[go: up one dir, main page]

TWI838016B - Electronic apparatus and fan speed adjustment method thereof - Google Patents

Electronic apparatus and fan speed adjustment method thereof Download PDF

Info

Publication number
TWI838016B
TWI838016B TW111148395A TW111148395A TWI838016B TW I838016 B TWI838016 B TW I838016B TW 111148395 A TW111148395 A TW 111148395A TW 111148395 A TW111148395 A TW 111148395A TW I838016 B TWI838016 B TW I838016B
Authority
TW
Taiwan
Prior art keywords
load
load types
fan
time points
speed
Prior art date
Application number
TW111148395A
Other languages
Chinese (zh)
Other versions
TW202426773A (en
Inventor
蘇凱農
Original Assignee
宏碁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宏碁股份有限公司 filed Critical 宏碁股份有限公司
Priority to TW111148395A priority Critical patent/TWI838016B/en
Application granted granted Critical
Publication of TWI838016B publication Critical patent/TWI838016B/en
Publication of TW202426773A publication Critical patent/TW202426773A/en

Links

Images

Landscapes

  • Control Of Electric Motors In General (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Abstract

An electronic apparatus and a fan speed adjustment method thereof are provided. The method includes the following steps. Multiple system current values at different time are monitored. The monitored system current values are sequentially fed into a machine learning model, and multiple load types are sequentially inferred through the machine learning model. The inferenced load types are used to check whether the inferenced load types satisfy a certain condition. When the load types satisfy the specific condition, a fan speed of the fan is adjusted to become higher according to the load type

Description

電子裝置與風扇轉速調整方法Electronic device and fan speed adjustment method

本發明是有關於一種電子裝置,且特別是有關於一種電子裝置與風扇轉速調整方法。 The present invention relates to an electronic device, and in particular to an electronic device and a fan speed adjustment method.

隨著科技的日新月異,電腦系統已成為現代資訊社會重要的硬體基礎之一。此外,電腦系統的運算速度亦是日益提升,以應付龐大計算量與縮短資料處理的時間。然而,隨著電腦系統之運算速度的加快,電腦系統中各電子元件(尤其是中央處理器)所產生的熱能也就越高。因此,為了讓電腦系統穩定且持續地運作,電腦系統中必須安裝風扇,以將系統的溫度控制在安全範圍之內。 With the rapid development of technology, computer systems have become one of the important hardware foundations of the modern information society. In addition, the computing speed of computer systems is also increasing day by day to cope with the huge amount of computing and shorten the time of data processing. However, as the computing speed of computer systems increases, the heat generated by each electronic component in the computer system (especially the central processing unit) is also higher. Therefore, in order to allow the computer system to operate stably and continuously, a fan must be installed in the computer system to control the temperature of the system within a safe range.

目前來說,現有的風扇轉速控制方法大多是依據系統的溫度來操控風扇的轉速,以確保系統長久運行的穩定性。以筆記型電腦平台為例,通常由嵌入式控制器(embedded controller,EC) 蒐集主機板上溫度感測器所感測的溫度或特定電子晶片(例如中央處理器)的溫度後,在基於這些溫度資訊而根據預設的風扇轉速表(fan table)動態調整風扇轉速。然而,當前的風扇控制機制都是在系統溫度或系統效能已經確定達到特定條件下才對風扇轉速進行調整,因此有可能發生系統運算效能已經因為溫度過高而受到不良影響,導致中央處理器無法發揮其最大效能。 At present, most existing fan speed control methods control the fan speed based on the system temperature to ensure the long-term stability of the system. Taking a laptop platform as an example, an embedded controller (EC) usually collects the temperature sensed by the temperature sensor on the motherboard or the temperature of a specific electronic chip (such as the central processing unit), and then dynamically adjusts the fan speed according to the preset fan table based on these temperature information. However, the current fan control mechanism adjusts the fan speed only when the system temperature or system performance has been determined to reach a specific condition. Therefore, it is possible that the system computing performance has been adversely affected by the high temperature, resulting in the central processing unit being unable to exert its maximum performance.

有鑑於此,本發明提出一種電子裝置與其風扇轉速調整方法,其可解決上述技術問題。 In view of this, the present invention proposes an electronic device and a fan speed adjustment method thereof, which can solve the above technical problems.

本發明實施例提供一種風扇轉速調整方法,適用於包括風扇的電子裝置,並包括下列步驟。監測對應至不同時間點的多個系統電流值。將多個系統電流值依序輸入至一機器學習模型,而透過機器學習模型依序預測出多個負載類型。並且,判斷多個負載類型是否符合特定條件。當這些負載類型符合特定條件,根據這些負載類型調高風扇的風扇轉速。 The present invention provides a fan speed adjustment method applicable to an electronic device including a fan, and includes the following steps. Monitor multiple system current values corresponding to different time points. Input the multiple system current values into a machine learning model in sequence, and predict multiple load types in sequence through the machine learning model. And, determine whether the multiple load types meet specific conditions. When these load types meet the specific conditions, increase the fan speed of the fan according to these load types.

本發明實施例提供一種電子裝置,其包括風扇以及控制模組。此控制模組耦接此風扇,並經配置以執行下列步驟。監測對應至不同時間點的多個系統電流值。將多個系統電流值依序輸入至一機器學習模型,而透過機器學習模型依序預測出多個負載類型。並且,判斷多個負載類型是否符合特定條件。當這些負載類型符合特定條件,根據這些負載類型調高風扇的風扇轉速。 The present invention provides an electronic device, which includes a fan and a control module. The control module is coupled to the fan and configured to perform the following steps. Monitor multiple system current values corresponding to different time points. Input the multiple system current values into a machine learning model in sequence, and predict multiple load types in sequence through the machine learning model. And, determine whether the multiple load types meet specific conditions. When these load types meet the specific conditions, increase the fan speed of the fan according to these load types.

基於上述,於本發明的實施例中,系統電流值持續地被監測並依序輸入至機器學習模型,以使機器學習模型持續地預測出關聯於這些輸入系統電流值的多個負載類型。於是,風扇轉速可以反應於這些負載類型符合特定條件而提高。基此,可在系統重載真正來臨之前,根據模型預測結果預先提早調高風扇轉速,以盡量避免溫度過高的情況發生而爭取到更好的系統效能。 Based on the above, in an embodiment of the present invention, the system current value is continuously monitored and sequentially input into the machine learning model, so that the machine learning model continuously predicts multiple load types associated with these input system current values. Therefore, the fan speed can be increased in response to these load types meeting specific conditions. Based on this, before the system overload actually comes, the fan speed can be increased in advance according to the model prediction results to avoid the occurrence of over-temperature as much as possible and strive for better system performance.

100:電子裝置 100: Electronic devices

110:風扇 110: Fan

120:控制模組 120: Control module

130:充電電路 130: Charging circuit

140:連接埠 140:Port

200:電源轉接器 200: Power adapter

121:嵌入式控制器 121:Embedded Controller

122:記憶體 122: Memory

123:處理器 123:Processor

L1~L4:曲線 L1~L4: Curve

S310~S350,S510~S540,S541~S543:步驟 S310~S350,S510~S540,S541~S543: Steps

圖1是依照本發明一實施例的電子裝置的方塊圖。 FIG1 is a block diagram of an electronic device according to an embodiment of the present invention.

圖2A是依照本發明一實施例的控制模組的示意圖。 Figure 2A is a schematic diagram of a control module according to an embodiment of the present invention.

圖2B是依照本發明一實施例的控制模組的示意圖。 Figure 2B is a schematic diagram of a control module according to an embodiment of the present invention.

圖3是依照本發明一實施例的風扇轉速調整方法的流程圖。 Figure 3 is a flow chart of a fan speed adjustment method according to an embodiment of the present invention.

圖4A是依照本發明一實施例的系統閒置負載的系統電流的示意圖。 FIG4A is a schematic diagram of system current of a system with idle load according to an embodiment of the present invention.

圖4B是依照本發明一實施例的持續性低負載的系統電流的示意圖。 FIG4B is a schematic diagram of system current at a continuous low load according to an embodiment of the present invention.

圖4C是依照本發明一實施例的間歇性高負載的系統電流的示意圖。 FIG4C is a schematic diagram of system current under intermittent high load according to an embodiment of the present invention.

圖4D是依照本發明一實施例的持續性高負載的系統電流的示意圖。 FIG4D is a schematic diagram of system current under continuous high load according to an embodiment of the present invention.

圖5是依照本發明一實施例的風扇轉速調整方法的流程圖。 Figure 5 is a flow chart of a fan speed adjustment method according to an embodiment of the present invention.

本發明的部份實施例接下來將會配合附圖來詳細描述,以下的描述所引用的元件符號,當不同附圖出現相同的元件符號將視為相同或相似的元件。這些實施例只是本發明的一部份,並未揭示所有本發明的可實施方式。更確切的說,這些實施例只是本發明的專利申請範圍中的方法與裝置的範例。 Some embodiments of the present invention will be described in detail with reference to the accompanying drawings. The component symbols cited in the following description will be regarded as the same or similar components when the same component symbols appear in different drawings. These embodiments are only part of the present invention and do not disclose all possible implementation methods of the present invention. More precisely, these embodiments are only examples of methods and devices within the scope of the patent application of the present invention.

圖1是依照本發明一實施例的電子裝置的方塊圖。請參照圖1,電子裝置100包括風扇110、控制模組120、充電電路130以及連接埠140。電子裝置100可例如為筆記型電腦、伺服器或其他具備風扇散熱機制的電子產品,本發明並不對此限制。 FIG1 is a block diagram of an electronic device according to an embodiment of the present invention. Referring to FIG1 , the electronic device 100 includes a fan 110, a control module 120, a charging circuit 130, and a connection port 140. The electronic device 100 may be, for example, a notebook computer, a server, or other electronic product with a fan heat dissipation mechanism, and the present invention is not limited thereto.

風扇110為安裝於電子裝置100的實體風扇且用以對電子裝置100進行散熱。例如,風扇110包含可旋轉的葉片。當風扇110的葉片旋轉時,電子裝置100內部的熱氣可被帶出至電子裝置100外部。風扇110例如是水冷式風扇或氣冷式風扇,本發明並不對此限制。此外,風扇110的風扇轉速是可控制的,而具備不同的散熱能力。當風扇110的風扇轉速越高,代表風扇110提供的散熱能力越高。反之,當風扇110的風扇轉速越低,代表風扇110提供的散熱能力越低。於一些實施例中,風扇110的轉速可透過脈寬調變訊號(Pulse-width Modulation訊號,PWM訊號)來控制。 The fan 110 is a physical fan installed on the electronic device 100 and is used to dissipate heat from the electronic device 100. For example, the fan 110 includes rotatable blades. When the blades of the fan 110 rotate, the heat inside the electronic device 100 can be taken out to the outside of the electronic device 100. The fan 110 is, for example, a water-cooled fan or an air-cooled fan, and the present invention is not limited thereto. In addition, the fan speed of the fan 110 is controllable and has different heat dissipation capabilities. The higher the fan speed of the fan 110, the higher the heat dissipation capability provided by the fan 110. Conversely, the lower the fan speed of the fan 110, the lower the heat dissipation capability provided by the fan 110. In some embodiments, the speed of the fan 110 can be controlled by a pulse-width modulation signal (PWM signal).

充電電路130例如是充電積體電路(Charger IC)等電源 控制電路,其可連接電源轉接器200。在一些實施例中,充電電路130可經由連接埠140連接電源轉接器200。電源轉接器200用以接收電源並將電源供應給電子裝置100。例如,電源轉接器200可透過電源線連接插座而接收交流電源,並在將交流電源轉換為直流電源後提供給電子裝置100。此外,充電電路130還可耦接至電池(未繪示)。充電電路130可用以決定將電源轉接器200或/與電池提供的電源供應給電子裝置100。 The charging circuit 130 is, for example, a power control circuit such as a charger integrated circuit (Charger IC), which can be connected to the power adapter 200. In some embodiments, the charging circuit 130 can be connected to the power adapter 200 via the connection port 140. The power adapter 200 is used to receive power and supply power to the electronic device 100. For example, the power adapter 200 can receive AC power by connecting to a socket via a power cord, and provide the AC power to the electronic device 100 after converting the AC power into DC power. In addition, the charging circuit 130 can also be coupled to a battery (not shown). The charging circuit 130 can be used to determine whether to supply the power provided by the power adapter 200 or/and the battery to the electronic device 100.

於一些實施例中,充電電路130可提供一系統電流給電子裝置100的系統負載。系統負載可例如為電子裝置100中的系統電路。舉例而言,電子裝置100的系統負載可包括圖1中的控制模組120、風扇110與其他電子元件。於一些實施例中,充電電路130可偵測系統電流的電流值(以下稱為系統電流值)。於一些實施例中,系統電流可以是電源轉接器200提供的電流、電池提供的電流或其組合。此外,系統電流值可透過量測電阻兩端的電壓值而獲取。 In some embodiments, the charging circuit 130 can provide a system current to the system load of the electronic device 100. The system load can be, for example, a system circuit in the electronic device 100. For example, the system load of the electronic device 100 can include the control module 120, the fan 110, and other electronic components in FIG. 1. In some embodiments, the charging circuit 130 can detect the current value of the system current (hereinafter referred to as the system current value). In some embodiments, the system current can be the current provided by the power adapter 200, the current provided by the battery, or a combination thereof. In addition, the system current value can be obtained by measuring the voltage value at both ends of the resistor.

控制模組120電性耦接風扇110與充電電路130。控制模組120可控制風扇110的轉速,並持續接收由充電電路130回報的系統電流值。控制模組120可執行本發明實施例的風扇轉速調整方法中的各個操作。 The control module 120 electrically couples the fan 110 and the charging circuit 130. The control module 120 can control the speed of the fan 110 and continuously receive the system current value reported by the charging circuit 130. The control module 120 can perform various operations in the fan speed adjustment method of the embodiment of the present invention.

請參照圖2A,其是依照本發明一實施例的控制模組的示意圖。於一些實施例中,控制模組120可包括嵌入式控制器121,並由嵌入式控制器121執行本發明實施例的風扇轉速調整方法中 的各個操作。詳細而言,嵌入式控制器121可耦接風扇110與充電電路130,並根據充電電路130回報的系統電流值來控制風扇110的風扇轉速。嵌入式控制器121可具有計算能力的一系統晶片(SoC)來實現。 Please refer to FIG. 2A, which is a schematic diagram of a control module according to an embodiment of the present invention. In some embodiments, the control module 120 may include an embedded controller 121, and the embedded controller 121 executes each operation in the fan speed adjustment method of the embodiment of the present invention. In detail, the embedded controller 121 may couple the fan 110 and the charging circuit 130, and control the fan speed of the fan 110 according to the system current value reported by the charging circuit 130. The embedded controller 121 may be implemented as a system-on-chip (SoC) with computing capabilities.

請參照圖2B,其是依照本發明一實施例的控制模組的示意圖。於一些實施例中,控制模組120可包括嵌入式控制器121、記憶體122以及處理器123。嵌入式控制器121可耦接風扇110與充電電路130,且處理器123耦接嵌入式控制器121與記憶體122。嵌入式控制器121將充電電路130回報的系統電流值提供給處理器123,而處理器123可透過嵌入式控制器121來控制風扇110的風扇轉速。亦即,嵌入式控制器121可根據處理器123發送的控制信號來調整風扇110的風扇轉速。 Please refer to FIG. 2B, which is a schematic diagram of a control module according to an embodiment of the present invention. In some embodiments, the control module 120 may include an embedded controller 121, a memory 122, and a processor 123. The embedded controller 121 may couple the fan 110 and the charging circuit 130, and the processor 123 couples the embedded controller 121 and the memory 122. The embedded controller 121 provides the system current value reported by the charging circuit 130 to the processor 123, and the processor 123 may control the fan speed of the fan 110 through the embedded controller 121. That is, the embedded controller 121 may adjust the fan speed of the fan 110 according to the control signal sent by the processor 123.

記憶體122可以例如是任意型式的固定式或可移動式隨機存取記憶體(random access memory,RAM)、唯讀記憶體(read-only memory,ROM)、快閃記憶體(flash memory)、硬碟或其他類似裝置、積體電路及其組合。處理器123例如是中央處理單元(central processing unit,CPU)、應用處理器(application processor,AP),或是其他可程式化之一般用途或特殊用途的微處理器(microprocessor)、數位訊號處理器(digital signal processor,DSP)或其他類似裝置、積體電路及其組合。處理器123可存取並執行記錄在記憶體122中的程式碼,以實現本發明實施例中的風扇轉速調整方法。 The memory 122 can be, for example, any type of fixed or removable random access memory (RAM), read-only memory (ROM), flash memory, hard disk or other similar devices, integrated circuits and combinations thereof. The processor 123 can be, for example, a central processing unit (CPU), an application processor (AP), or other programmable general-purpose or special-purpose microprocessor (microprocessor), a digital signal processor (DSP) or other similar devices, integrated circuits and combinations thereof. The processor 123 can access and execute the program code recorded in the memory 122 to implement the fan speed adjustment method in the embodiment of the present invention.

須說明的是,無論是圖2A或圖2B所示的實施例,嵌入式控制器121可用以控制風扇110的轉速。一般而言,記憶體122可記錄有風扇轉速表(亦稱為溫控轉速表)。此風扇轉速表記載著溫度與風扇110的預設轉速的相應關係。處理器123可根據感測溫度查閱風扇轉速表來決定風扇110的風扇轉速。所述的感測溫度可例如是電子裝置100中溫度感測器(未繪示)所產生的感測值。舉例來說,表1為風扇轉速表的範例。 It should be noted that, regardless of the embodiment shown in FIG. 2A or FIG. 2B , the embedded controller 121 can be used to control the speed of the fan 110. Generally speaking, the memory 122 can record a fan speed table (also called a temperature control speed table). The fan speed table records the corresponding relationship between the temperature and the preset speed of the fan 110. The processor 123 can refer to the fan speed table according to the sensed temperature to determine the fan speed of the fan 110. The sensed temperature can be, for example, a sensed value generated by a temperature sensor (not shown) in the electronic device 100. For example, Table 1 is an example of a fan speed table.

Figure 111148395-A0305-02-0009-1
嵌入式控制器121可利用處理器123透過表1所決定之風扇轉速表來控制風扇110的風扇轉速。例如,當感測溫度為落入T2至T3的溫度範圍內的話,嵌入式控制器121將風扇110的轉速調整至第二階轉速。當感測溫度為落入T4至T5的溫度範圍內的話,嵌入式控制器121將風扇110的轉速調整至第四階轉速。
Figure 111148395-A0305-02-0009-1
The embedded controller 121 can use the processor 123 to control the fan speed of the fan 110 through the fan speed table determined in Table 1. For example, when the sensed temperature falls within the temperature range of T2 to T3, the embedded controller 121 adjusts the speed of the fan 110 to the second speed. When the sensed temperature falls within the temperature range of T4 to T5, the embedded controller 121 adjusts the speed of the fan 110 to the fourth speed.

圖3是依照本發明一實施例的風扇轉速調整方法的流程圖,而圖3的方法流程可以由圖1的電子裝置100的各元件實現。請同時參照圖1及圖3,以下即搭配圖1中電子裝置100的各項元件,說明本實施例的風扇轉速調整方法的步驟。 FIG3 is a flow chart of a fan speed adjustment method according to an embodiment of the present invention, and the method flow of FIG3 can be implemented by various components of the electronic device 100 of FIG1. Please refer to FIG1 and FIG3 at the same time. The following is a description of the steps of the fan speed adjustment method of this embodiment in conjunction with various components of the electronic device 100 in FIG1.

於步驟S310,控制模組120監測對應至不同時間點的多個系統電流值。詳細來說,充電電路130可定時地(例如每隔1秒)回報系統電流值給控制模組120。對應的,控制模組120可持續監測充電電路130於不同時間點提供給系統負載的多個系統電流值。更具體而言,充電電路130可於時間點T1偵測一系統電流值,並將對應至時間點T1的系統電流值回報給控制模組120。之後,充電電路130可於下一個時間點T2偵測下一個系統電流值,並將對應至下一個時間點T2的下一個系統電流值回報給控制模組120。舉例而言,充電電路130可經由I2C介面連接嵌入式控制器121,嵌入式控制器121可透過I2C介面去讀取系統電流值。 In step S310, the control module 120 monitors a plurality of system current values corresponding to different time points. In detail, the charging circuit 130 may periodically (for example, every 1 second) report the system current value to the control module 120. Correspondingly, the control module 120 may continuously monitor a plurality of system current values provided by the charging circuit 130 to the system load at different time points. More specifically, the charging circuit 130 may detect a system current value at a time point T1, and report the system current value corresponding to the time point T1 to the control module 120. Thereafter, the charging circuit 130 may detect a next system current value at a next time point T2, and report the next system current value corresponding to the next time point T2 to the control module 120. For example, the charging circuit 130 may be connected to the embedded controller 121 via an I 2 C interface, and the embedded controller 121 may read the system current value via the I 2 C interface.

於步驟S320,控制模組120可將多個系統電流值依序輸入至機器學習模型,而透過機器學習模型依序預測出多個負載類型。詳細來說,電源轉接器200或電池所提供的系統電壓一般設定為固定值,因此系統電流的大小可用來衡量系統負載的高低。於本發明實施例中,控制模組120可依據系統電流值與利用機器學習模型來預測系統負載的負載類型。 In step S320, the control module 120 can sequentially input multiple system current values into the machine learning model, and sequentially predict multiple load types through the machine learning model. Specifically, the system voltage provided by the power adapter 200 or the battery is generally set to a fixed value, so the size of the system current can be used to measure the level of the system load. In the embodiment of the present invention, the control module 120 can predict the load type of the system load based on the system current value and the machine learning model.

於一些實施例中,機器學習模型可為一分類模型。於一些實施例中,機器學習模型可包括一循環神經網路(Recurrent Neural Network,RNN)模型。舉例而言,機器學習模型可以是長短期記憶(Long Short-Term Memory,LSTM)模型或Transformer模型,本發明對此不限制。控制模組120可將對應至不同時間點的這些系統電流值依序輸入至訓練完成的RNN模型。於不同實施 例中,訓練完成的RNN模型的模型參數(例如權重資訊等等)可記錄於記憶體122之中。 In some embodiments, the machine learning model may be a classification model. In some embodiments, the machine learning model may include a recurrent neural network (RNN) model. For example, the machine learning model may be a long short-term memory (LSTM) model or a Transformer model, and the present invention is not limited thereto. The control module 120 may sequentially input these system current values corresponding to different time points into the trained RNN model. In different embodiments, the model parameters (such as weight information, etc.) of the trained RNN model may be recorded in the memory 122.

於一些實施例中,訓練完成的機器學習模型所依序預測出來的各個負載類型可包括一低負載類型或一高負載類型。更詳細而言,於一些實施例中,當控制模組120將對應至某一時間點的系統電流值輸入至RNN模型的,RNN模型可對應輸出對應至該時間點的系統負載的分類結果(即負載類型),即低負載類型或高負載類型。接著,當控制模組120將對應至下一個時間點的系統電流值輸入至RNN模型的,RNN模型可對應輸出對應至該下一個時間點的系統負載的分類結果。由此可見,控制模組120可利用機器學習模型定時地依序輸出多個負載類型。 In some embodiments, each load type sequentially predicted by the trained machine learning model may include a low load type or a high load type. In more detail, in some embodiments, when the control module 120 inputs the system current value corresponding to a certain time point into the RNN model, the RNN model may output the classification result (i.e., load type) of the system load corresponding to the time point, i.e., a low load type or a high load type. Then, when the control module 120 inputs the system current value corresponding to the next time point into the RNN model, the RNN model may output the classification result of the system load corresponding to the next time point. It can be seen that the control module 120 can use the machine learning model to output multiple load types in sequence and in a timely manner.

於步驟S330,控制模組120判斷一段時間內的多個負載類型是否符合一特定條件。具體而言,控制模組120可判斷於一段時間內不同時間點所預測的這些負載類型是否由低負載類型轉變為高負載類型,以更進一步預測系統負載是否即將要提昇。 In step S330, the control module 120 determines whether multiple load types within a period of time meet a specific condition. Specifically, the control module 120 can determine whether these load types predicted at different time points within a period of time change from a low load type to a high load type, so as to further predict whether the system load is about to increase.

當多個負載類型符合特定條件(步驟S330判斷為是),於步驟S340,控制模組120根據多個負載類型調高風扇110的風扇轉速。也就是說,當判定多個負載類型符合特定條件,代表一段時間內的這些負載類型是由低負載類型轉變為高負載類型,因此控制模組120可在溫度上升至超過風扇轉速表中某一溫度範圍的上限值之前提早調高風扇110的風扇轉速,以預先將風扇轉速提高而讓系統溫度下降。基此,可使得電子裝置100有更多的溫 度餘裕來達成更好的系統效能。 When multiple load types meet specific conditions (step S330 is judged as yes), in step S340, the control module 120 increases the fan speed of the fan 110 according to the multiple load types. In other words, when it is determined that multiple load types meet specific conditions, it means that these load types in a period of time are changed from low load types to high load types. Therefore, the control module 120 can increase the fan speed of the fan 110 in advance before the temperature rises to exceed the upper limit of a temperature range in the fan speed table, so as to increase the fan speed in advance and reduce the system temperature. Based on this, the electronic device 100 can have more temperature margin to achieve better system performance.

另一方面,當多個負載類型未符合特定條件(步驟S330判斷為否),於步驟S350,控制模組120可基於感測溫度維持風扇110的風扇轉速。也就是說,當控制模組120利用機器學習模型所預測的多個負載類型並非由低負載類型轉變為高負載類型時,控制模組120可根據風扇轉速表與當前感測溫度來控制風扇110的風扇轉速。 On the other hand, when multiple load types do not meet the specific conditions (step S330 is judged as no), in step S350, the control module 120 can maintain the fan speed of the fan 110 based on the sensed temperature. In other words, when the multiple load types predicted by the control module 120 using the machine learning model do not change from a low load type to a high load type, the control module 120 can control the fan speed of the fan 110 according to the fan speed table and the current sensed temperature.

於一些實施例中,低負載類型可包括系統閒置負載與持續性低負載。請參照圖4A,其是依照本發明一實施例的系統閒置負載的系統電流的示意圖。請參照圖4B,其是依照本發明一實施例的持續性低負載的系統電流的示意圖。須先說明的是,本發明實施例可定義一電流臨界值THc為電子裝置100具有最大系統效能時的系統電流值的二分之一,但可不限制於此。 In some embodiments, the low load type may include system idle load and continuous low load. Please refer to FIG. 4A, which is a schematic diagram of the system current of the system idle load according to an embodiment of the present invention. Please refer to FIG. 4B, which is a schematic diagram of the system current of the continuous low load according to an embodiment of the present invention. It should be noted that the embodiment of the present invention may define a current threshold value THc as half of the system current value when the electronic device 100 has the maximum system performance, but it is not limited to this.

於圖4A中,當控制模組120判定負載類型為系統閒置負載時,曲線L1顯示出過去一段時間(20秒)內對應至不同時間點(第1秒至第20秒)的系統電流值都小於電流臨界值THc,且此段時間內大多數的時間點的系統電流值低於電流臨界值THc的四分之一。於圖4B中,當控制模組120判定負載類型為持續性低負載時,曲線L2顯示出過去一段時間(20秒)內對應至不同時間點(第1秒至第20秒)的系統電流值都小於電流臨界值THc,且一段時間內大多數的時間點的系統電流值維持於電流臨界值THc的四分之一以上。 In FIG. 4A , when the control module 120 determines that the load type is a system idle load, the curve L1 shows that the system current values corresponding to different time points (from the 1st second to the 20th second) in the past period of time (20 seconds) are all less than the current critical value THc, and the system current values at most time points in this period of time are less than one quarter of the current critical value THc. In FIG. 4B , when the control module 120 determines that the load type is a continuous low load, the curve L2 shows that the system current values corresponding to different time points (from the 1st second to the 20th second) in the past period of time (20 seconds) are all less than the current critical value THc, and the system current values at most time points in a period of time are maintained at more than one quarter of the current critical value THc.

於一些實施例中,高負載類型可包括間歇性高負載與持續性高負載。請參照圖4C,其是依照本發明一實施例的間歇性高負載的系統電流的示意圖。請參照圖4D,其是依照本發明一實施例的持續性高負載的系統電流的示意圖。 In some embodiments, the high load type may include intermittent high load and continuous high load. Please refer to FIG. 4C, which is a schematic diagram of the system current of intermittent high load according to an embodiment of the present invention. Please refer to FIG. 4D, which is a schematic diagram of the system current of continuous high load according to an embodiment of the present invention.

於圖4C中,當控制模組120判定負載類型為間歇性高負載時,曲線L3顯示出過去一段時間(20秒)內部份時間點的系統電流值曾超過電流臨界值THc,但另一部份時間點的系統電流值維持在電流臨界值THc以下。於圖4D中,當控制模組120判定負載類型為持續性高負載時,曲線L4顯示出過去一段時間內對應至不同時間點的系統電流值都大於電流臨界值THc。 In FIG. 4C , when the control module 120 determines that the load type is intermittent high load, curve L3 shows that the system current value at some time points in the past period of time (20 seconds) has exceeded the current critical value THc, but the system current value at other time points remains below the current critical value THc. In FIG. 4D , when the control module 120 determines that the load type is continuous high load, curve L4 shows that the system current values corresponding to different time points in the past period of time are all greater than the current critical value THc.

基於圖4A至圖4D的說明,於一些實施例中,機器學習模型可根據輸入系統電流值將系統負載分類為系統閒置負載、持續性低負載、間歇性高負載,以及持續性高負載其中之一。亦即,機器學習模型可依輸入的系統電流值來推論出系統負載為上述中四種類型中的哪一種。然而,圖4A至圖4D所示的時間長度與時間間隔僅為示範性說明,並非用以限定本發明。 Based on the description of FIG. 4A to FIG. 4D , in some embodiments, the machine learning model can classify the system load into one of system idle load, continuous low load, intermittent high load, and continuous high load according to the input system current value. That is, the machine learning model can infer which of the four types of system load is based on the input system current value. However, the time length and time interval shown in FIG. 4A to FIG. 4D are only exemplary descriptions and are not used to limit the present invention.

基於圖4A至圖4D的範例,圖5是依照本發明一實施例的風扇轉速調整方法的流程圖,而圖5的方法流程可以由圖1的電子裝置100的各元件實現。請同時參照圖1及圖5,以下即搭配圖1中電子裝置100的各項元件,說明本實施例的風扇轉速調整方法的步驟。 Based on the examples of FIG. 4A to FIG. 4D, FIG. 5 is a flow chart of a fan speed adjustment method according to an embodiment of the present invention, and the method flow of FIG. 5 can be implemented by various components of the electronic device 100 of FIG. 1. Please refer to FIG. 1 and FIG. 5 at the same time. The following is a description of the steps of the fan speed adjustment method of this embodiment in conjunction with various components of the electronic device 100 in FIG. 1.

於步驟S510,控制模組120監測對應至不同時間點的多 個系統電流值。於步驟S520,控制模組120將多個系統電流值依序輸入至機器學習模型,而透過機器學習模型依序預測出多個負載類型。步驟S510至步驟S520的實施細節可參照前述實施例內容,於此不贅述。 In step S510, the control module 120 monitors multiple system current values corresponding to different time points. In step S520, the control module 120 sequentially inputs the multiple system current values into the machine learning model, and sequentially predicts multiple load types through the machine learning model. The implementation details of steps S510 to S520 can refer to the contents of the aforementioned embodiments, and will not be elaborated here.

於步驟S530,控制模組120判斷多個負載類型是否符合一特定條件。於本實施例中,步驟S530可實施為步驟S531至步驟S532。 In step S530, the control module 120 determines whether multiple load types meet a specific condition. In this embodiment, step S530 can be implemented as step S531 to step S532.

於步驟S531,控制模組120判斷多個負載類型中分別對應至M個第一時間點的M個第一負載類型是否為低負載類型。M為正整數。舉例而言,M可以等於4,但可不限制於此。控制模組120將M個連續的第一時間點的系統電流值依序輸入至機器學習模型,以使機器學習模型依序預測出對應至這M個連續的第一時間點的M個第一負載類型。 In step S531, the control module 120 determines whether the M first load types corresponding to the M first time points among the multiple load types are low load types. M is a positive integer. For example, M can be equal to 4, but is not limited thereto. The control module 120 sequentially inputs the system current values of the M consecutive first time points into the machine learning model, so that the machine learning model sequentially predicts the M first load types corresponding to the M consecutive first time points.

當分別對應至M個第一時間點的M個第一負載類型皆為低負載類型(步驟S531判斷為是),於步驟S532,控制模組120判斷多個負載類型中分別對應至N個第二時間點的N個第二負載類型是否為高負載類型。N為正整數。舉例而言,N可以等於2,但可不限制於此。控制模組120將N個連續的第二時間點的系統電流值依序輸入至機器學習模型,以使機器學習模型依序預測出對應至這N個連續的第二時間點的N個第二負載類型。須特別說明的是,M個第一時間點早於N個第二時間點,且M個第一時間點與N個第二時間點為彼此相異的多個連續時間點。 When the M first load types corresponding to the M first time points are all low load types (step S531 is judged as yes), in step S532, the control module 120 determines whether the N second load types corresponding to the N second time points among the multiple load types are high load types. N is a positive integer. For example, N can be equal to 2, but is not limited to this. The control module 120 sequentially inputs the system current values of the N consecutive second time points into the machine learning model so that the machine learning model sequentially predicts the N second load types corresponding to the N consecutive second time points. It should be noted that the M first time points are earlier than the N second time points, and the M first time points and the N second time points are multiple continuous time points that are different from each other.

當多個負載類型符合特定條件(步驟S531與步驟S532皆判斷為是),於步驟S540,控制模組120根據多個負載類型調高風扇110的風扇轉速。更進一步來說,當分別對應至M個第一時間點的M個第一負載類型為低負載類型且分別對應至N個第二時間點的N個第二負載類型為高負載類型,於步驟S540,控制模組120可根據N個第二負載類型調高風扇110的風扇轉速。 When multiple load types meet specific conditions (both step S531 and step S532 are judged as yes), in step S540, the control module 120 increases the fan speed of the fan 110 according to the multiple load types. More specifically, when the M first load types corresponding to the M first time points are low load types and the N second load types corresponding to the N second time points are high load types, in step S540, the control module 120 may increase the fan speed of the fan 110 according to the N second load types.

也就是說,透過步驟S531與步驟S532的判斷,控制模組120可判斷負載類型是否隨著時間遞延從低負載類型轉變為高負載類型。此外,當多個負載類型未符合特定條件(步驟S531或步驟S532判斷為否),控制模組120基於風扇轉速表與感測溫度來決定風扇110的風扇轉速,並回到步驟S510。 That is, through the judgment of step S531 and step S532, the control module 120 can judge whether the load type changes from the low load type to the high load type over time. In addition, when multiple load types do not meet the specific conditions (step S531 or step S532 is judged as no), the control module 120 determines the fan speed of the fan 110 based on the fan speed table and the sensed temperature, and returns to step S510.

另外需要特別說明的是,於本實施例中,步驟S540可實施為步驟S541至步驟S543。於步驟S541,控制模組120判斷N個第二負載類型其中至少一為間歇性高負載或持續性高負載。於一些實施例中,控制模組120可判斷N個第二負載類型為間歇性高負載或持續性高負載。或者,控制模組120可判斷N個第二負載類型中最靠近當前時間的某一第二時間所預測的某一第二負載類型為間歇性高負載或持續性高負載。 It should be noted that in this embodiment, step S540 can be implemented as steps S541 to S543. In step S541, the control module 120 determines that at least one of the N second load types is an intermittent high load or a continuous high load. In some embodiments, the control module 120 can determine that the N second load types are intermittent high loads or continuous high loads. Alternatively, the control module 120 can determine that a second load type predicted at a second time closest to the current time among the N second load types is an intermittent high load or a continuous high load.

當N個第二負載類型其中至少一為間歇性高負載,於步驟S542,控制模組120將風扇110自當前轉速調高至第一轉速。當N個第二負載類型其中至少一為持續性高負載,於步驟S543,控制模組120將風扇110自當前轉速調高至第二轉速。於此,第 二轉速高於第一轉速。具體而言,持續性高負載相較於間歇性高負載會產生更多熱能,因此持續性高負載相較於間歇性高負載需要風扇110提供更強散熱能力將更多熱能排出電子裝置100之外。 When at least one of the N second load types is an intermittent high load, in step S542, the control module 120 increases the fan 110 from the current speed to the first speed. When at least one of the N second load types is a continuous high load, in step S543, the control module 120 increases the fan 110 from the current speed to the second speed. Here, the second speed is higher than the first speed. Specifically, continuous high loads generate more heat energy than intermittent high loads, so continuous high loads require the fan 110 to provide stronger heat dissipation capabilities to discharge more heat energy outside the electronic device 100 compared to intermittent high loads.

或者,於一些實施例中,控制模組120可判斷N個第二負載類型中間歇性高負載的數量是否大於持續性高負載的數量。當N個第二負載類型中間歇性高負載的數量大於持續性高負載的數量,控制模組120將風扇110自當前轉速調高至第一轉速。反之,當N個第二負載類型中間歇性高負載的數量小於持續性高負載的數量,控制模組120將風扇110自當前轉速調高至第二轉速。 Alternatively, in some embodiments, the control module 120 may determine whether the number of intermittent high loads among the N second load types is greater than the number of continuous high loads. When the number of intermittent high loads among the N second load types is greater than the number of continuous high loads, the control module 120 increases the fan 110 from the current speed to the first speed. Conversely, when the number of intermittent high loads among the N second load types is less than the number of continuous high loads, the control module 120 increases the fan 110 from the current speed to the second speed.

另外須說明的是,於一些實施例中,上述當前轉速、第一轉速與第二轉速記錄於嵌入式控制器121的風扇轉速表之中。具體而言,基於當前感測溫度,控制模組120可決定風扇110的風扇轉速為風扇轉速表中的第n階轉速(亦即當前轉速)。之後,控制模組120持續地根據即時地系統電流值來預測負載類型。當這些負載類型符合特定條件,且N個第二負載類型其中至少一為間歇性高負載,控制模組120可將風扇110的風扇轉速從第n階轉速提高為風扇轉速表中的第(n+1)階轉速。或者,當這些負載類型符合特定條件,且N個第二負載類型其中至少一為持續性高負載,控制模組120可將風扇110的風扇轉速從第n階轉速提高為風扇轉速表中的第(n+2)階轉速。第(n+2)階轉速大於第(n+1)階轉速,第(n+1)階轉速大於第n階轉速。 It should also be noted that, in some embodiments, the above-mentioned current speed, first speed, and second speed are recorded in the fan speed table of the embedded controller 121. Specifically, based on the current sensed temperature, the control module 120 can determine that the fan speed of the fan 110 is the nth speed in the fan speed table (i.e., the current speed). Thereafter, the control module 120 continuously predicts the load type based on the real-time system current value. When these load types meet specific conditions and at least one of the N second load types is an intermittent high load, the control module 120 can increase the fan speed of the fan 110 from the nth speed to the (n+1)th speed in the fan speed table. Alternatively, when these load types meet certain conditions and at least one of the N second load types is a continuous high load, the control module 120 can increase the fan speed of the fan 110 from the nth speed to the (n+2)th speed in the fan speed table. The (n+2)th speed is greater than the (n+1)th speed, and the (n+1)th speed is greater than the nth speed.

綜上所述,於本發明實施例中,系統電流值持續地被監 測並依序輸入至機器學習模型,以使機器學習模型持續地預測出關聯於這些輸入系統電流值的多個負載類型。於是,當判定這些負載類型從低負載類型轉變為高負載類型,風扇的風扇轉速可以提高。基此,在系統重載真正來臨或溫度過高而影響系統效能之前,本發明實施例的電子裝置與風扇轉速調整方法可根據模型預測結果預先提早調高風扇轉速。如此一來,可預先將風扇轉速提高而讓系統溫度下降,使得電子裝置有更多的溫度餘裕而爭取到更好的系統效能。 In summary, in the embodiment of the present invention, the system current value is continuously monitored and sequentially input into the machine learning model, so that the machine learning model continuously predicts multiple load types related to these input system current values. Therefore, when it is determined that these load types change from low load types to high load types, the fan speed of the fan can be increased. Based on this, before the system overload actually comes or the temperature is too high and affects the system performance, the electronic device and fan speed adjustment method of the embodiment of the present invention can pre-adjust the fan speed in advance according to the model prediction results. In this way, the fan speed can be increased in advance to reduce the system temperature, so that the electronic device has more temperature margin and strives for better system performance.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed as above by the embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the relevant technical field can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be subject to the scope defined by the attached patent application.

S310~S350:步驟 S310~S350: Steps

Claims (8)

一種風扇轉速調整方法,適用於包括一風扇的一電子裝置,所述方法包括:監測對應至不同時間點的多個系統電流值;將所述多個系統電流值依序輸入至一機器學習模型,而透過所述機器學習模型依序預測出多個負載類型;判斷所述多個負載類型是否符合一特定條件;以及當所述多個負載類型符合所述特定條件,根據所述多個負載類型調高所述風扇的風扇轉速,其中各所述多個負載類型包括一低負載類型或一高負載類型,其中判斷所述多個負載類型是否符合所述特定條件的步驟包括:判斷所述多個負載類型中分別對應至M個第一時間點的M個第一負載類型是否為所述低負載類型,其中M為正整數;以及判斷所述多個負載類型中分別對應至N個第二時間點的N個第二負載類型是否為所述高負載類型,其中N為正整數,其中所述M個第一時間點早於所述N個第二時間點,且所述M個第一時間點與所述N個第二時間點為彼此相異的多個連續時間點。 A fan speed adjustment method is applicable to an electronic device including a fan, the method comprising: monitoring a plurality of system current values corresponding to different time points; sequentially inputting the plurality of system current values into a machine learning model, and sequentially predicting a plurality of load types through the machine learning model; determining whether the plurality of load types meet a specific condition; and when the plurality of load types meet the specific condition, increasing the fan speed of the fan according to the plurality of load types, wherein each of the plurality of load types includes a low load type or a high load type, wherein the plurality of load types are The step of determining whether the multiple load types meet the specific condition includes: determining whether the M first load types corresponding to the M first time points among the multiple load types are the low load types, where M is a positive integer; and determining whether the N second load types corresponding to the N second time points among the multiple load types are the high load types, where N is a positive integer, wherein the M first time points are earlier than the N second time points, and the M first time points and the N second time points are multiple continuous time points that are different from each other. 如請求項1所述的風扇轉速調整方法,其中所述方法更包括: 當所述多個負載類型未符合所述特定條件,維持所述風扇的風扇轉速。 The fan speed adjustment method as described in claim 1, wherein the method further comprises: When the multiple load types do not meet the specific conditions, maintaining the fan speed of the fan. 如請求項1所述的風扇轉速調整方法,其中當所述多個負載類型符合所述特定條件,根據所述多個負載類型調高所述風扇的所述風扇轉速的步驟包括:當分別對應至所述M個第一時間點的所述M個第一負載類型為所述低負載類型且分別對應至所述N個第二時間點的所述N個第二負載類型為所述高負載類型,根據所述N個第二負載類型調高所述風扇的所述風扇轉速。 The fan speed adjustment method as described in claim 1, wherein when the multiple load types meet the specific conditions, the step of increasing the fan speed of the fan according to the multiple load types includes: when the M first load types corresponding to the M first time points are the low load types and the N second load types corresponding to the N second time points are the high load types, increasing the fan speed of the fan according to the N second load types. 如請求項3所述的風扇轉速調整方法,其中所述高負載類型包括一間歇性高負載以及一持續性高負載,根據所述N個第二負載類型調高所述風扇的所述風扇轉速的步驟包括:判斷所述N個第二負載類型其中至少一為所述間歇性高負載或所述持續性高負載;當所述N個第二負載類型其中至少一為所述間歇性高負載,將所述風扇自一當前轉速調高至一第一轉速;以及當所述N個第二負載類型其中至少一為所述持續性高負載,將所述風扇自所述當前轉速調高至一第二轉速,其中所述第二轉速高於所述第一轉速。 The fan speed adjustment method as described in claim 3, wherein the high load type includes an intermittent high load and a continuous high load, and the step of increasing the fan speed of the fan according to the N second load types includes: determining that at least one of the N second load types is the intermittent high load or the continuous high load; when at least one of the N second load types is the intermittent high load, increasing the fan speed from a current speed to a first speed; and when at least one of the N second load types is the continuous high load, increasing the fan speed from the current speed to a second speed, wherein the second speed is higher than the first speed. 如請求項4所述的風扇轉速調整方法,其中所述當前轉速、所述第一轉速與所述第二轉速記錄於一風扇轉速表之中。 The fan speed adjustment method as described in claim 4, wherein the current speed, the first speed and the second speed are recorded in a fan speed table. 如請求項1所述的風扇轉速調整方法,其中所述機器學習模型包括一循環神經網路(Recurrent Neural Network,RNN)模型。 The fan speed adjustment method as described in claim 1, wherein the machine learning model includes a recurrent neural network (RNN) model. 如請求項1所述的風扇轉速調整方法,其中偵測對應至不同時間點的所述多個系統電流值的步驟包括:持續監測一充電電路於不同時間點提供給一系統負載的所述多個系統電流值。 In the fan speed adjustment method as described in claim 1, the step of detecting the multiple system current values corresponding to different time points includes: continuously monitoring the multiple system current values provided by a charging circuit to a system load at different time points. 一種電子裝置,包括:一風扇;以及一控制模組,耦接所述風扇,經配置以:監測對應至不同時間點的多個系統電流值;將所述多個系統電流值依序輸入至一機器學習模型,而透過所述機器學習模型依序預測出多個負載類型;判斷所述多個負載類型是否符合一特定條件;以及當所述多個負載類型符合所述特定條件,根據所述多個負載類型調高所述風扇的風扇轉速,其中各所述多個負載類型包括一低負載類型或一高負載類型,其中所述控制模組還經配置以:判斷所述多個負載類型中分別對應至M個第一時間點的M個第一負載類型是否為所述低負載類型,其中M為正整數;以及判斷所述多個負載類型中分別對應至N個第二時間點的N個 第二負載類型是否為所述高負載類型,其中N為正整數,其中所述M個第一時間點早於所述N個第二時間點,且所述M個第一時間點與所述N個第二時間點為彼此相異的多個連續時間點。 An electronic device includes: a fan; and a control module coupled to the fan and configured to: monitor a plurality of system current values corresponding to different time points; sequentially input the plurality of system current values into a machine learning model, and sequentially predict a plurality of load types through the machine learning model; determine whether the plurality of load types meet a specific condition; and when the plurality of load types meet the specific condition, increase the fan speed of the fan according to the plurality of load types, wherein each of the plurality of load types includes a low load type or a high load type. High load type, wherein the control module is further configured to: determine whether the M first load types corresponding to the M first time points in the multiple load types are the low load type, wherein M is a positive integer; and determine whether the N second load types corresponding to the N second time points in the multiple load types are the high load type, wherein N is a positive integer, wherein the M first time points are earlier than the N second time points, and the M first time points and the N second time points are multiple continuous time points different from each other.
TW111148395A 2022-12-16 2022-12-16 Electronic apparatus and fan speed adjustment method thereof TWI838016B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111148395A TWI838016B (en) 2022-12-16 2022-12-16 Electronic apparatus and fan speed adjustment method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111148395A TWI838016B (en) 2022-12-16 2022-12-16 Electronic apparatus and fan speed adjustment method thereof

Publications (2)

Publication Number Publication Date
TWI838016B true TWI838016B (en) 2024-04-01
TW202426773A TW202426773A (en) 2024-07-01

Family

ID=91618920

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111148395A TWI838016B (en) 2022-12-16 2022-12-16 Electronic apparatus and fan speed adjustment method thereof

Country Status (1)

Country Link
TW (1) TWI838016B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201520430A (en) * 2013-11-19 2015-06-01 Inventec Corp Fan controller and server system with the fan controller
CN109826819A (en) * 2019-02-28 2019-05-31 苏州浪潮智能科技有限公司 A kind of system and method adjusting rotation speed of the fan
US20210372417A1 (en) * 2020-05-28 2021-12-02 Ebm-Papst Mulfingen Gmbh & Co. Kg Method for operating a fan system and fan system having a backward curved centrifugal fan

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201520430A (en) * 2013-11-19 2015-06-01 Inventec Corp Fan controller and server system with the fan controller
CN109826819A (en) * 2019-02-28 2019-05-31 苏州浪潮智能科技有限公司 A kind of system and method adjusting rotation speed of the fan
US20210372417A1 (en) * 2020-05-28 2021-12-02 Ebm-Papst Mulfingen Gmbh & Co. Kg Method for operating a fan system and fan system having a backward curved centrifugal fan

Also Published As

Publication number Publication date
TW202426773A (en) 2024-07-01

Similar Documents

Publication Publication Date Title
US7272732B2 (en) Controlling power consumption of at least one computer system
CN106194806B (en) Fan power control system, method and non-transitory computer readable storage medium
US20120254641A1 (en) Apparatus and method for high current protection
CN118244812A (en) A control method for constant temperature chemical composition equipment
US20140181562A1 (en) Method for preventing over-heating of a device within a data processing system
US10627878B2 (en) Electronic devices and cooling methods adapted to electronic device
US6965175B2 (en) Dynamic temperature control method for a computer system
CN115263793B (en) Speed regulation method, speed regulation device, equipment and medium for server fan
CN111503038A (en) Method and device for regulating speed of fan
WO2025067054A1 (en) Electric device, electric device surface temperature control method, electric device surface temperature control apparatus, medium, and chip system
US11630003B2 (en) Temperature control system for central processing unit and temperature control method thereof
CN118765482A (en) System and method for predicting the health of a power converter
WO2024109561A1 (en) Parameter adjustment method and apparatus, computer device, and storage medium
TWI838016B (en) Electronic apparatus and fan speed adjustment method thereof
CN100395553C (en) Method for detecting load current by using duty cycle signal of pulse width modulation controller
CN117519345A (en) Control method and device of unit and unit
CN116632388A (en) Battery charge adjustment method, device, and storage medium
CN119245867B (en) Temperature detection method and device for electronic components, electronic equipment and storage medium
CN111538392B (en) A fan control method, device, electronic device and readable storage medium
Zhang et al. On demand cooling with real time thermal information
CN115047953B (en) A server cooling method, system, device and medium
CN217955055U (en) Heat dissipation system and computer equipment
CN116243772A (en) Cabinet temperature prediction system for desktop
CN114756434A (en) A chip power monitoring method, system, device and medium
CN120010599B (en) Adaptive temperature control system for power electronic devices