[go: up one dir, main page]

TWI896995B - Method and system for artificial intelligence-enabled electrocardiogram screens low left ventricular ejection fraction with degree of confidence - Google Patents

Method and system for artificial intelligence-enabled electrocardiogram screens low left ventricular ejection fraction with degree of confidence

Info

Publication number
TWI896995B
TWI896995B TW112125393A TW112125393A TWI896995B TW I896995 B TWI896995 B TW I896995B TW 112125393 A TW112125393 A TW 112125393A TW 112125393 A TW112125393 A TW 112125393A TW I896995 B TWI896995 B TW I896995B
Authority
TW
Taiwan
Prior art keywords
electrocardiogram
left ventricular
ejection fraction
model
confidence
Prior art date
Application number
TW112125393A
Other languages
Chinese (zh)
Other versions
TW202503777A (en
Inventor
林嶔
林錦生
李喬晉
張喬翔
劉威廷
陳宏毅
李俊何
Original Assignee
國防醫學大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國防醫學大學 filed Critical 國防醫學大學
Priority to TW112125393A priority Critical patent/TWI896995B/en
Publication of TW202503777A publication Critical patent/TW202503777A/en
Application granted granted Critical
Publication of TWI896995B publication Critical patent/TWI896995B/en

Links

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

The present invention relates to a method and system for assisted diagnosis of left ventricular insufficiency using an artificial intelligence confidence model using an electrocardiogram. In addition to predicting the left ventricular ejection fraction by extracting high-level features from the electrocardiogram, it also provides variance prediction as a confidence index. The confidence level is used to measure the quality and prediction effect of the ECG. Therefore, the artificial intelligence ECG combined with the confidence level prediction index can be used as a more accurate auxiliary diagnostic tool, which is helpful to provide clinical prediction performance and decision-making reference.

Description

應用心電圖以人工智慧信心度模型輔助診斷左心室功能不全之方法及其系統Method and system for diagnosing left ventricular dysfunction using electrocardiogram and artificial intelligence confidence model

本發明係隸屬一種輔助診斷之技術領域,具體而言係一種應用心電圖以人工智慧信心度模型輔助診斷左心室功能不全之方法及其系統,藉此能以心電圖結合深度學習模型結構上預測左心室功能不全外,並透過模型輸出標準差作為信心度指標,可提升預測左心室功能不全的準確度。This invention belongs to the field of assisted diagnosis technology. Specifically, it relates to a method and system for using electrocardiograms (ECGs) to assist in the diagnosis of left ventricular dysfunction using an artificial intelligence (AI) confidence model. This method not only predicts left ventricular dysfunction using an ECG-based deep learning model, but also uses the standard deviation of the model output as a confidence indicator to improve the accuracy of predicting left ventricular dysfunction.

按,全世界約有數仟萬人患有左心室功能不全〔Left ventricular dysfunction,LVD〕,嚴重將導致心臟衰竭,進而影響生活品質及預後。臨床上左心室射出分率、腦利鈉及N端前腦利鈉肽為心臟衰竭的重要評估指標,治療策略會依病患臨床指標變化而有所不同。目前以左心室射出分率〔EF〕為主要分類標準,而多次進行EF檢測適用於對臨床治療手段有效的患者。而左心室射出分率數值則是以胸前心臟超音波檢查〔Transthoracic Echocardiogram〕,依臨床需求採用動態模式〔Motion Mode, M-Mode)或二維辛普森兩切面〔Biplane Simpson‘s method〕掃描後取得並記錄。腦利鈉〔BNP〕和N端前腦利鈉肽〔NT-pro-BNP〕是目前最用來輔助心臟超音波的診斷工具,例如對患有心臟疾病的成年人進行治療監測。然而,過去研究指出腦利鈉及N端前腦利鈉肽的準確度〔AUC〕約在0.6-0.8,且容易受到性別、年齡及疾病史干擾所影響,故臨床需要開發更有效的生物標記物以進行早期心臟檢測。Approximately tens of millions of people worldwide suffer from left ventricular dysfunction (LVD), which can lead to heart failure in severe cases, impacting quality of life and prognosis. Clinically, left ventricular ejection fraction (LVF), cerebral palindromic acid (CPAP), and N-terminal pro-cerebral palindromic acid (NPAP) are important markers for evaluating heart failure, and treatment strategies vary depending on the patient's clinical parameters. Currently, left ventricular ejection fraction (EF) is the primary classification standard, and multiple EF tests are used for patients who respond to clinical treatment. LVF values are obtained and recorded using transthoracic echocardiograms, using either dynamic mode (M-Mode) or biplane Simpson's method, depending on clinical needs. BNP (brain-forming peptide) and N-terminal pro-brain-forming peptide (NT-pro-BNP) are currently the most commonly used diagnostic tools to complement cardiac ultrasound, for example, in monitoring treatment in adults with heart disease. However, previous studies have shown that the accuracy (AUC) of BNP and NT-pro-BNP is approximately 0.6-0.8, and is easily affected by gender, age, and medical history. Therefore, the development of more effective biomarkers for early cardiac detection is clinically needed.

而心電圖因具有快速、便宜、且適合民眾進行社區篩查,是目前檢測心臟功能和心電活動的主要工具。隨著深度學習模型〔DLMs〕的改進,由人工智能〔AI〕輔助的心電圖已經成為一種成熟的技術,並廣泛用於無症狀的LVD篩檢。此外,人工智能心電圖識別的EF值正常的假陽性患者與真陰性患者相比,假陽性患者有更高的機率發展成嚴重的LVD,證明了人工智能心電圖識別LVD潛在病患的潛力。這些特點提高了AI-ECG在臨床實踐中的接受程度,一項隨機對照實驗顯示,通過AI-ECG還能額外識別出43%的潛在LVD患者。不過,大多數AI-ECG只提供LVD的可能性測試,而不進行嚴重程度評估。ECG is currently the main tool for detecting heart function and electrical activity because it is fast, cheap, and suitable for community screening by the public. With the improvement of deep learning models (DLMs), ECG assisted by artificial intelligence (AI) has become a mature technology and is widely used for asymptomatic LVD screening. In addition, compared with true-negative patients, false-positive patients with normal EF values identified by AI ECG have a higher probability of developing severe LVD, demonstrating the potential of AI ECG to identify potential LVD patients. These features have increased the acceptance of AI-ECG in clinical practice. A randomized controlled trial showed that AI-ECG can identify an additional 43% of potential LVD patients. However, most AI-ECGs only provide a possibility test for LVD but do not assess its severity.

再者,有一些心電圖的特徵被認為與典型LVD有關,包括心率、左枝傳導阻滯〔LBBB〕和QRS持續時間延長。此外,心房顫動可能導致一些EF值低的患者出現急性心功能下降。雖然EF值低的患者在心電圖上可能呈現出心房顫動,但大多數心房顫動患者的EF值正常,導致預測心房顫動患者的EF值有更高的不確定性,而醫學數據的不確定性使的診斷決策過程變得困難。基於前述原因,人工智慧心電圖模型〔AI-ECG〕雖然可以作為心臟超音波評估左心室射出分率〔EF〕的工具,但由於準確度不足,而無法評估左心室功能狀況。Furthermore, there are several electrocardiographic (ECG) features considered to be associated with typical LVD, including heart rate, left fascicular block (LBBB), and prolonged QRS duration. Furthermore, atrial fibrillation may cause acute cardiac dysfunction in some patients with low EF. Although patients with low EF may exhibit atrial fibrillation on the ECG, most patients with atrial fibrillation have normal EF, leading to greater uncertainty in predicting EF in patients with atrial fibrillation. This uncertainty in medical data complicates the diagnostic decision-making process. For these reasons, while artificial intelligence (AI) ECG models can be used as a tool for assessing left ventricular ejection fraction (EF) using echocardiography, they are unable to assess left ventricular function due to insufficient accuracy.

除此之外,穿戴式生理監測裝置也正在改變醫療保健行業,使民眾隨時隨地都能夠監測自己的生理狀態和活動,也有能應用於遠程醫療、持續監測等優點,因此其也被廣泛應用於各場域中,而目前穿戴式生理監測裝置也發展到可以取得心電圖,如能與心電圖輔助診斷工具結合,用於長時間隨時追距患者的心電訊號,如預先準確地偵測左心室功能不全,可有效監測及預防心臟衰竭。Furthermore, wearable physiological monitoring devices are transforming the healthcare industry, enabling people to monitor their physiological status and activities anytime, anywhere. They also offer advantages such as remote medical care and continuous monitoring, leading to their widespread use in various fields. Currently, wearable physiological monitoring devices can also acquire electrocardiograms (ECGs). If combined with ECG-assisted diagnostic tools, they can track patients' ECG signals over long periods of time. This can, for example, accurately detect left ventricular dysfunction in advance, effectively monitoring and preventing heart failure.

換言之,為了更好地量化模型預測的不確定性,開發一個具有深度學習模型之系統及方法來幫助醫師識別與左心室功能不全相關的ECG變化,供進行早期、客觀和精確的診斷,將可有效作為快速治療的證據,且進一步開發一種可以應用於穿載式生理監測裝置的輔助診斷工具,係業界的重要課題。In other words, to better quantify the uncertainty of model predictions, developing a system and method using deep learning models to help physicians identify ECG changes associated with left ventricular dysfunction for early, objective, and accurate diagnosis will effectively serve as evidence for rapid treatment. Furthermore, developing an auxiliary diagnostic tool that can be applied to wearable physiological monitoring devices is a key issue in the industry.

有鑑於此,本發明即基於上述關於左心室功能不全之診斷需求深入探討,並藉由本發明人多年從事相關開發的經驗,而積極尋求解決之道,經不斷努力之研究與發展,終於成功的創作出一種應用心電圖以人工智慧信心度模型輔助診斷左心室功能不全之方法及其系統,以解決現有者輔助診斷系統因準確度不足無法有效評估左心室功能狀況所造成的不便與困擾。In light of this, the present invention is based on an in-depth exploration of the aforementioned need for diagnosing left ventricular dysfunction. Drawing on the inventors' years of experience in related development, they have actively sought a solution. Through continuous research and development, they have ultimately successfully developed a method and system for using electrocardiograms (ECGs) to assist in the diagnosis of left ventricular dysfunction using an artificial intelligence confidence model. This method addresses the inconvenience and difficulties caused by the inability of existing diagnostic aids to effectively assess left ventricular function due to insufficient accuracy.

因此,本發明之主要目的係在提供一種之應用心電圖以人工智慧信心度模型輔助診斷左心室功能不全之方法及其系統,藉以能利用患者心電訊號、且透過人工智慧的深度學習模型之系統及方法來幫助醫師識別與左心室功能不全相關的心電圖變化,供進行心臟衰竭之早期、客觀和精確的診斷。Therefore, the primary objective of the present invention is to provide a method and system for using electrocardiograms (ECGs) to assist in the diagnosis of left ventricular dysfunction using an artificial intelligence confidence model. This system and method utilizes a patient's ECG signals and, through an artificial intelligence deep learning model, helps physicians identify ECG changes associated with left ventricular dysfunction, enabling early, objective, and accurate diagnosis of heart failure.

其次,本發明之再一主要目的係在提供一種之應用心電圖以人工智慧信心度模型輔助診斷左心室功能不全之方法及其系統,其能快速評估左心室功能狀況,以預測心臟衰竭之機率,供醫療人員即時監測與介入。Secondly, another major objective of the present invention is to provide a method and system for using electrocardiograms to assist in the diagnosis of left ventricular dysfunction using an artificial intelligence confidence model. This method can rapidly assess left ventricular function to predict the probability of heart failure, allowing medical personnel to monitor and intervene in real time.

又,本發明之另一主要目的係在提供一種之應用心電圖以人工智慧信心度模型輔助診斷左心室功能不全之方法及其系統,其能提供遠端的長時間追踪,以預測心臟衰竭之機率,可進一步維護患者的生命安全。Furthermore, another primary objective of the present invention is to provide a method and system for using electrocardiograms to assist in the diagnosis of left ventricular dysfunction using an artificial intelligence confidence model. This method can provide remote, long-term tracking to predict the probability of heart failure, thereby further protecting the patient's life safety.

為此,本發明主要係透過下列的技術手段,來具體實現上述的各項目的與效能,其包含有:To this end, the present invention primarily achieves the above-mentioned objectives and effects through the following technical means, which include:

一建置至少一射出分率模型資料之步驟:建立至少一筆左心室之射出分率模型,其模型訓練係利用至少一筆心電圖訊號及至少一筆與該等心電圖訊號相對應之心臟超音波的左心室射出分率數值;a step of establishing at least one ejection fraction model data: establishing at least one left ventricular ejection fraction model, wherein the model is trained using at least one electrocardiogram signal and at least one left ventricular ejection fraction value obtained from cardiac ultrasound corresponding to the electrocardiogram signal;

一取得一待測心電圖之步驟:取得一被監測者之待測心電圖;1. Obtaining an electrocardiogram to be measured: Obtaining an electrocardiogram to be measured of a monitored person;

一測定具信心度射出分率之步驟:其包含利用深度神經網路架構之一導入預測模塊、一加權平均模塊及一總和輸出模塊的方式,透過導入預測模塊將該待測心電圖以序列向量輸入並生成一導入預測值,之後透過加權平均模塊輸出一個加權數值,而至少一導極的加權平均模塊之輸出將會一起通過一個全連接層,並設定輸出為2個隱藏層,而後將此權重與原始導入預測模塊的個別預測結果進行加權平均,其中一個隱藏層以Sigmoid 輸出機率向量並限制為10至90的點估計值,另外一個隱藏層直接輸出為變異數後進行指數轉換形成信心度指標,並將其投影至常態分布之機率密度函數中進行模型優化,以u為實際左心室射出分率,y為點估計值,σ為變異數之平方根進行轉換,如公式(1);A step of determining a confidence ejection fraction: comprising an input prediction module, a weighted average module, and a sum output module using a deep neural network architecture, wherein the input prediction module inputs the electrocardiogram to be tested as a sequence vector and generates an input prediction value, and then outputs a weighted value through the weighted average module, and the output of the weighted average module of at least one lead will pass through a fully connected layer together, and set the output to two hidden layers, and then perform a weighted average of the weight and the individual prediction results of the original input prediction module, wherein one hidden layer is Sigmoid. The probability vector is output and limited to point estimates between 10 and 90. Another hidden layer directly outputs the variance and then performs an exponential transformation to form a confidence index. This is then projected onto the probability density function of the normal distribution for model optimization. The transformation is performed using u as the actual left ventricular ejection fraction, y as the point estimate, and σ as the square root of the variance, as shown in Formula (1).

………………………公式(1) ……………………Formula (1)

一轉換心臟衰竭機率之步驟:使用常態分布之累積分佈函數進行將點估計值與變異數轉換為心臟衰竭之機率,累積分佈函數主要描述在給定分布下,變數X小於或等於x的機率。在本發明中,u為點估計值,x設定為左心室射出分率小於或等於40作為心臟衰竭診斷標準,若為f(x) 為連續型函數,則為將其導數作為累積機率密度函數,可獲得一個預測之心臟衰竭機率值,如公式(2)及公式(3);A step of converting the probability of heart failure: using the cumulative distribution function of the normal distribution to convert the point estimate and the variance into the probability of heart failure. The cumulative distribution function mainly describes the probability of the variable X being less than or equal to x under a given distribution. In the present invention, u is the point estimate, and x is set to a left ventricular ejection fraction less than or equal to 40 as the diagnostic standard for heart failure. If f(x) is a continuous function, then its derivative is used as the cumulative probability density function to obtain a predicted value of the probability of heart failure, as shown in formulas (2) and (3);

……………………公式(2) ……………………Formula (2)

……………………………….公式(3) ………………………………………….Formula (3)

一顯示左心室功能測定結果之步驟:在求得該被監測者之心電圖、測定之左心室射出分率及心臟衰竭預測機率值後,將該等資料傳輸、並顯示給至少一監測者。A step of displaying the left ventricular function test results: after obtaining the electrocardiogram, the measured left ventricular ejection fraction, and the heart failure prediction probability value of the monitored person, transmitting and displaying these data to at least one monitor.

並使用下列系統來執行,該系統至少具有一左心室功能測定裝置;The method is performed using the following system, which comprises at least one left ventricular function measuring device;

所述之左心室功能測定裝置包含有一處理單元及分別連接該處理單元之至少一記憶單元及至少一儲存單元,其中該等儲存單元至少具有一模型資料模組及一測定運算模組,該模型資料模組中具有至少一射出分率模型資料,該射出分率模型資料包含有至少一筆心電圖訊號及至少一筆與該等心電圖訊號相對應之心臟超音波的左心室射出分率數值,而該測定運算模組使用如申請專利範圍第1~4項中任一項所述之應用心電圖以人工智慧信心度模型輔助診斷左心室功能不全之方法將一待測心電圖轉換成一個預測之心臟衰竭機率值;The left ventricular function measurement device includes a processing unit and at least one memory unit and at least one storage unit respectively connected to the processing unit, wherein the storage units have at least one model data module and a measurement operation module. The model data module contains at least one ejection fraction model data, the ejection fraction model data including at least one electrocardiogram signal and at least one left ventricular ejection fraction value of a cardiac ultrasound wave corresponding to the electrocardiogram signal. The measurement operation module uses the method of using an electrocardiogram to assist in the diagnosis of left ventricular dysfunction using an artificial intelligence confidence model as described in any one of claims 1 to 4 to convert a test electrocardiogram into a predicted heart failure probability value.

藉由該左心室功能測定裝置可連接至少一心電圖生成裝置及至少一監測顯示裝置,使得其得將由該心電生成裝置所取得之待測心電圖轉換成相對應之預測心臟衰竭機率值,並顯示於該監測顯示裝置上。The left ventricular function measuring device can be connected to at least one electrocardiogram generating device and at least one monitoring and displaying device, so that the electrocardiogram to be measured obtained by the electrocardiogram generating device can be converted into a corresponding predicted heart failure probability value and displayed on the monitoring and displaying device.

透過前述技術手段的具體實現,使本發明能可大幅增進其實用性,而能增加其附加價值,並能提高其經濟效益。Through the specific implementation of the aforementioned technical means, the present invention can significantly enhance its practicality, increase its added value, and improve its economic benefits.

為使 貴審查委員能進一步了解本發明的構成、特徵及其他目的,以下乃舉本發明之若干較佳實施例,並配合圖式詳細說明如后,供讓熟悉該項技術領域者能夠具體實施。To help you better understand the structure, features, and other purposes of this invention, several preferred embodiments of this invention are listed below, along with detailed descriptions of the drawings, so that those skilled in the art can implement them.

本發明係一種應用心電圖以人工智慧信心度模型輔助診斷左心室功能不全之方法及其系統,隨附圖例示本發明之具體實施例及其構件中,所有關於前與後、左與右、頂部與底部、上部與下部、以及水平與垂直的參考,僅用於方便進行描述,並非限制本發明,亦非將其構件限制於任何位置或空間方向。圖式與說明書中所指定的尺寸,當可在不離開本發明之申請專利範圍內,根據本發明之具體實施例的設計與需求而進行變化。This invention relates to a method and system for using an electrocardiogram (ECG) to assist in the diagnosis of left ventricular dysfunction using an artificial intelligence confidence model. The accompanying figures illustrate specific embodiments of the invention and its components. References to anterior and posterior, left and right, top and bottom, upper and lower, and horizontal and vertical are for descriptive purposes only and are not intended to limit the invention or its components to any particular position or spatial orientation. Dimensions specified in the drawings and description may vary according to the design and requirements of the specific embodiments of the invention without departing from the scope of the claims.

本發明係一種應用心電圖以人工智慧信心度模型輔助診斷左心室功能不全之方法,其可供快速測定左心室功能不全的狀態,以預測心臟衰竭之機率,而如第一、二圖所示,該方法用於一應用心電圖以人工智慧信心度模型輔助診斷左心室功能不全之系統,該系統包含有至少一心電圖生成裝置(10)、一左心室功能測定裝置(20)及至少一監測顯示裝置(30),其中該等心電圖生成裝置(10)、該左心室功能測定裝置(20)及該等監測顯示裝置(30)之間可以是組成一體式結構、組合式結構或分離式結構,且如為分離式結構可以是利用有線技術〔如乙太網路〕、無線技術〔如無線醫療系統、Wi-Fi或3G以上行動通信〕相互連線,供相互傳輸資料。The present invention is a method for using an electrocardiogram to assist in the diagnosis of left ventricular dysfunction with an artificial intelligence confidence model, which can be used to quickly determine the state of left ventricular dysfunction to predict the probability of heart failure. As shown in the first and second figures, the method is used in a system for using an electrocardiogram to assist in the diagnosis of left ventricular dysfunction with an artificial intelligence confidence model, the system comprising at least one electrocardiogram generating device (10), a left ventricular function measuring device (20) and At least one monitoring and display device (30), wherein the electrocardiogram generating devices (10), the left ventricular function measuring device (20) and the monitoring and display devices (30) can be an integrated structure, a combined structure or a separate structure, and if they are separate structures, they can be connected to each other using wired technology (such as Ethernet) or wireless technology (such as wireless medical system, Wi-Fi or mobile communication above 3G) for mutual data transmission.

而如第二圖所示,該方法之施實步驟包含有:As shown in the second figure, the implementation steps of the method include:

一建置至少一射出分率模型資料之步驟(S01):首先訓練至少一筆左心室之射出分率模型(Left Ventricular Ejection Fraction Model,又稱EFMD),其模型訓練係利用至少一筆取自該等心電圖生成裝置(10)或醫療院所心電圖資料庫中之心電圖訊號(Reference ECG,又稱R.ECG)〔如12導極心電圖〕及至少一筆與該等心電圖訊號相對應之心臟超音波的左心室射出分率數值(Reference Left Ventricular Ejection Fraction,又稱R.EF),其中12導極心電圖被轉化為「時間-序列」資料,並以每一小段時間記錄一個電位訊號的形式記錄,如每2毫秒紀錄1個訊號,並連續紀錄10秒。而左心室射出分率數值則是以胸前心臟超音波檢查〔Transthoracic Echocardiogram〕,依臨床需求採用動態模式〔Motion Mode, M-Mode〕或二維辛普森兩切面〔Biplane Simpson‘s method〕掃描後取得並記錄,並儲存於前述之左心室功能測定裝置(20)中;A step of establishing at least one ejection fraction model data (S01): first, training at least one left ventricular ejection fraction model (Left Ventricular Ejection Fraction Model, also known as EFMD), wherein the model training is performed using at least one electrocardiogram signal (Reference ECG, also known as R.ECG) (such as 12-lead electrocardiogram) obtained from the electrocardiogram generating device (10) or the electrocardiogram database of the medical institution and at least one left ventricular ejection fraction value (Reference Left Ventricular Ejection Fraction Model) of the cardiac ultrasound wave corresponding to the electrocardiogram signal. Fraction, also known as R.EF), in which the 12-lead electrocardiogram is converted into "time-series" data and recorded in the form of an electric potential signal in each small period of time, such as recording one signal every 2 milliseconds and continuously recording for 10 seconds. The left ventricular ejection fraction value is obtained and recorded by transthoracic echocardiogram, using dynamic mode (Motion Mode, M-Mode) or two-dimensional Simpson's method according to clinical needs, and stored in the aforementioned left ventricular function measurement device (20);

一取得至少一待測心電圖之步驟(S02):利用一個心電圖生成裝置(10)取得一被監測者之待測心電圖;A step of obtaining at least one electrocardiogram to be measured (S02): obtaining the electrocardiogram to be measured of a monitored person using an electrocardiogram generating device (10);

一測定具信心度射出分率之步驟(S03):在模型上,本發明使用一個可設於該左心室功能測定裝置(20)內之一個深度神經網路的測定運算預測模式〔又稱ECG12Net〕進行預測模式的建立,該ECG12Net揭露於中華民國申請第109108808號發明專利案中,如第三圖所示,其中該ECG12Net包含了3個重要的構造,分別是導入預測模塊〔ECG lead block〕、加權平均模塊〔Attention block〕以及總和輸出模塊〔Sum Output block〕。將至少一導程〔如12個導程之Lead I、Lead II、…、Lead V6〕在經過「ECG lead block」之後,12個導程的輸出將分別有一個長度為N的特徵向量與長度為1的個別預測結果,而後這個特徵向量將會通過「Attention block」進行權重預測。「Attention block」的結構為「全連接層→批量歸一層→線性整流層→全連接層→批量歸一層」,最終每個「Attention block」將會輸出1個數值。而12個導極的「Attention block」之輸出將會一起通過一個全連接層,並設定輸出為2個隱藏層,而後將此權重與原始「ECG lead block」的個別預測結果進行加權平均,其中一個隱藏層以Sigmoid 輸出機率向量並限制為10至90的點估計值,另外一個隱藏層直接輸出為變異數後進行指數轉換形成信心度指標。並將其投影至常態分布之機率密度函數中進行模型優化,以u為實際左心室射出分率,y為點估計值,σ為變異數之平方根進行轉換,如公式(1)。A step of determining the ejection fraction with confidence (S03): In terms of the model, the present invention uses a deep neural network measurement operation prediction model (also known as ECG12Net) that can be set in the left ventricular function measurement device (20) to establish a prediction model. The ECG12Net is disclosed in the invention patent application No. 109108808 of the Republic of China, as shown in the third figure, wherein the ECG12Net includes three important structures, namely, an introduction prediction module (ECG lead block), a weighted average module (Attention block) and a sum output module (Sum Output block). After passing at least one lead (e.g., 12 leads, Lead I, Lead II, ..., Lead V6) through the ECG lead block, each of the 12 leads will have a feature vector of length N and a prediction result of length 1. This feature vector is then passed through the attention block for weighted prediction. The attention block structure is: fully connected layer → batch normalization layer → linear rectifier layer → fully connected layer → batch normalization layer. Ultimately, each attention block outputs a single value. The outputs of the 12-lead "Attention block" are passed through a fully connected layer and set as the output of two hidden layers. The weights are then weighted averaged with the individual prediction results of the original "ECG lead block". One hidden layer outputs a probability vector with a Sigmoid function and limits it to a point estimate between 10 and 90. The other hidden layer directly outputs the variance and then performs an exponential conversion to form a confidence index. The confidence index is then projected onto the probability density function of the normal distribution for model optimization, with u as the actual left ventricular ejection fraction, y as the point estimate, and σ as the square root of the variance, as shown in Formula (1).

…………………………公式(1) …………………………Formula (1)

一轉換心臟衰竭機率之步驟(S04):接著利用該被監測者之待測心電圖導入該左心室功能測定裝置(20)中進行轉換,利用該左心室功能測定裝置(20)中之ECG12Net之「ECG lead block」、「Attention block」以及「Sum Output block」的預測運算模式,其中利用導入預測的方式將待測心電圖以特徵向量輸入,經公式(1)所得一具信心度模型之測定左心室射出分率(Determination of left ventricular ejection fraction,DEF)後,本發明並使用常態分布之累積分佈函數進行將點估計值與變異數轉換為心臟衰竭之機率,累積分佈函數主要描述在給定分布下,變數X小於或等於x的機率。在本發明中,u為點估計值,x設定為左心室射出分率小於或等於40作為心臟衰竭診斷標準,若為f(x) 為連續型函數,則為將其導數作為累積機率密度函數,可獲得一個預測之心臟衰竭機率值(Prediction of heart failure probability value,PHF),如公式(2)及公式(3)。A step of converting the probability of heart failure (S04): Then, the electrocardiogram to be measured of the monitored person is introduced into the left ventricular function measurement device (20) for conversion, and the prediction operation mode of the "ECG lead block", "Attention block" and "Sum Output block" of ECG12Net in the left ventricular function measurement device (20) is used. The electrocardiogram to be measured is input as a feature vector by the method of importing prediction. After the determination of left ventricular ejection fraction (DEF) with a confidence model is obtained by formula (1), the present invention uses the cumulative distribution function of the normal distribution to convert the point estimate and the variance into the probability of heart failure. The cumulative distribution function mainly describes the probability that the variable X is less than or equal to x under a given distribution. In the present invention, u is a point estimate, and x is set to a left ventricular ejection fraction less than or equal to 40 as the diagnostic standard for heart failure. If f(x) is a continuous function, then its derivative is used as the cumulative probability density function to obtain a predicted heart failure probability value (PHF), as shown in Formula (2) and Formula (3).

………………………公式(2) ……………………Formula (2)

…………………………………公式(3) …………………………………………Formula (3)

一顯示左心室功能測定結果之步驟(S05):在獲得該被監測者之心電圖、測定之左心室射出分率及心臟衰竭預測機率值後,將該等資料傳輸、顯示於至少一監測者之監測顯示裝置(30)上。A step of displaying the left ventricular function measurement results (S05): after obtaining the electrocardiogram, the measured left ventricular ejection fraction and the heart failure prediction probability value of the monitored person, the data are transmitted and displayed on the monitoring display device (30) of at least one monitor.

且該應用心電圖以人工智慧信心度模型輔助診斷左心室功能不全之方法進一步包含有一模型學習之步驟(S06),其係利用卷積神經網路以不監督方式辨識指定心電圖中的特徵值進行學習,且該模型學習模組之卷積神經網路進行學習處理時的演算法可為公知的方法,並調整網路參數,供生成新的用於診斷之射出分率模型資料。The method for using an electrocardiogram to assist in the diagnosis of left ventricular dysfunction using an artificial intelligence confidence model further includes a model learning step (S06), which utilizes a convolutional neural network to identify eigenvalues in a specified electrocardiogram in an unsupervised manner for learning. The algorithm used by the convolutional neural network of the model learning module during the learning process can be a known method, and the network parameters are adjusted to generate new ejection fraction model data for diagnosis.

又本發明之系統的詳細構成,則係如第一、四圖所揭示者,其中該等心電圖生成裝置(10)具有至少一電極單元(11),供量測至少一被監測者之心電訊號,該等心電圖生成裝置(10)可以選自1至12導程之電極單元(11),供生成一個相對應導程數之待測心電圖(D1),例如當以標準12導程心電圖為例時,則該心電圖生成裝置(10)需要放置如RA、LA、RL、LL、V1、V2、V3、V4、V5及V6等10個電極單元(11),其可生成一個標準12導程〔Lead I、Lead II、…、Lead V6〕之待測心電圖(D1),又該等心電圖生成裝置(10)具有一電器連接該電極單元(11)之傳輸單元(12),而該傳輸單元(12)可以利用有線技術或無線技術對上述之左心室功能測定裝置(20)傳輸該電極單元(11)生成之待測心電圖(D1)。根據某些實施例,該等心電圖生成裝置(10)可以是一穿戴式生理監測裝置(50)或其一部,供患者直接穿載以取得至少一待測心電圖(D1),用於長時間隨機監測該被監測者〔如救護車上患者、慢性病患者等〕;The detailed structure of the system of the present invention is as disclosed in the first and fourth figures, wherein the electrocardiogram generating devices (10) have at least one electrode unit (11) for measuring the electrocardiogram signal of at least one monitored person. The electrocardiogram generating devices (10) can select electrode units (11) of 1 to 12 leads to generate an electrocardiogram (D1) to be measured with a corresponding number of leads. For example, when a standard 12-lead electrocardiogram is used as an example, the electrocardiogram generating device (10) needs to place 10 electrode units (11) such as RA, LA, RL, LL, V1, V2, V3, V4, V5 and V6, which can generate a standard 12-lead [Lead I, Lead II, ..., Lead V6], and the electrocardiogram generating device (10) has a transmission unit (12) electrically connected to the electrode unit (11), and the transmission unit (12) can transmit the electrocardiogram (D1) to be measured generated by the electrode unit (11) to the above-mentioned left ventricular function measuring device (20) using wired technology or wireless technology. According to some embodiments, the electrocardiogram generating device (10) can be a wearable physiological monitoring device (50) or a part thereof, which is directly worn by the patient to obtain at least one electrocardiogram (D1) to be measured, and is used for long-term random monitoring of the monitored person (such as patients in ambulances, patients with chronic diseases, etc.);

又如第五圖所示,該左心室功能測定裝置(20)可執行該應用心電圖以人工智慧信心度模型輔助診斷左心室功能不全之方法,而該左心室功能測定裝置(20)可以包含有一處理單元(21)、一傳輸單元(22)、至少一記憶單元(23)及至少一儲存單元(24),其中該處理單元(21)用於執行系統之各項程式、指令及功能,且該傳輸單元(22)可以有線技術或無線技術讓該左心室功能測定裝置(20)與前述之心電圖生成裝置(10)及/或監測顯示裝置(30)相互連結傳輸各項資料、畫面或指令,而該等記憶單元(23)電氣連接該處理單元(21),且該等記憶單元(23)用於供儲存系統程式或指令、以及作為作業系統或其他正在執行中的程式的臨時資料儲存媒介,該記憶單元(23)可以是唯讀記憶單元〔Read Only Memory,ROM〕及/或隨機存取記憶單元〔Random Access Memory,RAM〕,又各該儲存單元(24)可以有線或無線連接該處理單元(21),且各該儲存單元(24)可以是一內部儲存設備或一外部儲存設備,如硬碟〔Hard Disk Drive,HDD〕、固態硬碟〔Solid State Disk,簡稱SSD〕或雲端硬碟〔Online Hard Drive〕,又各該等儲存單元(24)至少內建有一模型資料模組(25)及一測定運算模組(26),使得該左心室功能測定裝置(20)取得待測心電圖後,可透過該模型資料模組(25)與該測定運算模組(26)之計算測定相對應於該待測心電圖(D1)求得一心臟衰竭預測機率值。且根據某些實施例,該左心室功能測定裝置(20)與該等心電圖生成裝置(10)可以結合形成一體之穿戴式生理監測裝置(50)。再者,根據某些實施例,該左心室功能測定裝置(20)可以是雲端伺服裝置、資訊工作站、個人電腦或可攜式行動裝置等。而根據某些實施例,該模型測定裝置(20)進一步可以包含有一連接該處理單元(21)之圖形處理單元(27)〔Graphics Processing Unit,GPU〕,供透過分析、深度學習和機器學習演算法來執行繪圖運算工作,以提高運算速度及心電圖判讀的準確度。又根據某些實施例,該模型測定裝置(20)進一步包含有一卷積神經網路架構之模型學習模組(28),供生成新的用於診斷之心室射出分率模型資料。而該模型學習模組(28)係利用卷積神經網路以不監督方式辨識指定心電圖中的特徵值進行學習,且該模型學習模組(28)之卷積神經網路進行學習處理時的演算法可為公知的方法,並調整網路參數〔權重係數、偏差等〕。而且,由該模型學習模組(28)形成之心室射出分率模型資料〔結構資料及已學習的權重參數等〕例如與模型資料模組(25)或測定運算模組(26)一同被儲存於該儲存單元(24)中,且該模型學習模組(28)於驅動深度學習模型訓練的方法可以使用如公知的反向傳播法〔Backpropagation〕實施學習處理。As shown in FIG5, the left ventricular function measuring device (20) can execute the method of using electrocardiogram to assist in diagnosing left ventricular dysfunction with an artificial intelligence confidence model, and the left ventricular function measuring device (20) can include a processing unit (21), a transmission unit (22), at least one memory unit (23) and at least one storage unit (24), wherein the processing unit (21) is used to execute various programs, instructions and functions of the system, and the transmission unit (22) can be wired technology. Or wireless technology allows the left ventricular function measuring device (20) and the aforementioned electrocardiogram generating device (10) and/or monitoring display device (30) to be interconnected to transmit various data, images or instructions, and the memory units (23) are electrically connected to the processing unit (21), and the memory units (23) are used to store system programs or instructions, and as temporary data storage media for operating systems or other programs being executed. The memory unit (23) can be a read-only memory unit [Read Only Memory, ROM] and/or Random Access Memory, RAM, and each of the storage units (24) can be connected to the processing unit (21) by wire or wirelessly, and each of the storage units (24) can be an internal storage device or an external storage device, such as a hard disk drive (HDD), a solid state disk (SSD) or a cloud hard disk (Online Hard Disk). Drive], and each of the storage units (24) has at least a built-in model data module (25) and a measurement operation module (26), so that after the left ventricular function measurement device (20) obtains the electrocardiogram to be measured, a heart failure prediction probability value corresponding to the electrocardiogram to be measured (D1) can be obtained through the calculation and measurement of the model data module (25) and the measurement operation module (26). According to some embodiments, the left ventricular function measurement device (20) and the electrocardiogram generation devices (10) can be combined to form an integrated wearable physiological monitoring device (50). Furthermore, according to some embodiments, the left ventricular function measurement device (20) can be a cloud server device, an information workstation, a personal computer or a portable mobile device, etc. According to some embodiments, the model determination device (20) may further include a graphics processing unit (27) connected to the processing unit (21) for performing graphics operations through analysis, deep learning, and machine learning algorithms to improve the operation speed and the accuracy of electrocardiogram interpretation. According to some embodiments, the model determination device (20) further includes a model learning module (28) with a convolutional neural network architecture for generating new ventricular ejection fraction model data for diagnosis. The model learning module (28) uses a convolutional neural network to learn by identifying the eigenvalues in a specified electrocardiogram in an unsupervised manner, and the algorithm used by the convolutional neural network of the model learning module (28) during learning processing can be a well-known method, and the network parameters (weight coefficients, bias, etc.) are adjusted. Moreover, the ventricular ejection fraction model data (structural data and learned weight parameters, etc.) formed by the model learning module (28) are stored in the storage unit (24) together with the model data module (25) or the measurement operation module (26), and the model learning module (28) can use a well-known backpropagation method (Backpropagation) to implement learning processing in a method of driving deep learning model training.

至於,該監測顯示裝置(30)具有一傳輸單元(31),而該傳輸單元(31)可以利用有線技術或無線技術接收上述之向量轉換裝置(20)傳送來之偵測值及/或心電訊號,且該監測顯示裝置(30)具有一顯示單元(32),該顯示單元(32)可供顯示左心室射出分率、心臟衰竭預測機率值及/或心電訊號(D1)生成之心電圖,供醫療人員判讀預測心臟衰竭之機率,另根據某些實施例,該監測顯示裝置(30)進一步具有一警報發送單元(35),該警報發送單元(35)可向急救人員、責任醫師或遠端監管裝置發送超出預設值之左心室射出分率、心臟衰竭預測機率值及/或心電訊號(D1)生成之心電圖,供醫療人員即時監測與介入。As for the monitoring and display device (30), it has a transmission unit (31), and the transmission unit (31) can use wired technology or wireless technology to receive the detection value and/or electrocardiogram signal transmitted by the above-mentioned vector conversion device (20), and the monitoring and display device (30) has a display unit (32), and the display unit (32) can be used to display the left ventricular ejection fraction, the heart failure prediction probability value and/or the electrocardiogram signal (D1). The electrocardiogram generated by the electrocardiogram is provided for medical personnel to interpret and predict the probability of heart failure. According to some embodiments, the monitoring and display device (30) further has an alarm sending unit (35). The alarm sending unit (35) can send the left ventricular ejection fraction, heart failure prediction probability value and/or electrocardiogram generated by the electrocardiogram signal (D1) that exceeds the preset value to emergency personnel, responsible doctors or remote monitoring devices for medical personnel to monitor and intervene in real time.

綜上所述,可以理解到本發明為一創意極佳之發明創作,除了有效解決習式者所面臨的問題,更大幅增進功效,且在相同的技術領域中未見相同或近似的產品創作或公開使用,同時具有功效的增進,故本發明已符合發明專利有關「新穎性」與「進步性」的要件,乃依法提出發明專利之申請。In summary, it can be understood that the present invention is a highly creative creation that not only effectively solves problems faced by practitioners but also significantly enhances efficacy. Furthermore, no identical or similar products have been created or publicly used in the same technical field, and this invention also exhibits enhanced efficacy. Therefore, the present invention meets the requirements of "novelty" and "advancedness" for invention patents, and therefore, an invention patent application is filed in accordance with the law.

10: 心電圖生成裝置 11: 電極單元 12: 傳輸單元 15: 心電圖資料庫 20: 左心室功能測定裝置 21: 處理單元 22: 傳輸單元 23: 記憶單元 24: 儲存單元 25: 模型資料模組 26: 測定運算模組 27: 圖形處理單元 28: 模型學習模組 30: 監測顯示裝置 31: 傳輸單元 32: 顯示單元 35: 警報發送單元 50: 穿戴式生理監測裝置 S01: 建置至少一射出分率模型資料 S02: 取得一待測心電圖 S03: 測定具信心度射出分率 S04: 轉換心臟衰竭機率 S05: 顯示左心室功能測定結果 S06: 模型學習 10: ECG generation device 11: Electrode unit 12: Transmission unit 15: ECG database 20: Left ventricular function measurement device 21: Processing unit 22: Transmission unit 23: Memory unit 24: Storage unit 25: Model data module 26: Measurement calculation module 27: Graphics processing unit 28: Model learning module 30: Monitoring and display device 31: Transmission unit 32: Display unit 35: Alarm transmission unit 50: Wearable physiological monitoring device S01: Create at least one ejection fraction model data set S02: Obtain an ECG to be measured S03: Determine confidence in ejection fraction S04: Conversion probability to heart failure S05: Display left ventricular function assessment results S06: Model learning

第一圖:係本發明使用應用心電圖以人工智慧信心度模型輔助診斷左心室功能不全之系統的運作示意圖。Figure 1 is a schematic diagram illustrating the operation of the system of the present invention that uses an electrocardiogram (ECG) and an artificial intelligence confidence model to assist in the diagnosis of left ventricular dysfunction.

第二圖:係本發明使用應用心電圖以人工智慧信心度模型輔助診斷左心室功能不全之方法的流程架構示意圖。Figure 2 is a schematic diagram of the process architecture of the method of the present invention for using an electrocardiogram to assist in the diagnosis of left ventricular dysfunction using an artificial intelligence confidence model.

第三圖:係本發明之方法中左心室功能測定運算的模型架構示意圖。Figure 3 is a schematic diagram of the model architecture for left ventricular function measurement in the method of the present invention.

第四圖:係本發明之系統的架構示意圖。Figure 4 is a schematic diagram of the system architecture of the present invention.

第五圖:係本發明之系統中左心室功能測定裝置的架構示意圖。Figure 5 is a schematic diagram of the structure of the left ventricular function measurement device in the system of the present invention.

第六圖:係本發明之系統於實際應用時的資料轉換示意圖。Figure 6 is a diagram illustrating data conversion during actual application of the system of the present invention.

S01: 建置至少一射出分率模型資料 S02: 取得一待測心電圖 S03: 測定具信心度射出分率 S04: 轉換心臟衰竭機率 S05: 顯示左心室功能測定結果 S06: 模型學習 S01: Create at least one ejection fraction model data set S02: Obtain a test electrocardiogram S03: Determine the ejection fraction with confidence S04: Conversion probability of heart failure S05: Display left ventricular function test results S06: Model learning

Claims (10)

一種應用心電圖以人工智慧信心度模型輔助診斷左心室功能不全之方法,其包含有:一建置至少一射出分率模型資料之步驟:建立至少一筆左心室之射出分率模型,其模型訓練係利用至少一筆心電圖訊號及至少一筆與該等心電圖訊號相對應之心臟超音波的左心室射出分率數值;一取得一待測心電圖之步驟:取得一被監測者之待測心電圖;一測定具信心度射出分率之步驟:其包含利用深度神經網路架構之一導入預測模塊、一加權平均模塊及一總和輸出模塊的方式,透過導入預測模塊將該待測心電圖以序列向量輸入並生成一導入預測值,之後透過加權平均模塊輸出一個加權數值,而至少一導極的加權平均模塊之輸出將會一起通過一個全連接層,並設定輸出為2個隱藏層,而後將此權重與原始導入預測模塊的個別預測結果進行加權平均,其中一個隱藏層以Sigmoid 輸出機率向量並限制為10至90的點估計值,另外一個隱藏層直接輸出為變異數後進行指數轉換形成信心度指標,並將其投影至常態分布之機率密度函數中進行模型優化,以u為實際左心室射出分率,y為點估計值,σ為變異數之平方根進行轉換,如公式(1);………………………公式(1)一轉換心臟衰竭機率之步驟:使用常態分布之累積分佈函數進行將點估計值與變異數轉換為心臟衰竭之機率,累積分佈函數主要描述在給定分布下,變數X小於或等於x的機率,在本發明中,u為點估計值,x設定為左心室射出分率小於或等於40作為心臟衰竭診斷標準,若為f(x) 為連續型函數,則為將其導數作為累積機率密度函數,可獲得一個預測之心臟衰竭機率值,如公式(2)及公式(3);……………………公式(2)……………………………….公式(3)一顯示左心室功能測定結果之步驟:在求得該被監測者之心電圖、測定之左心室射出分率及心臟衰竭預測機率值後,將該等資料傳輸、並顯示給至少一監測者。A method for using electrocardiogram to assist in the diagnosis of left ventricular dysfunction with an artificial intelligence confidence model comprises: a step of establishing at least one ejection fraction model data: establishing at least one left ventricular ejection fraction model, wherein the model training is performed using at least one electrocardiogram signal and at least one left ventricular ejection fraction value of a cardiac ultrasound wave corresponding to the electrocardiogram signal; a step of obtaining an electrocardiogram to be measured: obtaining an electrocardiogram to be measured of a monitored person; a step of determining an ejection fraction with confidence: comprising using a deep neural network to determine the ejection fraction with confidence. The neural network architecture is composed of an input prediction module, a weighted average module and a sum output module. The input prediction module inputs the electrocardiogram to be tested as a sequence vector and generates an input prediction value. The weighted average module then outputs a weighted value. The output of the weighted average module of at least one leader will pass through a fully connected layer together and set the output to 2 hidden layers. The weight is then weighted averaged with the individual prediction results of the original input prediction module, one of which is a Sigmoid layer. The probability vector is output and limited to point estimates between 10 and 90. Another hidden layer directly outputs the variance and then performs an exponential transformation to form a confidence index. This is then projected onto the probability density function of the normal distribution for model optimization. The transformation is performed using u as the actual left ventricular ejection fraction, y as the point estimate, and σ as the square root of the variance, as shown in Formula (1). Formula (1) - Step of converting the probability of heart failure: using the cumulative distribution function of the normal distribution to convert the point estimate and the variance into the probability of heart failure. The cumulative distribution function mainly describes the probability that the variable X is less than or equal to x under a given distribution. In the present invention, u is the point estimate, and x is set to the left ventricular ejection fraction less than or equal to 40 as the diagnostic standard for heart failure. If f(x) is a continuous function, then its derivative is used as the cumulative probability density function to obtain a predicted value of the probability of heart failure, as shown in Formula (2) and Formula (3); ……………………Formula (2) Formula (3) - Step of displaying the left ventricular function measurement results: After obtaining the electrocardiogram, the measured left ventricular ejection fraction and the predicted probability value of heart failure of the monitored person, such data are transmitted and displayed to at least one monitor. 如申請專利範圍第1項所述應用心電圖以人工智慧信心度模型輔助診斷左心室功能不全之方法,其中該建置至少一射出分率模型資料之步驟中的左心室射出分率數值是以胸前心臟超音波檢查,依臨床需求採用動態模式或二維辛普森兩切面掃描後取得並記錄。As described in item 1 of the patent application, a method for using an electrocardiogram to assist in the diagnosis of left ventricular dysfunction using an artificial intelligence confidence model is provided, wherein the left ventricular ejection fraction value in the step of establishing at least one ejection fraction model data is obtained and recorded by chest ultrasound examination using a dynamic mode or a two-dimensional Simpson two-section scan according to clinical needs. 如申請專利範圍第1項所述應用心電圖以人工智慧信心度模型輔助診斷左心室功能不全之方法,其中該建置至少一射出分率模型資料之步驟中心電圖可以是不同導程數之心電訊號所生成,並相對應建立有各種不同導程數之射出分率模型資料。As described in Item 1 of the patent application, a method for using an electrocardiogram to assist in the diagnosis of left ventricular dysfunction using an artificial intelligence confidence model is provided, wherein the electrocardiogram in the step of establishing at least one ejection fraction model data can be generated by electrocardiogram signals of different lead numbers, and corresponding ejection fraction model data of various different lead numbers are established. 如申請專利範圍第1項所述應用心電圖以人工智慧信心度模型輔助診斷左心室功能不全之方法,其中該方法進一步包含有一模型學習之步驟,其係利用卷積神經網路以不監督方式辨識指定心電圖中的特徵值進行學習,且該模型學習模組之卷積神經網路進行學習處理時的演算法可為公知的方法,並調整網路參數,供生成新的用於診斷之射出分率模型資料。As described in item 1 of the patent application, a method for using an electrocardiogram to assist in the diagnosis of left ventricular dysfunction using an artificial intelligence confidence model, wherein the method further includes a model learning step, which utilizes a convolutional neural network to identify feature values in a specified electrocardiogram in an unsupervised manner for learning, and the algorithm used by the convolutional neural network of the model learning module during learning processing can be a publicly known method, and the network parameters are adjusted to generate new ejection fraction model data for diagnosis. 一種應用心電圖以人工智慧信心度模型輔助診斷左心室功能不全之系統,該系統至少具有一左心室功能測定裝置;所述之左心室功能測定裝置包含有一處理單元及分別連接該處理單元之至少一記憶單元及至少一儲存單元,其中該等儲存單元至少具有一模型資料模組及一測定運算模組,該模型資料模組中具有至少一射出分率模型資料,該射出分率模型資料包含有至少一筆心電圖訊號及至少一筆與該等心電圖訊號相對應之心臟超音波的左心室射出分率數值,而該測定運算模組使用如申請專利範圍第1~4項中任一項所述之應用心電圖以人工智慧信心度模型輔助診斷左心室功能不全之方法將一待測心電圖轉換成一個預測之心臟衰竭機率值;藉由該左心室功能測定裝置可連接至少一心電圖生成裝置及至少一監測顯示裝置,使得其得將由該心電生成裝置所取得之待測心電圖轉換成相對應之預測心臟衰竭機率值,並顯示於該監測顯示裝置上。A system for using electrocardiograms to assist in the diagnosis of left ventricular dysfunction using an artificial intelligence confidence model, the system comprising at least one left ventricular function measurement device; the left ventricular function measurement device comprising a processing unit and at least one memory unit and at least one storage unit respectively connected to the processing unit, wherein the storage units comprise at least one model data module and a measurement operation module, the model data module comprising at least one ejection fraction model data, the ejection fraction model data comprising at least one electrocardiogram signal and at least one corresponding to the electrocardiogram signal The left ventricular ejection fraction value of the cardiac ultrasound is measured, and the measurement operation module uses the method of applying electrocardiogram to assist in the diagnosis of left ventricular dysfunction with an artificial intelligence confidence model as described in any one of items 1 to 4 of the patent application to convert a test electrocardiogram into a predicted heart failure probability value; the left ventricular function measurement device can be connected to at least one electrocardiogram generation device and at least one monitoring and display device, so that it can convert the test electrocardiogram obtained by the electrocardiogram generation device into a corresponding predicted heart failure probability value and display it on the monitoring and display device. 如申請專利範圍第5項所述之系統,其中該左心室功能測定裝置進一步可以包含有一連接該處理單元之圖形處理單元,供提高運算速度。In the system described in claim 5, the left ventricular function measuring device may further include a graphics processing unit connected to the processing unit to increase the calculation speed. 如申請專利範圍第5項所述之系統,其中該左心室功能測定裝置進一步包含有一模型學習模組,且該模型學習模組係利用卷積神經網路以不監督方式辨識指定心電圖中的特徵值進行學習,且該模型學習模組之卷積神經網路進行學習處理時的演算法可為公知的方法,並調整網路參數,供生成新的用於診斷之射出分率模型資料。As described in item 5 of the patent application, the left ventricular function measurement device further includes a model learning module, and the model learning module uses a convolutional neural network to identify feature values in a specified electrocardiogram in an unsupervised manner for learning. The algorithm used by the convolutional neural network of the model learning module during learning processing can be a well-known method, and the network parameters are adjusted to generate new ejection fraction model data for diagnosis. 如申請專利範圍第5項所述之系統,其中該心電圖生成裝置、左心室功能測定裝置及監測顯示裝置可以是組成一穿戴式生理監測裝置。As described in item 5 of the patent application scope, the electrocardiogram generating device, the left ventricular function measuring device and the monitoring and display device can be composed of a wearable physiological monitoring device. 如申請專利範圍第5項所述之系統,其中該左心室功能測定裝置之處理單元可以連接有一傳輸單元,而心電圖生成裝置與監測顯示裝置分別具有可以相互連結傳輸之傳輸單元,供該左心室功能測定裝置可與設於遠端之心電圖生成裝置及監測顯示裝置連結傳輸資料。As described in item 5 of the patent application, the processing unit of the left ventricular function measurement device can be connected to a transmission unit, and the electrocardiogram generation device and the monitoring and display device each have a transmission unit that can be connected to each other for transmission, so that the left ventricular function measurement device can connect to the electrocardiogram generation device and the monitoring and display device located at a remote location to transmit data. 如申請專利範圍第5項所述之系統,其中該監測顯示裝置具有一顯示單元及一警報發送單元,該顯示單元可供顯示測定心肌梗塞及/或心電訊號生成之心電圖,且該警報發送單元可供通知醫療人員即時監測與介入。As described in item 5 of the patent application scope, the monitoring and display device has a display unit and an alarm sending unit, the display unit can be used to display an electrocardiogram for determining myocardial infarction and/or electrocardiographic signal generation, and the alarm sending unit can be used to notify medical personnel for real-time monitoring and intervention.
TW112125393A 2023-07-07 2023-07-07 Method and system for artificial intelligence-enabled electrocardiogram screens low left ventricular ejection fraction with degree of confidence TWI896995B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW112125393A TWI896995B (en) 2023-07-07 2023-07-07 Method and system for artificial intelligence-enabled electrocardiogram screens low left ventricular ejection fraction with degree of confidence

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW112125393A TWI896995B (en) 2023-07-07 2023-07-07 Method and system for artificial intelligence-enabled electrocardiogram screens low left ventricular ejection fraction with degree of confidence

Publications (2)

Publication Number Publication Date
TW202503777A TW202503777A (en) 2025-01-16
TWI896995B true TWI896995B (en) 2025-09-11

Family

ID=95152586

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112125393A TWI896995B (en) 2023-07-07 2023-07-07 Method and system for artificial intelligence-enabled electrocardiogram screens low left ventricular ejection fraction with degree of confidence

Country Status (1)

Country Link
TW (1) TWI896995B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111432720A (en) * 2017-10-06 2020-07-17 梅约医学教育与研究基金会 ECG-based cardiac ejection fraction screening
CN111655159A (en) * 2017-10-11 2020-09-11 字幕健康有限公司 AI Ejection Fraction Measurement
CN112885459A (en) * 2021-02-09 2021-06-01 清华珠三角研究院 System and device for predicting ventricular hypertrophy and storage medium
US11147495B2 (en) * 2013-06-04 2021-10-19 Analytics For Life Noninvasive method and system for estimating mammalian cardiac chamber size and mechanical function

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11147495B2 (en) * 2013-06-04 2021-10-19 Analytics For Life Noninvasive method and system for estimating mammalian cardiac chamber size and mechanical function
CN111432720A (en) * 2017-10-06 2020-07-17 梅约医学教育与研究基金会 ECG-based cardiac ejection fraction screening
CN111655159A (en) * 2017-10-11 2020-09-11 字幕健康有限公司 AI Ejection Fraction Measurement
CN112885459A (en) * 2021-02-09 2021-06-01 清华珠三角研究院 System and device for predicting ventricular hypertrophy and storage medium

Also Published As

Publication number Publication date
TW202503777A (en) 2025-01-16

Similar Documents

Publication Publication Date Title
Aydemir et al. Classification of decompensated heart failure from clinical and home ballistocardiography
US20100217144A1 (en) Diagnostic and predictive system and methodology using multiple parameter electrocardiography superscores
JP2020536629A (en) ECG-based ejection fraction screening
CN102869303A (en) Visualization of myocardial infarct size in diagnostic ECG
Sathi et al. An interpretable electrocardiogram-based model for predicting arrhythmia and ischemia in cardiovascular disease
TWI783561B (en) Method and system for rapidly detecting acute myocardial infarction using electrocardiogram
TW202044280A (en) Prediction model of atrial fibrillation and prediction system thereof
CN117982114A (en) Cardiac data monitoring method based on myocardial ischemia characteristic parameter extraction
TW201914626A (en) Method for early warning of acute heart attack of artificial intelligence heart capable of providing risk evaluation, reporting and pre-warning
Dezaki et al. Echo-rhythm net: Semi-supervised learning for automatic detection of atrial fibrillation in echocardiography
Khan et al. Severe analysis of cardiac disease detection using the wearable device by artificial intelligence
TWI896995B (en) Method and system for artificial intelligence-enabled electrocardiogram screens low left ventricular ejection fraction with degree of confidence
US20240277301A1 (en) System and a method for electrocardiographic prediction of computed tomography-based high coronary calcium score (cac)
Kanagamalliga Advancements in remote heart monitoring: wearable technology and AI-based approaches for cardiovascular disease detection
Dambal et al. Premature Ventricular Contraction Classification Based on Spiral Search-Manta Ray Foraging and Bi-LSTM
Gnanavel et al. GUI Base Prediction of Heart Stroke Stages by Finding the Accuracy using Machine Learning Algorithm
US20220262516A1 (en) Atrial Fibrillation Prediction Model And Prediction System Thereof
Prasad et al. Development and validation of ECG rhythm classification on a multitude of data sources using Deep Learning
Murta Jr et al. Automated grading of left ventricular segmental wall motion by an artificial neural network using color kinesis images
Patil et al. Deep Belief Neural Network Based Automatic NSTEMI CVD Prediction Using Adaptive Sliding Window Technique.
US20250182898A1 (en) Electrocardiogram evaluation using z-score based standards
KR102725740B1 (en) Neural network-based myocardial infarction diagnosis system using electrocardiogram signals
Gu AI in Cardiology and Cardiac Surgery
Pool et al. Artificial intelligence in patients with congenital heart disease: where do we stand?
Agarwal et al. Ecg heartbeat classification of myocardial infarction and arrhythmia using cnn