TWI838016B - Electronic apparatus and fan speed adjustment method thereof - Google Patents
Electronic apparatus and fan speed adjustment method thereof Download PDFInfo
- Publication number
- TWI838016B TWI838016B TW111148395A TW111148395A TWI838016B TW I838016 B TWI838016 B TW I838016B TW 111148395 A TW111148395 A TW 111148395A TW 111148395 A TW111148395 A TW 111148395A TW I838016 B TWI838016 B TW I838016B
- Authority
- TW
- Taiwan
- Prior art keywords
- load
- load types
- fan
- time points
- speed
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000010801 machine learning Methods 0.000 claims abstract description 32
- 238000013528 artificial neural network Methods 0.000 claims description 2
- 230000000306 recurrent effect Effects 0.000 claims description 2
- 238000012544 monitoring process Methods 0.000 claims 2
- 238000010586 diagram Methods 0.000 description 14
- 230000015654 memory Effects 0.000 description 9
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 6
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 6
- 230000017525 heat dissipation Effects 0.000 description 5
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 3
- 230000002411 adverse Effects 0.000 description 1
- 238000013145 classification model Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000006403 short-term memory Effects 0.000 description 1
Images
Landscapes
- Control Of Electric Motors In General (AREA)
- Control Of Positive-Displacement Air Blowers (AREA)
Abstract
Description
本發明是有關於一種電子裝置,且特別是有關於一種電子裝置與風扇轉速調整方法。 The present invention relates to an electronic device, and in particular to an electronic device and a fan speed adjustment method.
隨著科技的日新月異,電腦系統已成為現代資訊社會重要的硬體基礎之一。此外,電腦系統的運算速度亦是日益提升,以應付龐大計算量與縮短資料處理的時間。然而,隨著電腦系統之運算速度的加快,電腦系統中各電子元件(尤其是中央處理器)所產生的熱能也就越高。因此,為了讓電腦系統穩定且持續地運作,電腦系統中必須安裝風扇,以將系統的溫度控制在安全範圍之內。 With the rapid development of technology, computer systems have become one of the important hardware foundations of the modern information society. In addition, the computing speed of computer systems is also increasing day by day to cope with the huge amount of computing and shorten the time of data processing. However, as the computing speed of computer systems increases, the heat generated by each electronic component in the computer system (especially the central processing unit) is also higher. Therefore, in order to allow the computer system to operate stably and continuously, a fan must be installed in the computer system to control the temperature of the system within a safe range.
目前來說,現有的風扇轉速控制方法大多是依據系統的溫度來操控風扇的轉速,以確保系統長久運行的穩定性。以筆記型電腦平台為例,通常由嵌入式控制器(embedded controller,EC) 蒐集主機板上溫度感測器所感測的溫度或特定電子晶片(例如中央處理器)的溫度後,在基於這些溫度資訊而根據預設的風扇轉速表(fan table)動態調整風扇轉速。然而,當前的風扇控制機制都是在系統溫度或系統效能已經確定達到特定條件下才對風扇轉速進行調整,因此有可能發生系統運算效能已經因為溫度過高而受到不良影響,導致中央處理器無法發揮其最大效能。 At present, most existing fan speed control methods control the fan speed based on the system temperature to ensure the long-term stability of the system. Taking a laptop platform as an example, an embedded controller (EC) usually collects the temperature sensed by the temperature sensor on the motherboard or the temperature of a specific electronic chip (such as the central processing unit), and then dynamically adjusts the fan speed according to the preset fan table based on these temperature information. However, the current fan control mechanism adjusts the fan speed only when the system temperature or system performance has been determined to reach a specific condition. Therefore, it is possible that the system computing performance has been adversely affected by the high temperature, resulting in the central processing unit being unable to exert its maximum performance.
有鑑於此,本發明提出一種電子裝置與其風扇轉速調整方法,其可解決上述技術問題。 In view of this, the present invention proposes an electronic device and a fan speed adjustment method thereof, which can solve the above technical problems.
本發明實施例提供一種風扇轉速調整方法,適用於包括風扇的電子裝置,並包括下列步驟。監測對應至不同時間點的多個系統電流值。將多個系統電流值依序輸入至一機器學習模型,而透過機器學習模型依序預測出多個負載類型。並且,判斷多個負載類型是否符合特定條件。當這些負載類型符合特定條件,根據這些負載類型調高風扇的風扇轉速。 The present invention provides a fan speed adjustment method applicable to an electronic device including a fan, and includes the following steps. Monitor multiple system current values corresponding to different time points. Input the multiple system current values into a machine learning model in sequence, and predict multiple load types in sequence through the machine learning model. And, determine whether the multiple load types meet specific conditions. When these load types meet the specific conditions, increase the fan speed of the fan according to these load types.
本發明實施例提供一種電子裝置,其包括風扇以及控制模組。此控制模組耦接此風扇,並經配置以執行下列步驟。監測對應至不同時間點的多個系統電流值。將多個系統電流值依序輸入至一機器學習模型,而透過機器學習模型依序預測出多個負載類型。並且,判斷多個負載類型是否符合特定條件。當這些負載類型符合特定條件,根據這些負載類型調高風扇的風扇轉速。 The present invention provides an electronic device, which includes a fan and a control module. The control module is coupled to the fan and configured to perform the following steps. Monitor multiple system current values corresponding to different time points. Input the multiple system current values into a machine learning model in sequence, and predict multiple load types in sequence through the machine learning model. And, determine whether the multiple load types meet specific conditions. When these load types meet the specific conditions, increase the fan speed of the fan according to these load types.
基於上述,於本發明的實施例中,系統電流值持續地被監測並依序輸入至機器學習模型,以使機器學習模型持續地預測出關聯於這些輸入系統電流值的多個負載類型。於是,風扇轉速可以反應於這些負載類型符合特定條件而提高。基此,可在系統重載真正來臨之前,根據模型預測結果預先提早調高風扇轉速,以盡量避免溫度過高的情況發生而爭取到更好的系統效能。 Based on the above, in an embodiment of the present invention, the system current value is continuously monitored and sequentially input into the machine learning model, so that the machine learning model continuously predicts multiple load types associated with these input system current values. Therefore, the fan speed can be increased in response to these load types meeting specific conditions. Based on this, before the system overload actually comes, the fan speed can be increased in advance according to the model prediction results to avoid the occurrence of over-temperature as much as possible and strive for better system performance.
100:電子裝置 100: Electronic devices
110:風扇 110: Fan
120:控制模組 120: Control module
130:充電電路 130: Charging circuit
140:連接埠 140:Port
200:電源轉接器 200: Power adapter
121:嵌入式控制器 121:Embedded Controller
122:記憶體 122: Memory
123:處理器 123:Processor
L1~L4:曲線 L1~L4: Curve
S310~S350,S510~S540,S541~S543:步驟 S310~S350,S510~S540,S541~S543: Steps
圖1是依照本發明一實施例的電子裝置的方塊圖。 FIG1 is a block diagram of an electronic device according to an embodiment of the present invention.
圖2A是依照本發明一實施例的控制模組的示意圖。 Figure 2A is a schematic diagram of a control module according to an embodiment of the present invention.
圖2B是依照本發明一實施例的控制模組的示意圖。 Figure 2B is a schematic diagram of a control module according to an embodiment of the present invention.
圖3是依照本發明一實施例的風扇轉速調整方法的流程圖。 Figure 3 is a flow chart of a fan speed adjustment method according to an embodiment of the present invention.
圖4A是依照本發明一實施例的系統閒置負載的系統電流的示意圖。 FIG4A is a schematic diagram of system current of a system with idle load according to an embodiment of the present invention.
圖4B是依照本發明一實施例的持續性低負載的系統電流的示意圖。 FIG4B is a schematic diagram of system current at a continuous low load according to an embodiment of the present invention.
圖4C是依照本發明一實施例的間歇性高負載的系統電流的示意圖。 FIG4C is a schematic diagram of system current under intermittent high load according to an embodiment of the present invention.
圖4D是依照本發明一實施例的持續性高負載的系統電流的示意圖。 FIG4D is a schematic diagram of system current under continuous high load according to an embodiment of the present invention.
圖5是依照本發明一實施例的風扇轉速調整方法的流程圖。 Figure 5 is a flow chart of a fan speed adjustment method according to an embodiment of the present invention.
本發明的部份實施例接下來將會配合附圖來詳細描述,以下的描述所引用的元件符號,當不同附圖出現相同的元件符號將視為相同或相似的元件。這些實施例只是本發明的一部份,並未揭示所有本發明的可實施方式。更確切的說,這些實施例只是本發明的專利申請範圍中的方法與裝置的範例。 Some embodiments of the present invention will be described in detail with reference to the accompanying drawings. The component symbols cited in the following description will be regarded as the same or similar components when the same component symbols appear in different drawings. These embodiments are only part of the present invention and do not disclose all possible implementation methods of the present invention. More precisely, these embodiments are only examples of methods and devices within the scope of the patent application of the present invention.
圖1是依照本發明一實施例的電子裝置的方塊圖。請參照圖1,電子裝置100包括風扇110、控制模組120、充電電路130以及連接埠140。電子裝置100可例如為筆記型電腦、伺服器或其他具備風扇散熱機制的電子產品,本發明並不對此限制。
FIG1 is a block diagram of an electronic device according to an embodiment of the present invention. Referring to FIG1 , the
風扇110為安裝於電子裝置100的實體風扇且用以對電子裝置100進行散熱。例如,風扇110包含可旋轉的葉片。當風扇110的葉片旋轉時,電子裝置100內部的熱氣可被帶出至電子裝置100外部。風扇110例如是水冷式風扇或氣冷式風扇,本發明並不對此限制。此外,風扇110的風扇轉速是可控制的,而具備不同的散熱能力。當風扇110的風扇轉速越高,代表風扇110提供的散熱能力越高。反之,當風扇110的風扇轉速越低,代表風扇110提供的散熱能力越低。於一些實施例中,風扇110的轉速可透過脈寬調變訊號(Pulse-width Modulation訊號,PWM訊號)來控制。
The
充電電路130例如是充電積體電路(Charger IC)等電源
控制電路,其可連接電源轉接器200。在一些實施例中,充電電路130可經由連接埠140連接電源轉接器200。電源轉接器200用以接收電源並將電源供應給電子裝置100。例如,電源轉接器200可透過電源線連接插座而接收交流電源,並在將交流電源轉換為直流電源後提供給電子裝置100。此外,充電電路130還可耦接至電池(未繪示)。充電電路130可用以決定將電源轉接器200或/與電池提供的電源供應給電子裝置100。
The
於一些實施例中,充電電路130可提供一系統電流給電子裝置100的系統負載。系統負載可例如為電子裝置100中的系統電路。舉例而言,電子裝置100的系統負載可包括圖1中的控制模組120、風扇110與其他電子元件。於一些實施例中,充電電路130可偵測系統電流的電流值(以下稱為系統電流值)。於一些實施例中,系統電流可以是電源轉接器200提供的電流、電池提供的電流或其組合。此外,系統電流值可透過量測電阻兩端的電壓值而獲取。
In some embodiments, the charging
控制模組120電性耦接風扇110與充電電路130。控制模組120可控制風扇110的轉速,並持續接收由充電電路130回報的系統電流值。控制模組120可執行本發明實施例的風扇轉速調整方法中的各個操作。
The
請參照圖2A,其是依照本發明一實施例的控制模組的示意圖。於一些實施例中,控制模組120可包括嵌入式控制器121,並由嵌入式控制器121執行本發明實施例的風扇轉速調整方法中
的各個操作。詳細而言,嵌入式控制器121可耦接風扇110與充電電路130,並根據充電電路130回報的系統電流值來控制風扇110的風扇轉速。嵌入式控制器121可具有計算能力的一系統晶片(SoC)來實現。
Please refer to FIG. 2A, which is a schematic diagram of a control module according to an embodiment of the present invention. In some embodiments, the
請參照圖2B,其是依照本發明一實施例的控制模組的示意圖。於一些實施例中,控制模組120可包括嵌入式控制器121、記憶體122以及處理器123。嵌入式控制器121可耦接風扇110與充電電路130,且處理器123耦接嵌入式控制器121與記憶體122。嵌入式控制器121將充電電路130回報的系統電流值提供給處理器123,而處理器123可透過嵌入式控制器121來控制風扇110的風扇轉速。亦即,嵌入式控制器121可根據處理器123發送的控制信號來調整風扇110的風扇轉速。
Please refer to FIG. 2B, which is a schematic diagram of a control module according to an embodiment of the present invention. In some embodiments, the
記憶體122可以例如是任意型式的固定式或可移動式隨機存取記憶體(random access memory,RAM)、唯讀記憶體(read-only memory,ROM)、快閃記憶體(flash memory)、硬碟或其他類似裝置、積體電路及其組合。處理器123例如是中央處理單元(central processing unit,CPU)、應用處理器(application processor,AP),或是其他可程式化之一般用途或特殊用途的微處理器(microprocessor)、數位訊號處理器(digital signal processor,DSP)或其他類似裝置、積體電路及其組合。處理器123可存取並執行記錄在記憶體122中的程式碼,以實現本發明實施例中的風扇轉速調整方法。
The
須說明的是,無論是圖2A或圖2B所示的實施例,嵌入式控制器121可用以控制風扇110的轉速。一般而言,記憶體122可記錄有風扇轉速表(亦稱為溫控轉速表)。此風扇轉速表記載著溫度與風扇110的預設轉速的相應關係。處理器123可根據感測溫度查閱風扇轉速表來決定風扇110的風扇轉速。所述的感測溫度可例如是電子裝置100中溫度感測器(未繪示)所產生的感測值。舉例來說,表1為風扇轉速表的範例。
It should be noted that, regardless of the embodiment shown in FIG. 2A or FIG. 2B , the embedded
圖3是依照本發明一實施例的風扇轉速調整方法的流程圖,而圖3的方法流程可以由圖1的電子裝置100的各元件實現。請同時參照圖1及圖3,以下即搭配圖1中電子裝置100的各項元件,說明本實施例的風扇轉速調整方法的步驟。
FIG3 is a flow chart of a fan speed adjustment method according to an embodiment of the present invention, and the method flow of FIG3 can be implemented by various components of the
於步驟S310,控制模組120監測對應至不同時間點的多個系統電流值。詳細來說,充電電路130可定時地(例如每隔1秒)回報系統電流值給控制模組120。對應的,控制模組120可持續監測充電電路130於不同時間點提供給系統負載的多個系統電流值。更具體而言,充電電路130可於時間點T1偵測一系統電流值,並將對應至時間點T1的系統電流值回報給控制模組120。之後,充電電路130可於下一個時間點T2偵測下一個系統電流值,並將對應至下一個時間點T2的下一個系統電流值回報給控制模組120。舉例而言,充電電路130可經由I2C介面連接嵌入式控制器121,嵌入式控制器121可透過I2C介面去讀取系統電流值。
In step S310, the
於步驟S320,控制模組120可將多個系統電流值依序輸入至機器學習模型,而透過機器學習模型依序預測出多個負載類型。詳細來說,電源轉接器200或電池所提供的系統電壓一般設定為固定值,因此系統電流的大小可用來衡量系統負載的高低。於本發明實施例中,控制模組120可依據系統電流值與利用機器學習模型來預測系統負載的負載類型。
In step S320, the
於一些實施例中,機器學習模型可為一分類模型。於一些實施例中,機器學習模型可包括一循環神經網路(Recurrent Neural Network,RNN)模型。舉例而言,機器學習模型可以是長短期記憶(Long Short-Term Memory,LSTM)模型或Transformer模型,本發明對此不限制。控制模組120可將對應至不同時間點的這些系統電流值依序輸入至訓練完成的RNN模型。於不同實施
例中,訓練完成的RNN模型的模型參數(例如權重資訊等等)可記錄於記憶體122之中。
In some embodiments, the machine learning model may be a classification model. In some embodiments, the machine learning model may include a recurrent neural network (RNN) model. For example, the machine learning model may be a long short-term memory (LSTM) model or a Transformer model, and the present invention is not limited thereto. The
於一些實施例中,訓練完成的機器學習模型所依序預測出來的各個負載類型可包括一低負載類型或一高負載類型。更詳細而言,於一些實施例中,當控制模組120將對應至某一時間點的系統電流值輸入至RNN模型的,RNN模型可對應輸出對應至該時間點的系統負載的分類結果(即負載類型),即低負載類型或高負載類型。接著,當控制模組120將對應至下一個時間點的系統電流值輸入至RNN模型的,RNN模型可對應輸出對應至該下一個時間點的系統負載的分類結果。由此可見,控制模組120可利用機器學習模型定時地依序輸出多個負載類型。
In some embodiments, each load type sequentially predicted by the trained machine learning model may include a low load type or a high load type. In more detail, in some embodiments, when the
於步驟S330,控制模組120判斷一段時間內的多個負載類型是否符合一特定條件。具體而言,控制模組120可判斷於一段時間內不同時間點所預測的這些負載類型是否由低負載類型轉變為高負載類型,以更進一步預測系統負載是否即將要提昇。
In step S330, the
當多個負載類型符合特定條件(步驟S330判斷為是),於步驟S340,控制模組120根據多個負載類型調高風扇110的風扇轉速。也就是說,當判定多個負載類型符合特定條件,代表一段時間內的這些負載類型是由低負載類型轉變為高負載類型,因此控制模組120可在溫度上升至超過風扇轉速表中某一溫度範圍的上限值之前提早調高風扇110的風扇轉速,以預先將風扇轉速提高而讓系統溫度下降。基此,可使得電子裝置100有更多的溫
度餘裕來達成更好的系統效能。
When multiple load types meet specific conditions (step S330 is judged as yes), in step S340, the
另一方面,當多個負載類型未符合特定條件(步驟S330判斷為否),於步驟S350,控制模組120可基於感測溫度維持風扇110的風扇轉速。也就是說,當控制模組120利用機器學習模型所預測的多個負載類型並非由低負載類型轉變為高負載類型時,控制模組120可根據風扇轉速表與當前感測溫度來控制風扇110的風扇轉速。
On the other hand, when multiple load types do not meet the specific conditions (step S330 is judged as no), in step S350, the
於一些實施例中,低負載類型可包括系統閒置負載與持續性低負載。請參照圖4A,其是依照本發明一實施例的系統閒置負載的系統電流的示意圖。請參照圖4B,其是依照本發明一實施例的持續性低負載的系統電流的示意圖。須先說明的是,本發明實施例可定義一電流臨界值THc為電子裝置100具有最大系統效能時的系統電流值的二分之一,但可不限制於此。
In some embodiments, the low load type may include system idle load and continuous low load. Please refer to FIG. 4A, which is a schematic diagram of the system current of the system idle load according to an embodiment of the present invention. Please refer to FIG. 4B, which is a schematic diagram of the system current of the continuous low load according to an embodiment of the present invention. It should be noted that the embodiment of the present invention may define a current threshold value THc as half of the system current value when the
於圖4A中,當控制模組120判定負載類型為系統閒置負載時,曲線L1顯示出過去一段時間(20秒)內對應至不同時間點(第1秒至第20秒)的系統電流值都小於電流臨界值THc,且此段時間內大多數的時間點的系統電流值低於電流臨界值THc的四分之一。於圖4B中,當控制模組120判定負載類型為持續性低負載時,曲線L2顯示出過去一段時間(20秒)內對應至不同時間點(第1秒至第20秒)的系統電流值都小於電流臨界值THc,且一段時間內大多數的時間點的系統電流值維持於電流臨界值THc的四分之一以上。
In FIG. 4A , when the
於一些實施例中,高負載類型可包括間歇性高負載與持續性高負載。請參照圖4C,其是依照本發明一實施例的間歇性高負載的系統電流的示意圖。請參照圖4D,其是依照本發明一實施例的持續性高負載的系統電流的示意圖。 In some embodiments, the high load type may include intermittent high load and continuous high load. Please refer to FIG. 4C, which is a schematic diagram of the system current of intermittent high load according to an embodiment of the present invention. Please refer to FIG. 4D, which is a schematic diagram of the system current of continuous high load according to an embodiment of the present invention.
於圖4C中,當控制模組120判定負載類型為間歇性高負載時,曲線L3顯示出過去一段時間(20秒)內部份時間點的系統電流值曾超過電流臨界值THc,但另一部份時間點的系統電流值維持在電流臨界值THc以下。於圖4D中,當控制模組120判定負載類型為持續性高負載時,曲線L4顯示出過去一段時間內對應至不同時間點的系統電流值都大於電流臨界值THc。
In FIG. 4C , when the
基於圖4A至圖4D的說明,於一些實施例中,機器學習模型可根據輸入系統電流值將系統負載分類為系統閒置負載、持續性低負載、間歇性高負載,以及持續性高負載其中之一。亦即,機器學習模型可依輸入的系統電流值來推論出系統負載為上述中四種類型中的哪一種。然而,圖4A至圖4D所示的時間長度與時間間隔僅為示範性說明,並非用以限定本發明。 Based on the description of FIG. 4A to FIG. 4D , in some embodiments, the machine learning model can classify the system load into one of system idle load, continuous low load, intermittent high load, and continuous high load according to the input system current value. That is, the machine learning model can infer which of the four types of system load is based on the input system current value. However, the time length and time interval shown in FIG. 4A to FIG. 4D are only exemplary descriptions and are not used to limit the present invention.
基於圖4A至圖4D的範例,圖5是依照本發明一實施例的風扇轉速調整方法的流程圖,而圖5的方法流程可以由圖1的電子裝置100的各元件實現。請同時參照圖1及圖5,以下即搭配圖1中電子裝置100的各項元件,說明本實施例的風扇轉速調整方法的步驟。
Based on the examples of FIG. 4A to FIG. 4D, FIG. 5 is a flow chart of a fan speed adjustment method according to an embodiment of the present invention, and the method flow of FIG. 5 can be implemented by various components of the
於步驟S510,控制模組120監測對應至不同時間點的多
個系統電流值。於步驟S520,控制模組120將多個系統電流值依序輸入至機器學習模型,而透過機器學習模型依序預測出多個負載類型。步驟S510至步驟S520的實施細節可參照前述實施例內容,於此不贅述。
In step S510, the
於步驟S530,控制模組120判斷多個負載類型是否符合一特定條件。於本實施例中,步驟S530可實施為步驟S531至步驟S532。
In step S530, the
於步驟S531,控制模組120判斷多個負載類型中分別對應至M個第一時間點的M個第一負載類型是否為低負載類型。M為正整數。舉例而言,M可以等於4,但可不限制於此。控制模組120將M個連續的第一時間點的系統電流值依序輸入至機器學習模型,以使機器學習模型依序預測出對應至這M個連續的第一時間點的M個第一負載類型。
In step S531, the
當分別對應至M個第一時間點的M個第一負載類型皆為低負載類型(步驟S531判斷為是),於步驟S532,控制模組120判斷多個負載類型中分別對應至N個第二時間點的N個第二負載類型是否為高負載類型。N為正整數。舉例而言,N可以等於2,但可不限制於此。控制模組120將N個連續的第二時間點的系統電流值依序輸入至機器學習模型,以使機器學習模型依序預測出對應至這N個連續的第二時間點的N個第二負載類型。須特別說明的是,M個第一時間點早於N個第二時間點,且M個第一時間點與N個第二時間點為彼此相異的多個連續時間點。
When the M first load types corresponding to the M first time points are all low load types (step S531 is judged as yes), in step S532, the
當多個負載類型符合特定條件(步驟S531與步驟S532皆判斷為是),於步驟S540,控制模組120根據多個負載類型調高風扇110的風扇轉速。更進一步來說,當分別對應至M個第一時間點的M個第一負載類型為低負載類型且分別對應至N個第二時間點的N個第二負載類型為高負載類型,於步驟S540,控制模組120可根據N個第二負載類型調高風扇110的風扇轉速。
When multiple load types meet specific conditions (both step S531 and step S532 are judged as yes), in step S540, the
也就是說,透過步驟S531與步驟S532的判斷,控制模組120可判斷負載類型是否隨著時間遞延從低負載類型轉變為高負載類型。此外,當多個負載類型未符合特定條件(步驟S531或步驟S532判斷為否),控制模組120基於風扇轉速表與感測溫度來決定風扇110的風扇轉速,並回到步驟S510。
That is, through the judgment of step S531 and step S532, the
另外需要特別說明的是,於本實施例中,步驟S540可實施為步驟S541至步驟S543。於步驟S541,控制模組120判斷N個第二負載類型其中至少一為間歇性高負載或持續性高負載。於一些實施例中,控制模組120可判斷N個第二負載類型為間歇性高負載或持續性高負載。或者,控制模組120可判斷N個第二負載類型中最靠近當前時間的某一第二時間所預測的某一第二負載類型為間歇性高負載或持續性高負載。
It should be noted that in this embodiment, step S540 can be implemented as steps S541 to S543. In step S541, the
當N個第二負載類型其中至少一為間歇性高負載,於步驟S542,控制模組120將風扇110自當前轉速調高至第一轉速。當N個第二負載類型其中至少一為持續性高負載,於步驟S543,控制模組120將風扇110自當前轉速調高至第二轉速。於此,第
二轉速高於第一轉速。具體而言,持續性高負載相較於間歇性高負載會產生更多熱能,因此持續性高負載相較於間歇性高負載需要風扇110提供更強散熱能力將更多熱能排出電子裝置100之外。
When at least one of the N second load types is an intermittent high load, in step S542, the
或者,於一些實施例中,控制模組120可判斷N個第二負載類型中間歇性高負載的數量是否大於持續性高負載的數量。當N個第二負載類型中間歇性高負載的數量大於持續性高負載的數量,控制模組120將風扇110自當前轉速調高至第一轉速。反之,當N個第二負載類型中間歇性高負載的數量小於持續性高負載的數量,控制模組120將風扇110自當前轉速調高至第二轉速。
Alternatively, in some embodiments, the
另外須說明的是,於一些實施例中,上述當前轉速、第一轉速與第二轉速記錄於嵌入式控制器121的風扇轉速表之中。具體而言,基於當前感測溫度,控制模組120可決定風扇110的風扇轉速為風扇轉速表中的第n階轉速(亦即當前轉速)。之後,控制模組120持續地根據即時地系統電流值來預測負載類型。當這些負載類型符合特定條件,且N個第二負載類型其中至少一為間歇性高負載,控制模組120可將風扇110的風扇轉速從第n階轉速提高為風扇轉速表中的第(n+1)階轉速。或者,當這些負載類型符合特定條件,且N個第二負載類型其中至少一為持續性高負載,控制模組120可將風扇110的風扇轉速從第n階轉速提高為風扇轉速表中的第(n+2)階轉速。第(n+2)階轉速大於第(n+1)階轉速,第(n+1)階轉速大於第n階轉速。
It should also be noted that, in some embodiments, the above-mentioned current speed, first speed, and second speed are recorded in the fan speed table of the embedded
綜上所述,於本發明實施例中,系統電流值持續地被監 測並依序輸入至機器學習模型,以使機器學習模型持續地預測出關聯於這些輸入系統電流值的多個負載類型。於是,當判定這些負載類型從低負載類型轉變為高負載類型,風扇的風扇轉速可以提高。基此,在系統重載真正來臨或溫度過高而影響系統效能之前,本發明實施例的電子裝置與風扇轉速調整方法可根據模型預測結果預先提早調高風扇轉速。如此一來,可預先將風扇轉速提高而讓系統溫度下降,使得電子裝置有更多的溫度餘裕而爭取到更好的系統效能。 In summary, in the embodiment of the present invention, the system current value is continuously monitored and sequentially input into the machine learning model, so that the machine learning model continuously predicts multiple load types related to these input system current values. Therefore, when it is determined that these load types change from low load types to high load types, the fan speed of the fan can be increased. Based on this, before the system overload actually comes or the temperature is too high and affects the system performance, the electronic device and fan speed adjustment method of the embodiment of the present invention can pre-adjust the fan speed in advance according to the model prediction results. In this way, the fan speed can be increased in advance to reduce the system temperature, so that the electronic device has more temperature margin and strives for better system performance.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed as above by the embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the relevant technical field can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be subject to the scope defined by the attached patent application.
S310~S350:步驟 S310~S350: Steps
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW111148395A TWI838016B (en) | 2022-12-16 | 2022-12-16 | Electronic apparatus and fan speed adjustment method thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW111148395A TWI838016B (en) | 2022-12-16 | 2022-12-16 | Electronic apparatus and fan speed adjustment method thereof |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TWI838016B true TWI838016B (en) | 2024-04-01 |
| TW202426773A TW202426773A (en) | 2024-07-01 |
Family
ID=91618920
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW111148395A TWI838016B (en) | 2022-12-16 | 2022-12-16 | Electronic apparatus and fan speed adjustment method thereof |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI838016B (en) |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW201520430A (en) * | 2013-11-19 | 2015-06-01 | Inventec Corp | Fan controller and server system with the fan controller |
| CN109826819A (en) * | 2019-02-28 | 2019-05-31 | 苏州浪潮智能科技有限公司 | A kind of system and method adjusting rotation speed of the fan |
| US20210372417A1 (en) * | 2020-05-28 | 2021-12-02 | Ebm-Papst Mulfingen Gmbh & Co. Kg | Method for operating a fan system and fan system having a backward curved centrifugal fan |
-
2022
- 2022-12-16 TW TW111148395A patent/TWI838016B/en active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW201520430A (en) * | 2013-11-19 | 2015-06-01 | Inventec Corp | Fan controller and server system with the fan controller |
| CN109826819A (en) * | 2019-02-28 | 2019-05-31 | 苏州浪潮智能科技有限公司 | A kind of system and method adjusting rotation speed of the fan |
| US20210372417A1 (en) * | 2020-05-28 | 2021-12-02 | Ebm-Papst Mulfingen Gmbh & Co. Kg | Method for operating a fan system and fan system having a backward curved centrifugal fan |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202426773A (en) | 2024-07-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7272732B2 (en) | Controlling power consumption of at least one computer system | |
| CN106194806B (en) | Fan power control system, method and non-transitory computer readable storage medium | |
| US20120254641A1 (en) | Apparatus and method for high current protection | |
| CN118244812A (en) | A control method for constant temperature chemical composition equipment | |
| US20140181562A1 (en) | Method for preventing over-heating of a device within a data processing system | |
| US10627878B2 (en) | Electronic devices and cooling methods adapted to electronic device | |
| US6965175B2 (en) | Dynamic temperature control method for a computer system | |
| CN115263793B (en) | Speed regulation method, speed regulation device, equipment and medium for server fan | |
| CN111503038A (en) | Method and device for regulating speed of fan | |
| WO2025067054A1 (en) | Electric device, electric device surface temperature control method, electric device surface temperature control apparatus, medium, and chip system | |
| US11630003B2 (en) | Temperature control system for central processing unit and temperature control method thereof | |
| CN118765482A (en) | System and method for predicting the health of a power converter | |
| WO2024109561A1 (en) | Parameter adjustment method and apparatus, computer device, and storage medium | |
| TWI838016B (en) | Electronic apparatus and fan speed adjustment method thereof | |
| CN100395553C (en) | Method for detecting load current by using duty cycle signal of pulse width modulation controller | |
| CN117519345A (en) | Control method and device of unit and unit | |
| CN116632388A (en) | Battery charge adjustment method, device, and storage medium | |
| CN119245867B (en) | Temperature detection method and device for electronic components, electronic equipment and storage medium | |
| CN111538392B (en) | A fan control method, device, electronic device and readable storage medium | |
| Zhang et al. | On demand cooling with real time thermal information | |
| CN115047953B (en) | A server cooling method, system, device and medium | |
| CN217955055U (en) | Heat dissipation system and computer equipment | |
| CN116243772A (en) | Cabinet temperature prediction system for desktop | |
| CN114756434A (en) | A chip power monitoring method, system, device and medium | |
| CN120010599B (en) | Adaptive temperature control system for power electronic devices |