TWI892155B - 人工智慧裝置 - Google Patents
人工智慧裝置Info
- Publication number
- TWI892155B TWI892155B TW112122173A TW112122173A TWI892155B TW I892155 B TWI892155 B TW I892155B TW 112122173 A TW112122173 A TW 112122173A TW 112122173 A TW112122173 A TW 112122173A TW I892155 B TWI892155 B TW I892155B
- Authority
- TW
- Taiwan
- Prior art keywords
- secure
- processor
- artificial intelligence
- security
- verifier
- Prior art date
Links
Landscapes
- Stored Programmes (AREA)
- Storage Device Security (AREA)
Abstract
本發明的各方面提供了一種可以在IO變化的情況下執行人工智慧(AI)模型的裝置。例如,該裝置可以包括第一安全處理器、嵌入在第一安全處理器中並與AI模型相關聯的安全應用程式、被配置為儲存與AI模型相關聯的AI可執行二進位檔案的安全記憶體、被配置為執行AI可執行二進位檔案的第二安全處理器、被配置為觸發IO變化並觸發第二安全處理器執行AI可執行二進位檔案的子系統、儲存在安全記憶體中的IO元資料、被配置為藉由確定IO元資料來驗證IO變化的IO驗證器、以及被配置為當IO驗證器確定IO變化與IO元資料相匹配時將IO變化修補到運行於第二安全處理器上的AI可執行二進位檔案的IO預發模組。
Description
本發明關於神經網路(neural network,簡稱 NN),並且更具體地,關於始終線上(always-on)的人工智慧(artificial intelligence,簡稱AI)安全。
本文所提供的背景技術描述出於概括地呈現本發明上下文的目的。當前提及的發明人的工作(到本背景技術部分中描述該工作的程度)以及描述的各個方面(其在提交時不以其他方式作為現有技術來描述)既不明確地、也不隱含地被承認為針對本發明的現有技術。
將機器學習(Machine learning,簡稱ML)功能整合到硬體路徑是趨勢,並且需要靈活和可擴展的設計來降低深度神經網路(deep neural network,簡稱DNN)加速器實現的設計複雜性。
本發明的各方面提供了一種可以在輸入/輸出(Input/Output,簡稱IO)變化的情況下執行人工智慧(AI)模型的裝置。例如,該裝置可以包括第一安全處理器和嵌入在第一安全處理器中的安全應用程式。安全應用程式可以與人工智慧(AI)模型相關聯。該裝置還可以包括耦接到第一安全處理器的安全記憶體。安全記憶體可以被配置為儲存與AI模型相關聯的AI可執行二進位檔案(executable binary)。該裝置還可以包括耦接到安全記憶體的第二安全處理器。第二安全處理器可以被配置為執行儲存在安全記憶體中的AI可執行二進位檔案。該裝置還可以包括耦接在第一安全處理器與第二安全處理器之間的子系統。子系統可以被配置為觸發IO變化並觸發第二安全處理器以執行儲存在安全記憶體中的AI可執行二進位檔案。該裝置還可以包括儲存在安全記憶體中的IO元資料(meta data)。該裝置還可以包括耦接到子系統和安全記憶體的IO驗證器。IO驗證器可以被配置為藉由確定IO元資料來驗證IO變化。該裝置還可以包括耦接到IO驗證器的IO預發模組。IO預發模組可以被配置為:當IO驗證器確定IO變化與IO元資料相匹配時,將IO變化修補(patch)到運行於第二安全處理器上的AI可執行二進位檔案。在一個實施方式中,IO驗證器可以被嵌入到第二安全處理器中。在另一實施方式中,IO預發模組可以被嵌入到第二安全處理器中。
在一個實施方式中,IO元資料可以包括IO位址範圍,IO變化可以包括IO位址,IO驗證器可以驗證IO位址是否在IO位址範圍內,並且當IO驗證器確定IO位址在IO位址範圍內時,IO預發模組可以將IO位址修補到運行於第二安全處理器上的AI可執行二進位檔案。在另一實施方式中,IO元資料可以包括複數個不同的解析度(resolution),IO變化可以包括解析度變化,IO驗證器可以驗證解析度變化是否與IO元資料中指定的不同解析度中的任何一個解析度相匹配,並且當IO驗證器確定解析度變化與不同解析度中的一個解析度匹配時,IO預發模組可以將解析度變化修補到運行於第二安全處理器上的AI可執行二進位檔案。
在一個實施方式中,該裝置還可以包括嵌入在第一安全處理器中的安全作業系統(operating system,簡稱OS),該安全OS被配置為提供可信執行環境(trusted execution environment,簡稱TEE),在該可信執行環境中,安全應用程式受到保護。在另一實施方式中,安全記憶體和第二安全處理器可以由第一防火牆保護。在一些實施方式中,子系統可以由不同於第一防火牆的第二防火牆保護。在各種實施方式中,第一防火牆可以提供比第二防火牆更高的安全級別。
在一個實施方式中,該裝置還可以包括耦接到安全記憶體的圖像訊號處理器(image signal processor,簡稱ISP)。ISP可以被配置為處理圖像並將所處理的圖像儲存到安全記憶體中。在另一實施方式中,該裝置還可以包括面部生物特徵模式(facial biometric pattern),該面部生物特徵模式在TEE內是安全的。在一些實施方式中,第二安全處理器可以執行AI可執行二進位檔案,以確定所處理的圖像中的任何一個圖像是否與面部生物特徵模式相匹配。
在一個實施方式中,第一安全處理器可以包括安全中央處理單元(central processing unit,簡稱CPU)。在另一實施方式中,第二安全處理器可以包括安全深度學習加速器(deep learning accelerator,簡稱DLA)。在一些實施方式中,DLA可以包括加速處理單元(accelerated processing unit,簡稱APU)。
注意,本發明內容部分並沒有指定本發明或要求保護的發明的每個實施方式和/或遞增的新穎方面。相反,本發明內容僅提供了與常規技術相比的不同實施方式和對應新穎點的初步討論。對於本發明和實施方式的附加細節和/或可能的視角,請讀者參考本發明的具體實施方式部分和對應的圖式,如下面進一步討論的。
提出環境智慧(AmI)(例如,環境感測),旨在增強環境和人彼此互動的方式。具體來說,AmI表示將不要求明確的輸入和輸出設備的智慧計算;相反,可以將各種感測器(例如,加速度計、全球定位系統(global positioning system,簡稱GPS)、麥克風、攝影機等)和處理器嵌入到日常電子設備(例如,行動電話)中,以使用人工智慧(AI)技術收集和處理上下文資訊,例如以便解釋環境狀態和使用者需求。
例如,谷歌(Google)推出的“個人安全”應用程式具有如下功能,亦即,可以感測個體是否已發生車禍,如果已發生車禍,則可以代表該個體撥打緊急電話。作為另一示例,安裝在攝影機中的AI和機器學習(ML)演算法(或模型)能夠例如藉由確定攝影機捕獲的圖像是否與所有者面部的面部生物特徵模式相匹配來識別其所有者的面部。
為了使車禍感測功能真正發揮作用,行動電話需要能夠隨時檢測車禍。例如,可以藉由連續輪詢加速度計和麥克風、然後處理由此收集的資料(例如,藉由執行始終線上的人工智慧(AI))來確定是否發生車禍。然而,持續始終線上的感測任務消耗了行動電話大量寶貴的電力資源。
感測器集線器(或上下文集線器)是一種低功率子系統(例如,處理器),其可以被設計成處理和解釋從感測器收集的資料,並喚醒主應用處理器(application processor,簡稱AP)採取行動。例如,在處理和解釋所收集到的資料並確定發生了車禍之後,感測器集線器可以喚醒AP,並且行動電話可以呼叫緊急服務。
圖1是啟用AmI的裝置100(例如,行動電話)的功能方塊圖。裝置100可以包括AP 110、耦接到AP 110的低功率子系統120(例如,感測器集線器)、耦接到感測器集線器120的訊號處理器130(例如,低功率圖像訊號處理器(low-power image signal processor,簡稱ISP))、耦接到感測器集線器120的處理器140(例如,AI加速器(諸如深度學習加速器(deep learning accelerator,簡稱DLA)、例如加速處理單元(accelerated processing unit,簡稱APU))、以及耦接到感測器集線器120、ISP 130和APU 140的記憶體150。
AP 110可以啟用環境感測功能,例如,始終線上的視覺(always-on vision,簡稱AOV)客戶端111,並將AI模型122載入到感測器集線器120,以將從嵌入式感測器(例如,攝影機(未圖示))收集的大量處理資料卸載到感測器集線器120。在感測器集線器120中,攝影機驅動器123可以基於AOV客戶端111來驅動ISP 130,以處理由攝影機捕獲的圖像(例如,使用者面部),並將經處理的圖像發送到記憶體150的攝影機輸入151。軟體開發套件(software development kit,簡稱SDK)121(例如,AI推理SDK)可以驅動APU 140對經處理的圖像執行AI模型122。例如,APU 140可以利用與AI模型122相對應的AI可執行二進位檔案來對從攝影機輸入151發送的經處理的圖像執行AI模型122,並生成輸出152,例如,輸出152可以是相關聯於所捕獲的客戶面部是否與所有者面部的面部生物特徵模式相匹配的分類結果。
在裝置100中,感測器集線器120可以提供具有有限靈活性的安全計算。例如,當行動電話正在運行時,感測器集線器120可以在安全引導階段保護固定的功能和安全。環境感測持續感測資料,這些資料包括使用者隱私,例如語音、視覺、周圍、位置等。如果這種資料以及載入到感測器集線器122中的AI模型122沒有受到良好的保護,它們很可能會被攻擊、竊取或篡改。此外,APU 140在其上執行AI模型122的經處理的圖像可能不是從攝影機捕獲的,而是由攻擊者從外部發送的。
防火牆是一種網路安全裝置,其可以監測所有傳入和傳出流量,並根據定義的一組安全規則來接受、拒絕或丟棄所述流量。例如,防火牆可以藉由如下方式來控制網路訪問,亦即,監測任何開放系統互相連線(open systems interconnection ,簡稱OSI)層、直到應用層上的傳入和傳出資料封包,並允許它們基於來源和目的地IP位址、協定、埠以及狀態表中資料封包的歷史記錄來通過或停止,以保護資料封包免受攻擊、竊取或篡改。防火牆可以是基於硬體的,也可以是基於軟體的。
圖2是啟用AmI的裝置200(例如,行動電話)的功能方塊圖。裝置200與裝置100的不同之處在於,在裝置200中,感測器集線器120和記憶體150受到良好的保護(例如,經由防火牆290)(以黑色背景示出)。因此,感測到的資料和AI模型122是安全的,並且攻擊者不能將圖像發送到記憶體150中。然而,AI模型122需要不時地被恢復或更新(例如,使用新AI模型112),以根據裝置訓練或網際網路來持續增強性能或安全。AP 110不能恢復或更新儲存在感測器集線器120中的AI模型122,因為感測器集線器120受到防火牆290的保護,並且AP 110沒有訪問感測器集線器120的許可權。
圖3是啟用AmI的裝置300(例如,行動電話)的功能方塊圖。裝置300可以包括安全作業系統(operating system,簡稱OS)360。安全OS 360可以為安卓(Android)提供可信執行環境(trusted execution environment,簡稱TEE)393(以黑色背景示出),其中代碼和資料(例如,可信應用程式(trusted application,簡稱TA))可以在機密性和完整性方面得到保護。安全OS 360可以在與Android運行的處理器(例如,AP 110)相同的處理器上運行,但是藉由硬體和軟體與在富執行環境(rich execution environment,簡稱REE)內運行富OS的系統的其餘部分隔離。
AI模型322可以載入在由安全OS 360提供的TEE 393內,並且可以準備AI模型322的AI可執行二進位檔案381和控制流(包括AI會話(session)327,例如AI模型322的識別字(identifier,簡稱ID),以及AI執行器328),統稱為AI準備361。AI可執行二進位檔案381可以被發送到安全記憶體380,並且AI會話327和AI執行器328可以被發送至低功率子系統320,例如感測器集線器。諸如AI加速器(諸如DLA,例如APU)之類的處理器340可以藉由確定AI會話327和AI執行器328來執行AI可執行二進位檔案381。在一個實施方式中,記憶體380和APU 340也是安全的(以黑色背景示出)(例如,經由防火牆391),以保護AI可執行二進位檔案381不被攻擊、竊取或篡改。在圖3所示的示例實施方式中,感測器集線器320不受保護,因為它僅提供用於AI模型322的控制流,而不涉及任何感測資料。在一些實施方式中,感測器集線器320也可以受到保護(例如,經由防火牆)。例如,該防火牆可以提供比防火牆391更低的安全級別,因為AI會話327和AI執行器328不如AI可執行二進位檔案381重要。
在一個實施方式中,資料(例如,面部生物特徵模式363)在TEE 393內也是安全的,並且被下載和儲存到安全記憶體380中。例如,APU 340可以利用AI可執行二進位檔案381對從ISP 130(如圖1所示)發送的經處理的圖像(例如,使用者面部)執行AI模型322,並生成與所捕獲的客戶面部是否與所有者面部(亦即,面部生物特徵模式363)相匹配相關聯的輸出,例如,分類結果。
由於硬體的各種實現(例如,裝置300的安全記憶體380和AI加速器340),輸入/輸出(input/output,簡稱IO)資料以及與其相關的資訊(例如,IO資料的位址)可能需要修改,以便在被部署到AI加速器340的AI模型322上運行。例如,在為了提高性能而捕獲複數個圖像幀的場景中,安全攝影機可以包括環形緩衝器(或迴圈緩衝器),該環形緩衝器被配置為使所捕獲的圖像幀序列化。每當圖像幀在環形緩衝器中被消耗時,指向環形緩衝器中的圖像幀的開始和結束的指標會被更新,並且輸入到AI模型322的位址會變化。作為另一示例,在AI模型322被用於識別模式(patterns)並且包括複數個連接的子圖(subgraphs)(例如,特徵提取和檢測子圖以及識別子圖)的場景中,如果APU 340具有有限的能力,則輸入到特徵提取和檢測子圖並由其檢測的模式可以由識別子圖基於它們的大小(size)利用不同的(例如,高或低)解析度來識別。
然而,當IO資料和/或與其相關的資訊變化時,因為AI可執行二進位檔案381在安全記憶體380和AI加速器340中受到保護,所以AI執行器328不能修改AI可執行二進位檔案381。例如,如圖4的裝置400所示,嵌入在由安全OS 360提供的TEE 393內的IO預發(pre-fire)模組420不能將IO變化(例如,IO 410的位址)修補到被載入到AI加速器340的AI可執行二進位檔案381,並且AI執行器328不能修改AI可執行二進位檔案381。作為另一示例,如圖5的裝置500所示,其包括複數個隔離的虛擬機器(virtual machine,簡稱VM),第一VM(VM0)501具有比Android系統502和第二VM(VM1)503更高的特權,Android系統502和第二VM(VM1)503兩者都連接到AI加速器340,嵌入在VM0 501內的IO預發模組520不能將IO變化(例如,IO 510的位址)修補到由VM0 501準備並載入到AI加速器340的AI可執行二進位檔案381,並且Android系統502的AI執行器528和VM1 503的AI執行器538不能修改AI可執行二進位檔案381。
圖6是根據本發明的一些實施方式的啟用AmI的裝置600(例如,行動電話)的功能方塊圖。裝置600可以在IO變化的情況下執行AI模型。與裝置300相比,裝置600還可以包括IO元資料640、IO驗證器/檢查器630和IO預發模組620。在一個實施方式中,IO元資料640可以由安全OS 360提供,同時準備AI模型322的AI可執行二進位檔案381和控制流(包括AI會話327和AI執行器328),統稱為AI準備361,並將其發送到安全記憶體380並嵌入安全記憶體380中。在圖6的示例實施方式中,由於安全記憶體380受到保護(例如,經由防火牆391),因此還可以保護IO元資料640不被攻擊、竊取或篡改。在另一實施方式中,IO驗證器/檢查器630和IO預發模組620可以嵌入AI加速器340中,並且也可以受到保護(例如,經由防火牆391)。在一個實施方式中,安全OS 360或VM(例如,VM0 501)可以嵌入TEE 393內。在另一實施方式中,子系統320可以是感測器集線器或VM(例如,VM1 503)。在圖6的示例實施方式中,子系統320不受保護。在一些實施方式中,子系統320也可以受到保護(例如,經由防火牆)。例如,防火牆可以提供比防火牆391更低的安全級別,因為AI會話327和AI執行器328不如AI可執行二進位檔案381重要。
在一個實施方式中,IO元資料640可以包括IO位址修補資訊和/或有效/可訪問的IO(位址)範圍。例如,IO元資料640可以包括指向安全攝影機的環形緩衝器的開始和結束的指標(或位址)。在另一實施方式中,IO驗證器/檢查器630可以驗證/檢查IO變化(例如,IO位址610)是否在IO元資料640中指定的IO位址範圍內,並且如果IO位址610在IO位址範圍內,則IO預發模組620可以將IO位址610修補到AI可執行二進位檔案381。例如,由於在示例實施方式中子系統320沒有受到良好的保護,因此IO位址610可能是由惡意實體(例如駭客)提供的。在這種場景下,IO驗證器/檢查器630可以驗證/檢查IO位址610,並確定IO位址610不在IO位址範圍內,因此IO預發模組620不會將未被驗證(unverified)的IO位址610修補到被分配到並運行於AI加速器340上的AI可執行二進位檔案381。作為另一示例,當IO驗證器/檢查器630驗證/檢查IO位址610,並確定IO位址610在IO位址範圍內時,IO預發模組620可以將IO位址610修補到運行於AI加速器340上的AI可執行二進位檔案381。因此,APU 340可以將動態形狀資訊應用於AI可執行二進位檔案381並執行推理。
圖7是根據本發明的一些實施方式的啟用AmI的裝置700(例如,行動電話)的功能方塊圖。裝置700可以在IO變化的情況下執行AI模型。與裝置300相比,裝置700還可以包括IO元資料740、(形狀)IO驗證器730和(形狀)IO預發模組720。在一個實施方式中,可以提供IO元資料740,同時準備AI可執行二進位檔案381,並將IO元資料740發送並嵌入到安全記憶體380中。由於安全記憶體380受到保護(例如,經由防火牆391),IO元資料740也可以受到保護而不被攻擊、竊取或篡改。在另一實施方式中,(形狀)IO驗證器730和(形狀)I/O預發模組720可以嵌入AI加速器340中,並且也可以受到保護(例如,經由防火牆391)。
在一個實施方式中,IO元資料740可以包括許多不同的解析度,例如,低解析度和高解析度。在另一實施方式中,(形狀)IO驗證器730可以驗證觸發解析度變化的控制件710是否與IO元資料740中指定的不同解析度中的任何一個解析度相匹配,並且如果解析度變化與IO元資料740中指定的不同解析度中的任何一個解析度相匹配,則(形狀)IO預發模組720可以將解析度變化修補到AI可執行二進位檔案381。例如,由於在示例實施方式中子系統320沒有受到良好的保護,因此解析度變化可能是由惡意實體(例如,駭客)提供的。在這樣的場景中,(形狀)IO驗證器730可以驗證解析度變化,並確定解析度變化與不同解析度中的任何一個解析度不匹配,因此,(形狀)I/O預發模組720不會將未經驗證的解析度變化修補到被分配到並運行於AI加速器340上的AI可執行二進位檔案381。作為另一示例,當(形狀)IO驗證器730驗證解析度變化,並確定解析度變化與IO元資料740中指定的不同解析度中的一個解析度相匹配時,(形狀)I/O預發模組720可以將解析度變化修補到運行於AI加速器340上的AI可執行二進位檔案381。因此,APU 340可以將動態形狀資訊應用於AI可執行二進位檔案381並執行推理。
雖然已經結合作為示例提出的本發明的具體實施方式描述了本發明的各方面,但可以對這些示例進行替換、修改和變化。因此,本文所闡述的實施方式旨在例示而非限制。在不脫離下面所闡述的申請專利範圍的情況下,可以進行一些變化。
110:主應用處理器(AP)
111:始終線上的視覺(AOV)客戶端
112:新AI模型
120:感測器集線器
121:軟體開發套件(SDK)
123:攝影機驅動器
130:圖像訊號處理器(ISP)
141:工作緩衝區
150:記憶體
151:攝影機輸入
152:輸出
320:低功率子系統(感測器集線器)
328:AI執行器
360:安全OS
361:AI準備
363:面部生物特徵模式
380:安全記憶體
381:二進位檔案
393:可信執行環境(TEE)
501:第一虛擬機器(VM0)
502:Android系統
503:第二虛擬機器(VM1)
610:IO位址
630:IO驗證器/檢查器
710:控制項
720:(形狀)I/O預發模組
730:(形狀)IO驗證器
122,322:AI模型
140,340:加速處理單元(APU)
290,391:防火牆
410,510:IO
528,538:AI執行器
640,740:IO元資料
327,527,537:AI會話
420,520,620:IO預發模組
100,200,300,400,500,600,700:裝置
將參考以下圖式詳細描述作為示例而提出的本發明的各種實施方式,其中相同的數字指代相同的元件,並且其中:
圖1是第一啟用環境智慧(ambient intelligence,簡稱AmI)的裝置的功能方塊圖;
圖2是第二啟用AmI的裝置的功能方塊圖;
圖3是第三啟用AmI的裝置的功能方塊圖;
圖4是第四啟用AmI的裝置的功能方塊圖;
圖5是第五啟用AmI的裝置的功能方塊圖;
圖6是根據本發明的一些實施方式的第一啟用AmI的裝置的功能方塊圖;以及
圖7是根據本發明的一些實施方式的第二啟用AmI的裝置的功能方塊圖。
100:裝置
110:主應用處理器(AP)
111:始終線上的視覺(AOV)客戶端
112:新AI模型
120:感測器集線器
121:軟體開發套件(SDK)
122:AI模型
123:攝影機驅動器
130:圖像訊號處理器(ISP)
140:加速處理單元(APU)
141:工作緩衝區
150:記憶體
151:攝影機輸入
152:輸出
Claims (13)
- 一種人工智慧裝置,所述人工智慧裝置包括: 第一安全處理器; 安全應用程式,所述安全應用程式嵌入在所述第一安全處理器中,所述安全應用程式與人工智慧(artificial intelligence ,簡稱AI)模型相關聯; 安全記憶體,所述安全記憶體耦接到所述第一安全處理器,所述安全記憶體被配置為儲存與所述AI模型相關聯的AI可執行二進位檔案; 第二安全處理器,所述第二安全處理器耦接到所述安全記憶體,所述第二安全處理器被配置為執行儲存在所述安全記憶體中的所述AI可執行二進位檔案; 子系統,所述子系統耦接在所述第一安全處理器與所述第二安全處理器之間,所述子系統被配置為觸發輸入/輸出(Input/Output,簡稱IO)變化並觸發所述第二安全處理器以執行儲存在所述安全記憶體中的所述AI可執行二進位檔案; IO元資料,所述IO元資料儲存在所述安全記憶體中; IO驗證器,所述IO驗證器耦接到所述子系統和所述安全記憶體,所述IO驗證器被配置為藉由所述IO元資料來驗證所述IO變化;以及 IO預發模組,所述IO預發模組耦接到所述IO驗證器,所述IO預發模組被配置為,當所述IO驗證器確定所述IO變化與所述IO元資料相匹配時,將所述IO變化修補到運行於所述第二安全處理器上的所述AI可執行二進位檔案。
- 如請求項1之人工智慧裝置,其中,所述IO元資料包括IO位址範圍,所述IO變化包括IO位址,所述IO驗證器驗證所述IO位址是否在所述IO位址範圍內,並且當所述IO驗證器確定所述IO位址在所述IO位址範圍內時,所述IO預發模組將所述IO位址修補到運行於所述第二安全處理器上的所述AI可執行二進位檔案。
- 如請求項1之人工智慧裝置,其中,所述IO元資料包括複數個不同的解析度,所述IO變化包括解析度變化,所述IO驗證器驗證所述解析度變化是否與所述IO元資料中指定的不同解析度中的任何一個解析度相匹配,並且當所述IO驗證器確定所述解析度變化與所述不同解析度中的一個解析度相匹配時,所述IO預發模組將所述解析度變化修補到運行於所述第二安全處理器上的所述AI可執行二進位檔案。
- 如請求項1之人工智慧裝置,其中,所述IO驗證器嵌入在所述第二安全處理器中。
- 如請求項1之人工智慧裝置,其中,所述IO預發模組嵌入在所述第二安全處理器中。
- 如請求項1之人工智慧裝置,所述人工智慧裝置還包括嵌入在所述第一安全處理器中的安全作業系統(operating system,簡稱OS),所述安全OS被配置為提供可信執行環境(trusted execution environment,簡稱TEE),在所述可信執行環境內,所述安全應用程式受到保護。
- 如請求項6之人工智慧裝置,其中,所述安全記憶體和所述第二安全處理器由第一防火牆保護。
- 如請求項7之人工智慧裝置,其中,所述子系統由不同於所述第一防火牆的第二防火牆保護。
- 如請求項8之人工智慧裝置,其中,所述第一防火牆提供比所述第二防火牆更高的安全級別。
- 如請求項6之人工智慧裝置,所述人工智慧裝置還包括: 圖像訊號處理器(image signal processor,簡稱ISP),所述ISP耦接到所述安全記憶體,所述ISP被配置為處理圖像並將所處理的圖像儲存到所述安全記憶體中,以及 面部生物特徵模式,所述面部生物特徵模式在TEE內是安全的, 其中,所述第二安全處理器執行所述AI可執行二進位檔案,以確定所處理的圖像中的任何一個圖像是否與所述面部生物特徵模式相匹配。
- 如請求項1之人工智慧裝置,其中,所述第一安全處理器包括安全中央處理單元(central processing unit,簡稱CPU)。
- 如請求項1之人工智慧裝置,其中,所述第二安全處理器包括安全深度學習加速器(deep learning accelerator,簡稱DLA)。
- 如請求項12之人工智慧裝置,其中,所述DLA包括加速處理單元(accelerated processing unit,簡稱APU)。
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US202263352706P | 2022-06-16 | 2022-06-16 | |
| US63/352,706 | 2022-06-16 | ||
| US18/332,346 | 2023-06-09 | ||
| US18/332,346 US20240411862A1 (en) | 2023-06-09 | 2023-06-09 | Always-on artificial intelligence (ai) security harware assisted input/output shape changing |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TW202403564A TW202403564A (zh) | 2024-01-16 |
| TWI892155B true TWI892155B (zh) | 2025-08-01 |
Family
ID=90457457
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW112122173A TWI892155B (zh) | 2022-06-16 | 2023-06-14 | 人工智慧裝置 |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI892155B (zh) |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW201826162A (zh) * | 2016-12-16 | 2018-07-16 | 美商波音公司 | 用於藉由位元混合器來產生保密器回合金鑰的方法和系統 |
| US10540509B2 (en) * | 2017-06-08 | 2020-01-21 | Cisco Technology, Inc. | File-type whitelisting |
| US10762198B1 (en) * | 2019-09-25 | 2020-09-01 | Richard Dea | Artificial intelligence system and method for instantly identifying and blocking unauthorized cyber intervention into computer application object code |
| US20210232681A1 (en) * | 2020-01-27 | 2021-07-29 | Red Hat, Inc. | Hypervisor level signature checks for encrypted trusted execution environments |
-
2023
- 2023-06-14 TW TW112122173A patent/TWI892155B/zh active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW201826162A (zh) * | 2016-12-16 | 2018-07-16 | 美商波音公司 | 用於藉由位元混合器來產生保密器回合金鑰的方法和系統 |
| US10540509B2 (en) * | 2017-06-08 | 2020-01-21 | Cisco Technology, Inc. | File-type whitelisting |
| US10762198B1 (en) * | 2019-09-25 | 2020-09-01 | Richard Dea | Artificial intelligence system and method for instantly identifying and blocking unauthorized cyber intervention into computer application object code |
| US20210232681A1 (en) * | 2020-01-27 | 2021-07-29 | Red Hat, Inc. | Hypervisor level signature checks for encrypted trusted execution environments |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202403564A (zh) | 2024-01-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP7338044B2 (ja) | 顔画像送信方法、値転送方法、装置および電子機器 | |
| AU2019222729B2 (en) | Asset management method and apparatus, and electronic device | |
| US7546471B2 (en) | Method and system for virus detection using pattern matching techniques | |
| CN107111715B (zh) | 将可信执行环境用于代码和数据的安全性 | |
| Alotaibi | Identifying malicious software using deep residual long-short term memory | |
| WO2019161019A1 (en) | Asset management method and apparatus, and electronic device | |
| US12182297B2 (en) | Data protection for computing device | |
| TW201640393A (zh) | 顯示人機界面的方法、裝置及系統 | |
| KR101558054B1 (ko) | 안티 멀웨어 시스템 및 안티 멀웨어 시스템에서의 패킷 처리 방법 | |
| US20230259636A1 (en) | Security assessment apparatus and method for processor | |
| TWI892155B (zh) | 人工智慧裝置 | |
| CN115203713A (zh) | 终端设备的入网合规性检测方法、装置、设备及介质 | |
| US20220311792A1 (en) | Forensics Analysis for Malicious Insider Attack Attribution based on Activity Monitoring and Behavioral Biometrics Profiling | |
| US20240411862A1 (en) | Always-on artificial intelligence (ai) security harware assisted input/output shape changing | |
| CN116415247A (zh) | 一种容器安全校验的方法及装置 | |
| US20230328031A1 (en) | Always-on artificial intelligence (ai) security | |
| EP3839783B1 (en) | Electronic device for providing service by using secure element, and operating method thereof | |
| Gu et al. | Outlier: Enabling effective measurement of hypervisor code integrity with group detection | |
| US20250061188A1 (en) | Computer-implemented method for improving data security in a computing device | |
| Lin et al. | Gibraltar: Exposing Hardware Devices to Web Pages Using {AJAX} | |
| Yadav et al. | WhiteLie: A Robust System for Spoofing User Data in Android Platforms | |
| Geetha et al. | Malware Detection In Smartphone As An Information Security | |
| Liu et al. | A Hybrid Iris Recognition System Model Based on Presentation Attack Detection and Traffic Monitoring Module on AIoT System | |
| CN117560455A (zh) | 图像特征处理方法、装置、设备及存储介质 | |
| CN116455665A (zh) | 一种网络流量的检测方法、系统及电子设备 |