[go: up one dir, main page]

TWI810339B - Keyword Ad Malicious Click Analysis System - Google Patents

Keyword Ad Malicious Click Analysis System Download PDF

Info

Publication number
TWI810339B
TWI810339B TW108126843A TW108126843A TWI810339B TW I810339 B TWI810339 B TW I810339B TW 108126843 A TW108126843 A TW 108126843A TW 108126843 A TW108126843 A TW 108126843A TW I810339 B TWI810339 B TW I810339B
Authority
TW
Taiwan
Prior art keywords
malicious
website
summary page
click analysis
unreasonable
Prior art date
Application number
TW108126843A
Other languages
Chinese (zh)
Other versions
TW202105287A (en
Inventor
張天立
Original Assignee
張天立
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 張天立 filed Critical 張天立
Priority to TW108126843A priority Critical patent/TWI810339B/en
Publication of TW202105287A publication Critical patent/TW202105287A/en
Application granted granted Critical
Publication of TWI810339B publication Critical patent/TWI810339B/en

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Information Transfer Between Computers (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

一種關鍵字廣告惡意點擊分析系統,包含一中央伺服器連接到至少一廣告網站;一惡意點擊分析機構內駐於該中央伺服器內;訪問者係經由點擊該廣告網站的廣告窗口而進入該廣告網站瀏覽網頁,該訪問者係經由各種不同的電子裝置、或者產生不同的IP進入該廣告網站;該惡意點擊分析機構包含一特徵儲存器用於儲存各個廣告網站的訪問者之電子裝置的特徵;且尚包含一不合理行為判定器、一摘要頁分析器、一特徵分級器中至少一項;該不合理行為判定器可決定訪問者的行為是否不合理;該摘要頁分析器可將該特徵儲存器中的特徵產生摘要頁並進行比對,以確定是否為同一電子裝置;該特徵分級器可對該特徵儲存器中的特徵予以分級後再逐級比對;因此可得到一或多個電子裝置可能具有進行惡意點擊的行為,其可能是來自同一或多個訪問者所進行的惡意點擊。 A keyword advertisement malicious click analysis system, comprising a central server connected to at least one advertising website; a malicious click analysis agency resides in the central server; visitors enter the advertisement by clicking on the advertisement window of the advertisement website The website browses webpages, and the visitor enters the advertising website through various electronic devices or generates different IPs; the malicious click analysis mechanism includes a feature storage for storing the characteristics of the electronic devices of the visitors of each advertising website; and It also includes at least one of an unreasonable behavior determiner, a summary page analyzer, and a feature classifier; the unreasonable behavior determiner can determine whether the visitor's behavior is unreasonable; the summary page analyzer can store the characteristics The feature in the feature store generates a summary page and compares it to determine whether it is the same electronic device; the feature classifier can classify the features in the feature store and then compare them step by step; therefore, one or more electronic devices can be obtained The device may have the behavior of making malicious clicks, which may be from the same or multiple visitors.

Description

關鍵字廣告惡意點擊分析系統 Keyword Ad Malicious Click Analysis System

本發明係有關於網站分析系統,尤其是一種關鍵字廣告惡意點擊分析系統。 The invention relates to a website analysis system, in particular to a keyword advertisement malicious click analysis system.

現今由於網路盛行,所以網路廣告也隨之興起,由於越來越多的人從網路接收資訊,網路廣告的金額已經超過了傳統的任何媒體。一般網路廣告主要是應用點擊的方式決定收費。也就是每次的點擊收取額定的費用。所以點擊的次數越多,所收取的廣告費越多。一般正常的點擊有助於網站產品的行銷。但是由於商業的競爭,往往對手會進行惡意的點擊以消耗對方的廣告費用。其目的在於使得對方由於廣告費用的龐大而退出廣告的市場。所以惡意點擊實際上是網路廣告的一個很大的殺手。所以希望有一種技術可以得知惡意點擊者而進行防止的動作。 Nowadays, due to the popularity of the Internet, online advertising also rises. As more and more people receive information from the Internet, the amount of online advertising has surpassed any traditional media. Generally, online advertisements mainly use clicks to determine the charges. That is, each click charges an additional fee. So the more clicks you get, the more advertising fees you get charged. Generally, normal clicks contribute to the marketing of website products. However, due to commercial competition, often the opponent will click maliciously to consume the advertisement cost of the other party. Its purpose is to make the other party withdraw from the advertising market due to the huge advertising costs. So malicious clicks are actually a big killer of online advertisements. Therefore, it is hoped that there is a technology that can learn malicious clickers and prevent them.

一般進行惡意點擊的人並不會應用固定的IP進入網站,而是應用很多現有的網路技術,如虛擬私人網路(Virtual Private Network,VPN)、浮動IP、多手機點擊、殭屍電腦、等等的手段。所以如果從網站端要判斷惡意點擊者,必須根據這些網路技術的特徵,進行擷取,然後再分析這些特徵,以得知哪一個使用者對網站進行惡意點擊,以實施防止的動作,使得網站的廣告能夠發揮真正的效能。 Generally, people who make malicious clicks do not use fixed IPs to access websites, but use many existing network technologies, such as virtual private networks (Virtual Private Network, VPN), floating IPs, multiple mobile phone clicks, zombie computers, etc. etc. means. Therefore, if you want to judge malicious clickers from the website side, you must extract them according to the characteristics of these network technologies, and then analyze these characteristics to know which user has maliciously clicked on the website, so as to implement preventive actions, so that Advertisements on the website can play a real role.

故本案希望提出一種嶄新的關鍵字廣告惡意點擊分析系統,以解決上述先前技術上的缺陷。 Therefore, this case hopes to propose a brand-new malicious click analysis system for keyword advertisements to solve the above-mentioned defects in the prior art.

所以本發明的目的係為解決上述習知技術上的問題,本發明中提出一種關鍵字廣告惡意點擊分析系統,係應用電腦中軟硬體及網路的特徵分析進入一網站中訪問者的行為而決定進行惡意點擊的方問者,以提供給網站進行必要的防治動作。應用全自動分析的方式分析訪問者的特徵以有效的抓取惡意點擊的訪問者。因此可以增加廣告的效用,也節省廣告提供者的費用。 Therefore, the purpose of the present invention is to solve the above-mentioned problems in the prior art. In the present invention, a malicious click analysis system for keyword advertisements is proposed, which is to analyze the behavior of visitors who enter a website by using the characteristics of the software, hardware and network in the computer. And those who decide to click maliciously will provide necessary preventive actions for the website. Apply fully automatic analysis to analyze the characteristics of visitors to effectively capture visitors who click maliciously. Therefore, the utility of the advertisement can be increased, and the cost of the advertisement provider can also be saved.

為達到上述目的本發明中提出一種關鍵字廣告惡意點擊分析系統,包含一中央伺服器;一惡意點擊分析機構內駐於該中央伺服器內;其中該中央伺服器連接到至少一廣告網站,該廣告網站係經由一廣告窗口點擊進入者,使得訪問者可經由電子裝置點擊該廣告窗口進入該廣告網站,並瀏覽該廣告網站的網頁,其中該訪問者係經由各種不同的電子裝置、或者產生不同的IP進入該廣告網站;其中該中央伺服器包含一處理器及一記憶體;該處理器用於進行該惡意點擊分析機構所需要的操作;該記憶體用於儲存該惡意點擊分析機構中以電腦程式形式儲存的資料或運算程式,相關的操作結果及相關的資料;其中所有的操作結果及相關的資料均儲存在該中央伺服器的該記憶體中;其中該惡意點擊分析機構包含一特徵儲存器,用於儲存各個廣告網站的訪問者所使用之電子裝置的特徵;且該惡意點擊分析機構尚包含一不合理行為判定器、一摘要頁分析器、一特徵分級器中至少一項;其中該不合理行為判定器連接該特徵儲存器,係用於決定訪問該廣告 網站的訪問者的訪問瀏覽行為是否不合理;該不合理行為判定器定義不合理的訪問瀏覽行為,以確定是否存在某一訪問者對該廣告網站進行惡意點擊;該摘要頁分析器連接該特徵儲存器,用於擷取該特徵儲存器中儲存的特徵,並將這些特徵製作成一摘要頁;其中每個摘要頁賦予版本編號;當該摘要頁的內容有改變時,其版本號也跟著改變;該摘要頁分析器尚包含一摘要頁比較器用於比較各個摘要頁的近似程度;其中該摘要頁比較器內設定各個特徵的比較邏輯及加權;經由各個特徵的比較再經過加權的計算以得到不同摘要頁之間的近似程度;如果近似程度高於某一設定的臨界值,則認定為同一電子裝置進入該廣告網站;如果在一設定的時段內同一電子裝置進入該廣告網站的次數超過一設定值,則認為該電子裝置的使用者惡意點擊該廣告網站;該特徵分級器連接該特徵儲存器,用於對該特徵儲存器中儲存的特徵進行比對,其中係將所要比較的特徵予以分級,等級越高者先進行比較,當等級高的特徵經比較後,認定有可能是惡意點擊時,再比較次一級的特徵;當越多級的特徵呈現的相似度越高時,則惡意點擊的比率越高;應用上列的方式,有可能得到一個或多個不同電子裝置具有進行惡意點擊的行為,這些行為可能是來自同一訪問者,或是多個不同訪問者所進行的惡意點擊。 In order to achieve the above object, the present invention proposes a malicious click analysis system for keyword advertisements, which includes a central server; a malicious click analysis mechanism resides in the central server; wherein the central server is connected to at least one advertising website, the Advertisement websites are entered by clicking on an advertisement window, so that visitors can click on the advertisement window through electronic devices to enter the advertisement website and browse the web pages of the advertisement website, wherein the visitor enters the advertisement website through various electronic devices or generates different IP to enter the advertising website; wherein the central server includes a processor and a memory; the processor is used to perform the operations required by the malicious click analysis agency; the memory is used to store the computer in the malicious click analysis agency Data or calculation programs stored in the form of programs, related operation results and related data; where all the operation results and related data are stored in the memory of the central server; where the malicious click analysis mechanism includes a feature storage A device for storing the characteristics of the electronic devices used by the visitors of each advertising website; and the malicious click analysis mechanism also includes at least one of an unreasonable behavior determiner, a summary page analyzer, and a feature classifier; wherein The unreasonable behavior determiner is connected to the feature storage and is used to decide to access the advertisement Whether the visiting and browsing behavior of website visitors is unreasonable; the unreasonable behavior determiner defines unreasonable visiting and browsing behavior to determine whether there is a visitor who maliciously clicks on the advertising website; the summary page analyzer connects the feature Storage, used to retrieve the features stored in the feature storage, and make these features into a summary page; where each summary page is assigned a version number; when the content of the summary page changes, its version number will also change ; The summary page analyzer also includes a summary page comparator for comparing the similarity of each summary page; wherein the comparison logic and weighting of each feature are set in the summary page comparator; The degree of similarity between different summary pages; if the degree of similarity is higher than a certain threshold value, it is considered that the same electronic device enters the advertising website; if the same electronic device enters the advertising website more than once within a set period of time set value, it is considered that the user of the electronic device maliciously clicks on the advertising website; the feature classifier is connected to the feature storage for comparing the features stored in the feature storage, wherein the features to be compared are Grading, the higher the level is compared first, when the high-level features are determined to be malicious clicks after comparison, then compare the features of the next level; when the features with more levels show higher similarity, malicious The higher the rate of clicks; applying the methods listed above, it is possible to obtain malicious clicks on one or more different electronic devices. These behaviors may be malicious clicks from the same visitor or from multiple different visitors. .

由下文的說明可更進一步瞭解本發明的特徵及其優點,閱讀時並請參考附圖。 The features and advantages of the present invention can be further understood from the following description, please refer to the accompanying drawings when reading.

1‧‧‧惡意點擊分析機構 1‧‧‧Malicious click analysis agency

3‧‧‧廣告網站 3‧‧‧Advertising website

5‧‧‧廣告窗口 5‧‧‧Ad window

7‧‧‧訪問者 7‧‧‧visitor

10‧‧‧中央伺服器 10‧‧‧central server

11‧‧‧處理器 11‧‧‧Processor

12‧‧‧記憶體 12‧‧‧memory

20‧‧‧電子裝置 20‧‧‧Electronic Devices

30‧‧‧流量分析器 30‧‧‧Flow Analyzer

40‧‧‧特徵儲存器 40‧‧‧Characteristic storage

50‧‧‧不合理行為判定器 50‧‧‧Unreasonable Behavior Judger

60‧‧‧摘要頁分析器 60‧‧‧Summary Page Analyzer

65‧‧‧摘要頁 65‧‧‧Summary Page

70‧‧‧摘要頁比較器 70‧‧‧Summary Page Comparator

80‧‧‧特徵分級器 80‧‧‧Feature classifier

90‧‧‧排序器 90‧‧‧Sequencer

圖1顯示本案之硬體架構及惡意點擊分析機構及電子裝置之間的連接架構圖。 Figure 1 shows the hardware architecture of this case and the connection architecture diagram between the malicious click analysis agency and the electronic device.

圖2顯示本案之中央伺服器及惡意點擊分析機構之操作示意圖。 Figure 2 shows the schematic diagram of the operation of the central server and malicious click analysis organization in this case.

圖3顯示本案之惡意點擊分析機構之元件架構方塊圖。 Figure 3 shows a block diagram of the component architecture of the malicious click analysis mechanism in this case.

圖4顯示本案之摘要頁之示意圖。 Figure 4 shows a schematic diagram of the summary page of this case.

圖5顯示本案之摘要頁比較器之應用示意圖。 Figure 5 shows the schematic diagram of the application of the comparator on the summary page of this case.

圖6顯示本案之排序器之應用示意圖。 Figure 6 shows a schematic diagram of the application of the sequencer in this case.

圖7顯示本案之惡意點擊分析機構之另一元件架構方塊圖,其中包含流量分析器。 Figure 7 shows a block diagram of another component architecture of the malicious click analysis mechanism in this case, which includes a traffic analyzer.

茲謹就本案的結構組成,及所能產生的功效與優點,配合圖式,舉本案之一較佳實施例詳細說明如下。 Hereby, with regard to the structural composition of this case, and the effects and advantages that can be produced, in conjunction with the drawings, one of the preferred embodiments of this case is described in detail as follows.

請參考圖1至圖7所示,顯示本發明之關鍵字廣告惡意點擊分析系統,包含下列元件:如圖1所示,本發明的硬體架構包含一中央伺服器10。 Please refer to FIGS. 1 to 7 , which show the keyword advertisement malicious click analysis system of the present invention, which includes the following components: As shown in FIG. 1 , the hardware architecture of the present invention includes a central server 10 .

一惡意點擊分析機構1內駐於該中央伺服器10內,藉由該中央伺服器10發揮其功能。其中該中央伺服器10連接到至少一廣告網站3,該廣告網站3係經由一廣告窗口5點擊進入者,使得訪問者7可經由電子裝置20點擊該廣告窗口5進入該廣告網站3,並瀏覽該廣告網站3的網頁,其中該訪問者7係經由各種不同的電子裝置20、或者產生不同的IP進入該廣告網站3。其中該電子裝置20可以是各種不同的電子資訊裝置,如電腦、筆電、平板電腦、手機、PDA…等等,其可經由網路連接該廣告網站3。 A malicious click analysis mechanism 1 resides in the central server 10 and uses the central server 10 to perform its functions. Wherein the central server 10 is connected to at least one advertisement website 3, and the advertisement website 3 is entered through an advertisement window 5, so that the visitor 7 can click the advertisement window 5 to enter the advertisement website 3 through the electronic device 20, and browse The webpage of the advertisement website 3, wherein the visitor 7 enters the advertisement website 3 via various electronic devices 20 or generates different IPs. The electronic device 20 can be various electronic information devices, such as computers, laptops, tablet computers, mobile phones, PDAs, etc., which can be connected to the advertising website 3 via the network.

如圖2所示,其中該中央伺服器10包含一處理器11及一記憶體12。該處理器11用於進行該惡意點擊分析機構1所需要的操作。該記憶體12用於儲存 該惡意點擊分析機構1中以電腦程式形式儲存的資料或運算程式,相關的操作結果及相關的資料。其中所有的操作結果及相關的資料均儲存在該中央伺服器10的該記憶體12中。 As shown in FIG. 2 , the central server 10 includes a processor 11 and a memory 12 . The processor 11 is used to perform operations required by the malicious click analysis mechanism 1 . The memory 12 is used to store Data or calculation programs stored in the form of computer programs in the malicious click analysis organization 1, related operation results and related data. All operation results and related data are stored in the memory 12 of the central server 10 .

其中該惡意點擊分析機構1之相關的軟體及資料係儲存在該記憶體12中,並由該處理器11執行該惡意點擊分析機構1的相關作業。其中該中央伺服器10可以用不同的電子資訊系統來實現,其中該電子資訊系統包含如各種不同的電腦、手機、平板電腦、筆電、PDA…等等。而該中央伺服器10需架構在這些電子資訊系統中。 The relevant software and data of the malicious click analysis mechanism 1 are stored in the memory 12 , and the processor 11 executes the relevant operations of the malicious click analysis mechanism 1 . Wherein the central server 10 can be realized by different electronic information systems, wherein the electronic information systems include various computers, mobile phones, tablet computers, laptops, PDAs, etc. And the central server 10 needs to be constructed in these electronic information systems.

如圖3所示,其中該惡意點擊分析機構1包含: 一流量分析器30,對該廣告網站的訪問者7進行流量分析,如圖7所示。當在某一或某些時段的訪問者7有異常多的狀況時,則進行惡意點擊分析,以得到有可能施行惡意點擊的訪問者7的訊息。這些訊息中主要包含訪問者7的IP,使得可經由電信公司得知IP的所有者而確定惡意點擊的實施者。 As shown in Figure 3, the malicious click analysis organization 1 includes: A traffic analyzer 30 is used to analyze the traffic of the visitors 7 of the advertising website, as shown in FIG. 7 . When there are abnormally many visitors 7 in a certain or certain period of time, malicious click analysis is performed to obtain information about visitors 7 who may perform malicious clicks. These messages mainly include the IP of the visitor 7, so that the owner of the IP can be known through the telecommunications company and the implementer of the malicious click can be determined.

一特徵儲存器40,用於儲存各個廣告網站3的訪問者7所使用之電子裝置20的特徵,這些特徵包含使用者瀏覽器標頭(以MD5編碼做成訊息摘要便於查詢)、訪客語言、顏色深度、訪問來源、IP區段、操作系統、辨識率、解析度、使用者代理(UserAgent)、初次訪問網址、開始訪問時間、訪客來源、永久身分cookie、IP所屬單位、之前訪問頁數、本次訪問頁數、瀏覽器版本等等。 A characteristic storage 40 is used to store the characteristics of the electronic device 20 used by the visitor 7 of each advertising website 3, these characteristics include the header of the user's browser (with MD5 encoding to make a message abstract for easy query), visitor language, Color depth, access source, IP segment, operating system, recognition rate, resolution, user agent (UserAgent), first visit URL, start visit time, visitor source, permanent identity cookie, IP affiliation, previous page visits, The number of pages visited this time, browser version, etc.

一不合理行為判定器50連接該特徵儲存器40,係用於決定訪問該廣告網站3的訪問者7的訪問瀏覽行為是否不合理。該不合理 行為判定器50定義不合理的訪問瀏覽行為,以確定是否存在某一訪問者7對該廣告網站3進行惡意點擊。這些不合理的訪問瀏覽行為包含進入時間短暫,頁面沒有或者很少翻動、沒有或者很少轉移頁面等等,不合理的訪問行為。 An unreasonable behavior determiner 50 is connected to the feature storage 40 and is used to determine whether the browsing behavior of the visitor 7 visiting the advertising website 3 is unreasonable. Should it be unreasonable The behavior determiner 50 defines unreasonable access browsing behaviors to determine whether there is a visitor 7 who maliciously clicks on the advertising website 3 . These unreasonable access and browsing behaviors include short entry time, no or few page flips, no or few page transfers, etc., unreasonable access behaviors.

當一電子裝置20頻繁進入一廣告網站3,而其不合理的行為超過該不合理行為判定器50所界定的界線時,則認為使用該電子裝置20的訪問者7惡意點擊該廣告網站3。 When an electronic device 20 frequently enters an advertising website 3 and its unreasonable behavior exceeds the boundary defined by the unreasonable behavior determiner 50 , it is considered that the visitor 7 who uses the electronic device 20 maliciously clicks on the advertising website 3 .

一摘要頁分析器60連接該特徵儲存器40,用於擷取該特徵儲存器40中儲存的特徵,並將這些特徵製作成一摘要頁65,如圖4所示。其中每個摘要頁65賦予版本編號。當摘要頁65的內容有改變時,其版本號也跟著改變。其中該摘要頁分析器60包含一摘要頁比較器70用於比較各個摘要頁65的近似程度,如圖4及圖5所示。其中該摘要頁比較器70內設定各個特徵的比較邏輯及加權。經由各個特徵的比較再經過加權的計算以得到不同摘要頁65之間的近似程度。如果近似程度高於某一設定的臨界值,則認定為同一電子裝置20進入該廣告網站3。如果在一設定的時段內同一電子裝置20進入該廣告網站3的次數超過一設定值,則認為該電子裝置20的使用者惡意點擊該廣告網站3。此一方式比較容易確定同一訪問者7應用同一電子裝置產生多個IP的惡意點擊情況,如果一訪問者7經由多個不同的電子裝置20進入則不同意察覺。 A summary page analyzer 60 is connected to the feature storage 40 for extracting the features stored in the feature storage 40 and making these features into a summary page 65 , as shown in FIG. 4 . Each of the summary pages 65 is assigned a version number. When the content of the summary page 65 changes, its version number also changes. The summary page analyzer 60 includes a summary page comparator 70 for comparing the similarity of each summary page 65 , as shown in FIG. 4 and FIG. 5 . The comparison logic and weighting of each feature are set in the summary page comparator 70 . The similarity between different summary pages 65 is obtained through weighted calculation after comparison of each feature. If the degree of similarity is higher than a certain threshold value, it is determined that the same electronic device 20 enters the advertising website 3 . If the number of times the same electronic device 20 enters the advertising website 3 within a set period of time exceeds a set value, it is considered that the user of the electronic device 20 maliciously clicks on the advertising website 3 . This method is relatively easy to determine that the same visitor 7 uses the same electronic device to generate multiple IP malicious clicks. If a visitor 7 enters through multiple different electronic devices 20, he will not agree to notice.

一特徵分級器80連接該特徵儲存器40,用於對該特徵儲存器40中儲存的特徵進行比對,其中係將所要比較的特徵予以分級, 等級越高者先進行比較,當等級高的特徵經比較後,認定有可能是惡意點擊時,再比較次一級的特徵。比如將螢幕解析度作為第一級特徵,如果訪問該廣告網站3之網頁的同一螢幕解析度在設定的時段內出現10000次的點擊,則認為有可能來自同一電子裝置20所進行的惡意點擊。然後設定第二級的比較為電信公司,如果為同一電信公司,則認為很有可能是同一電子裝置20進行的點擊。如果有必要可以在進行下一級特徵的比較。當越多級的特徵呈現的相似度越高時,則惡意點擊的比率越高。 A feature grader 80 is connected to the feature storage 40 for comparing the features stored in the feature storage 40, wherein the features to be compared are classified, Those with higher levels are compared first, and when the features with higher levels are determined to be malicious clicks after comparison, then the features of the next level are compared. For example, taking the screen resolution as the first-level feature, if 10,000 clicks occur within a set period of time on the same screen resolution of the webpage visiting the advertising website 3 , it is considered that malicious clicks may come from the same electronic device 20 . Then set the comparison of the second level as the telecommunication company, if it is the same telecommunication company, it is considered that the clicks performed by the same electronic device 20 are very likely. If necessary, the next level of feature comparison can be performed. The higher the similarity of features with more levels, the higher the rate of malicious clicks.

一排序器90連接該不合理行為判定器50、該特徵分級器80及該摘要頁比較器70,該排序器90用於決定該不合理行為判定器50、該特徵分級器80及該摘要頁比較器70的使用與否,或是先後判斷順序。因此管理者可以按照需要使用不同的判斷方式組合。 A sorter 90 is connected to the unreasonable behavior determiner 50, the feature classifier 80 and the summary page comparator 70, and the sorter 90 is used to determine the unreasonable behavior determiner 50, the feature classifier 80 and the summary page Whether the comparator 70 is used or not is determined sequentially. Therefore, managers can use different combinations of judgment methods according to their needs.

其中該排序器90可對於摘要頁比較、不合理行為判定以及特徵分級三種不同的判斷方式施予先後的順序。如圖6所示,比如先應用該不合理行為判定器50進行不合理行為判斷,當確定使用某些IP的電子裝置具有不合理行為,再從這些具有不合理行為的IP中應用該特徵分級器80進行特徵分級,依據不同的分級依序刷選以確定哪些IP有惡意點擊的可能。如果上述的方式均無法得到有效的惡意點擊之IP,則應用該摘要頁分析器60的該摘要頁比較器70進行摘要頁比較,對每個摘要頁65進行比較,如果某些摘要頁65其相似度高於預設值時,則認為來自同一訪問者7。 Wherein the sorter 90 can give priority to the three different judgment methods of summary page comparison, unreasonable behavior judgment and feature classification. As shown in Figure 6, for example, the unreasonable behavior determiner 50 is firstly used to judge unreasonable behavior, and when it is determined that the electronic devices using certain IPs have unreasonable behaviors, then the feature classification is applied from these IPs with unreasonable behaviors The device 80 performs feature classification, and brushes and selects according to different classifications in order to determine which IPs have the possibility of malicious clicks. If above-mentioned mode all can not obtain the IP of effective malicious click, then apply this summary page comparator 70 of this summary page analyzer 60 to carry out summary page comparison, each summary page 65 is compared, if some summary pages 65 other When the similarity is higher than the preset value, it is considered to be from the same visitor7.

當使用者可以依據其需要決定使用哪一種判斷方式,或根據哪一種排列決定施行惡意點擊之訪問者7的抓取操作。 When the user can decide which judgment method to use according to his needs, or according to which arrangement to decide the crawling operation of the visitor 7 who performs malicious clicks.

應用上列的方式,有可能得到一個或多個不同電子裝置具有進行惡意點擊的行為,而可交由相關單位追查這些電子裝置20後方的訪問者7,可能是來自同一訪問者7,或是多個不同訪問者7所進行的惡意點擊。 Applying the methods listed above, it is possible to obtain one or more different electronic devices that have malicious clicking behavior, and the relevant units can be handed over to track down the visitors 7 behind these electronic devices 20, which may be from the same visitor 7, or Malicious clicks by multiple different visitors7.

本案主要是應用電腦中軟硬體及網路的特徵分析進入一網站中訪問者的行為而決定進行惡意點擊的方問者,以提供給網站進行必要的防治動作。應用全自動分析的方式分析訪問者的特徵以有效的抓取惡意點擊的訪問者。因此可以增加廣告的效用,也節省廣告提供者的費用。 This case mainly uses the software, hardware and network characteristics of the computer to analyze the behavior of visitors who enter a website and decides to make malicious clicks, so as to provide necessary preventive actions for the website. Apply fully automatic analysis to analyze the characteristics of visitors to effectively capture visitors who click maliciously. Therefore, the utility of the advertisement can be increased, and the cost of the advertisement provider can also be saved.

綜上所述,本案人性化之體貼設計,相當符合實際需求。其具體改進現有缺失,相較於習知技術明顯具有突破性之進步優點,確實具有功效之增進,且非易於達成。本案未曾公開或揭露於國內與國外之文獻與市場上,已符合專利法規定。 To sum up, the humanized and thoughtful design of this case is quite in line with actual needs. Its specific improvement has existing deficiencies, and compared with the prior art, it has the advantage of breakthrough progress, and indeed has the enhancement of efficacy, and it is not easy to achieve. This case has not been published or disclosed in domestic and foreign literature and market, which is in compliance with the provisions of the patent law.

上列詳細說明係針對本發明之一可行實施例之具體說明,惟該實施例並非用以限制本發明之專利範圍,凡未脫離本發明技藝精神所為之等效實施或變更,均應包含於本案之專利範圍中。 The above detailed description is a specific description of a feasible embodiment of the present invention, but this embodiment is not used to limit the patent scope of the present invention, and any equivalent implementation or change that does not depart from the technical spirit of the present invention shall be included in In the patent scope of this case.

1‧‧‧惡意點擊分析機構 1‧‧‧Malicious click analysis agency

3‧‧‧廣告網站 3‧‧‧Advertising website

5‧‧‧廣告窗口 5‧‧‧Ad window

7‧‧‧訪問者 7‧‧‧visitor

10‧‧‧中央伺服器 10‧‧‧central server

11‧‧‧處理器 11‧‧‧Processor

12‧‧‧記憶體 12‧‧‧memory

20‧‧‧電子裝置 20‧‧‧Electronic Devices

Claims (9)

一種關鍵字廣告惡意點擊分析系統,包含:一中央伺服器;一惡意點擊分析機構內駐於該中央伺服器內;其中該中央伺服器連接到至少一廣告網站,該廣告網站係經由一廣告窗口點擊進入者,使得訪問者可經由電子裝置點擊該廣告窗口進入該廣告網站,並瀏覽該廣告網站的網頁,其中該訪問者係經由各種不同的電子裝置、或者產生不同的IP進入該廣告網站;其中該中央伺服器包含一處理器及一記憶體;該處理器用於進行該惡意點擊分析機構所需要的操作;該記憶體用於儲存該惡意點擊分析機構中以電腦程式形式儲存的資料或運算程式,相關的操作結果及相關的資料;其中所有的操作結果及相關的資料均儲存在該中央伺服器的該記憶體中;其中該惡意點擊分析機構包含一特徵儲存器,用於儲存各個廣告網站的訪問者所使用之電子裝置的特徵;且該惡意點擊分析機構尚包含一不合理行為判定器、一摘要頁分析器、一特徵分級器中至少一項;其中該不合理行為判定器連接該特徵儲存器,係用於決定訪問該廣告網站的訪問者的訪問瀏覽行為是否不合理;該不合理行為判定器定義不合理的訪問瀏覽行為,以確定是否存在某一訪問者對該廣告網站進行惡意點擊;該摘要頁分析器連接該特徵儲存器,用於擷取該特徵儲存器中儲存的特徵,並將這些特徵製作成一摘要頁;其中每個摘要頁賦予版本編號;當該摘要頁的內容有改變時,其版本號也跟著改 變;該摘要頁分析器尚包含一摘要頁比較器用於比較各個摘要頁的近似程度;其中該摘要頁比較器內設定各個特徵的比較邏輯及加權;經由各個特徵的比較再經過加權的計算以得到不同摘要頁之間的近似程度;如果近似程度高於某一設定的臨界值,則認定為同一電子裝置進入該廣告網站;如果在一設定的時段內同一電子裝置進入該廣告網站的次數超過一設定值,則認為該電子裝置的使用者惡意點擊該廣告網站;該特徵分級器連接該特徵儲存器,用於對該特徵儲存器中儲存的特徵進行比對,其中係將所要比較的特徵予以分級,等級越高者先進行比較,當等級高的特徵經比較後,認定有可能是惡意點擊時,再比較次一級的特徵;當越多級的特徵呈現的相似度越高時,則惡意點擊的比率越高;應用上列的方式,有可能得到一個或多個不同電子裝置具有進行惡意點擊的行為,這些行為可能是來自同一訪問者,或是多個不同訪問者所進行的惡意點擊。 A malicious click analysis system for keyword advertisements, comprising: a central server; a malicious click analysis agency residing in the central server; wherein the central server is connected to at least one advertising website through an advertising window Click on the entrant, so that the visitor can click the advertisement window to enter the advertisement website through an electronic device, and browse the webpage of the advertisement website, wherein the visitor enters the advertisement website through various electronic devices or generates different IPs; Wherein the central server includes a processor and a memory; the processor is used to perform operations required by the malicious click analysis institution; the memory is used to store data or calculations stored in the form of computer programs in the malicious click analysis institution Programs, related operation results and related data; where all the operation results and related data are stored in the memory of the central server; where the malicious click analysis mechanism includes a feature storage for storing each advertisement The characteristics of the electronic devices used by the visitors of the website; and the malicious click analysis mechanism also includes at least one of an unreasonable behavior determiner, a summary page analyzer, and a feature classifier; wherein the unreasonable behavior determiner is connected to The characteristic storage is used to determine whether the visiting and browsing behavior of the visitor who visits the advertising website is unreasonable; performing malicious clicks; the summary page analyzer is connected to the feature storage for retrieving the features stored in the feature storage, and making these features into a summary page; wherein each summary page is given a version number; when the summary page When the content of the content changes, its version number also changes accordingly change; the summary page analyzer also includes a summary page comparator for comparing the similarity of each summary page; where the comparison logic and weighting of each feature are set in the summary page comparator; Get the degree of similarity between different summary pages; if the degree of similarity is higher than a certain threshold value, it is determined that the same electronic device enters the advertising website; if the number of times the same electronic device enters the advertising website within a set period exceeds a set value, it is considered that the user of the electronic device maliciously clicks on the advertising website; It is graded, and the higher the level is compared first, when the high-level features are determined to be malicious clicks after comparison, then compare the features of the next level; when the features with more levels show higher similarity, then The higher the rate of malicious clicks; applying the methods listed above, it is possible to obtain malicious click behaviors of one or more different electronic devices. click. 如申請專利範圍第1項所述之關鍵字廣告惡意點擊分析系統,其中該特徵儲存器所儲存的特徵選自使用者瀏覽器標頭、訪客語言、顏色深度、訪問來源、IP區段、操作系統、辨識率、解析度、使用者代理(UserAgent)、初次訪問網址、開始訪問時間、訪客來源、永久身分cookie、IP所屬單位、之前訪問頁數、本次訪問頁數、瀏覽器版本中至少一項。 The keyword advertisement malicious click analysis system described in item 1 of the patent application, wherein the features stored in the feature storage are selected from the user's browser header, visitor language, color depth, access source, IP segment, operation System, recognition rate, resolution, user agent (UserAgent), initial visit URL, start time of visit, visitor source, permanent identity cookie, IP affiliation, number of pages visited before, number of pages visited this time, browser version at least one item. 如申請專利範圍第1項所述之關鍵字廣告惡意點擊分析系統,其中該不合理的訪問瀏覽行為選自進入時間短暫,頁面沒有或者很少翻動、沒有 或者很少轉移頁面中至少一項。 The keyword advertisement malicious click analysis system described in item 1 of the scope of the patent application, wherein the unreasonable access browsing behavior is selected from a short entry time, no or few page flips, no Or rarely transfer at least one item in the page. 如申請專利範圍第1項所述之關鍵字廣告惡意點擊分析系統,其中當一電子裝置頻繁進入一廣告網站,而其不合理的行為超過該不合理行為判定器所界定的界線時,則認為使用該電子裝置的訪問者惡意點擊該廣告網站。 As for the keyword advertisement malicious click analysis system described in item 1 of the scope of the patent application, when an electronic device frequently enters an advertising website, and its unreasonable behavior exceeds the limit defined by the unreasonable behavior determiner, it is considered A visitor using the electronic device maliciously clicks on the advertising website. 如申請專利範圍第1項所述之關鍵字廣告惡意點擊分析系統,其中該惡意點擊分析機構尚包含一排序器連接該不合理行為判定器、該特徵分級器及該摘要頁比較器,該排序器用於決定該不合理行為判定器、該特徵分級器及該摘要頁比較器的使用與否,或是先後判斷順序;因此管理者可以按照需要使用不同的判斷方式組合。 The keyword advertisement malicious click analysis system as described in item 1 of the patent application, wherein the malicious click analysis mechanism also includes a sorter connected to the unreasonable behavior determiner, the feature classifier and the summary page comparator, the sorter The device is used to determine the use of the unreasonable behavior determiner, the feature classifier and the summary page comparator, or the order of judgment; therefore, the manager can use different combinations of judgment methods according to needs. 如申請專利範圍第1項所述之關鍵字廣告惡意點擊分析系統,其中該惡意點擊分析機構尚包含一流量分析器,用於對該廣告網站的訪問者進行流量分析;當在某一或某些時段的訪問者有異常多的狀況時,則進行惡意點擊分析,以得到有可能施行惡意點擊的訪問者的訊息;這些訊息中主要包含訪問者的IP,使得可經由電信公司得知IP的所有者而確定惡意點擊的實施者。 As for the keyword advertisement malicious click analysis system described in item 1 of the scope of the patent application, the malicious click analysis agency also includes a traffic analyzer for traffic analysis of the visitors of the advertisement website; When there are an abnormal number of visitors in certain periods of time, malicious click analysis is performed to obtain information about visitors who may perform malicious clicks; these information mainly include the IP of the visitor, so that the IP address can be obtained through the telecommunications company owner to determine the perpetrator of malicious clicks. 如申請專利範圍第1項所述之關鍵字廣告惡意點擊分析系統,其中該惡意點擊分析機構係先應用該不合理行為判定器進行不合理行為判斷,當確定使用某些IP的電子裝置具有不合理行為,再從這些具有不合理行為的IP中應用該特徵分級器進行特徵分級,依據不同的分級依序刷選以確定哪些IP有惡意點擊的可能;如果仍無法得到有效的惡意點擊之IP,則應用該摘要頁分析器的該摘要頁比較器進行摘要頁比較,對每個摘要頁進行比較,如果 某些摘要頁其相似度高於預設值時,則認為來自同一訪問者。 The keyword advertisement malicious click analysis system described in item 1 of the patent application, wherein the malicious click analysis agency first applies the unreasonable behavior determiner to judge unreasonable behavior, when it is determined that the electronic device using certain IP has unreasonable behavior Reasonable behavior, and then apply the feature classifier to perform feature classification from these IPs with unreasonable behaviors, and brush and select according to different classifications in order to determine which IPs have the possibility of malicious clicks; , then apply the summary page comparator of the summary page analyzer to compare the summary pages, and compare each summary page if Certain summary pages are considered from the same visitor when their similarity is higher than a preset value. 如申請專利範圍第1項所述之關鍵字廣告惡意點擊分析系統,其中該電子裝置選自電腦、筆電、平板電腦、手機、PDA。 The keyword advertisement malicious click analysis system described in item 1 of the scope of the patent application, wherein the electronic device is selected from a computer, a laptop, a tablet computer, a mobile phone, and a PDA. 如申請專利範圍第1項所述之關鍵字廣告惡意點擊分析系統,其中該中央伺服器選自電腦、筆電、平板電腦、手機、PDA。 The keyword advertisement malicious click analysis system described in Item 1 of the scope of the patent application, wherein the central server is selected from computers, laptops, tablet computers, mobile phones, and PDAs.
TW108126843A 2019-07-29 2019-07-29 Keyword Ad Malicious Click Analysis System TWI810339B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108126843A TWI810339B (en) 2019-07-29 2019-07-29 Keyword Ad Malicious Click Analysis System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108126843A TWI810339B (en) 2019-07-29 2019-07-29 Keyword Ad Malicious Click Analysis System

Publications (2)

Publication Number Publication Date
TW202105287A TW202105287A (en) 2021-02-01
TWI810339B true TWI810339B (en) 2023-08-01

Family

ID=75745125

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108126843A TWI810339B (en) 2019-07-29 2019-07-29 Keyword Ad Malicious Click Analysis System

Country Status (1)

Country Link
TW (1) TWI810339B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116452258A (en) * 2023-06-13 2023-07-18 山东出版数字融合产业研究院有限公司 Data monitoring system based on block chain

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101206758A (en) * 2006-12-24 2008-06-25 洪富和 Method and system for searching bid ranking
CN101282382B (en) * 2007-09-14 2010-08-18 任明和 Construction of website charge service platform based on VOIP technique and method thereof
US8751633B2 (en) * 2010-04-01 2014-06-10 Cloudflare, Inc. Recording internet visitor threat information through an internet-based proxy service
TWI582712B (en) * 2013-01-07 2017-05-11 Alibaba Group Services Ltd A method and a device for generating a page content
TWI614702B (en) * 2012-01-19 2018-02-11 Alibaba Group Services Ltd E-commerce website navigation method and system
TWM587784U (en) * 2019-07-29 2019-12-11 張天立 Keyword advertisement malicious click analysis system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101206758A (en) * 2006-12-24 2008-06-25 洪富和 Method and system for searching bid ranking
CN101282382B (en) * 2007-09-14 2010-08-18 任明和 Construction of website charge service platform based on VOIP technique and method thereof
US8751633B2 (en) * 2010-04-01 2014-06-10 Cloudflare, Inc. Recording internet visitor threat information through an internet-based proxy service
TWI614702B (en) * 2012-01-19 2018-02-11 Alibaba Group Services Ltd E-commerce website navigation method and system
TWI582712B (en) * 2013-01-07 2017-05-11 Alibaba Group Services Ltd A method and a device for generating a page content
TWM587784U (en) * 2019-07-29 2019-12-11 張天立 Keyword advertisement malicious click analysis system

Also Published As

Publication number Publication date
TW202105287A (en) 2021-02-01

Similar Documents

Publication Publication Date Title
Urban et al. Measuring the impact of the GDPR on data sharing in ad networks
US20190122258A1 (en) Detection system for identifying abuse and fraud using artificial intelligence across a peer-to-peer distributed content or payment networks
US10187408B1 (en) Detecting attacks against a server computer based on characterizing user interactions with the client computing device
US11341510B2 (en) Determining client system attributes
US10530671B2 (en) Methods, systems, and computer readable media for generating and using a web page classification model
US20110131652A1 (en) Trained predictive services to interdict undesired website accesses
CN112580952A (en) User behavior risk prediction method and device, electronic equipment and storage medium
Agarwal et al. Stop tracking me bro! differential tracking of user demographics on hyper-partisan websites
CN111859234A (en) Illegal content identification method and device, electronic equipment and storage medium
CN111966915A (en) Information inspection method, computer equipment and storage medium
CN110532480A (en) It is a kind of to read the knowledge mapping construction method for threatening information to recommend for people and threaten information recommended method
CN106130756A (en) A kind of method and device predicting access content clicking rate
CN113297436A (en) User policy distribution method and device based on relational graph network and electronic equipment
CN116151954A (en) Real-time group-partner anti-fraud detection method and system
CN109446431A (en) For the method, apparatus of information recommendation, medium and calculate equipment
US20210295379A1 (en) System and method for detecting fraudulent advertisement traffic
Kim et al. Adbudgetkiller: Online advertising budget draining attack
CN105653724B (en) Method and device for monitoring page exposure
US9306958B2 (en) Methods, systems and media for detecting non-intended traffic using co-visitation information
Liu et al. Request dependency graph: A model for web usage mining in large-scale web of things
TWI810339B (en) Keyword Ad Malicious Click Analysis System
CN114445151B (en) A method, device, equipment and storage medium for detecting traffic fraud objects
TWM587784U (en) Keyword advertisement malicious click analysis system
Liu et al. Identifying user clicks based on dependency graph
CN110059725B (en) A system and method for detecting malicious search based on search keywords