵量的方式修正前述校正範圍,從而修正前述檢查計測模型。As in claim 1, a scanning electron microscope with an inspection measurement model, wherein the aforementioned correction unit corrects the aforementioned correction range by including the aforementioned first characteristic quantity when the aforementioned first characteristic quantity deviates from the aforementioned correction range, thereby correcting the aforementioned inspection measurement model. 如請求項3的具有檢查計測模型之掃描型電子顯微鏡,其中,   前述校正部,在前述第1特徵量脫離前述校正範圍,且脫離在內包前述既定的校正範圍或比前述既定的校正範圍廣的學習範圍的情況下,以包含前述第1特徵量的方式修正前述學習範圍。As in claim 3, a scanning electron microscope with an inspection measurement model, wherein the aforementioned correction unit corrects the aforementioned learning range in a manner that includes the aforementioned first feature when the aforementioned first feature deviates from the aforementioned correction range and deviates from a learning range that includes the aforementioned predetermined correction range or is wider than the aforementioned predetermined correction range. 如請求項4的具有檢查計測模型之掃描型電子顯微鏡,其中,   前述校正部,在前述第1特徵量脫離前述校正範圍,且脫離在內包前述既定的校正範圍或比前述既定的校正範圍廣的學習範圍的情況下,以包含前述第1特徵量的方式修正前述學習範圍。As in claim 4, a scanning electron microscope with an inspection measurement model, wherein the aforementioned correction unit corrects the aforementioned learning range in a manner that includes the aforementioned first feature when the aforementioned first feature deviates from the aforementioned correction range and deviates from a learning range that includes the aforementioned predetermined correction range or is wider than the aforementioned predetermined correction range. 如請求項5的具有檢查計測模型之掃描型電子顯微鏡,其中,   前述第1特徵量與前述校正範圍的比較,對特徵量空間上的距離進行分析。For example, in claim 5, a scanning electron microscope with an inspection measurement model, wherein the comparison between the aforementioned first characteristic and the aforementioned correction range is used to analyze the spatial distance of the characteristic. 如請求項7的具有檢查計測模型之掃描型電子顯微鏡,其中,   具備顯示裝置,   在前述顯示裝置的畫面上,至少具有顯示警報的區域、可視認地建議再度校正的檢查或應計測的前述樣品內的位置的區域以及可選擇學習方法及模型的區域。As in claim 7, a scanning electron microscope with an inspection measurement model, wherein, it has a display device, and on the screen of the aforementioned display device, there is at least an area for displaying alarms, an area for visually suggesting recalibration of the location within the aforementioned sample to be inspected or measured, and an area for selecting learning methods and models. 一種具有檢查計測模型的掃描型電子顯微鏡的前述檢查計測模型之修正方法,   具有以下步驟:   特徵量解析部,輸入所檢查或計測的樣品的電子顯微鏡影像或波形並求出第1特徵量,同時輸入校正用樣本的電子顯微鏡像或波形並求出第2特徵量;   學習部,基於前述第2特徵量,利用學習而生成前述檢查計測模型;以及   校正部,以前述檢查計測模型的輸出一致於前述第2特徵量的方式進行校正,修正前述檢查計測模型。A method for correcting the aforementioned inspection and measurement model of a scanning electron microscope having an inspection and measurement model includes the following steps: A feature quantity analysis unit inputs an electron microscope image or waveform of the sample to be inspected or measured and calculates a first feature quantity; simultaneously inputs an electron microscope image or waveform of a calibration sample and calculates a second feature quantity; A learning unit generates the aforementioned inspection and measurement model based on the aforementioned second feature quantity; and a correction unit corrects the aforementioned inspection and measurement model by ensuring that the output of the aforementioned inspection and measurement model is consistent with the aforementioned second feature quantity. 如請求項9的檢查計測模型之修正方法,其中,   具有以下步驟:前述校正部,在前述第1特徵量脫離既定的校正範圍,且脫離內包前述既定的校正範圍或比前述既定的校正範圍廣的學習範圍的情況下,發出警報。The method for correcting the measurement model in claim 9 includes the following steps: the aforementioned correction unit issues an alarm when the aforementioned first feature quantity deviates from the predetermined correction range and deviates from the learning range that includes the aforementioned predetermined correction range or is wider than the aforementioned predetermined correction range. 如請求項9的檢查計測模型之修正方法,其中,   具有以下步驟:前述校正部,在前述第1特徵量脫離前述校正範圍的情況下,以包含前述第1特徵量的方式修正前述校正範圍,從而修正前述檢查計測模型。The method for correcting the inspection measurement model as described in claim 9 includes the following steps: the aforementioned correction unit corrects the aforementioned correction range in a manner that includes the aforementioned first feature when the aforementioned first feature is outside the aforementioned correction range, thereby correcting the aforementioned inspection measurement model. 如請求項10的檢查計測模型之修正方法,其中,   具有以下步驟:前述校正部,在前述第1特徵量脫離前述校正範圍,且脫離在內包前述既定的校正範圍或比前述既定的校正範圍廣的學習範圍的情況下,以包含前述第1特徵量的方式修正前述學習範圍。The method for correcting the measurement model in claim 10 includes the following steps: the correction unit corrects the learning range in a manner that includes the first feature when the first feature deviates from the correction range and deviates from the learning range that includes the predetermined correction range or is wider than the predetermined correction range. 如請求項11的檢查計測模型之修正方法,其中,   具有以下步驟:前述校正部,在前述第1特徵量脫離前述校正範圍,且脫離在內包前述既定的校正範圍或比前述既定的校正範圍廣的學習範圍的情況下,以包含前述第1特徵量的方式修正前述學習範圍。The method for correcting the measurement model in claim 11 includes the following steps: the correction unit corrects the learning range in a manner that includes the first feature when the first feature deviates from the correction range and deviates from the learning range that includes the predetermined correction range or is wider than the predetermined correction range.
TW113132338A 2023-09-21 2024-08-28 A scanning electron microscope for examining measurement models and a method for correcting measurement models. TWI910791B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
WOPCT/JP2023/034173 2023-09-21
PCT/JP2023/034173 WO2025062546A1 (en) 2023-09-21 2023-09-21 Scanning electron microscope with inspection and measurement model, and method for correcting inspection and measurement model

Publications (2)

Publication Number Publication Date
TW202514700A TW202514700A (en) 2025-04-01
TWI910791B true TWI910791B (en) 2026-01-01

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021140662A1 (en) 2020-01-10 2021-07-15 株式会社日立ハイテク Pattern inspecting device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021140662A1 (en) 2020-01-10 2021-07-15 株式会社日立ハイテク Pattern inspecting device

Similar Documents

Publication Publication Date Title
JP5156619B2 (en) Sample size inspection / measurement method and sample size inspection / measurement device
TWI744786B (en) Structure estimation system, structure estimation program
US9990708B2 (en) Pattern-measuring apparatus and semiconductor-measuring system
US11428652B2 (en) Pattern evaluation system and pattern evaluation method
US9129353B2 (en) Charged particle beam device, and image analysis device
US10943762B2 (en) Inspection system, image processing device and inspection method
JP6063630B2 (en) Pattern measuring apparatus and semiconductor measuring system
JP6068624B2 (en) Sample observation device
US7439503B2 (en) Charged particle beam irradiation method, method of manufacturing semiconductor device and charged particle beam apparatus
US20230230886A1 (en) Processor system, semiconductor inspection system, and program
JP5069904B2 (en) Designated position specifying method and designated position measuring device
US11424098B2 (en) Pattern measurement device, and computer program
TWI697025B (en) Charged particle beam device, section shape estimation formula
TWI910791B (en) A scanning electron microscope for examining measurement models and a method for correcting measurement models.
JP2011179819A (en) Pattern measuring method and computer program
CN115908465B (en) Charged particle beam image processing device and charged particle beam device provided with same
TW202514700A (en) Scanning electron microscope with inspection and measurement model and correction method of inspection and measurement model
CN121488320A (en) Scanning electron microscope with inspection and measurement model and correction method of inspection and measurement model
KR102678481B1 (en) Charged particle beam apparatus
KR20260013908A (en) Automatic creation of an imaging recipe
JP2007234778A (en) Electron beam pattern inspection apparatus, inspection condition setting method, and program
JP2013164356A (en) Charged particle beam device, and operation condition setting device of charged particle beam device
JP2012159444A (en) Pattern shape evaluation method and pattern shape evaluation device