TWI900034B - Realize human-computer interaction and evaluate recommendation through artificial intelligence system and method thereof - Google Patents
Realize human-computer interaction and evaluate recommendation through artificial intelligence system and method thereofInfo
- Publication number
- TWI900034B TWI900034B TW113119847A TW113119847A TWI900034B TW I900034 B TWI900034 B TW I900034B TW 113119847 A TW113119847 A TW 113119847A TW 113119847 A TW113119847 A TW 113119847A TW I900034 B TWI900034 B TW I900034B
- Authority
- TW
- Taiwan
- Prior art keywords
- human
- artificial intelligence
- evaluation
- intelligence platform
- machine interaction
- Prior art date
Links
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
一種評估建議系統及其方法,尤其是指一種由虛擬客戶人工智慧平台提供人機交互再由觀察者人工智慧平台對人機交互進行評價與建議的透過人工智慧實現人機互動與評估建議之系統及其方法。An evaluation and recommendation system and method thereof, particularly a system and method thereof, in which a virtual client artificial intelligence platform provides human-computer interaction, and an observer artificial intelligence platform evaluates and provides recommendations on the human-computer interaction through artificial intelligence.
人工智慧(Artificial Intelligence, AI)是電腦科學的範疇,是指電腦、程式…等系統及機器,自行透過數據分析進行推論,模擬如人類的思考邏輯、執行策略的技術。Artificial intelligence (AI) is a field of computer science that refers to the ability of computers, programs, and other systems and machines to independently draw inferences through data analysis and simulate human-like thinking logic and execution strategies.
現有透過人工智慧可以實現單人對單人工智慧的人機交互,例如:阿爾法圍棋 (AlphaGo)是由英國倫敦Google DeepMind開發的人工智慧圍棋程式,證明了人工智慧在邏輯判斷與自動化作業的潛力,使得在未來應用上有無限的可能性。Currently, artificial intelligence (AI) can enable one-on-one human-machine interaction. For example, AlphaGo, an AI Go program developed by Google DeepMind in London, UK, has demonstrated AI's potential in logical judgment and automated tasks, creating endless possibilities for future applications.
現有人工智慧邏輯判斷的優劣評判,多為經過大量的人機交互後,由人為審視人機交互的結果較為的費時與費力,如何能提供快速進行人機交互結果的評判且能進一步提出人機交互結果的建議將是需要解決的問題。Existing AI logical judgments often require extensive human-computer interaction to evaluate their effectiveness. This is time-consuming and labor-intensive, requiring human review of the results. Developing a system that can rapidly evaluate human-computer interaction results and provide recommendations is a challenge that needs to be addressed.
綜上所述,可知先前技術中長期以來一直存在使用人工智慧進行人機交互結果評判費時與費力且無提供人機交互結果建議的問題,因此有必要提出改進的技術手段,來解決此一問題。In summary, it can be seen that the previous technology has long had the problem that using artificial intelligence to evaluate the results of human-computer interaction is time-consuming and labor-intensive, and does not provide any suggestions for the human-computer interaction results. Therefore, it is necessary to propose improved technical means to solve this problem.
有鑒於先前技術存在使用人工智慧進行人機交互結果評判費時與費力且無提供人機交互結果建議的問題,本發明遂揭露一種透過人工智慧實現人機互動與評估建議之系統及其方法,其中:In view of the problems that the prior art has in using artificial intelligence to evaluate the results of human-computer interaction, which is time-consuming and labor-intensive and does not provide recommendations for the human-computer interaction results, the present invention discloses a system and method for implementing human-computer interaction and evaluation recommendations through artificial intelligence, wherein:
本發明所揭露的透過人工智慧實現人機互動與評估建議之系統,其包含:業務員終端裝置、虛擬客戶人工智慧平台以及觀察者人工智慧平台,虛擬客戶人工智慧平台更包含:第一介接模組、虛擬客戶資料生成模組、選定模組以及人機互動模組;觀察者人工智慧平台更包含:第二介接模組以及業務服務評價與建議模組。The system disclosed herein uses artificial intelligence to implement human-machine interaction and provide evaluation and recommendations. It includes a salesperson terminal device, a virtual customer artificial intelligence platform, and an observer artificial intelligence platform. The virtual customer artificial intelligence platform further includes a first interface module, a virtual customer data generation module, a selection module, and a human-machine interaction module. The observer artificial intelligence platform further includes a second interface module and a business service evaluation and recommendation module.
業務員終端裝置分別與虛擬客戶人工智慧平台以及觀察者人工智慧平台介接,提供人機互動訊息至虛擬客戶人工智慧平台,自虛擬客戶人工智慧平台取得人機互動回答訊息,提供相對應的人機互動訊息以及人機互動回答訊息至觀察者人工智慧平台,自觀察者人工智慧平台取得對應的業務服務評價以及業務服務改善建議。The salesperson's terminal device interfaces with the virtual customer artificial intelligence platform and the observer artificial intelligence platform, providing human-machine interaction messages to the virtual customer artificial intelligence platform, obtaining human-machine interaction response messages from the virtual customer artificial intelligence platform, providing corresponding human-machine interaction messages and human-machine interaction response messages to the observer artificial intelligence platform, and obtaining corresponding business service evaluations and business service improvement suggestions from the observer artificial intelligence platform.
虛擬客戶人工智慧平台的第一介接模組是提供與業務員終端裝置介接,自業務員終端裝置取得人機互動訊息,提供人機互動回答訊息至業務員終端裝置;虛擬客戶人工智慧平台的虛擬客戶資料生成模組是當與業務員終端裝置介接時,隨機生成虛擬客戶基本資料以及虛擬客戶個性資料;虛擬客戶人工智慧平台的選定模組依據虛擬客戶個性資料選定對應的客戶語言模型,客戶語言模型使用相對應的虛擬客戶個性資料的訓練數據訓練建立;及虛擬客戶人工智慧平台的人機互動模組使用被選定的客戶語言模型以將人機互動詢問訊息產生人機互動回答訊息。The first interface module of the virtual customer artificial intelligence platform is to provide an interface with the salesperson terminal device, obtain human-machine interaction information from the salesperson terminal device, and provide human-machine interaction response information to the salesperson terminal device; the virtual customer data generation module of the virtual customer artificial intelligence platform is to randomly generate virtual customer basic information and virtual customer personal information when interfacing with the salesperson terminal device. The virtual customer artificial intelligence platform's selection module selects a corresponding customer language model based on the virtual customer's personal data, and the customer language model is trained and established using training data corresponding to the virtual customer's personal data; and the virtual customer artificial intelligence platform's human-computer interaction module uses the selected customer language model to generate human-computer interaction response messages from human-computer interaction inquiry messages.
觀察者人工智慧平台的第二介接模組是提供與業務員終端裝置介接,自業務員終端裝置取得相對應的人機互動訊息以及人機互動回答訊息,提供業務服務評價以及業務服務改善建議至業務員終端裝置;及觀察者人工智慧平台的業務服務評價與建議模組是使用對話評估語言模型對人機互動詢問訊息以及人機互動回答訊息進行人機互動的流暢性、人機互動的客戶情緒、人機互動的應急處理、人機互動詢問訊息的資料收集、人機互動詢問訊息的語意正確性以及人機互動詢問訊息的產品與服務介紹專業性進行評估,以依據不同的評估項目給予對應的評價生成業務服務評價,以及依據評估過程以及評估項目的評價生成業務服務改善建議。The second interface module of the observer artificial intelligence platform is to provide an interface with the salesperson terminal device, obtain the corresponding human-machine interaction information and human-machine interaction answer information from the salesperson terminal device, and provide business service evaluation and business service improvement suggestions to the salesperson terminal device; and the business service evaluation and suggestion module of the observer artificial intelligence platform uses the dialogue evaluation language model to evaluate the human-machine interaction inquiry information and human-machine interaction answer information. The system evaluates the smoothness of human-computer interaction, customer sentiment in human-computer interaction, emergency response in human-computer interaction, data collection of human-computer interaction inquiry messages, semantic accuracy of human-computer interaction inquiry messages, and professionalism of product and service introductions in human-computer interaction inquiry messages. It generates business service evaluations based on corresponding evaluation items and generates business service improvement suggestions based on the evaluation process and evaluation items.
本發明所揭露的透過人工智慧實現人機互動與評估建議之方法,其包含下列步驟:The method disclosed in the present invention for implementing human-computer interaction and evaluation suggestions through artificial intelligence includes the following steps:
首先,業務員終端裝置分別與虛擬客戶人工智慧平台以及觀察者人工智慧平台介接;接著,當虛擬客戶人工智慧平台與業務員終端裝置介接時,虛擬客戶人工智慧平台隨機生成虛擬客戶基本資料以及虛擬客戶個性資料;接著,虛擬客戶人工智慧平台依據虛擬客戶個性資料選定對應的客戶語言模型,客戶語言模型使用相對應的虛擬客戶個性資料的訓練數據訓練建立;接著,業務員終端裝置提供人機互動訊息至虛擬客戶人工智慧平台;接著,虛擬客戶人工智慧平台使用語音轉文字技術將人機互動訊息轉換為人機互動詢問訊息;接著,虛擬客戶人工智慧平台使用被選定的客戶語言模型以將人機互動詢問訊息產生人機互動回答訊息;接著,虛擬客戶人工智慧平台提供人機互動回答訊息至業務員終端裝置;接著,觀察者人工智慧平台自業務員終端裝置取得相對應的人機互動訊息以及人機互動回答訊息;接著,觀察者人工智慧平台使用語音轉文字技術將人機互動語音訊息轉換為人機互動詢問訊息;接著,觀察者人工智慧平台使用對話評估語言模型對人機互動詢問訊息以及人機互動回答訊息進行人機互動的流暢性、人機互動的客戶情緒、人機互動的應急處理、人機互動詢問訊息的資料收集、人機互動詢問訊息的語意正確性以及人機互動詢問訊息的產品與服務介紹專業性進行評估,以依據不同的評估項目給予對應的評價生成業務服務評價,以及依據評估過程以及評估項目的評價生成業務服務改善建議;最後,觀察者人工智慧平台提供業務服務評價以及業務服務改善建議至業務員終端裝置。First, the salesperson terminal device is interfaced with the virtual customer artificial intelligence platform and the observer artificial intelligence platform respectively; then, when the virtual customer artificial intelligence platform is interfaced with the salesperson terminal device, the virtual customer artificial intelligence platform randomly generates virtual customer basic information and virtual customer personality data; then, the virtual customer artificial intelligence platform selects the corresponding customer language model based on the virtual customer personality data, and the customer language model is trained using the corresponding virtual customer personality data. Training data is established; then, the salesperson terminal device provides human-machine interaction information to the virtual customer artificial intelligence platform; then, the virtual customer artificial intelligence platform uses speech-to-text technology to convert the human-machine interaction information into human-machine interaction inquiry information; then, the virtual customer artificial intelligence platform uses the selected customer language model to generate human-machine interaction answer information from the human-machine interaction inquiry information; then, the virtual customer artificial intelligence platform provides the human-machine interaction answer information to the salesperson terminal device; then, the observer artificial intelligence platform obtains the corresponding human-machine interaction message and human-machine interaction answer message from the salesperson's terminal device; then, the observer artificial intelligence platform uses speech-to-text technology to convert the human-machine interaction voice message into a human-machine interaction inquiry message; then, the observer artificial intelligence platform uses the dialogue evaluation language model to evaluate the human-machine interaction inquiry message and the human-machine interaction answer message for the smoothness of human-machine interaction, the customer emotion of human-machine interaction, and the human-machine interaction. The system evaluates the emergency response, data collection of human-machine interaction inquiry messages, the semantic accuracy of human-machine interaction inquiry messages, and the professionalism of product and service introductions in human-machine interaction inquiry messages. It generates business service evaluations based on corresponding evaluation items and generates business service improvement suggestions based on the evaluation process and evaluation items. Finally, the Observer AI platform provides business service evaluations and business service improvement suggestions to the salesperson's terminal device.
本發明所揭露的系統及方法如上,當虛擬客戶人工智慧平台與業務員終端裝置介接時,虛擬客戶人工智慧平台隨機生成虛擬客戶基本資料以及虛擬客戶個性資料,依據虛擬客戶個性資料選定對應的客戶語言模型,讓業務員終端裝置與虛擬客戶人工智慧平台使用對應的客戶語言模型進行人機交互,再由觀察者人工智慧平台對人機交互生成業務服務評價以及業務服務改善建議。The system and method disclosed herein are as described above. When the virtual customer artificial intelligence platform interfaces with a salesperson's terminal device, the virtual customer artificial intelligence platform randomly generates basic virtual customer data and virtual customer personality data. Based on the virtual customer personality data, a corresponding customer language model is selected. The salesperson's terminal device and the virtual customer artificial intelligence platform then interact using the corresponding customer language model. The observer artificial intelligence platform then generates a business service evaluation and business service improvement suggestions based on this human-computer interaction.
透過上述的技術手段,本發明可以達成透過人工智慧實現人機互動與評估建議的技術功效。Through the above-mentioned technical means, the present invention can achieve the technical effect of realizing human-computer interaction and evaluation suggestions through artificial intelligence.
以下將配合圖式及實施例來詳細說明本發明的實施方式,藉此對本發明如何應用技術手段來解決技術問題並達成技術功效的實現過程能充分理解並據以實施。The following will be used in conjunction with drawings and embodiments to explain in detail the implementation of the present invention, so that the implementation process of how the present invention applies technical means to solve technical problems and achieve technical effects can be fully understood and implemented accordingly.
以下首先要說明本發明所揭露的透過人工智慧實現人機互動與評估建議之系統,並請參考「第1圖」所示,「第1圖」繪示為本發明透過人工智慧實現人機互動與評估建議之系統的系統方塊圖。The following first describes the system disclosed in the present invention for implementing human-computer interaction and evaluation suggestions through artificial intelligence. Please refer to "Figure 1", which is a system block diagram of the system disclosed in the present invention for implementing human-computer interaction and evaluation suggestions through artificial intelligence.
本發明所揭露的透過人工智慧實現人機互動與評估建議之系統,其包含:業務員終端裝置10、虛擬客戶人工智慧平台20以及觀察者人工智慧平台30,虛擬客戶人工智慧平台20更包含:第一介接模組21、虛擬客戶資料生成模組22、選定模組23以及人機互動模組24;觀察者人工智慧平台30更包含:第二介接模組31以及業務服務評價與建議模組32。The system disclosed herein, which implements human-machine interaction and evaluation and recommendation through artificial intelligence, includes a salesperson terminal device 10, a virtual customer artificial intelligence platform 20, and an observer artificial intelligence platform 30. The virtual customer artificial intelligence platform 20 further includes a first interface module 21, a virtual customer data generation module 22, a selection module 23, and a human-machine interaction module 24. The observer artificial intelligence platform 30 further includes a second interface module 31 and a business service evaluation and recommendation module 32.
業務員終端裝置10例如是:一般電腦、筆記型電腦、平板電腦、智慧型手機…等,在此僅為舉例說明之,並不以此侷限本發明的應用範疇,虛擬客戶人工智慧平台20的第一介接模組21以及觀察者人工智慧平台30的第二介接模組31提供業務員終端裝置10透過有線傳輸方式或是無線傳輸方式介接,前述的有線傳輸方式例如是:電纜網路、光纖網路…等,前述的無線傳輸方式例如是:Wi-Fi、行動通訊網路(例如:4G、5G、6G…等)…等,在此僅為舉例說明之,並不以此侷限本發明的應用範疇。The salesperson terminal device 10 may be, for example, a general computer, a laptop, a tablet, a smartphone, etc. These examples are given here for illustration only and do not limit the scope of application of the present invention. The first interface module 21 of the virtual customer artificial intelligence platform 20 and the second interface module 31 of the observer artificial intelligence platform 30 provide the salesperson terminal device 10 with an interface via a wired transmission method or a wireless transmission method. The aforementioned wired transmission method may be, for example, a cable network, an optical fiber network, etc., and the aforementioned wireless transmission method may be, for example, Wi-Fi, a mobile communication network (e.g., 4G, 5G, 6G, etc.), etc. These examples are given here for illustration only and do not limit the scope of application of the present invention.
當虛擬客戶人工智慧平台20與業務員終端裝置10介接時,虛擬客戶人工智慧平台20的虛擬客戶資料生成模組22隨機生成虛擬客戶基本資料以及虛擬客戶個性資料,虛擬客戶基本資料例如是:姓名、戶籍地址、通訊地址、連絡電話、手機號碼…等,虛擬客戶個性資料例如是:防衛個性、對抗個性、積極個性、消極個性、理性思考個性、衝動個性…等的組合,在此僅為舉例說明之,並不以此侷限本發明的應用範疇。When the virtual customer artificial intelligence platform 20 is interfaced with the salesperson terminal device 10, the virtual customer data generation module 22 of the virtual customer artificial intelligence platform 20 randomly generates virtual customer basic data and virtual customer personal data. The virtual customer basic data may include, for example, name, registered address, correspondence address, contact number, mobile phone number, etc. The virtual customer personal data may include, for example, a combination of defensive personality, confrontational personality, positive personality, negative personality, rational thinking personality, impulsive personality, etc. These are merely examples and are not intended to limit the scope of application of the present invention.
接著,虛擬客戶人工智慧平台20的選定模組23即可依據虛擬客戶人工智慧平台20的虛擬客戶資料生成模組22所隨機生成的虛擬客戶個性資料選定對應的客戶語言模型41,值得注意的是,客戶語言模型41是由外部的模型建立裝置40使用符合該虛擬客戶個性資料的訓練資料訓練建立後,匯入於虛擬客戶人工智慧平台20以符合該虛擬客戶個性資料的人機互動,具體而言,若虛擬客戶個性資料為“消極個性”時,客戶語言模型41所使用的訓練資料例如是:我不需要推薦、我現在在忙、沒有這個需要…等,藉以建立客戶語言模型41以符合虛擬客戶個性資料為“消極個性”的人機互動;若虛擬客戶個性資料為“積極個性”時,客戶語言模型41所使用的訓練資料例如是:我想要在請問關於理賠條件的細節、你可以提供試算表嗎、關於保費的繳納方式…等,藉以建立客戶語言模型41以符合虛擬客戶個性資料為“積極個性”的人機互動,在此僅為舉例說明之,並不以此侷限本發明的應用範疇。Then, the selection module 23 of the virtual customer artificial intelligence platform 20 can select the corresponding customer language model 41 according to the virtual customer personality data randomly generated by the virtual customer data generation module 22 of the virtual customer artificial intelligence platform 20. It is worth noting that the customer language model 41 is trained and established by the external model building device 40 using the training data that conforms to the virtual customer personality data, and then imported into the virtual customer artificial intelligence platform 20 to conform to the human-computer interaction of the virtual customer personality data. Specifically, if the virtual customer personality data is "negative personality", the training data used by the customer language model 41 is negative. For example, data such as: I don't need a recommendation, I'm busy now, I don't need this, etc., is used to establish customer language model 41 to match the human-computer interaction of the virtual customer personality data as "negative personality". If the virtual customer personality data is "positive personality", the training data used by customer language model 41 may be, for example,: I want to ask about the details of the claim conditions, Can you provide a spreadsheet, About the payment method of the premium, etc., to establish customer language model 41 to match the human-computer interaction of the virtual customer personality data as "positive personality". This is only an example for illustration and does not limit the scope of application of the present invention.
當業務員於業務員終端裝置10進行操作時,透過業務員終端裝置10所提供的觸控單元、麥克風、近場通訊、無線傳輸…等方式輸入人機互動訊息,接著,業務員終端裝置10即可提供人機互動訊息至虛擬客戶人工智慧平台20,虛擬客戶人工智慧平台20由第一介接模組21自業務員終端裝置10取得人機互動訊息,值得注意的是,上述的人機互動訊息的態樣包含文字模態、語音模態、圖像模態以及影片模態,在此僅為舉例說明之,並不以此侷限本發明的應用範疇。When a salesperson operates the salesperson terminal device 10, he or she inputs human-machine interaction information through the touch unit, microphone, near-field communication, wireless transmission, etc. provided by the salesperson terminal device 10. Then, the salesperson terminal device 10 can provide the human-machine interaction information to the virtual customer artificial intelligence platform 20. The virtual customer artificial intelligence platform 20 obtains the human-machine interaction information from the salesperson terminal device 10 through the first interface module 21. It is worth noting that the above-mentioned human-machine interaction information modes include text mode, voice mode, image mode, and video mode. These are only examples for illustration and do not limit the scope of application of the present invention.
接著,虛擬客戶人工智慧平台20的人機互動模組24即可使用由選定模組23選定的客戶語言模型41以將人機互動詢問訊息產生人機互動回答訊息,再由虛擬客戶人工智慧平台20的第一介接模組21提供人機互動回答訊息至業務員終端裝置10。Next, the human-computer interaction module 24 of the virtual customer artificial intelligence platform 20 can use the customer language model 41 selected by the selection module 23 to generate a human-computer interaction answer message from the human-computer interaction inquiry message, and then the first interface module 21 of the virtual customer artificial intelligence platform 20 provides the human-computer interaction answer message to the salesperson terminal device 10.
值得注意的是,虛擬客戶人工智慧平台20更包含第一模態轉換模組25,第一模態轉換模組25是提供將人機互動詢問訊息的模態進行轉換以及將人機互動回答訊息的模態進行轉換,值得注意的是,第一模態轉換模組25使用語音轉文字、文字轉語音、光學文字識別、AI圖像生成以及AI影片生成的技術組合以將人機互動詢問訊息/人機互動回答訊息的模態進行轉換。It is worth noting that the virtual customer artificial intelligence platform 20 further includes a first modal conversion module 25, which provides for converting the modalities of human-machine interaction inquiry messages and human-machine interaction response messages. It is worth noting that the first modal conversion module 25 uses a combination of speech-to-text, text-to-speech, optical character recognition, AI image generation, and AI video generation technologies to convert the modalities of human-machine interaction inquiry messages/human-machine interaction response messages.
具體而言,若人機互動詢問訊息的模態為文字模態,並且第一介接模組21自業務員終端裝置10取得需要轉換的模態為圖像模態,第一模態轉換模組25即可使用AI圖像生成技術將文字模態的人機互動詢問訊息轉換為圖像模態的人機互動詢問訊息;若人機互動回答訊息的模態為語音模態,並且第一介接模組21自業務員終端裝置10取得需要轉換的模態為圖像模態,第一模態轉換模組25先使用語音轉文字技術將語音模態的人機互動回答訊息轉換為文字模態的人機互動回答訊息,再使用AI圖像生成技術將文字模態的人機互動回答訊息轉換為圖像模態的人機互動回答訊息,在此僅為舉例說明之,並不以此侷限本發明的應用範疇。Specifically, if the mode of the human-machine interactive inquiry message is text mode, and the first interface module 21 obtains from the salesperson terminal device 10 that the mode to be converted is image mode, the first mode conversion module 25 can use AI image generation technology to convert the human-machine interactive inquiry message in text mode into a human-machine interactive inquiry message in image mode; if the mode of the human-machine interactive answer message is voice mode, and the first interface module 21 obtains from the salesperson terminal device 10 that the mode to be converted is image mode, the first mode conversion module 25 can use AI image generation technology to convert the human-machine interactive inquiry message in text mode into a human-machine interactive inquiry message in image mode; The service terminal device 10 determines that the mode to be converted is an image mode. The first mode conversion module 25 first uses speech-to-text technology to convert the human-machine interaction response message in the voice mode into a human-machine interaction response message in the text mode. Then, it uses AI image generation technology to convert the human-machine interaction response message in the text mode into a human-machine interaction response message in the image mode. This is merely an example and does not limit the scope of application of the present invention.
在業務員終端裝置10自虛擬客戶人工智慧平台20取得人機互動回答訊息後,業務員終端裝置10再提供相對應的人機互動訊息以及人機互動回答訊息至觀察者人工智慧平台30,觀察者人工智慧平台30即可由第二介接模組31自業務員終端裝置10取得相對應的人機互動訊息以及人機互動回答訊息。After the salesperson terminal device 10 obtains the human-machine interaction response message from the virtual customer artificial intelligence platform 20, the salesperson terminal device 10 then provides the corresponding human-machine interaction message and human-machine interaction response message to the observer artificial intelligence platform 30. The observer artificial intelligence platform 30 can then obtain the corresponding human-machine interaction message and human-machine interaction response message from the salesperson terminal device 10 through the second interface module 31.
觀察者人工智慧平台30的業務服務評價與建議模組32是使用對話評估語言模型42對人機互動詢問訊息以及人機互動回答訊息進行人機互動的流暢性、人機互動的客戶情緒、人機互動的應急處理、人機互動詢問訊息的資料收集、人機互動詢問訊息的語意正確性以及人機互動詢問訊息的產品與服務介紹專業性進行評估,以依據不同的評估項目給予對應的評價生成業務服務評價,以及依據評估過程以及評估項目的評價生成業務服務改善建議。The business service evaluation and recommendation module 32 of the observer artificial intelligence platform 30 uses a dialogue evaluation language model 42 to evaluate the fluency of human-machine interaction, customer emotions in human-machine interaction, emergency handling in human-machine interaction, data collection of human-machine interaction inquiry messages, semantic accuracy of human-machine interaction inquiry messages, and professionalism of product and service introductions in human-machine interaction inquiry messages in human-machine interaction inquiry messages. It generates business service evaluations based on corresponding evaluation items and generates business service improvement suggestions based on the evaluation process and the evaluation of the evaluation items.
具體而言,業務服務評價與建議模組32使用對話評估語言模型42對人機互動詢問訊息中的語助詞數量進行識別以評估人機互動的流暢性,假設人機互動詢問訊息中所使用的語助詞數量為4,人機互動的流暢性及可被評估為“較為流暢”(可由預先建立的語助詞數量評估對照表得到),再依據評估過程以及評估項目的評價生成業務服務改善建議,例如是:建議可再熟悉XX保險的理賠事項內容、建議多練習口語交談…等,在此僅為舉例說明之,並不以此侷限本發明的應用範疇。Specifically, the business service evaluation and suggestion module 32 uses the dialogue evaluation language model 42 to identify the number of particles in the human-computer interaction inquiry message to evaluate the fluency of the human-computer interaction. Assuming that the number of particles used in the human-computer interaction inquiry message is 4, the fluency of the human-computer interaction can be evaluated as "relatively smooth" (which can be obtained from a pre-established particle number evaluation comparison table). Then, based on the evaluation process and the evaluation items, business service improvement suggestions are generated. For example, it is recommended to familiarize yourself with the claims content of XX insurance, to practice more oral conversation, etc. These are just examples for illustration and do not limit the scope of application of the present invention.
業務服務評價與建議模組32使用對話評估語言模型42對人機互動回答訊息中的情緒字詞/情緒語句(例如:高興、厭煩、請不要再說明了、我沒有保險的需要…等,在此僅為舉例說明之,並不以此侷限本發明的應用範疇)進行識別以評估人機互動的客戶情緒,再依據評估過程以及評估項目的評價生成業務服務改善建議,例如是:需要注意客戶不滿意的問題點、建戶滿意度高請熟悉保險相關說明方式…等,在此僅為舉例說明之,並不以此侷限本發明的應用範疇。The business service evaluation and suggestion module 32 uses the dialogue evaluation language model 42 to identify emotional words/emotional sentences in the human-computer interaction response message (for example: happy, bored, please don't explain anymore, I don't need insurance... etc., which are only given as examples here and do not limit the scope of application of the present invention) to evaluate the customer's emotions in the human-computer interaction, and then generates business service improvement suggestions based on the evaluation process and the evaluation of the evaluation items, such as: attention should be paid to the problems that customers are dissatisfied with, to build high customer satisfaction, please familiarize yourself with the insurance-related explanation methods... etc., which are only given as examples here and do not limit the scope of application of the present invention.
業務服務評價與建議模組32使用對話評估語言模型42對人機互動回答訊息中的客戶基本資料進行識別以實現人機互動詢問訊息的資料收集評估,假設人機互動詢問訊息包含有姓名、手機號碼以及電子信箱,但缺乏連絡電話以及通訊地址,人機互動詢問訊息的資料收集評估即為60%(或是6/10、0.6…等,在此僅為舉例說明之,並不以此侷限本發明的應用範疇),再依據評估過程以及評估項目的評價生成業務服務改善建議,例如是:客戶基本資料收集度不足請再多詢問相關資訊、詢問過多的基本資料可能會造成客戶的反感…等,在此僅為舉例說明之,並不以此侷限本發明的應用範疇。The business service evaluation and suggestion module 32 uses the dialogue evaluation language model 42 to identify the basic customer information in the human-machine interactive answer message to realize the data collection and evaluation of the human-machine interactive inquiry message. Assuming that the human-machine interactive inquiry message contains the name, mobile phone number and email address, but lacks the contact number and communication address, the data collection and evaluation of the human-machine interactive inquiry message is 60% (or 6/1 0, 0.6, etc., are given here as examples only and are not intended to limit the scope of application of the present invention). Business service improvement suggestions are then generated based on the evaluation process and the evaluation of the evaluation items. For example, suggestions such as: "The collection of basic customer information is insufficient; please inquire for more relevant information" and "Inquiring for too much basic information may cause customer disgust" are given here as examples only and are not intended to limit the scope of application of the present invention.
業務服務評價與建議模組32使用對話評估語言模型42對人機互動詢問訊息的產品與服務介紹說明與產品與服務介紹範本比對以實現人機互動詢問訊息的產品與服務介紹專業性評估,假設產品與服務介紹說明與產品與服務介紹範本比對為85%,產品與服務介紹專業性評估即為85%(或是8.5/10、0.85…等,在此僅為舉例說明之,並不以此侷限本發明的應用範疇),再依據評估過程以及評估項目的評價生成業務服務改善建議,例如是:已符合產品與服務介紹專業性需求、產品與服務介紹專業性仍須要進一步加強…等,在此僅為舉例說明之,並不以此侷限本發明的應用範疇。The business service evaluation and suggestion module 32 uses the dialogue evaluation language model 42 to compare the product and service introduction description of the human-computer interaction inquiry message with the product and service introduction template to achieve a professional evaluation of the product and service introduction in the human-computer interaction inquiry message. Assuming that the comparison between the product and service introduction description and the product and service introduction template is 85%, the professional evaluation of the product and service introduction is 85% (or 8. 5/10, 0.85, etc., are merely examples here and are not intended to limit the scope of application of the present invention). Business service improvement suggestions are then generated based on the evaluation process and the evaluation of the evaluation items, such as: whether the professional requirements of product and service introductions have been met, whether the professional requirements of product and service introductions still need to be further strengthened, etc. These are merely examples here and are not intended to limit the scope of application of the present invention.
值得注意的是,對話評估語言模型42亦是由外部的模型建立裝置40使用對應的訓練資料訓練建立後,匯入於觀察者人工智慧平台30以提供人機交互的評估,以依據不同的評估項目給予對應的評價生成業務服務評價,以及依據評估過程以及評估項目的評價生成業務服務改善建議。It is worth noting that the dialogue evaluation language model 42 is also created by the external model building device 40 using the corresponding training data, and then imported into the observer artificial intelligence platform 30 to provide human-computer interaction evaluation, so as to generate business service evaluations based on corresponding evaluation items, and generate business service improvement suggestions based on the evaluation process and the evaluation of the evaluation items.
在業務服務評價與建議模組32生成業務服務評價以及業務服務改善建議後,再由觀察者人工智慧平台30的第二介接模組31提供業務服務評價以及業務服務改善建議至業務員終端裝置10。After the business service evaluation and suggestion module 32 generates the business service evaluation and business service improvement suggestions, the second interface module 31 of the observer artificial intelligence platform 30 provides the business service evaluation and business service improvement suggestions to the salesperson terminal device 10.
值得注意的是,觀察者人工智慧平台30更包含第二模態轉換模組33,第二模態轉換模組33是提供將人機互動詢問訊息與人機互動回答訊息的模態進行轉換以及將業務服務評價與業務服務改善建議的模態進行轉換,值得注意的是,第二模態轉換模組33的相關說明可以參考上述第一模態轉換模組25的說明,在此不再進行贅述。It is worth noting that the observer artificial intelligence platform 30 further includes a second modal conversion module 33, which provides a mode conversion between human-computer interaction inquiry messages and human-computer interaction answer messages, as well as a mode conversion between business service evaluations and business service improvement suggestions. It is worth noting that the relevant description of the second modal conversion module 33 can refer to the description of the above-mentioned first modal conversion module 25 and will not be repeated here.
請參考「第2圖」以及「第3圖」所示,「第2圖」繪示為本發明透過人工智慧實現人機互動與評估建議的人機互動訊息與人機互動回答訊息實施例示意圖,「第3圖」繪示為本發明透過人工智慧實現人機互動與評估建議的業務服務評價與業務服務改善建議實施例示意圖。Please refer to "Figure 2" and "Figure 3". "Figure 2" is a schematic diagram of an embodiment of the present invention that uses artificial intelligence to implement human-computer interaction and evaluation suggestions for human-computer interaction and human-computer interaction response messages, and "Figure 3" is a schematic diagram of an embodiment of the present invention that uses artificial intelligence to implement business service evaluation and business service improvement suggestions for human-computer interaction and evaluation suggestions.
在「第2圖」以及「第3圖」中是呈現出一個完整的實施例,即是一個完整由業務員終端裝置10以及虛擬客戶人工智慧平台20進行人機互動訊息51與人機互動回答訊息52的人機互動實現,再由觀察者人工智慧平台30進行業務員終端裝置10以及虛擬客戶人工智慧平台20的人機交互的業務服務評價53與業務服務改善建議54,在此僅為舉例說明之,並不以此侷限本發明的應用範疇,人機互動訊息51與人機互動回答訊息52的內容請參考「第2圖」所示,在此不再進行贅述,業務服務評價53與業務服務改善建議54的內容請參考「第3圖」所示,在此不再進行贅述。In "Figure 2" and "Figure 3", a complete embodiment is presented, that is, a complete human-machine interaction implementation in which the salesperson terminal device 10 and the virtual customer artificial intelligence platform 20 perform human-machine interaction messages 51 and human-machine interaction response messages 52, and the observer artificial intelligence platform 30 performs human-machine interaction between the salesperson terminal device 10 and the virtual customer artificial intelligence platform 20. The business service evaluation 53 and business service improvement suggestions 54 are merely examples and are not intended to limit the scope of application of the present invention. For the contents of the human-computer interaction message 51 and the human-computer interaction answer message 52, please refer to "Figure 2" and will not be further described here. For the contents of the business service evaluation 53 and business service improvement suggestions 54, please refer to "Figure 3" and will not be further described here.
接著,以下將說明本發明的運作方法,並請同時參考「第4A圖」以及「第4B圖」所示,「第4A圖」以及「第4B圖」繪示為本發明透過人工智慧實現人機互動與評估建議之方法的方法流程圖。Next, the operation method of the present invention will be described below, and please refer to "Figure 4A" and "Figure 4B" at the same time. "Figure 4A" and "Figure 4B" are flowcharts of the method of the present invention for realizing human-computer interaction and evaluation suggestions through artificial intelligence.
本發明所揭露的透過人工智慧實現人機互動與評估建議之方法,其包含下列步驟:The method disclosed in the present invention for implementing human-computer interaction and evaluation suggestions through artificial intelligence includes the following steps:
首先,業務員終端裝置分別與虛擬客戶人工智慧平台以及觀察者人工智慧平台介接(步驟601);接著,當虛擬客戶人工智慧平台與業務員終端裝置介接時,虛擬客戶人工智慧平台隨機生成虛擬客戶基本資料以及虛擬客戶個性資料(步驟602);接著,虛擬客戶人工智慧平台依據虛擬客戶個性資料選定對應的客戶語言模型,客戶語言模型使用相對應的虛擬客戶個性資料的訓練數據訓練建立(步驟603);接著,業務員終端裝置提供人機互動訊息至虛擬客戶人工智慧平台(步驟604);接著,虛擬客戶人工智慧平台使用語音轉文字技術將人機互動訊息轉換為人機互動詢問訊息(步驟605);接著,虛擬客戶人工智慧平台使用被選定的客戶語言模型以將人機互動詢問訊息產生人機互動回答訊息(步驟606);接著,虛擬客戶人工智慧平台提供人機互動回答訊息至業務員終端裝置(步驟607);接著,觀察者人工智慧平台自業務員終端裝置取得相對應的人機互動訊息以及人機互動回答訊息(步驟608);接著,觀察者人工智慧平台使用語音轉文字技術將人機互動語音訊息轉換為人機互動詢問訊息(步驟609);接著,觀察者人工智慧平台使用對話評估語言模型對人機互動詢問訊息以及人機互動回答訊息進行人機互動的流暢性、人機互動的客戶情緒、人機互動的應急處理、人機互動詢問訊息的資料收集、人機互動詢問訊息的語意正確性以及人機互動詢問訊息的產品與服務介紹專業性進行評估,以依據不同的評估項目給予對應的評價生成業務服務評價,以及依據評估過程以及評估項目的評價生成業務服務改善建議(步驟610);最後,觀察者人工智慧平台提供業務服務評價以及業務服務改善建議至業務員終端裝置(步驟611)。First, the salesperson terminal device interfaces with the virtual customer artificial intelligence platform and the observer artificial intelligence platform (step 601). Then, when the virtual customer artificial intelligence platform interfaces with the salesperson terminal device, the virtual customer artificial intelligence platform randomly generates virtual customer basic information and virtual customer personality data (step 602). Then, the virtual customer artificial intelligence platform selects the corresponding customer language model based on the virtual customer personality data, and the customer language model is trained using the training data of the corresponding virtual customer personality data. Establish (step 603); then, the salesperson terminal device provides the human-machine interaction message to the virtual customer artificial intelligence platform (step 604); then, the virtual customer artificial intelligence platform uses speech-to-text technology to convert the human-machine interaction message into a human-machine interaction inquiry message (step 605); then, the virtual customer artificial intelligence platform uses the selected customer language model to generate a human-machine interaction answer message from the human-machine interaction inquiry message (step 606); then, the virtual customer artificial intelligence platform provides the human-machine interaction answer message to the salesperson The operator's terminal device (step 607); then, the observer artificial intelligence platform obtains the corresponding human-machine interaction message and human-machine interaction answer message from the operator's terminal device (step 608); then, the observer artificial intelligence platform uses speech-to-text technology to convert the human-machine interaction voice message into a human-machine interaction inquiry message (step 609); then, the observer artificial intelligence platform uses the dialogue evaluation language model to evaluate the human-machine interaction inquiry message and the human-machine interaction answer message for the smoothness of the human-machine interaction and the customer sentiment of the human-machine interaction. The business service evaluation is generated based on the evaluation process and the evaluation of the evaluation items, and business service improvement suggestions are generated based on the evaluation process and the evaluation of the evaluation items (step 610). Finally, the observer artificial intelligence platform provides the business service evaluation and business service improvement suggestions to the salesperson's terminal device (step 611).
綜上所述,當虛擬客戶人工智慧平台與業務員終端裝置介接時,虛擬客戶人工智慧平台隨機生成虛擬客戶基本資料以及虛擬客戶個性資料,依據虛擬客戶個性資料選定對應的客戶語言模型,讓業務員終端裝置與虛擬客戶人工智慧平台使用對應的客戶語言模型進行人機交互,再由觀察者人工智慧平台對人機交互生成業務服務評價以及業務服務改善建議。In summary, when the virtual customer AI platform interfaces with the salesperson's terminal device, it randomly generates basic and personalized data for the virtual customer. Based on this data, it selects a corresponding customer language model, allowing the salesperson's terminal device and the virtual customer AI platform to interact using the corresponding customer language model. The observer AI platform then generates a business service evaluation and suggestions for business service improvements based on this interaction.
藉由此一技術手段可以來解決先前技術所存在使用人工智慧進行人機交互結果評判費時與費力且無提供人機交互結果建議的問題,進而達成透過人工智慧實現人機互動與評估建議的技術功效。This technology can solve the problems of previous technologies that use artificial intelligence to evaluate human-computer interaction results, which are time-consuming and labor-intensive, and lack the ability to provide recommendations based on the results of human-computer interaction. It can then achieve the technical effectiveness of using artificial intelligence to realize human-computer interaction and evaluation recommendations.
雖然本發明所揭露的實施方式如上,惟所述的內容並非用以直接限定本發明的專利保護範圍。任何本發明所屬技術領域中具有通常知識者,在不脫離本發明所揭露的精神和範圍的前提下,可以在實施的形式上及細節上作些許的更動。本發明的專利保護範圍,仍須以所附的申請專利範圍所界定者為準。While the embodiments disclosed above are intended to limit the scope of patent protection for this invention, these are not intended to directly limit the scope of patent protection for this invention. Anyone skilled in the art may make minor changes in the form and details of the implementation without departing from the spirit and scope of this invention. The scope of patent protection for this invention shall remain subject to the scope of the attached patent application.
10:業務員終端裝置10: Salesperson terminal device
20:虛擬客戶人工智慧平台20: Virtual Customer Artificial Intelligence Platform
21:第一介接模組21: First interface module
22:虛擬客戶資料生成模組22: Virtual customer data generation module
23:選定模組23: Select module
24:人機互動模組24: Human-computer interaction module
25:第一模態轉換模組25: First mode conversion module
30:觀察者人工智慧平台30:Observer Artificial Intelligence Platform
31:第二介接模組31: Second interface module
32:業務服務評價與建議模組32: Business Service Evaluation and Suggestion Module
33:第二模態轉換模組33: Second mode conversion module
40:模型建立裝置40: Model building device
41:客戶語言模型41:Customer Language Model
42:對話評估語言模型42: Dialogue Evaluation Language Model
51:人機互動訊息51: Human-computer interaction information
52:人機互動回答訊息52: Human-computer interaction answering message
53:業務服務評價53:Business Service Evaluation
54:業務服務改善建議54: Business service improvement suggestions
步驟 601:業務員終端裝置分別與虛擬客戶人工智慧平台以及觀察者人工智慧平台介接Step 601: The salesperson terminal device interfaces with the virtual customer artificial intelligence platform and the observer artificial intelligence platform respectively.
步驟 602:當虛擬客戶人工智慧平台與業務員終端裝置介接時,虛擬客戶人工智慧平台隨機生成虛擬客戶基本資料以及虛擬客戶個性資料Step 602: When the virtual customer artificial intelligence platform is connected to the salesperson terminal device, the virtual customer artificial intelligence platform randomly generates virtual customer basic information and virtual customer personal information.
步驟 603:虛擬客戶人工智慧平台依據虛擬客戶個性資料選定對應的客戶語言模型,客戶語言模型使用相對應的虛擬客戶個性資料的訓練數據訓練建立Step 603: The virtual customer artificial intelligence platform selects a corresponding customer language model based on the virtual customer personality data. The customer language model is trained using the training data corresponding to the virtual customer personality data.
步驟 604:業務員終端裝置提供人機互動訊息至虛擬客戶人工智慧平台Step 604: The salesperson terminal device provides human-machine interaction information to the virtual customer artificial intelligence platform
步驟 605:虛擬客戶人工智慧平台使用語音轉文字技術將人機互動訊息轉換為人機互動詢問訊息Step 605: The virtual customer artificial intelligence platform uses speech-to-text technology to convert human-computer interaction messages into human-computer interaction inquiry messages.
步驟 606:虛擬客戶人工智慧平台使用被選定的客戶語言模型以將人機互動詢問訊息產生人機互動回答訊息Step 606: The virtual customer artificial intelligence platform uses the selected customer language model to generate a human-computer interaction answer message from the human-computer interaction inquiry message.
步驟 607:虛擬客戶人工智慧平台提供人機互動回答訊息至業務員終端裝置Step 607: The virtual customer artificial intelligence platform provides human-machine interactive answer messages to the salesperson’s terminal device
步驟 608:觀察者人工智慧平台自業務員終端裝置取得相對應的人機互動訊息以及人機互動回答訊息Step 608: The observer artificial intelligence platform obtains the corresponding human-machine interaction information and human-machine interaction response information from the salesperson terminal device.
步驟 609:觀察者人工智慧平台使用語音轉文字技術將人機互動語音訊息轉換為人機互動詢問訊息Step 609: The observer artificial intelligence platform uses speech-to-text technology to convert the human-computer interaction voice message into a human-computer interaction inquiry message.
步驟 610:觀察者人工智慧平台使用對話評估語言模型對人機互動詢問訊息以及人機互動回答訊息進行人機互動的流暢性、人機互動的客戶情緒、人機互動的應急處理、人機互動詢問訊息的資料收集、人機互動詢問訊息的語意正確性以及人機互動詢問訊息的產品與服務介紹專業性進行評估,以依據不同的評估項目給予對應的評價生成業務服務評價,以及依據評估過程以及評估項目的評價生成業務服務改善建議Step 610: The observer artificial intelligence platform uses the dialogue evaluation language model to evaluate the human-machine interaction inquiry message and the human-machine interaction answer message on the fluency of human-machine interaction, the customer sentiment of human-machine interaction, the emergency handling of human-machine interaction, the data collection of human-machine interaction inquiry message, the semantic accuracy of human-machine interaction inquiry message, and the professionalism of the product and service introduction in the human-machine interaction inquiry message. The platform generates a business service evaluation based on corresponding evaluation items, and generates business service improvement suggestions based on the evaluation process and the evaluation items.
步驟 611:觀察者人工智慧平台提供業務服務評價以及業務服務改善建議至業務員終端裝置Step 611: The Observer AI platform provides business service evaluation and business service improvement suggestions to the salesperson’s terminal device
第1圖繪示為本發明透過人工智慧實現人機互動與評估建議之系統的系統方塊圖。 第2圖繪示為本發明透過人工智慧實現人機互動與評估建議的人機互動訊息與人機互動回答訊息實施例示意圖。 第3圖繪示為本發明透過人工智慧實現人機互動與評估建議的業務服務評價與業務服務改善建議實施例示意圖。 第4A圖以及第4B圖繪示為本發明透過人工智慧實現人機互動與評估建議之方法的方法流程圖。Figure 1 is a system block diagram of a system for implementing human-machine interaction and evaluation suggestions through artificial intelligence according to the present invention. Figure 2 is a schematic diagram of a human-machine interaction message and a human-machine interaction response message according to an embodiment of the present invention for implementing human-machine interaction and evaluation suggestions through artificial intelligence. Figure 3 is a schematic diagram of a business service evaluation and business service improvement suggestion embodiment of the present invention for implementing human-machine interaction and evaluation suggestions through artificial intelligence. Figures 4A and 4B are flow charts of a method for implementing human-machine interaction and evaluation suggestions through artificial intelligence according to the present invention.
10:業務員終端裝置 10: Salesperson terminal device
20:虛擬客戶人工智慧平台 20: Virtual Customer Artificial Intelligence Platform
21:第一介接模組 21: First Interface Module
22:虛擬客戶資料生成模組 22: Virtual Customer Data Generation Module
23:選定模組 23: Select module
24:人機互動模組 24: Human-computer interaction module
25:第一模態轉換模組 25: First modal conversion module
30:觀察者人工智慧平台 30: Observer Artificial Intelligence Platform
31:第二介接模組 31: Second interface module
32:業務服務評價與建議模組 32: Business Service Evaluation and Suggestion Module
33:第二模態轉換模組 33: Second modal conversion module
41:客戶語言模型 41: Customer Language Model
42:對話評估語言模型 42: Dialogue Evaluation Language Model
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW113119847A TWI900034B (en) | 2024-05-29 | 2024-05-29 | Realize human-computer interaction and evaluate recommendation through artificial intelligence system and method thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW113119847A TWI900034B (en) | 2024-05-29 | 2024-05-29 | Realize human-computer interaction and evaluate recommendation through artificial intelligence system and method thereof |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TWI900034B true TWI900034B (en) | 2025-10-01 |
| TW202546600A TW202546600A (en) | 2025-12-01 |
Family
ID=98263493
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW113119847A TWI900034B (en) | 2024-05-29 | 2024-05-29 | Realize human-computer interaction and evaluate recommendation through artificial intelligence system and method thereof |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI900034B (en) |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107844567A (en) * | 2017-02-26 | 2018-03-27 | 广州衡昊数据科技有限公司 | A kind of business experience bag commending system and method |
| CN113743748A (en) * | 2021-08-19 | 2021-12-03 | 陈占斌 | Sale work performance evaluation system based on AI technology |
| US20240070341A1 (en) * | 2022-08-26 | 2024-02-29 | Harbin Engineering University | Intelligent simulation system for jacket towing and modeling method thereof |
| CN117808348A (en) * | 2023-12-22 | 2024-04-02 | 北京津发科技股份有限公司 | Virtual reality-based display screen man-machine interaction interface design evaluation method and system |
-
2024
- 2024-05-29 TW TW113119847A patent/TWI900034B/en active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107844567A (en) * | 2017-02-26 | 2018-03-27 | 广州衡昊数据科技有限公司 | A kind of business experience bag commending system and method |
| CN113743748A (en) * | 2021-08-19 | 2021-12-03 | 陈占斌 | Sale work performance evaluation system based on AI technology |
| US20240070341A1 (en) * | 2022-08-26 | 2024-02-29 | Harbin Engineering University | Intelligent simulation system for jacket towing and modeling method thereof |
| CN117808348A (en) * | 2023-12-22 | 2024-04-02 | 北京津发科技股份有限公司 | Virtual reality-based display screen man-machine interaction interface design evaluation method and system |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11630651B2 (en) | Computing device and method for content authoring of a digital conversational character | |
| US10586539B2 (en) | In-call virtual assistant | |
| Cowan et al. | What's in an accent? The impact of accented synthetic speech on lexical choice in human-machine dialogue | |
| CN111246027A (en) | A voice communication system and method for realizing human-machine collaboration | |
| JP2023545947A (en) | System and method for bot authoring by mining intent from conversation data via intent seeding | |
| CN109190114B (en) | Method and device for generating reply information | |
| US10261991B2 (en) | Method and system for imposing a dynamic sentiment vector to an electronic message | |
| US20180181561A1 (en) | Analyzing conversations to automatically identify customer pain points | |
| CN116049360A (en) | Intervention method and system for speech skills in intelligent voice dialogue scenes based on customer portraits | |
| CN108985358A (en) | Emotion identification method, apparatus, equipment and storage medium | |
| US10367940B2 (en) | Analyzing conversations to automatically identify product feature requests | |
| CN112101045A (en) | Multi-mode semantic integrity recognition method and device and electronic equipment | |
| CN111210816B (en) | An intelligent voice configuration management method, device and electronic equipment | |
| CN114821744A (en) | Expression recognition-based virtual character driving method, device and equipment | |
| Lhommet et al. | Cerebella: automatic generation of nonverbal behavior for virtual humans | |
| CN114582339A (en) | Voice interaction method, apparatus, electronic device and medium | |
| CN113792196A (en) | Method and device for man-machine interaction based on multi-modal dialog state representation | |
| CN119127648A (en) | Intelligent agent evaluation method, device, electronic device and storage medium | |
| CN119721058A (en) | Intelligent customer service interaction method and system | |
| US20250094723A1 (en) | Negotiation training framework using generative artificial intelligence | |
| JP2021182390A (en) | Information processing equipment, information processing methods, and programs | |
| TWI900034B (en) | Realize human-computer interaction and evaluate recommendation through artificial intelligence system and method thereof | |
| CN117194625A (en) | Intelligent dialogue method and device for digital person, electronic equipment and storage medium | |
| CN112017668A (en) | Intelligent voice conversation method, device and system based on real-time emotion detection | |
| Košecká et al. | Use of a communication robot—Chatbot in order to reduce the administrative burden and support the digitization of services in the university environment |