[go: up one dir, main page]

TWI900033B - Thermal displacement adaptive computer numerical control compensation system and method based on meta-learning - Google Patents

Thermal displacement adaptive computer numerical control compensation system and method based on meta-learning

Info

Publication number
TWI900033B
TWI900033B TW113119733A TW113119733A TWI900033B TW I900033 B TWI900033 B TW I900033B TW 113119733 A TW113119733 A TW 113119733A TW 113119733 A TW113119733 A TW 113119733A TW I900033 B TWI900033 B TW I900033B
Authority
TW
Taiwan
Prior art keywords
data
displacement
learning
meta
compensation
Prior art date
Application number
TW113119733A
Other languages
Chinese (zh)
Other versions
TW202546562A (en
Inventor
覺文郁
謝東興
林建安
黃永全
樂 連
Original Assignee
國立臺灣大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立臺灣大學 filed Critical 國立臺灣大學
Priority to TW113119733A priority Critical patent/TWI900033B/en
Application granted granted Critical
Publication of TWI900033B publication Critical patent/TWI900033B/en
Publication of TW202546562A publication Critical patent/TW202546562A/en

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

The present invention relates to a thermal displacement adaptive computer numerical control compensation system and method based on meta-learning. The system involves an equipment communication module, configured to receive an equipment data and write a compensation value to an equipment; a temperature communication module, configured to receive a temperature data; a displacement communication module, configured to receive a displacement data; a signal processing unit, connected to the above-mentioned modules to process and store the above-mentioned data; a diagnosis module, connected to the signal processing unit, performing evaluation and diagnosis based on the above-mentioned data to build a thermal displacement compensation model; a deployment module, connected to the signal processing unit and using a deep learning model to output a prediction value; and a host system communication module, connected to the signal processing unit, and supporting many-to-one communication connections to connect to a host system that performs a meta learning.

Description

基於元學習的熱變位自適應電腦數值控制補償系統及方法Thermal displacement adaptive computer numerical control compensation system and method based on meta-learning

本發明涉及一種電腦數值控制補償系統及方法,尤指一種基於元學習的熱變位自適應電腦數值控制補償系統及方法。The present invention relates to a computer numerical control compensation system and method, and more particularly to a meta-learning-based thermal displacement adaptive computer numerical control compensation system and method.

早期的熱補償方法中,使用者通常依賴其加工經驗來決定停機時間,意即,需等待機台溫度回到理想範圍後才繼續加工,以確保產品達到品質標準。In early thermal compensation methods, users typically relied on their processing experience to determine downtime, meaning they would wait until the machine temperature returned to the ideal range before continuing processing to ensure that the product met quality standards.

現今的策略則是在設備的關鍵組件上裝置溫度感測器。此則涉及在不同季節的溫度下長時間停機以收集資料,然後交由資料分析專家進行特徵分析並建立熱補償模型,最終在執行補償。The current strategy is to install temperature sensors on key components of the equipment. This involves long periods of downtime at different seasonal temperatures to collect data. Data analytics experts then conduct feature analysis, develop thermal compensation models, and ultimately implement compensation.

然而,習知的這些方法不僅在提高加工精度上效果有限,還涉及額外的時間成本。結果是這些方法並無法有效地解決上述的精度與成本問題,因此在市場上的接受度並不高。However, these conventional methods not only have limited effectiveness in improving machining accuracy but also involve additional time and cost. Consequently, these methods fail to effectively address the aforementioned accuracy and cost issues, and therefore have limited market acceptance.

本發明之目的在於提供一種基於元學習的熱變位自適應電腦數值控制補償系統,能夠減少停機、不受限環境溫度、降低建模成本,因設備運行或加工產生的熱能,並能自動收集溫度、位移資料的系統。The purpose of this invention is to provide a meta-learning-based adaptive computer numerical control compensation system for thermal displacement that can reduce downtime, is not restricted by ambient temperature, and reduces modeling costs. The system can automatically collect temperature and displacement data while also generating heat energy during equipment operation or processing.

本發明之另一目的在於提供一種基於元學習的熱變位自適應電腦數值控制補償系統,透過元學習技術可使用少量的資料及資料拼接,克服資料量不足的問題,快速建立熱補償模型。Another object of the present invention is to provide a meta-learning-based adaptive computer numerical control compensation system for thermal displacement. By using meta-learning technology, a small amount of data and data splicing can be used to overcome the problem of insufficient data and quickly establish a thermal compensation model.

本發明之再一目的在於提供一種基於元學習的熱變位自適應電腦數值控制補償系統,將溫度資料、位移資料、設備資料及補償值等資料一併儲存在例如雲端伺服器的上位系統(例如,上位系統的資訊庫)供使用者查詢及分析歷史資料,並支持遠端更新其熱補償模型,透過學習模型以提高補償準確度。Another object of the present invention is to provide a meta-learning-based adaptive thermal displacement computer numerical control compensation system that stores temperature data, displacement data, equipment data, and compensation values in a host system such as a cloud server (e.g., the host system's information database) for user query and analysis of historical data. The system also supports remote updating of its thermal compensation model, improving compensation accuracy through model learning.

根據上述的目的,本發明提供一種基於元學習的熱變位自適應電腦數值控制補償系統,包括:一設備通訊模組,經配置以電性連接對應的一設備的一控制器,以接收該設備的一設備資料,並將一補償值寫入到該設備以進行補償;一溫度通訊模組,經配置以電性連接到位在該設備的一預定處的至少一溫度感測器,以接收該至少一溫度感測器所讀取及收集到的一溫度資料;一位移通訊模組,經配置以電性連接位在該設備上的一位移感測器,以接收該位移感測器所讀取及收集到的一位移資料;一訊號處理單元,經配置以電性連接該設備通訊模組、該溫度通訊模組以及該位移通訊模組,以處理及儲存該設備資料、該溫度資料與該位移資料;一診斷模組,經配置以電性連接該訊號處理單元,依據該設備資料、該溫度資料與該位移資料並透過一預定方式進行評估診斷,以建置一熱變位補償模型;一佈署模組,經配置以電性連接該訊號處理單元,使用一深度學習模型以輸出一預測值作為一補償基準;以及一上位系統通訊模組,經配置以電性連接該訊號處理單元,支援多對一通訊連接並執行一元學習的一上位系統。In accordance with the above-mentioned objectives, the present invention provides a meta-learning-based thermal displacement adaptive computer numerical control compensation system, comprising: a device communication module, configured to be electrically connected to a controller of a corresponding device to receive device data of the device and write a compensation value to the device for compensation; a temperature communication module, configured to be electrically connected to at least one temperature sensor located at a predetermined position of the device to receive temperature data read and collected by the at least one temperature sensor; a displacement communication module, configured to be electrically connected to a displacement sensor located on the device to receive displacement data read and collected by the displacement sensor; and a signal processing unit. , configured to be electrically connected to the device communication module, the temperature communication module, and the displacement communication module to process and store the device data, the temperature data, and the displacement data; a diagnosis module, configured to be electrically connected to the signal processing unit, to perform evaluation and diagnosis based on the device data, the temperature data, and the displacement data in a predetermined manner to establish a thermal displacement compensation model; a deployment module, configured to be electrically connected to the signal processing unit, to use a deep learning model to output a prediction value as a compensation benchmark; and a host system communication module, configured to be electrically connected to the signal processing unit, to support many-to-one communication connections and to execute a host system of unary learning.

在一些實施例中,該基於元學習的熱變位自適應電腦數值控制補償系統還包括一介面顯示器,透過一內部軟體將該溫度資料、該補償值、該位移資料以相對應的一圖表顯示,並經配置以依一使用者需求設定一補償機制及將該溫度資料、該補償值、該位移資料上傳到該上位系統。In some embodiments, the meta-learning-based thermal displacement adaptive computer numerical control compensation system further includes an interface display that displays the temperature data, the compensation value, and the displacement data in a corresponding graph through internal software, and is configured to set a compensation mechanism according to user requirements and upload the temperature data, the compensation value, and the displacement data to the host system.

在一些實施例中,該預定方式至少包括殘差分析以及過度擬合。In some embodiments, the predetermined method includes at least residual analysis and overfitting.

在一些實施例中,該設備資料至少包括該設備本身的運作狀態以及加工時間。In some embodiments, the equipment data includes at least the operating status and processing time of the equipment itself.

在一些實施例中,該預定處為該設備內部、該設備外部或是該設備的一關鍵零組件的位置。In some embodiments, the predetermined location is inside the device, outside the device, or the location of a key component of the device.

在一些實施例中,該訊號處理單元為一微處理器,具備有電位傳輸功能、乙太網路或Wi-Fi、輸入/輸出(Input/Output,IO)通訊其中一個以上的一物理傳輸介面。In some embodiments, the signal processing unit is a microprocessor having a physical transmission interface of one or more of electrical potential transmission function, Ethernet or Wi-Fi, and input/output (IO) communication.

在一些實施例中,該上位系統為一雲端伺服器。In some embodiments, the host system is a cloud server.

在一些實施例中,該上位系統包括一原始模型模組,將該溫度資料進行一特徵工程之後,再建立一基礎補償模型。In some embodiments, the host system includes an original model module that performs feature engineering on the temperature data and then establishes a basic compensation model.

在一些實施例中,該上位系統還包括一更新模組,提供該基礎補償模型執行該元學習以及一資料拼接以進行更新,並再將更新後的該基礎補償模型透過該佈署模組傳回該更新模組,提供一客戶端較為生疏的資料分析與模型訓練的功能。In some embodiments, the upper system further includes an update module that provides the base compensation model with meta-learning and data splicing for updating, and then returns the updated base compensation model to the update module via the deployment module, providing a data analysis and model training function that is relatively unfamiliar to the client.

在一些實施例中,該上位系統還包括一元學習模組,該更新模組透過該元學習模組對該基礎補償模型進行該元學習與該資料拼接的更新,該元學習模組使用一少樣本學習法以利用少量資料學習新任務。In some embodiments, the upper system further includes a meta-learning module, and the update module updates the basic compensation model by performing the meta-learning and data splicing through the meta-learning module. The meta-learning module uses a few-shot learning method to learn new tasks using a small amount of data.

本發明提供另外一種基於元學習的熱變位自適應電腦數值控制補償方法,包括:收集一溫度資料以及一位移資料;儲存該溫度資料與該位移資料並上傳到一雲端伺服器;對該溫度資料與該位移資料進行特徵分析;建置一基礎補償模型;以及對一設備進行熱誤差補償並回到收集該溫度資料以及該位移資料的步驟;其中,執行建置該基礎補償模型的步驟的同時,同步包括遠端更新該基礎補償模型以及執行一元學習與一資料拼接進行更新。The present invention provides another meta-learning-based thermal displacement adaptive computer numerical control compensation method, comprising: collecting temperature data and displacement data; storing the temperature data and the displacement data and uploading them to a cloud server; performing feature analysis on the temperature data and the displacement data; establishing a basic compensation model; and performing thermal error compensation on a device and returning to the step of collecting the temperature data and the displacement data. The step of establishing the basic compensation model simultaneously includes remotely updating the basic compensation model and performing meta-learning and data splicing to update it.

在一些實施例中,在收集該溫度資料以該位移資料的步驟之前,還包括安裝一溫度感測器在該設備的一預定處並確認該溫度感測器的通訊,該預定處為該設備內部、該設備外部或是該設備的一關鍵零組件的位置。In some embodiments, before collecting the temperature data and the displacement data, the method further includes installing a temperature sensor at a predetermined location of the device and confirming communication of the temperature sensor. The predetermined location is inside the device, outside the device, or at a key component of the device.

在一些實施例中,在收集該溫度資料以該位移資料的步驟之前以及在安裝該溫度感測器在該設備的該一預定處並確認該溫度感測器的通訊之後,還包括安裝一位移感測器在該設備上並確認該位移感測器的通訊。In some embodiments, before the step of collecting the temperature data and the displacement data and after installing the temperature sensor at the predetermined location of the device and confirming the communication of the temperature sensor, it also includes installing a displacement sensor on the device and confirming the communication of the displacement sensor.

在一些實施例中,在收集該溫度資料以該位移資料的步驟之前以及在安裝該位移感測器在該設備上並確認該位移感測器的通訊之後,還包括使用一標準棒進行量測。In some embodiments, before collecting the temperature data and the displacement data and after installing the displacement sensor on the device and confirming the communication of the displacement sensor, the method further includes performing measurement using a standard rod.

為使本發明之上述目的、特徵和優點能更明顯易懂,下文茲配合各圖式所列舉之具體實施例詳加說明。In order to make the above-mentioned objects, features and advantages of the present invention more clearly understood, the following describes in detail the specific embodiments listed in the accompanying drawings.

本發明之優點、特徵以及達到之技術方法將參照例示性實施例及所附圖式進行更詳細地描述而更容易理解,且本發明可以不同形式來實現,故不應被理解為其本發明僅限於此處所陳述的實施例,相反地,對所屬技術領域具有通常知識者而言,所提供的實施例將使本揭露更加透徹與全面且完整地傳達本發明的範疇,且本發明將僅為所附加的申請專利範圍所為定義。The advantages, features, and technical methods achieved by the present invention will be described in more detail with reference to exemplary embodiments and the accompanying drawings for easier understanding. The present invention can be implemented in various forms, and therefore should not be construed as being limited to the embodiments described herein. On the contrary, for those skilled in the art, the provided embodiments will enable this disclosure to more thoroughly and comprehensively convey the scope of the present invention, and the present invention will be defined solely by the scope of the appended patent applications.

另外,術語「包含」及/或「包含」指所述特徵、區域、整體、步驟、操作、元件及/或部件的存在,但不排除一個或多個其他特徵、區域、整體、步驟、操作、元件、部件及/或其組合的存在或添加。In addition, the terms "include" and/or "comprising" refer to the existence of the stated features, regions, wholes, steps, operations, elements and/or parts, but do not exclude the existence or addition of one or more other features, regions, wholes, steps, operations, elements, parts and/or combinations thereof.

為使  貴審查委員方便瞭解本發明之內容,以及所能達成之功效,茲配合圖式列舉之各項具體實施例以詳細說明如下。To help you better understand the content of this invention and the effects it can achieve, the following specific embodiments are described in detail with reference to the accompanying drawings.

圖1係為本發明基於元學習的熱變位自適應電腦數值控制補償系統的結構方塊示意圖。Figure 1 is a block diagram of the thermal displacement adaptive computer numerical control compensation system based on meta-learning of the present invention.

請參考圖1,本發明的基於元學習的熱變位自適應電腦數值控制補償系統100包括一設備通訊模組10、一溫度通訊模組20、一位移通訊模組30、一訊號處理單元40、一診斷模組50、一佈署模組60、一上位系統通訊模組70以及一介面顯示器80。1 , the meta-learning-based thermal displacement adaptive computer numerical control compensation system 100 of the present invention includes a device communication module 10, a temperature communication module 20, a displacement communication module 30, a signal processing unit 40, a diagnosis module 50, a deployment module 60, a host system communication module 70, and an interface display 80.

設備通訊模組10經配置以電性連接對應的一設備200的一設備控制器210,以接收設備200的一設備資料,並將一補償值寫入到設備200以進行補償。在一些實施例中,該設備資料至少包括設備200本身的運作狀態以及加工時間,但並不以此為限。The device communication module 10 is configured to electrically connect to a device controller 210 of a corresponding device 200 to receive device data of the device 200 and write a compensation value to the device 200 for compensation. In some embodiments, the device data includes at least the operating status and processing time of the device 200 itself, but is not limited thereto.

在一些實施例中,設備200設置有至少一溫度感測器220以及一位移感測器230。溫度感測器220可位在設備200的一預定處。在一些實施例中,該預定處可為設備200內部、設備200外部或是設備200的一關鍵零組件的位置,但並不以此為限。而位移感測器230可位在設備200上。In some embodiments, device 200 is equipped with at least one temperature sensor 220 and one displacement sensor 230. Temperature sensor 220 may be located at a predetermined location on device 200. In some embodiments, the predetermined location may be inside device 200, outside device 200, or at a key component of device 200, but is not limited thereto. Displacement sensor 230 may be located on device 200.

溫度通訊模組20經配置以電性連接到位在設備200的該預定處的至少一溫度感測器220,以接收至少一溫度感測器220所讀取及收集到的一溫度資料。The temperature communication module 20 is configured to be electrically connected to at least one temperature sensor 220 located at the predetermined position of the device 200 to receive temperature data read and collected by the at least one temperature sensor 220 .

位移通訊模組30經配置以電性連接位在設備200上的位移感測器230,以接收位移感測器230所讀取及收集到的一位移資料。The displacement communication module 30 is configured to be electrically connected to the displacement sensor 230 located on the device 200 to receive displacement data read and collected by the displacement sensor 230 .

訊號處理單元40經配置以電性連接設備通訊模組10、溫度通訊模組20以及位移通訊模組30,以處理及儲存該設備資料、該溫度資料與該位移資料。在一些實施例中,訊號處理單元40可為一微處理器,具備有電位傳輸功能、乙太網路或Wi-Fi、輸入/輸出(Input/Output,IO)通訊其中一個以上的一物理傳輸介面,但並不以此為限。The signal processing unit 40 is configured to electrically connect to the device communication module 10, the temperature communication module 20, and the displacement communication module 30 to process and store the device data, the temperature data, and the displacement data. In some embodiments, the signal processing unit 40 may be a microprocessor having a physical transmission interface including, but not limited to, voltage transmission, Ethernet or Wi-Fi, or input/output (IO) communication.

診斷模組50經配置以電性連接訊號處理單元40,依據該設備資料、該溫度資料與該位移資料並透過一預定方式進行評估診斷,以建置一熱變位補償模型。在一些實施例中,該預定方式至少包括殘差分析以及過度擬合,但並不以此為限。The diagnostic module 50 is electrically connected to the signal processing unit 40 and performs evaluation and diagnosis based on the device data, the temperature data, and the displacement data using a predetermined method to establish a thermal displacement compensation model. In some embodiments, the predetermined method includes at least residual analysis and overfitting, but is not limited thereto.

佈署模組60經配置以電性連接訊號處理單元40,使用一深度學習模型以輸出一預測值作為一補償基準。The deployment module 60 is configured to be electrically connected to the signal processing unit 40 and uses a deep learning model to output a prediction value as a compensation benchmark.

圖2係為上位系統對多個本發明基於元學習的熱變位自適應電腦數值控制補償系統的結構方塊示意圖。FIG2 is a block diagram showing the structure of the host system for multiple thermal displacement adaptive computer numerical control compensation systems based on meta-learning according to the present invention.

請同時參考圖1及圖2,上位系統通訊模組70經配置以電性連接訊號處理單元40,可支援多對一(如圖2所示)通訊連接並執行一元學習的一上位系統300。1 and 2 , the host system communication module 70 is configured to be electrically connected to the signal processing unit 40 to support many-to-one (as shown in FIG. 2 ) communication connections and to execute a host system 300 for unary learning.

在一些實施例中,本發明的基於元學習的熱變位自適應電腦數值控制補償系統100還包括一介面顯示器80。介面顯示器80透過一內部軟體(例如,應用程式APP)將該溫度資料、該補償值、該位移資料以相對應的一圖表顯示,並經配置以依一使用者需求設定一補償機制及將該溫度資料、該補償值、該位移資料等相關資料上傳到上位系統300。In some embodiments, the meta-learning-based adaptive thermal displacement computer numerical control compensation system 100 of the present invention further includes an interface display 80. The interface display 80 displays the temperature data, the compensation value, and the displacement data in corresponding graphs via internal software (e.g., an application program). The interface display 80 is configured to set a compensation mechanism based on user requirements and upload the temperature data, the compensation value, the displacement data, and other related data to the host system 300.

請再往回參考圖1,在一些實施例中,上位系統300可為一雲端伺服器。在一些實施例中,上位系統300可包括一原始模型模組310。原始模型模組310可將該溫度資料進行一特徵工程之後,再建立一基礎補償模型。Referring back to FIG. 1 , in some embodiments, the host system 300 may be a cloud server. In some embodiments, the host system 300 may include an original model module 310 . The original model module 310 may perform feature engineering on the temperature data and then establish a basic compensation model.

在一些實施例中,上位系統300還可包括一更新模組320。更新模組320可將原始的該基礎補償模型執行該元學習以及一資料拼接以進行更新,並再將更新後的該基礎補償模型透過佈署模組60傳回更新模組320,提供一客戶端較為生疏的資料分析與模型訓練的功能。In some embodiments, the host system 300 may further include an update module 320. The update module 320 may perform meta-learning and data splicing on the original base compensation model to update it, and then return the updated base compensation model to the update module 320 via the deployment module 60, providing a relatively unfamiliar data analysis and model training function for the client.

在一些實施例中,上位系統300還可包括一元學習模組330。更新模組320透過元學習模組330對該基礎補償模型進行該元學習與該資料拼接的更新,元學習模組330可使用一少樣本學習法以利用少量資料學習新任務。藉此,透過元學習技術可使用少量的資料及資料拼接,克服資料量不足的問題,快速建立熱補償模型(例如,該基礎補償模型)。In some embodiments, the host system 300 may further include a meta-learning module 330. The update module 320 uses the meta-learning module 330 to update the base compensation model by performing meta-learning and data splicing. The meta-learning module 330 may employ a few-shot learning approach to learn new tasks using a small amount of data. Thus, meta-learning techniques can overcome data shortages by using a small amount of data and data splicing to quickly establish a hot compensation model (e.g., the base compensation model).

因此,根據上述的基於元學習的熱變位自適應電腦數值控制補償系統100,能夠減少停機、不受限環境溫度、降低建模成本,因設備運行或加工產生的熱能,並能自動收集溫度、位移資料的系統。再者,將溫度資料、位移資料、設備資料及補償值等資料一併儲存在例如雲端伺服器的上位系統300(例如,上位系統的資訊庫)供使用者查詢及分析歷史資料,並支持遠端更新其熱補償模型(例如,該基礎補償模型),透過學習模型以提高補償準確度。Therefore, the meta-learning-based adaptive thermal displacement computer numerical control compensation system 100 can reduce downtime, be unrestricted by ambient temperature, and lower modeling costs. The system automatically collects temperature and displacement data, while also automatically collecting heat energy generated by equipment operation or processing. Furthermore, the system stores temperature data, displacement data, equipment data, and compensation values in a host system 300, such as a cloud server (e.g., a database of the host system), allowing users to query and analyze historical data. The system also supports remote updating of its thermal compensation model (e.g., the basic compensation model), improving compensation accuracy through model learning.

圖3係為本發明基於元學習的熱變位自適應電腦數值控制補償方法的流程示意圖。FIG3 is a flow chart of the meta-learning-based thermal displacement adaptive computer numerical control compensation method of the present invention.

請同時參考圖1及圖3,本發明的基於元學習的熱變位自適應電腦數值控制補償方法S100包括:收集一溫度資料以及一位移資料(步驟S14);儲存該溫度資料與該位移資料並上傳到一雲端伺服器(步驟S15);對該溫度資料與該位移資料進行特徵分析(步驟S16);建置一基礎補償模型(步驟S17);對一設備進行熱誤差補償並回到收集該溫度資料以及該位移資料的步驟(步驟S18)。再者,執行建置該基礎補償模型(步驟S17)的步驟的同時,同步包括遠端更新該基礎補償模型(步驟S191)以及執行一元學習與一資料拼接進行更新(步驟S192)。Referring to FIG. 1 and FIG. 3 , the meta-learning-based thermal displacement adaptive computer numerical control compensation method S100 of the present invention includes: collecting temperature data and displacement data (step S14); storing the temperature data and the displacement data and uploading them to a cloud server (step S15); performing feature analysis on the temperature data and the displacement data (step S16); establishing a basic compensation model (step S17); and performing thermal error compensation on a device and returning to the step of collecting the temperature data and the displacement data (step S18). Furthermore, while executing the step of building the basic compensation model (step S17), the basic compensation model is synchronously updated remotely (step S191) and a univariate learning and data splicing are performed to update the model (step S192).

在一些實施例中,步驟S14可藉由如圖1所示的溫度感測器220收集該溫度資料以及藉由位移感測器230收集該位移資料,而溫度感測器220與位移感測器230的詳細敘述與前述圖1的描述相同,故在此處則不再贅述。In some embodiments, step S14 may collect the temperature data by the temperature sensor 220 and the displacement data by the displacement sensor 230 as shown in FIG. 1 . The detailed description of the temperature sensor 220 and the displacement sensor 230 is the same as that of FIG. 1 , and thus will not be repeated here.

在一些實施例中,步驟S15可藉由如圖1所示的設備通訊模組10、溫度通訊模組20、位移通訊模組30、訊號處理單元40、診斷模組50、佈署模組60以及上位系統通訊模組70所實現,其詳細敘述與前述圖1的描述相同,故在此處則不再贅述。In some embodiments, step S15 can be implemented by the device communication module 10, the temperature communication module 20, the displacement communication module 30, the signal processing unit 40, the diagnosis module 50, the deployment module 60, and the upper system communication module 70 as shown in FIG1 . The detailed description is the same as that of FIG1 above, so it will not be repeated here.

在一些實施例中,步驟S16可藉由如圖1所示的上位系統300中的原始模型模組310所實現,其詳細敘述與前述圖1的描述相同,故在此處則不再贅述。In some embodiments, step S16 may be implemented by the original model module 310 in the host system 300 as shown in FIG1 . The detailed description is the same as that of FIG1 , and thus will not be repeated here.

在一些實施例中,步驟S191可藉由如圖1所示的上位系統300中的更新模組320所實現,其詳細敘述與前述圖1的描述相同,故在此處則不再贅述。In some embodiments, step S191 may be implemented by the update module 320 in the host system 300 as shown in FIG1 . The detailed description is the same as that of FIG1 , and thus will not be repeated here.

在一些實施例中,步驟S192可藉由如圖1所示的上位系統300中的元學習模組330所實現,其詳細敘述與前述圖1的描述相同,故在此處則不再贅述。In some embodiments, step S192 may be implemented by the meta-learning module 330 in the host system 300 as shown in FIG1 . The detailed description is the same as that of FIG1 , and thus will not be repeated here.

請再參考圖3,在一些實施例中,在收集該溫度資料以該位移資料的步驟(即,步驟S14)之前,還包括安裝一溫度感測器在該設備的一預定處並確認該溫度感測器的通訊(步驟S11)。而該預定處為該設備內部、該設備外部或是該設備的一關鍵零組件的位置。Referring again to FIG. 3 , in some embodiments, before collecting the temperature data and the displacement data (i.e., step S14 ), the process further includes installing a temperature sensor at a predetermined location on the device and confirming communication with the temperature sensor (step S11 ). The predetermined location may be inside the device, outside the device, or at a key component of the device.

在一些實施例中,在收集該溫度資料以該位移資料的步驟(即,步驟S14)之前以及在安裝該溫度感測器在該設備的該一預定處並確認該溫度感測器的通訊(即,步驟S11)之後,還包括安裝一位移感測器在該設備上並確認該位移感測器的通訊(步驟S12)。In some embodiments, before the step of collecting the temperature data and the displacement data (i.e., step S14) and after installing the temperature sensor at the predetermined location of the device and confirming the communication of the temperature sensor (i.e., step S11), it also includes installing a displacement sensor on the device and confirming the communication of the displacement sensor (step S12).

在一些實施例中,在收集該溫度資料以該位移資料的步驟(即,步驟S14)之前以及在安裝該位移感測器在該設備上並確認該位移感測器的通訊(即,步驟S12)之後,還包括使用一標準棒進行量測(步驟S13)。在一些實施例中,該標準棒亦可稱為一標準刀,經配置以量測熱變位(即,位移)。In some embodiments, before collecting the temperature data and the displacement data (i.e., step S14) and after installing the displacement sensor on the device and confirming communication with the displacement sensor (i.e., step S12), the method further includes performing measurements using a calibration rod (step S13). In some embodiments, the calibration rod, which can also be referred to as a calibration blade, is configured to measure thermal displacement (i.e., displacement).

在一實際的熱變位自適應的操作範例中,包括:(1)透過設定IP與設備200進行通訊以取得設備200的當前狀態(例如,設備資料);(2)可顯示當前至少一溫度感測器220的溫度數值(例如,溫度資料),並將其資料進行儲存且上傳到雲端(例如,雲端伺服器的上位系統300);(3)透過曲線圖,可得知熱變位趨勢,並將其資料進行儲存且上傳到雲端(例如,雲端伺服器的上位系統300)。In an actual operation example of thermal displacement adaptation, the following are included: (1) communicating with the device 200 by setting the IP address to obtain the current status of the device 200 (e.g., device data); (2) displaying the current temperature value of at least one temperature sensor 220 (e.g., temperature data), storing the data, and uploading it to the cloud (e.g., the upper system 300 of the cloud server); (3) obtaining the thermal displacement trend through a curve chart, and storing the data and uploading it to the cloud (e.g., the upper system 300 of the cloud server).

圖4係為本發明基於元學習的熱變位自適應電腦數值控制補償系統的資料拼接示意圖。圖5係為本發明基於元學習的熱變位自適應電腦數值控制補償系統的熱補償模型驗證示意圖。Figure 4 is a schematic diagram of data splicing for the meta-learning-based thermal displacement adaptive computer numerical control compensation system of the present invention. Figure 5 is a schematic diagram of the thermal compensation model verification for the meta-learning-based thermal displacement adaptive computer numerical control compensation system of the present invention.

請參考圖4,透過上位系統300進行資料分析、元學習技術、資料拼接以建立模型,並將預測值與實際值兩者進行驗證,取得合適的熱補償模型。在圖4中,舉例來說,資料1、資料2、資料3、資料4皆為溫度及位移資料,此外每一個資料都因溫度變化而產生的位移資料,但並不以此為限。Referring to Figure 4, the host system 300 uses data analysis, meta-learning, and data concatenation to build a model. The predicted and actual values are then verified to obtain a suitable thermal compensation model. In Figure 4, for example, Data 1, Data 2, Data 3, and Data 4 are all temperature and displacement data. Furthermore, each data point represents displacement data generated by temperature changes, but this is not the only limitation.

請同時參考圖4及圖5,產生的預測值(圖5中的虛線曲線)以及實際值(圖5中的實線曲線)兩者的驗證結果相比較,可在多次的模型的訓練與更新之後越來越接近。因此,為提升模型準確度,進行訓練與更新,不僅減少可外派到現場的人力,也能降低使用者的停機時間,創造雙贏局面。Referencing Figures 4 and 5, the validation results comparing the predicted values (dashed curve in Figure 5) and the actual values (solid curve in Figure 5) show that they become increasingly close after repeated model training and updates. Therefore, training and updating to improve model accuracy not only reduces the number of personnel required to be dispatched to the field but also reduces user downtime, creating a win-win situation.

本案所揭示者,乃較佳實施例,舉凡局部之變更或修飾而源於本案之技術思想而為熟習該項技藝之人所易於推知者,俱不脫本案之專利權範疇。The present invention discloses a preferred embodiment. Any partial changes or modifications that are derived from the technical concept of the present invention and are easily inferred by a person skilled in the art do not deviate from the scope of the patent rights of the present invention.

綜上所陳,本案無論就目的、手段與功效,在在顯示其迥異於習知之技術特徵,且其首先發明合於實用,亦在在符合發明之專利要件,懇請  貴審查委員明察,並祈早日賜予專利,俾嘉惠社會,實感德便。In summary, this case demonstrates technical features that are distinct from the known in terms of purpose, means, and effect. Furthermore, it is the first invention of its kind and is suitable for practical use, thus meeting the patent requirements for invention. We earnestly request the Review Committee to carefully examine this matter and to grant a patent as soon as possible, so that it can benefit society and be truly appreciated.

100:基於元學習的熱變位自適應電腦數值控制補償系統10:設備通訊模組20:溫度通訊模組30:位移通訊模組40:訊號處理單元50:診斷模組60:佈署模組70:上位系統通訊模組80:介面顯示器200:設備210:設備控制器220:溫度感測器230:位移感測器300:上位系統310:原始模型模組320:更新模組330:元學習模組S100:基於元學習的熱變位自適應電腦數值控制補償方法S11~S18、S191、S192:步驟100: Meta-learning-based adaptive computer numerical control compensation system for thermal displacement 10: Device communication module 20: Temperature communication module 30: Displacement communication module 40: Signal processing unit 50: Diagnosis module 60: Deployment module 70: Host system communication module 80: Interface display 200: Device 210: Device controller 220: Temperature sensor 230: Displacement sensor 300: Host system 310: Original model module 320: Update module 330: Meta-learning module S100: Meta-learning-based adaptive computer numerical control compensation method for thermal displacement S11-S18, S191, S192: Steps

圖1係為本發明基於元學習的熱變位自適應電腦數值控制補償系統的結構方塊示意圖。圖2係為上位系統對多個本發明基於元學習的熱變位自適應電腦數值控制補償系統的結構方塊示意圖。圖3係為本發明基於元學習的熱變位自適應電腦數值控制補償方法的流程示意圖。圖4係為本發明基於元學習的熱變位自適應電腦數值控制補償系統的資料拼接示意圖。圖5係為本發明基於元學習的熱變位自適應電腦數值控制補償系統的熱補償模型驗證示意圖。Figure 1 is a schematic diagram of the structural blocks of the meta-learning-based thermal displacement adaptive computer numerical control compensation system of the present invention. Figure 2 is a schematic diagram of the structural blocks of the upper system for multiple meta-learning-based thermal displacement adaptive computer numerical control compensation systems of the present invention. Figure 3 is a schematic diagram of the process of the meta-learning-based thermal displacement adaptive computer numerical control compensation method of the present invention. Figure 4 is a schematic diagram of data splicing of the meta-learning-based thermal displacement adaptive computer numerical control compensation system of the present invention. Figure 5 is a schematic diagram of the thermal compensation model verification of the meta-learning-based thermal displacement adaptive computer numerical control compensation system of the present invention.

100:基於元學習的熱變位自適應電腦數值控制補償系統 100: Thermal displacement adaptive computer numerical control compensation system based on meta-learning

10:設備通訊模組 10: Device communication module

20:溫度通訊模組 20: Temperature communication module

30:位移通訊模組 30: Displacement Communication Module

40:訊號處理單元 40: Signal processing unit

50:診斷模組 50: Diagnostic Module

60:佈署模組 60: Deployment Module

70:上位系統通訊模組 70: Host system communication module

80:介面顯示器 80: Interface Display

200:設備 200: Equipment

210:設備控制器 210: Device Controller

220:溫度感測器 220: Temperature sensor

230:位移感測器 230: Displacement Sensor

300:上位系統 300: Host system

310:原始模型模組 310: Original Model Module

320:更新模組 320: Update module

330:元學習模組 330: Meta-learning module

Claims (14)

一種基於元學習的熱變位自適應電腦數值控制補償系統,包括:一設備通訊模組,經配置以電性連接對應的一設備的一控制器,以接收該設備的一設備資料,並將一補償值寫入到該設備以進行補償;一溫度通訊模組,經配置以電性連接到位在該設備的一預定處的至少一溫度感測器,以接收該至少一溫度感測器所讀取及收集到的一溫度資料;一位移通訊模組,經配置以電性連接位在該設備上的一位移感測器,以接收該位移感測器所讀取及收集到的一位移資料;一訊號處理單元,經配置以電性連接該設備通訊模組、該溫度通訊模組以及該位移通訊模組,以處理及儲存該設備資料、該溫度資料與該位移資料;一診斷模組,經配置以電性連接該訊號處理單元,依據該設備資料、該溫度資料與該位移資料並透過一預定方式進行評估診斷,以建置一熱變位補償模型;一佈署模組,經配置以電性連接該訊號處理單元,使用一深度學習模型以輸出一預測值作為一補償基準;以及一上位系統通訊模組,經配置以電性連接該訊號處理單元,支援多對一通訊連接並執行一元學習的一上位系統。A meta-learning-based thermal displacement adaptive computer numerical control compensation system includes: a device communication module, configured to be electrically connected to a controller of a corresponding device to receive device data of the device and write a compensation value to the device for compensation; a temperature communication module, configured to be electrically connected to at least one temperature sensor located at a predetermined position of the device to receive temperature data read and collected by the at least one temperature sensor; a displacement communication module, configured to be electrically connected to a displacement sensor located on the device to receive displacement data read and collected by the displacement sensor; a signal processing unit, configured to be electrically connected to a controller of a corresponding device to receive device data of the device and write a compensation value to the device for compensation; a temperature communication module, configured to be electrically connected to at least one temperature sensor located at a predetermined position of the device to receive temperature data read and collected by the at least one temperature sensor; a displacement communication module, configured to be electrically connected to a displacement sensor located on the device to receive displacement data read and collected by the displacement sensor; and a signal processing unit, configured to be electrically connected to a controller of a corresponding device to receive device data of the device and write a compensation value to the device for compensation. The device communication module, the temperature communication module, and the displacement communication module are electrically connected to the device communication module, the temperature communication module, and the displacement communication module to process and store the device data, the temperature data, and the displacement data; a diagnosis module is configured to be electrically connected to the signal processing unit and to perform evaluation and diagnosis based on the device data, the temperature data, and the displacement data in a predetermined manner to establish a thermal displacement compensation model; a deployment module is configured to be electrically connected to the signal processing unit and to use a deep learning model to output a prediction value as a compensation benchmark; and a host system communication module is configured to be electrically connected to the signal processing unit and to support a many-to-one communication connection and execute a unary learning host system. 如請求項1所述之基於元學習的熱變位自適應電腦數值控制補償系統,還包括一介面顯示器,透過一內部軟體將該溫度資料、該補償值、該位移資料以相對應的一圖表顯示,並經配置以依一使用者需求設定一補償機制及將該溫度資料、該補償值、該位移資料上傳到該上位系統。The meta-learning-based thermal displacement adaptive computer numerical control compensation system as described in claim 1 further includes an interface display that displays the temperature data, the compensation value, and the displacement data in a corresponding graph through internal software, and is configured to set a compensation mechanism according to user requirements and upload the temperature data, the compensation value, and the displacement data to the host system. 如請求項2所述之基於元學習的熱變位自適應電腦數值控制補償系統,其中,該預定方式至少包括殘差分析以及過度擬合。The meta-learning-based thermal displacement adaptive computer numerical control compensation system as described in claim 2, wherein the predetermined method includes at least residual analysis and overfitting. 如請求項3所述之基於元學習的熱變位自適應電腦數值控制補償系統,其中,該設備資料至少包括該設備本身的運作狀態以及加工時間。As described in claim 3, the meta-learning-based thermal displacement adaptive computer numerical control compensation system, wherein the equipment data at least includes the operating status and processing time of the equipment itself. 如請求項4所述之基於元學習的熱變位自適應電腦數值控制補償系統,其中,該預定處為該設備內部、該設備外部或是該設備的一關鍵零組件的位置。The meta-learning-based thermal displacement adaptive computer numerical control compensation system as described in claim 4, wherein the predetermined location is inside the device, outside the device, or the location of a key component of the device. 如請求項5所述之基於元學習的熱變位自適應電腦數值控制補償系統,其中,該訊號處理單元為一微處理器,具備有電位傳輸功能、乙太網路或Wi-Fi、輸入/輸出(Input/Output,IO)通訊其中一個以上的一物理傳輸介面。As described in claim 5, the meta-learning-based thermal displacement adaptive computer numerical control compensation system, wherein the signal processing unit is a microprocessor having a physical transmission interface of one or more of an electrical potential transmission function, Ethernet or Wi-Fi, and input/output (IO) communication. 如請求項1所述之基於元學習的熱變位自適應電腦數值控制補償系統,其中,該上位系統為一雲端伺服器。The meta-learning-based thermal displacement adaptive computer numerical control compensation system as described in claim 1, wherein the host system is a cloud server. 如請求項7所述之基於元學習的熱變位自適應電腦數值控制補償系統,其中,該上位系統包括一原始模型模組,將該溫度資料進行一特徵工程之後,再建立一基礎補償模型。As described in claim 7, the meta-learning-based thermal displacement adaptive computer numerical control compensation system includes an original model module, which performs feature engineering on the temperature data and then establishes a basic compensation model. 如請求項8所述之基於元學習的熱變位自適應電腦數值控制補償系統,其中,該上位系統還包括一更新模組,提供該基礎補償模型執行該元學習以及一資料拼接以進行更新,並再將更新後的該基礎補償模型透過該佈署模組傳回該更新模組,提供一客戶端較為生疏的資料分析與模型訓練的功能。As described in claim 8, the meta-learning-based thermal displacement adaptive computer numerical control compensation system, wherein the upper system further includes an update module that provides the basic compensation model with the meta-learning and data splicing for updating, and then returns the updated basic compensation model to the update module through the deployment module, providing a data analysis and model training function that is relatively unfamiliar to the client. 如請求項9所述之基於元學習的熱變位自適應電腦數值控制補償系統,其中,該上位系統還包括一元學習模組,該更新模組透過該元學習模組對該基礎補償模型進行該元學習與該資料拼接的更新,該元學習模組使用一少樣本學習法以利用少量資料學習新任務。As described in claim 9, the thermal displacement adaptive computer numerical control compensation system based on meta-learning, wherein the upper system further includes a unary learning module, the update module updates the basic compensation model by splicing the meta-learning and the data through the meta-learning module, and the meta-learning module uses a few-sample learning method to learn new tasks using a small amount of data. 一種基於元學習的熱變位自適應電腦數值控制補償方法,包括:收集一溫度資料以及一位移資料;儲存該溫度資料與該位移資料並上傳到一雲端伺服器;對該溫度資料與該位移資料進行特徵分析;建置一基礎補償模型;以及對一設備進行熱誤差補償並回到收集該溫度資料以及該位移資料的步驟;其中,執行建置該基礎補償模型的步驟的同時,同步包括遠端更新該基礎補償模型以及執行一元學習與一資料拼接進行更新。A meta-learning-based thermal displacement adaptive computer numerical control compensation method includes: collecting temperature data and displacement data; storing the temperature data and the displacement data and uploading them to a cloud server; performing feature analysis on the temperature data and the displacement data; establishing a basic compensation model; and performing thermal error compensation on a device and returning to the step of collecting the temperature data and the displacement data. The step of establishing the basic compensation model simultaneously includes remotely updating the basic compensation model and performing unary learning and data splicing to update it. 如請求項11所述之基於元學習的熱變位自適應電腦數值控制補償方法,其中,在收集該溫度資料以該位移資料的步驟之前,還包括安裝一溫度感測器在該設備的一預定處並確認該溫度感測器的通訊,該預定處為該設備內部、該設備外部或是該設備的一關鍵零組件的位置。As described in claim 11, the meta-learning-based thermal displacement adaptive computer numerical control compensation method further includes installing a temperature sensor at a predetermined location of the device and confirming the communication of the temperature sensor before collecting the temperature data and the displacement data. The predetermined location is inside the device, outside the device, or at the location of a key component of the device. 如請求項12所述之基於元學習的熱變位自適應電腦數值控制補償方法,其中,在收集該溫度資料以該位移資料的步驟之前以及在安裝該溫度感測器在該設備的該一預定處並確認該溫度感測器的通訊之後,還包括安裝一位移感測器在該設備上並確認該位移感測器的通訊。The meta-learning-based thermal displacement adaptive computer numerical control compensation method as described in claim 12, wherein, before the step of collecting the temperature data and the displacement data and after installing the temperature sensor at the predetermined location of the device and confirming the communication of the temperature sensor, it also includes installing a displacement sensor on the device and confirming the communication of the displacement sensor. 如請求項13所述之基於元學習的熱變位自適應電腦數值控制補償方法,其中,在收集該溫度資料以該位移資料的步驟之前以及在安裝該位移感測器在該設備上並確認該位移感測器的通訊之後,還包括使用一標準棒進行量測。The meta-learning-based thermal displacement adaptive computer numerical control compensation method as described in claim 13, wherein, before the step of collecting the temperature data and the displacement data and after installing the displacement sensor on the device and confirming the communication of the displacement sensor, it also includes using a standard rod for measurement.
TW113119733A 2024-05-28 2024-05-28 Thermal displacement adaptive computer numerical control compensation system and method based on meta-learning TWI900033B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW113119733A TWI900033B (en) 2024-05-28 2024-05-28 Thermal displacement adaptive computer numerical control compensation system and method based on meta-learning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW113119733A TWI900033B (en) 2024-05-28 2024-05-28 Thermal displacement adaptive computer numerical control compensation system and method based on meta-learning

Publications (2)

Publication Number Publication Date
TWI900033B true TWI900033B (en) 2025-10-01
TW202546562A TW202546562A (en) 2025-12-01

Family

ID=98263454

Family Applications (1)

Application Number Title Priority Date Filing Date
TW113119733A TWI900033B (en) 2024-05-28 2024-05-28 Thermal displacement adaptive computer numerical control compensation system and method based on meta-learning

Country Status (1)

Country Link
TW (1) TWI900033B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6882364B2 (en) * 2019-04-23 2021-06-02 ファナック株式会社 Machine learning device and thermal displacement compensator
US20220171363A1 (en) * 2019-04-05 2022-06-02 Deckel Maho Seebach Gmbh Method and Device for Compensating for a Thermally Induced Change in Position on a Numerically Controlled Machine Tool
CN116360342A (en) * 2023-02-13 2023-06-30 广东工业大学 A Modeling Method for Thermal Error Prediction of Machine Tool
TWI811033B (en) * 2022-07-21 2023-08-01 國立臺灣大學 A spindle temperature measurement and compensation system
CN116540627A (en) * 2023-02-07 2023-08-04 广东工业大学 Machine tool thermal error prediction compensation group control method and system based on deep transfer learning
CN117055474A (en) * 2023-08-25 2023-11-14 陕西工业职业技术学院 A thermal error compensation method and device for CNC machine tools based on thermal images

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220171363A1 (en) * 2019-04-05 2022-06-02 Deckel Maho Seebach Gmbh Method and Device for Compensating for a Thermally Induced Change in Position on a Numerically Controlled Machine Tool
JP6882364B2 (en) * 2019-04-23 2021-06-02 ファナック株式会社 Machine learning device and thermal displacement compensator
TWI811033B (en) * 2022-07-21 2023-08-01 國立臺灣大學 A spindle temperature measurement and compensation system
CN116540627A (en) * 2023-02-07 2023-08-04 广东工业大学 Machine tool thermal error prediction compensation group control method and system based on deep transfer learning
CN116360342A (en) * 2023-02-13 2023-06-30 广东工业大学 A Modeling Method for Thermal Error Prediction of Machine Tool
CN117055474A (en) * 2023-08-25 2023-11-14 陕西工业职业技术学院 A thermal error compensation method and device for CNC machine tools based on thermal images

Similar Documents

Publication Publication Date Title
JP7325356B2 (en) Information processing system and simulation method
JP4919537B2 (en) Method, system, and storage medium for providing executable program to coordinate measurement system
US8855792B2 (en) Automated creation and adaption of a machine or system model
US12153413B2 (en) Virtual sensor on a higher-level machine platform
CN108009081B (en) Engineering design tool cooperation device and engineering design tool cooperation method
CN103038714B (en) Method for simulating industrial processes, tracking simulator and automation system
JP2016095844A (en) Process control system and system and method for its configuration
CN105009010A (en) Control system, control device, image processing device, and control method
US12400191B2 (en) Information processing apparatus, information processing system, and part ordering method
WO2022030041A1 (en) Prediction system, information processing device, and information processing program
CN112639645B (en) Method, device and positioning system for positioning sensor
TWI900033B (en) Thermal displacement adaptive computer numerical control compensation system and method based on meta-learning
Atluru et al. Data to information: can MTConnect deliver the promise
TW202546562A (en) Thermal displacement adaptive computer numerical control compensation system and method based on meta-learning
US12535808B2 (en) Real-time calibration for detailed digital twins
JP2022137914A (en) Information processing device, information processing method and information processing program
TWI830193B (en) Forecasting systems, information processing devices and information processing programs
JP2003272074A (en) Measurement data collection device
US20220043429A1 (en) Management device, management system, management method, and program
CN117707050A (en) Cloud computing-based numerical control machine tool real-time monitoring and data analysis system and method
CN114424178B (en) Storage medium, learning device, and data collection system
JP7567586B2 (en) Information processing device, parameter calculation method, and parameter calculation program
CN112074348B (en) Electronic laboratory metering system for liquids and method for operating an electronic laboratory metering system for liquids
EP4488014A1 (en) Information processing device
CN118534753A (en) Information processing device, information processing method, and recording medium