TWI810901B - Remote electrocardiogram monitoring device and electrocardiogram monitoring method - Google Patents
Remote electrocardiogram monitoring device and electrocardiogram monitoring method Download PDFInfo
- Publication number
- TWI810901B TWI810901B TW111114910A TW111114910A TWI810901B TW I810901 B TWI810901 B TW I810901B TW 111114910 A TW111114910 A TW 111114910A TW 111114910 A TW111114910 A TW 111114910A TW I810901 B TWI810901 B TW I810901B
- Authority
- TW
- Taiwan
- Prior art keywords
- amplitude
- mathematical formula
- calculate
- peaks
- electrocardiogram
- Prior art date
Links
- 238000012806 monitoring device Methods 0.000 title claims abstract description 16
- 238000000034 method Methods 0.000 title claims description 18
- 238000012544 monitoring process Methods 0.000 title claims description 13
- 238000013527 convolutional neural network Methods 0.000 claims abstract description 12
- 238000005070 sampling Methods 0.000 claims description 35
- 125000004122 cyclic group Chemical group 0.000 claims 1
- 238000004891 communication Methods 0.000 description 9
- 230000002159 abnormal effect Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Landscapes
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Electrotherapy Devices (AREA)
Abstract
Description
本揭露是關於一種遠端心電圖監控裝置,能夠自動的辨識心電圖是否異常。The present disclosure relates to a remote electrocardiogram monitoring device, which can automatically identify whether the electrocardiogram is abnormal.
在一些習知技術中,如果要監測病人的心電圖,則需要仰賴醫護人員在旁邊貼上貼片,透過相關的儀器來記錄病人的心電圖,之後由醫生判斷這些心電圖是否異常。如果可以用遠端的方式監控或記錄病人的心電圖,並自動的判斷心電圖是否異常,則可以有即時的判斷結果,也可以節省人力。然而,如何處理心電圖訊號以提供準確的判斷,仍有改善空間。In some conventional technologies, if you want to monitor the patient's ECG, you need to rely on the medical staff to stick a patch next to it, record the patient's ECG through related instruments, and then let the doctor judge whether the ECG is abnormal. If the patient's electrocardiogram can be monitored or recorded in a remote manner, and whether the electrocardiogram is abnormal can be automatically judged, an instant judgment result can be obtained, and manpower can also be saved. However, there is still room for improvement in how to process ECG signals to provide accurate judgments.
本揭露的實施例提出一種遠端心電圖監控裝置,包括心跳感測電路與處理器。心跳感測電路用以取得一心電圖訊號。處理器電性連接至心跳感測電路,用以取得心電圖訊號,辨識心電圖訊號中的多個峰值,根據峰值將心電圖訊號切割成為多個完整循環片段,將完整循環片段分別轉換為多個循環影像,並將循環影像輸入至卷積神經網路以辨識循環影像是否正常。Embodiments of the present disclosure provide a remote ECG monitoring device, including a heartbeat sensing circuit and a processor. The heartbeat sensing circuit is used for obtaining an electrocardiogram signal. The processor is electrically connected to the heartbeat sensing circuit to obtain the electrocardiogram signal, identify multiple peaks in the electrocardiogram signal, cut the electrocardiogram signal into multiple complete cycle segments according to the peak values, and convert the complete cycle segments into multiple cycle images respectively , and input the loop image to the convolutional neural network to identify whether the loop image is normal.
在一些實施例中,辨識心電圖訊號中的峰值的操作包括:對於心電圖訊號中第i個取樣點的振幅 與時間 ,根據以下數學式1計算第i個取樣點的角度 ,並根據以下數學式2計算角度變化量 。 [數學式1] [數學式2] In some embodiments, the operation of identifying the peak value in the ECG signal includes: for the amplitude of the ith sampling point in the ECG signal with time , calculate the angle of the i-th sampling point according to the following mathematical formula 1 , and calculate the angle change according to the following mathematical formula 2 . [mathematical formula 1] [mathematical formula 2]
接著,根據以下數學式3計算後向平坦距離 ,並根據以下數學式4計算前向平坦距離 。 [數學式3] [數學式4] Next, the backward flat distance is calculated according to the following mathematical formula 3 , and calculate the forward flat distance according to the following mathematical formula 4 . [mathematical formula 3] [mathematical formula 4]
接著,根據以下數學式5計算後向振幅距離 ,並根據以下數學式6計算前向振幅距離 。 [數學式5] [數學式6] Next, the backward amplitude distance is calculated according to the following mathematical formula 5 , and calculate the forward amplitude distance according to the following mathematical formula 6 . [mathematical formula 5] [mathematical formula 6]
接著,根據以下數學式7計算後向角度 ,並根據以下數學式8計算前向角度 。 [數學式7] [數學式8] Next, calculate the backward angle according to the following mathematical formula 7 , and calculate the forward angle according to the following mathematical formula 8 . [mathematical formula 7] [mathematical formula 8]
接著,根據以下數學式9計算第i個取樣點的曲度 。 [數學式9] Next, calculate the curvature of the i-th sampling point according to the following mathematical formula 9 . [mathematical formula 9]
如果第i個取樣點的曲度 大於第一臨界值,判斷第i個取樣點為峰值。 If the curvature of the i-th sampling point is greater than the first critical value, it is judged that the i-th sampling point is a peak value.
在一些實施例中,根據峰值將心電圖訊號切割成為多個完整循環片段的操作包括:對於每一個峰值,如果對應的振幅小於一第二臨界值,去除此峰值;如果相鄰的兩個峰值之間的時間距離小於第三臨界值,去除兩個峰值中振幅較低的峰值;以及根據剩餘的峰值切割心電圖訊號成為完整循環片段。In some embodiments, the operation of cutting the electrocardiogram signal into a plurality of complete cycle segments according to the peak value includes: for each peak value, if the corresponding amplitude is smaller than a second critical value, removing the peak value; If the time distance between the two peaks is smaller than the third critical value, the peak with a lower amplitude among the two peaks is removed; and the ECG signal is cut into complete cycle segments according to the remaining peaks.
在一些實施例中,處理器還用以計算心電圖訊號中所有取樣點的振幅平均與振幅標準差,並將振幅平均減去n倍的振幅標準差以取得第二臨界值。In some embodiments, the processor is also used to calculate the mean amplitude and the standard deviation of the amplitude of all the sampling points in the ECG signal, and subtract n times the standard deviation of the amplitude from the mean amplitude to obtain the second critical value.
在一些實施例中,遠端心電圖監控裝置還包括儲存器,用以儲存心電圖訊號。In some embodiments, the remote ECG monitoring device further includes a storage for storing ECG signals.
以另一個角度來說,本揭露的實施例提出一種心電圖監控方法,適用於處理器,此心電圖監控方法包括:透過心跳感測電路用以取得心電圖訊號;辨識心電圖訊號中的多個峰值;根據峰值將心電圖訊號切割成為多個完整循環片段;以及將完整循環片段分別轉換為多個循環影像,並將循環影像輸入至卷積神經網路以辨識循環影像是否正常。From another point of view, the embodiments of the present disclosure provide an electrocardiogram monitoring method suitable for a processor. The electrocardiogram monitoring method includes: obtaining an electrocardiogram signal through a heartbeat sensing circuit; identifying multiple peaks in the electrocardiogram signal; The peak cuts the ECG signal into multiple complete loop segments; and converts the complete loop segments into multiple loop images respectively, and inputs the loop images to the convolutional neural network to identify whether the loop images are normal.
在一些實施例中,上述辨識心電圖訊號中的峰值的步驟是根據上述數學式1至數學式9來執行。In some embodiments, the above step of identifying the peak value in the ECG signal is performed according to the above formula 1 to formula 9.
在一些實施例中,根據峰值將心電圖訊號切割成為多個完整循環片段的步驟包括:對於每一個峰值,如果對應的振幅小於第二臨界值,去除此峰值;如果相鄰的兩個峰值之間的時間距離小於第三臨界值,去除兩個峰值中振幅較低的峰值;以及根據剩餘的峰值切割心電圖訊號成為完整循環片段。In some embodiments, the step of cutting the electrocardiogram signal into a plurality of complete cycle segments according to the peak value includes: for each peak value, if the corresponding amplitude is smaller than a second critical value, removing the peak value; If the time distance is smaller than the third critical value, the peak with the lower amplitude among the two peaks is removed; and the electrocardiogram signal is cut into complete cycle segments according to the remaining peaks.
在一些實施例中,心電圖監控方法還包括:計算心電圖訊號中所有取樣點的振幅平均與振幅標準差,並將振幅平均減去n倍的振幅標準差以取得第二臨界值。In some embodiments, the electrocardiogram monitoring method further includes: calculating the mean amplitude and the standard deviation of the amplitude of all sampling points in the electrocardiogram signal, and subtracting n times the standard deviation of the amplitude from the mean amplitude to obtain the second critical value.
在一些實施例中,心電圖監控方法還包括:透過一儲存器儲存心電圖訊號。In some embodiments, the ECG monitoring method further includes: storing the ECG signal through a memory.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail together with the accompanying drawings.
關於本文中所使用之「第一」、「第二」等,並非特別指次序或順位的意思,其僅為了區別以相同技術用語描述的元件或操作。The terms "first", "second" and the like used herein do not specifically refer to a sequence or sequence, but are only used to distinguish elements or operations described with the same technical terms.
圖1是遠端心電圖監控裝置的方塊示意圖。請參照圖1,遠端心電圖監控裝置100是一種可攜帶式的裝置,可由病人隨身攜帶。遠端心電圖監控裝置100包括了處理器110、心跳感測電路120、儲存器130與通訊模組140,處理器110電性連接至心跳感測電路120、儲存器130與通訊模組140。處理器110可為中央處理器、微處理器、微控制器、數位信號處理器、特殊應用積體電路等。心跳感測電路120用以取得病人的心電圖訊號,例如心跳感測電路120可為Arduino製造商所生產的AD8232心跳感測晶片。儲存器130可為快閃記憶體、軟碟、硬碟等,用以儲存心電圖訊號。通訊模組140可為提供近場通訊、紅外線通訊、藍芽、Wi-Fi等通訊功能的電路。在此揭露中,處理器110會執行一個心電圖監控方法,利用卷積神經網路自動的判斷心電圖訊號是否有異常,以下將說明相關各步驟。FIG. 1 is a schematic block diagram of a remote ECG monitoring device. Please refer to FIG. 1 , the remote ECG monitoring device 100 is a portable device that can be carried by a patient. The remote ECG monitoring device 100 includes a processor 110 , a heartbeat sensing circuit 120 , a storage 130 and a communication module 140 . The processor 110 is electrically connected to the heartbeat sensing circuit 120 , the storage 130 and the communication module 140 . The processor 110 may be a central processing unit, a microprocessor, a microcontroller, a digital signal processor, an application-specific integrated circuit, and the like. The heartbeat sensing circuit 120 is used to obtain the patient's ECG signal. For example, the heartbeat sensing circuit 120 can be an AD8232 heartbeat sensing chip produced by an Arduino manufacturer. The storage 130 can be a flash memory, a floppy disk, a hard disk, etc., and is used for storing ECG signals. The communication module 140 may be a circuit providing communication functions such as near field communication, infrared communication, Bluetooth, and Wi-Fi. In this disclosure, the processor 110 will execute an electrocardiogram monitoring method, using a convolutional neural network to automatically determine whether the electrocardiogram signal is abnormal, and the relevant steps will be described below.
首先必須先切割出代表一個心跳的完整循環片段,為此必須先辨識心電圖訊號的多個峰值。圖2是根據一實施例繪式心電圖訊號與峰值的示意圖。請參照圖2,經過取樣以後心電圖訊號是一個離散的訊號,在此以 來表示第i個取樣點的振幅,而 表示第i個取樣點的時間,其單位例如為毫秒。在此要計算每個取樣點上的曲度(curvature),當訊號越平緩則曲度越小,反之當訊號的轉折越大則曲度越大,曲度較大的取樣點有可能是峰值。首先根據以下數學式1計算第i個取樣點的角度 ,並根據以下數學式2計算第i個取樣點的角度變化量 。 [數學式1] [數學式2] First, a segment representing a complete cycle of a heartbeat must be cut out, for which multiple peaks in the ECG signal must first be identified. FIG. 2 is a schematic diagram of plotting ECG signals and peak values according to an embodiment. Please refer to Figure 2. After sampling, the ECG signal is a discrete signal. to represent the amplitude of the i-th sampling point, and Indicates the time of the i-th sampling point, and its unit is, for example, milliseconds. Here we need to calculate the curvature of each sampling point. When the signal is smoother, the curvature becomes smaller. Conversely, when the signal turns larger, the curvature becomes larger. The sampling point with a larger curvature may be the peak value. . First calculate the angle of the i-th sampling point according to the following mathematical formula 1 , and calculate the angle variation of the i-th sampling point according to the following mathematical formula 2 . [mathematical formula 1] [mathematical formula 2]
其中k為一正整數,例如為2。接著,根據以下數學式3計算一個後向平坦距離 ,並根據以下數學式4計算一前向平坦距離 。 [數學式3] [數學式4] Where k is a positive integer, such as 2. Next, calculate a backward flat distance according to the following formula 3 , and calculate a forward flat distance according to the following mathematical formula 4 . [mathematical formula 3] [mathematical formula 4]
其中 為使用者設定的實數。上述數學式3要計算的是最大的長度k,使得從第i個取樣點往後的長度k內的角度變化量 都在一定的範圍內。類似的,上述數學式4要計算的是最大的長度k,使得從第i個取樣點往前的長度k內的角度變化量 都在一定的範圍內。接下來,根據以下數學式5計算後向振幅距離 ,並根據以下數學式6計算前向振幅距離 。 [數學式5] [數學式6] in A real number set by the user. The above mathematical formula 3 is to calculate the maximum length k, so that the angle change within the length k from the i-th sampling point is are all within a certain range. Similarly, the above mathematical formula 4 needs to calculate the maximum length k, so that the angle change within the length k from the i-th sampling point is are all within a certain range. Next, the backward amplitude distance is calculated according to the following mathematical formula 5 , and calculate the forward amplitude distance according to the following mathematical formula 6 . [mathematical formula 5] [mathematical formula 6]
上述的後向振幅距離 是要計算第i個取樣點與往後 個取樣點之間的尤拉距離,類似地前向振幅距離 是要計算第i個取樣點與往前 個取樣點之間的尤拉距離。也就是說,這些尤拉距離不只代表時間上的差異,也代表振幅上的差異。接著,根據以下數學式7計算後向角度 ,並根據以下數學式8計算前向角度 。 [數學式7] [數學式8] The above backward amplitude distance is to calculate the i-th sampling point and the future The Euler distance between sampling points, similarly the forward amplitude distance is to calculate the i-th sampling point and the forward The Euler distance between sampling points. That is to say, these Euler distances represent not only the difference in time, but also the difference in amplitude. Next, calculate the backward angle according to the following mathematical formula 7 , and calculate the forward angle according to the following mathematical formula 8 . [mathematical formula 7] [mathematical formula 8]
最後,根據以下數學式9計算第i個取樣點的曲度 ,如果曲度 大於第一臨界值,則可以判斷第i個取樣點為峰值。 [數學式9] Finally, calculate the curvature of the i-th sampling point according to the following mathematical formula 9 , if the curvature If it is greater than the first critical value, it can be judged that the i-th sampling point is a peak value. [mathematical formula 9]
在圖2的實施例標示出多個峰值(例如峰值210~225、230)的位置。理論上來說,一個完整循環片段具有P、Q、R、S、T等波,其中R波的振幅最高可用來辨識完整循環片段。然而,上述的峰值判斷方法可能也會把T波當作振幅,因此必須先過濾掉一些峰值。舉例來說,可以用振幅大小來過濾峰值,如果一個峰值的振幅小於一第二臨界值,則可以去除此峰值。在一些實施例中,可先計算心電圖訊號中所有取樣點的振幅平均與振幅標準差,並將振幅平均減去n倍的振幅標準差以取得第二臨界值,其中n例如為1、2或其他合適的數值。除此之外,也可以根據峰值之間的時間距離來過濾峰值。舉例來說,如果相鄰的兩個峰值之間的時間距離小於第三臨界值,則可以去除這兩個峰值中振幅較低的峰值。上述第三臨界值可以根據心跳次數來決定,如果病人每分鐘心跳80次,則每次心跳的長度大約是12.5毫秒,第三臨界值可以設定為10毫秒或其他任意合適的數值,當兩個峰值之間的時間距離小於10毫秒時,其中一個可能是R波,另一者可能為T波或是其他突波,在此會保留振幅較高的峰值。經過上述處理以後,可以過濾掉峰值230,根據剩餘的峰值可以將心電圖訊號切割為多個完整循環片段,例如兩個相鄰峰值的中間點(在時間軸上)可以當作一個完整循環片段的起點(同時也是前一個完整循環片段的終點)。The embodiment of FIG. 2 marks the positions of a plurality of peaks (eg, peaks 210 - 225 , 230 ). Theoretically, a complete cycle segment has P, Q, R, S, T and other waves, among which the R wave has the highest amplitude and can be used to identify the complete cycle segment. However, the above-mentioned peak judgment method may also consider the T wave as the amplitude, so some peaks must be filtered out first. For example, peaks can be filtered by amplitude, and a peak can be removed if its amplitude is smaller than a second threshold. In some embodiments, the amplitude average and amplitude standard deviation of all sampling points in the electrocardiogram signal can be calculated first, and the amplitude average is subtracted by n times the amplitude standard deviation to obtain the second critical value, wherein n is, for example, 1, 2 or other suitable values. In addition, peaks can also be filtered based on the temporal distance between peaks. For example, if the time distance between two adjacent peaks is smaller than the third critical value, the peak with a lower amplitude among the two peaks may be removed. The above-mentioned third critical value can be determined according to the number of heartbeats. If the patient has 80 heartbeats per minute, the length of each heartbeat is about 12.5 milliseconds. The third critical value can be set to 10 milliseconds or any other suitable value. When two When the time distance between peaks is less than 10 milliseconds, one of them may be an R wave and the other may be a T wave or other spike, where the higher amplitude peak is preserved. After the above processing, the peak 230 can be filtered out, and the ECG signal can be cut into multiple complete cycle segments according to the remaining peak values. For example, the middle point (on the time axis) of two adjacent peak values can be regarded as a complete cycle segment. The start point (and also the end point of the previous full loop segment).
接下來,把切割後的完整循環片段轉換為二維影像(亦稱為循環影像),圖3繪示了幾個循環影像301~304的範例。最後,可由醫生標記這些循環影像是否正常以取得標記,根據這些標記以及循環影像可以訓練一卷積神經網路。在此實施例中,是以事先訓練好的VGG19卷積神經網路為基礎來做進一步訓練。此卷積神經網路的最後一層可以為歸一化(softmax)函數,誤差可以採用方均根誤差或是資訊熵等,更新權重的方式可以採用梯度下降,但本揭露並不在此限。Next, the cut complete loop segments are converted into two-dimensional images (also called loop images). FIG. 3 shows several examples of loop images 301-304. Finally, doctors can mark whether these circulatory images are normal to obtain labels, and a convolutional neural network can be trained according to these labels and circulatory images. In this embodiment, the pre-trained VGG19 convolutional neural network is used as the basis for further training. The last layer of the convolutional neural network can be a normalization (softmax) function, the error can be root mean square error or information entropy, etc., and the method of updating weights can be gradient descent, but this disclosure is not limited thereto.
訓練好的卷積神經網路可以儲存在儲存器130中。當病人攜帶遠端心電圖監控裝置,可以根據上述的方法將心電圖訊號切割為完整循環片段並產生循環影像,由處理器110執行卷積神經網路來辨識這些循環影像是否正常。如果判斷為異常,則可以透過通訊模組140傳送警告訊息給遠方的裝置(例如醫護人員的設備),或者也可以用聲音、影像、文字等任意方式提供警告訊息給病人,本揭露並不限制判斷為異常以後的程序。The trained convolutional neural network can be stored in the memory 130 . When the patient carries the remote ECG monitoring device, the ECG signal can be cut into complete cycle segments according to the above method to generate cycle images, and the processor 110 executes the convolutional neural network to identify whether these cycle images are normal. If it is judged to be abnormal, a warning message can be sent to a remote device (such as the equipment of medical personnel) through the communication module 140, or the warning message can be provided to the patient in any way such as sound, video, text, etc. This disclosure is not limited The program after it is judged as abnormal.
圖4是根據一實施例繪示心電圖監控方法的流程圖。請參照圖4,在步驟401,透過心跳感測電路用以取得心電圖訊號。在步驟402,辨識心電圖訊號中的多個峰值。在步驟403,根據峰值將心電圖訊號切割成為多個完整循環片段。在步驟404,將完整循環片段分別轉換為多個循環影像,並將循環影像輸入至卷積神經網路以辨識循環影像是否正常。然而,圖4中各步驟已詳細說明如上,在此便不再贅述。值得注意的是,圖4中各步驟可以實作為多個程式碼或是電路,本發明並不在此限。此外,圖4的方法可以搭配以上實施例使用,也可以單獨使用。換言之,圖4的各步驟之間也可以加入其他的步驟。FIG. 4 is a flowchart illustrating a method for monitoring an ECG according to an embodiment. Please refer to FIG. 4 , in step 401 , the heartbeat sensing circuit is used to obtain the electrocardiogram signal. In step 402, a plurality of peaks in the ECG signal are identified. In step 403, the ECG signal is segmented into a plurality of complete cycle segments according to the peak value. In step 404, the complete loop segments are respectively converted into a plurality of loop images, and the loop images are input to the convolutional neural network to identify whether the loop images are normal. However, each step in FIG. 4 has been described in detail above, and will not be repeated here. It should be noted that each step in FIG. 4 can be implemented as a plurality of program codes or circuits, and the present invention is not limited thereto. In addition, the method in FIG. 4 can be used in combination with the above embodiments, or can be used alone. In other words, other steps may also be added between the steps in FIG. 4 .
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed above with the embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field may make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention should be defined by the scope of the appended patent application.
100:遠端心電圖監控裝置 110:處理器 120:心跳感測電路 130:儲存器 140:通訊模組 210~225,230:峰值 301~304:循環影像 401~404:步驟 100:Remote ECG monitoring device 110: Processor 120: Heartbeat sensing circuit 130: storage 140: Communication module 210~225,230: peak value 301~304: Loop image 401~404: steps
圖1是遠端心電圖監控裝置的方塊示意圖。 圖2是根據一實施例繪式心電圖訊號與峰值的示意圖。 圖3是根據實施例繪式循環影像的範例。 圖4是根據一實施例繪示心電圖監控方法的流程圖。 FIG. 1 is a schematic block diagram of a remote ECG monitoring device. FIG. 2 is a schematic diagram of plotting ECG signals and peak values according to an embodiment. FIG. 3 is an example of a drawing loop image according to an embodiment. FIG. 4 is a flowchart illustrating a method for monitoring an ECG according to an embodiment.
100:遠端心電圖監控裝置 100:Remote ECG monitoring device
110:處理器 110: Processor
120:心跳感測電路 120: Heartbeat sensing circuit
130:儲存器 130: storage
140:通訊模組 140: Communication module
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW111114910A TWI810901B (en) | 2022-04-20 | 2022-04-20 | Remote electrocardiogram monitoring device and electrocardiogram monitoring method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW111114910A TWI810901B (en) | 2022-04-20 | 2022-04-20 | Remote electrocardiogram monitoring device and electrocardiogram monitoring method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TWI810901B true TWI810901B (en) | 2023-08-01 |
| TW202341931A TW202341931A (en) | 2023-11-01 |
Family
ID=88585535
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW111114910A TWI810901B (en) | 2022-04-20 | 2022-04-20 | Remote electrocardiogram monitoring device and electrocardiogram monitoring method |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI810901B (en) |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100179396A1 (en) * | 2007-11-02 | 2010-07-15 | National Taiwan University | Rapid method for analyzing bio-signal instantaneously by phase space complexity difference and its device |
| JP2016022165A (en) * | 2014-07-18 | 2016-02-08 | エヌ・ティ・ティ・コミュニケーションズ株式会社 | Electrocardiogram component detection system, electrocardiogram component detection method and computer program |
| CN108464827A (en) * | 2018-03-08 | 2018-08-31 | 四川大学 | It is a kind of it is Weakly supervised under electrocardio image-recognizing method |
| TWI758039B (en) * | 2020-12-29 | 2022-03-11 | 財團法人國家衛生研究院 | Electronic device and method for selecting feature of electrocardiogram |
-
2022
- 2022-04-20 TW TW111114910A patent/TWI810901B/en active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100179396A1 (en) * | 2007-11-02 | 2010-07-15 | National Taiwan University | Rapid method for analyzing bio-signal instantaneously by phase space complexity difference and its device |
| JP2016022165A (en) * | 2014-07-18 | 2016-02-08 | エヌ・ティ・ティ・コミュニケーションズ株式会社 | Electrocardiogram component detection system, electrocardiogram component detection method and computer program |
| CN108464827A (en) * | 2018-03-08 | 2018-08-31 | 四川大学 | It is a kind of it is Weakly supervised under electrocardio image-recognizing method |
| TWI758039B (en) * | 2020-12-29 | 2022-03-11 | 財團法人國家衛生研究院 | Electronic device and method for selecting feature of electrocardiogram |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202341931A (en) | 2023-11-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN113080857B (en) | Respiration monitoring method, device and terminal equipment | |
| CN118213058B (en) | Medical instrument fault detection management system and method based on data analysis | |
| EP3479763B1 (en) | System and method for photoplethysmogram (ppg) signal quality assessment | |
| EP3453321A1 (en) | Non-invasive method and system for estimating blood pressure from photoplethysmogram using statistical post-processing | |
| CN110840443B (en) | Electrocardiosignal processing method, electrocardiosignal processing device and electronic equipment | |
| CN111684540B (en) | Statistical display method of physiological parameters in monitoring equipment and monitoring equipment | |
| JP5544365B2 (en) | Improvements in multi-parameter monitoring or improvements related to multi-parameter monitoring | |
| CN114366060B (en) | A health warning method, device and electronic equipment based on heart rate variability | |
| KR20060134196A (en) | Computer apparatus and method for reading and analyzing ECC signals | |
| CN119205612A (en) | A tongue image feature extraction method | |
| WO2021108950A1 (en) | Monitoring method, monitoring apparatus, monitoring device, and computer readable storage medium | |
| TWI810901B (en) | Remote electrocardiogram monitoring device and electrocardiogram monitoring method | |
| TW202247816A (en) | Non-contact heart rhythm category monitoring system and method | |
| CN120452661B (en) | Respiratory failure treatment scheme recommendation method and system based on artificial intelligence | |
| JP7557550B2 (en) | Systems and methods for hypertension monitoring - Patents.com | |
| CN116135146A (en) | Dynamic electrocardiographic analysis method, device and medical equipment | |
| US20250143623A1 (en) | Method and system of detecting arrythmia | |
| US20230309855A1 (en) | Respiration rate monitoring system and method | |
| CN118734214A (en) | An electronic stethoscope signal acquisition method and system based on abnormality recognition | |
| Jiang et al. | Enhanced machine learning feature selection algorithm for cardiac arrhythmia in a personal healthcare application | |
| TW202025963A (en) | Autonomous full spectrum biometric monitoring | |
| WO2017096597A1 (en) | Method and device for processing electrocardio signals | |
| CN116864060A (en) | Early cancer surgery perioperative data management system and method | |
| CN113057611B (en) | Methods, devices, equipment and storage media for outputting information | |
| CN116211289A (en) | On-line analysis method, device, system and storage medium for upper limb movement abnormality |