TWI890001B - 用於判定對受限系統的基於網路的存取的方法、電腦程式產品及電腦伺服器 - Google Patents
用於判定對受限系統的基於網路的存取的方法、電腦程式產品及電腦伺服器Info
- Publication number
- TWI890001B TWI890001B TW111130167A TW111130167A TWI890001B TW I890001 B TWI890001 B TW I890001B TW 111130167 A TW111130167 A TW 111130167A TW 111130167 A TW111130167 A TW 111130167A TW I890001 B TWI890001 B TW I890001B
- Authority
- TW
- Taiwan
- Prior art keywords
- entities
- name
- access
- periodically updated
- updated list
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/10—Network architectures or network communication protocols for network security for controlling access to devices or network resources
- H04L63/101—Access control lists [ACL]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F40/00—Handling natural language data
- G06F40/20—Natural language analysis
- G06F40/205—Parsing
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F40/00—Handling natural language data
- G06F40/20—Natural language analysis
- G06F40/279—Recognition of textual entities
- G06F40/289—Phrasal analysis, e.g. finite state techniques or chunking
- G06F40/295—Named entity recognition
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/10—Network architectures or network communication protocols for network security for controlling access to devices or network resources
- H04L63/102—Entity profiles
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computing Systems (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computational Linguistics (AREA)
- General Health & Medical Sciences (AREA)
- Computer Security & Cryptography (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Molecular Biology (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Computer And Data Communications (AREA)
- Multi Processors (AREA)
- Storage Device Security (AREA)
Abstract
一種方法及系統判定對受限系統的基於網路的存取。該方法包括接收對尋求對該等受限系統中之一者的存取的一方的一存取權限狀態的一請求。存取週期性更新的實體清單之一資料庫。自該請求提取該方之一名稱。做出判定該名稱是否與該等實體中之一者不匹配。若該名稱與該等實體中之一者不匹配,則將該名稱分解成多個部分。做出判定該名稱之該等部分中之任一者是否與該等實體中之一者匹配。若該名稱之該等部分中之任一者與該等實體中之一者匹配,則將一拒絕存取狀態自該電腦伺服器轉發至一外部運算裝置。
Description
本揭示內容一般而言係關於網路系統,且更特定而言,係關於用於限制使用者對系統的存取之自然語言處理。
被拒絕方清單(DPL)係由各種U.S.政府及/或外國政府及機構識別及發佈的公司、組織及個體的彙編清單,該公司、組織及個體的業務可在某種程度上經禁止。在進行任何業務活動之前,通常針對全球被拒絕方清單對所有客戶及供應商/代理商進行篩選。
所有全球軟體產品/服務通常檢查此清單中包括的任何人,以查看該方在嘗試使用產品或服務時是否經阻止。被拒絕方清單經常更新,因此定期審查在不同服務上註冊的使用者。
目前,在DPL中查看使用者清單的過程係一項繁重任務。行業標準的「瞭解你的客戶」產品提供自訂系統。檢查的清單通常來自單一來源,因此出現在一個清單上之實體不一定出現在多個或所有清單上。當前的產品亦缺乏強大的方法來處理不在拒絕清單/允許清單中的新可疑實體。一些方可藉由在清單中尚未標記的變化中稍微修改其名字來逃避偵測。
根據本揭示內容之實施例,揭示一種用於判定對受限系統的基於網路的存取的電腦實施方法。該方法包括接收對尋求對該等受限系統中之一者的存取的一方的一存取權限狀態的一請求。存取電腦伺服器中之資料庫。該資料庫包括週期性更新的實體清單。自該請求提取該方之一名稱。做出判定名稱是否與週期性更新的實體清單中之實體中之一者不匹配。回應於名稱與實體中之一者不匹配,將名稱分解成多個部分。做出判定名稱之部分中之任一者是否與週期性更新的實體清單中之實體中之一或多者匹配。回應於名稱之部分中之任一者與週期性更新的實體清單中之實體中之一者匹配,將拒絕存取狀態自電腦伺服器轉發至外部運算裝置。
根據一個實施例,該方法進一步包括回應於部分中之任一者與週期性更新的實體清單中之實體中之一者不匹配,將部件轉發至神經網路模型。神經網路模型預測接收到的名稱或其部分中之任一者是否可為週期性更新的實體清單中之實體中之一者。操作神經網路模型的引擎推薦將所提取的名稱標記為週期性更新的實體清單中之實體中之一者。
使用神經網路的特徵提供優於僅使用例如原始或模糊查詢的先前技術方法的優勢。原始或模糊查詢的結果對於提交的名稱是否係拒絕清單上之實體中之一者可能不可靠,此係因為原始或模糊查詢可需要精確匹配。神經網路經訓練以識別可不精確匹配但可包含拒絕清單上之其他實體名稱之特性的名稱。因此,來自神經網路之結果改良識別由經適當組態的運算裝置限制存取某些系統的潛在實體的速率。
根據本揭示內容之實施例,提供一種用於判定對受限系統的基於網路的存取的電腦程式產品。電腦程式產品包括一或多個電腦可讀
儲存媒體,及共同儲存在一或多個電腦可讀儲存媒體上之程式指令。程式指令包括接收對尋求對受限系統中之一者的存取的一方的存取權限狀態的請求。存取電腦伺服器中之資料庫。該資料庫包括週期性更新的實體清單。自該請求提取該方之一名稱。做出判定名稱是否與週期性更新的實體清單中之實體中之一者不匹配。回應於名稱與實體中之一者不匹配,將名稱分解成多個部分。做出判定名稱之部分中之任一者是否與週期性更新的實體清單中之實體中之一或多者匹配。回應於名稱之部分中之任一者與週期性更新的實體清單中之實體中之一者匹配,將拒絕存取狀態自電腦伺服器轉發至外部運算裝置。
根據一個實施例,資料庫包括標記有異常的一自訂實體集合,該等異常指示對受限系統中之一或多者的允許存取狀態。自訂實體集合在尋求對一些系統的存取的拒絕或權限各方方面提供增加靈活性。狀況可為實體被限制存取一個系統但可具有存取不同系統的異常。另一方面,當前的DPL在實體經標記為針對一個系統經阻止的情況下自受限系統完全拒絕實體。
根據本揭示內容之實施例,揭示一種電腦伺服器。電腦伺服器包括:網路連接;一或多個電腦可讀儲存媒體;處理器,其耦合至網路連接並耦合至一或多個電腦可讀儲存媒體;及電腦程式產品,其包括共同儲存在一或多個電腦可讀儲存媒體上之程式指令。程式指令包括接收對尋求對受限系統中之一者的存取的一方的存取權限狀態的請求。存取電腦伺服器中之資料庫。該資料庫包括週期性更新的實體清單。自該請求提取該方之一名稱。做出判定名稱是否與週期性更新的實體清單中之實體中之一者不匹配。回應於名稱與實體中之一者不匹配,將名稱分解成多個部
分。做出判定名稱之部分中之任一者是否與週期性更新的實體清單中之實體中之一或多者匹配。回應於名稱之部分中之任一者與週期性更新的實體清單中之實體中之一者匹配,將拒絕存取狀態自電腦伺服器轉發至外部運算裝置。
根據一個實施例,程式指令進一步包含從複數個不同來源接收實體之更新的存取權限狀態。當前的拒絕清單通常為單個系統設置,且缺乏與其他拒絕清單的交叉引用。如此,對於類似受限系統,一個清單上的實體的存在不一定傳播至另一清單。本主題技術之實施例聚合來自各種來源的清單以識別並自動改良跨多個受限系統之拒絕清單的實體的識別。
一般將瞭解,上文所描述之實施例提供優於習用拒絕清單系統及程序的優點。將名稱分解成似乎准許存取的部分藉由識別可在受限存取清單上但以某一方式混淆其名稱的實體來提供經改良安全性。名稱的分解及名稱子部分的後續分析允許主題技術識別經阻止存取的名稱的變體。因此,該方法成功地識別更多被拒絕對受限系統存取的實體。
本文中所描述之技術可以多種方式實施。下文參考以下附圖提供實例實施方案。
100:架構
102(1):運算裝置
102(N)運算裝置
103(1):符號序列資料
103(N):符號序列資料/請求
106:網路
110:人工智慧文本分類引擎
112:權限資料來源
113:資料封包
116:權限篩選器伺服器
120:雲端
200:系統
205:資料庫
210:被拒絕方清單(DPL)集合
215:自訂集合
220:報告集合
225:神經網路模組
230:預測模型
235:A.I.模型
250:區塊
255:名稱
260:資料庫查詢
265:存取結果
270:分解器模組
275:資料庫查詢
280:匹配
285:推斷
290:結果
300:方法
310:提取
315:啟動
320:比較
325:檢查
330:拒絕
335:指示
340:分解
345:查詢
350:判定
375:檢查
380:拒絕
385:指示
390:審查
395:驗證
400:電腦平台
402:系統匯流排
404:中央處理單元(CPU)
406:硬碟機(HDD)
408:隨機存取記憶體(RAM)/唯讀記憶體(ROM)
410:鍵盤
412:滑鼠
414:顯示器
416:通信介面
440:名稱/實體匹配引擎
444:名稱分解器引擎
446:文本分類訓練模型
448:文本分類預測模型
500:雲端運算環境
510:雲端運算節點
550:雲端運算環境
554A:個人數位助理(PDA)/蜂巢式電話/運算裝置
554B:桌上型電腦/運算裝置
554C:膝上型電腦/運算裝置
554N:汽車電腦系統/運算裝置
660:硬體及軟體層
661:大型主機
662:基於RISC(精簡指令集電腦)架構之伺服器
663:伺服器
664:刀鋒型伺服器
665:儲存裝置
666:網路及網路組件
667:網路應用程式伺服器軟體
668:資料庫軟體
670:虛擬化層
671:虛擬伺服器
672:虛擬儲存器
673:虛擬網路
674:作業系統
675:虛擬用戶端
680:管理層
681:資源佈建
682:計量及定價
683:使用者入口
684:服務等級管理
690:工作負載層
691:地圖及導航
692:軟體開發及生命週期管理
693:虛擬課堂教學遞送
694:資料分析處理
695:異動處理
696:存取權限服務
圖式係說明性實施例。其未說明所有實施例。可另外或替代地使用其他實施例。為了節省空間或更有效的說明,可省略可為明顯或不必要的細節。一些實施例可用額外組件或步驟及/或不用所有所說明的組件或步驟來實踐。當相同的數字出現在不同的圖式中時,其係指相同或相似的組件或步驟。
圖1為根據實施例之用於判定對受限系統的基於網路的存取的架構的方塊圖。
圖2為根據一些實施例的用於判定對受限系統的基於網路的存取的系統的方塊圖。
圖3為根據實施例的用於判定對受限系統的基於網路的存取的方法的流程圖。
圖4為可與各種網路組件通信的電腦硬體平台的功能方塊圖說明。
圖5描繪與說明性實施例一致的雲端運算環境。
圖6描繪與說明性實施例一致的抽象模型層。
在以下詳細描述中,藉由實例的方式闡述許多具體細節,以便提供對相關教示的透徹理解。然而,應瞭解,可在無此等細節的情況下實踐本教示內容。在其他情況下,眾所周知的方法、程序、組件及/或電路系統已在相對較高層級上但未詳細進行描述,以便避免不必要地模糊本教示之態樣。
本揭示內容一般而言係關於判定實體是否具有對受限系統的存取狀態的系統及方法。在隨後的主題揭示內容中,實施例揭示一種橫跨自多個來源收集的受限存取的多個清單分析名稱的自動化系統。該分析使用自然語言處理來識別名稱及名稱之部分。主題技術提供一種較佳方法來發展系統中包括的知識。系統關於拒絕/允許預測/推薦的效能藉由自使用者之輸入(新記錄等)學習而發展。根據現場測試,深度神經網路元件提
供比例如對資料庫之原始查詢或模糊查詢較佳效能。在一些實施例中,主題技術可組合多個允許清單/拒絕清單來源,其准許根據管理員之需要或新要求來自訂系統的權限阻止/不阻止請求實體。
在一個態樣中,主題系統在審查允許/拒絕使用者方面增強運算勞動。該方法對與允許/拒絕使用者相關的決策的效能產生積極影響,此係因為系統的特徵發展所使用的資料,自輸入生成持續學習,及使用神經NLP方法向人類審閱者推薦阻止/不阻止使用者。該系統允許對未知的個體/機構進行分類,與現有的資料庫查詢程序相比尤其出色。
圖1說明用於判定對受限系統的基於網路的存取的實例架構100。架構100包括允許各種運算裝置102(1)至102(N)彼此通信的網路106,以及連接至網路106之其他元件,諸如權限資料來源112、權限篩選器伺服器116及雲端120。
網路106可為但不限於區域網路(「LAN」)、虛擬專用網路(「VPN」)、蜂巢式網路、網際網路或其組合。舉例而言,網路106可包括以通信方式耦合至專用網路的行動網路,專用網路有時被稱為提供各種輔助服務的內部網路,諸如與各種應用程式商店、程式館及網際網路的通信。網路106允許作為在權限篩選器伺服器116上運行之軟體程式的人工智慧文本分類引擎110與權限資料來源112、運算裝置102(1)至102(N)及雲端120通信,以提供資料處理。權限資料來源112可為不同受限系統之清單上之不同實體提供允許/拒絕(或阻止/不阻止)狀態資料,這些資料將在此處所描述之一或多種技術下進行處理。在一些實施例中,資料封包113可由人工智慧文本分類引擎110以預定間隔或在觸發事件時接收。人
工智慧文本分類引擎110可藉由來自權限資料來源112的推進操作或來自人工智慧文本分類引擎110的提取操作來接收此資料封包113。在一個實施例中,至少部分對雲端120執行資料處理。
出於稍後論述的目的,圖式中出現幾個使用者裝置,以表示運算裝置之一些實例,該等運算裝置可為取決於所選擇的任務而經分析之資料來源。符號序列資料(例如,103(1)及103(N))之態樣可經由網路106與權限篩選器伺服器116之人工智慧文本分類引擎110進行通信。當今,使用者裝置通常採用可攜式手機、智慧型電話、平板電腦、個人數位助理(PDA)及智慧型手錶的形式,儘管其可以其他形式因數實施,包括消費者及商業電子裝置。
舉例而言,運算裝置(例如,102(1))可向人工智慧文本分類引擎110發送請求103(N),以識別尋求對運算裝置102(N)中儲存或管理的受限系統的存取的實體的存取狀態。舉例而言,此說明公司檢查潛在代理商是否可存取受限第三方服務。在另一實例中,運算裝置102(N)可向人工智慧文本分類引擎110發送請求103(N)以識別尋求對運算裝置102(N)中儲存或管理的受限系統的存取的實體的存取狀態。此說明例如管理受限系統之實體檢查與主題揭示內容之服務以查看希望存取運算裝置102(N)之受限系統之第三方是否在拒絕或允許清單上。
雖然權限資料來源112及人工智慧文本分類引擎110作為實例經說明為在不同平台上,但應理解,在各種實施例中,更新資料來源112及權限篩選器伺服器116可組合。在其他實施例中,此等運算平台可由託管在雲端120中之虛擬機器或軟體容器形式的虛擬運算裝置來實施,從而提供用於處理及儲存的彈性架構。
現在參考圖2。根據說明性實施例展示用於判定對受限系統的基於網路的存取的系統200。系統200通常包括資料庫205及與資料庫205通信的神經網路模組225。資料庫205及神經網路模組225係與外部運算裝置(例如,如在圖1中所說明)連接之網路。在一個實施例中,回應於觸發對資訊請求之外部實體而存取來自資料庫205及神經網路模組225的資訊。舉例而言,外部實體可正在詢問關於第三方是否經准許存取受限系統。對一或多個受限系統的存取憑證可基於儲存在資料庫205中之清單。
在一個實施例中,資料庫205可包括被拒絕方清單(DPL)集合/拒絕清單210。DPL 210可包括針對一或多個受限系統標示為經阻止的所有條目。可週期性更新資料庫205中之實體之存取狀態,以獲得其對受限系統中之一或多者的存取權限狀態旗標。可從複數個不同來源接收資料庫205中之實體的識別。如可瞭解,在本主題技術之一個態樣中,實體可由於各種原因而置放處於拒絕狀態。存取狀態源於一個來源或原因。資料庫205可自不同來源聚合已經標記為對不同系統的限制存取的實體之更新或新增添的名稱。在一些實施例中,資料庫205可包括自訂集合215。自訂集合215可包括實體清單,其對一或多個受限系統的存取狀態在資料庫205中單獨組態。舉例而言,自訂集合215中之實體對於特定受限系統可經標示為經阻止或未經阻止。此集合可用於增添未包括在DPL 210中之異常及極端狀況。包括在DPL 210中且在自訂集合215中之資訊可使用一系列啟發式方法(例如,藉由交換機構/國家標籤對、移除不需要的符號、移除不需要的首字母縮略詞、移除公司相關的命名等)綜合地擴充或組織。
實施例可包括應用程式設計介面(API)。API管理來自輸入、系統元素及輸出的資料流。當外部實體想要檢查尋求對受限系統中之一者的存取的一方的存取狀態時,可經由裝置102(圖1)存取API。檢查存取狀態的實體可為個人或自動化軟體程式。當實體做出對狀態存取的請求時,API可啟動圖2中所展示之資料庫205下面的流程所描述之程序。請求實體可由區塊250表示。請求實體可輸入例如正在檢查其存取狀態的機構或使用者之名稱255。該請求存取資料庫205(展示為資料庫查詢260)以獲得正檢查之方之名稱。可自資料庫查詢260產生拒絕或准許存取結果265。在自請求提取之名稱未明確地位於資料庫205中的情況下,在一些實施例中,系統200可執行檢查名稱之假名或替代拼寫的程序。可將正檢查之名稱提交至分解器模組270,該分解器模組將名稱分解成多個部分。API可檢查(資料庫查詢275)每一部分以查看部分中之任一者是否匹配(280)資料庫205中之實體。
一些實施例亦可包括使用自然語言處理來處理名稱之部分以預測名稱是否可為資料庫205中之實體中之一者的人工智慧程序。當名稱之分解部分之間的明確匹配與資料庫205中之實體未明確匹配時,可存取神經網路模組225。神經網路模組225可經設計用於文本分類。可使用來自資料庫205之資料來訓練神經網路模組225中之A.I模型235。神經網路模組225可包括預測模型230,其基於A.I.模型235自接收到的名稱或其分解部分生成推斷285。結果290例如可為名稱經標記為被拒絕實體、被准許實體或被推薦為被拒絕或被准許。在一些實施例中,自訂集合215、報告集合220及/或結果290的內容可轉發至個人以供人工審查及驗證。
一些實施例亦可週期性檢查資料庫205中實體之狀態是否
已改變。一些實施例可包括刷新程序,當與實體中之一或多者相關的資訊改變或更新時,該刷新程序重新檢查資料庫205中之實體是否應針對存取狀態進行審查。
來自匹配提交的名稱、匹配部分名稱及A.I.模型之預測的結果可儲存在報告集合220中,以在未來用於訓練預測模型230。
現在參考圖3,根據說明性實施例展示用於判定對受限系統的基於網路的存取的方法300。方法300可回應於對受限系統的存取權限的請求而經觸發。舉例而言,請求方可為尋求存取之一方、第三方或管理員或附屬於受限系統之其他實體。電腦伺服器,例如,圖1之人工智慧文本分類引擎110,可充當提出請求並實施以下處理步驟之裝置。
伺服器可提取310其存取狀態正經檢查之主體方之名稱。舉例而言,公司、機構或個體可包括在請求中。可自隨附請求之任何其他資訊提取公司、機構或個體之名稱。在一些實施例中,可包括提交的名稱而無任何其他資訊(例如,當藉由API在指定為正檢查的名稱的欄位中輸入時)。
伺服器可啟動315對標記為拒絕或權限各種受限系統的實體之資料庫的查詢。在一些實施例中,可用對一些系統的受限或部分存取來對實體標記。該資料庫可為例如圖2之資料庫205。受限系統可為網路連接服務,其包括存取權限或包括指示外部實體未經標記為不合格或禁止存取服務之內容的權限。
查詢可將自請求提取之名稱與儲存在資料庫中之一或多個清單進行比較320。若名稱與清單中之一者中之實體匹配,則伺服器可檢
查325該實體是否經標記為經阻止存取請求中之受限系統。若實體經標記為針對彼受限系統經阻止,則伺服器可返回拒絕330對受限系統的存取的訊息。若該名稱未經標記為經阻止,則伺服器可向請求方指示335該名稱具有存取權限。
在一些實施例中,若伺服器無法將該名稱與資料庫中之各種清單中之實體中之一者匹配,則另一程序可嘗試檢查所請求名稱是否相似或經阻止實體之替代變體。舉例而言,一些名稱可包括公司或機構名稱之不同變體形式的冠詞(「該(the)」、「一(a)」、「一(an)」)。名稱的包括或排除或部分可導致一些提交的名稱與經阻止的實體不匹配。或者一些個體稱為包含或排除一或多個名稱之別名。在一個實施例中,伺服器可將提交的名稱分解340成多個部分(例如,按單詞或按單獨的名稱)。藉由使用分隔符字元(例如,逗號(,)等),可將名稱分解成子字串單元。
伺服器可查詢345提交的名稱之不同部分或子片段以獲得實體拒絕/權限清單之資料庫中之匹配。伺服器可判定350部分中之一者是否匹配資料庫中之實體中之一或多者。若名稱與清單中之一者中之實體匹配,則伺服器可檢查375該實體是否經標記為經阻止存取請求中之受限系統。若實體經標記為針對彼受限系統經阻止,則伺服器可返回拒絕380對受限系統的存取的訊息。若該名稱未經標記為經阻止,則伺服器可向請求方指示385該名稱具有存取權限。
一些實施例可包括A.I.組件以幫助識別可與拒絕/准許清單中之現有實體條目可不明確匹配的名稱。舉例而言,若分解名稱之部分中之一者未與資料庫中之實體明確匹配,則可將名稱及其部分轉移至深度神經網路以分析名稱及名稱部分。神經網路引擎可處理名稱資料,以作出關
於提交的名稱是否應分類為資料庫中之拒絕或准許對受限系統的存取的實體中之一者的預測。
在一些實施例中,預測分類的結果可由人類使用者審查390並驗證395結果之準確性。一些實施例可使用人工驗證來驗證來自名稱檢查及分解的名稱檢查程序的結果,作為隨著神經網路引擎接收到更多輸入迭代地改良模型的監督機器學習程序之一部分。
在一些實施例中,對於針對實體及實體之存取狀態的資料庫執行的每一新檢查,若實體之資訊已改變,則系統可使用彼新資訊再次運行所有測試。舉例而言,若資料庫中之名稱改變,則系統運行新的檢查以查看是否應阻止該名稱之此新版本。當清單之資訊改變時,在新一輪的檢查名稱中,新的資訊將被考慮重新運行所需要檢查。
如上文所論述,與主題揭示內容之可解釋建模相關的功能可使用一或多個運算裝置來執行,該運算裝置經連接用於經由無線或有線通信的資料通信,如在圖1中所展示。圖4為可與各種網路組件(諸如訓練輸入資料來源、雲端等)通信之電腦硬體平台的功能方塊圖說明。特定而言,圖4說明網路或主機電腦平台400,如可用於實施伺服器,諸如圖1之權限篩選器伺服器116。
電腦平台400可包括連接至系統匯流排402之中央處理單元(CPU)404、硬碟機(HDD)406、隨機存取記憶體(RAM)及/或唯讀記憶體(ROM)408、鍵盤410、滑鼠412、顯示器414及通信介面416。
在一個實施例中,HDD 406具有包括以本文中所描述之方式儲存可執行各種程序之程式的能力,諸如人工智慧文本分類引擎110。
通常,人工智慧文本分類引擎110可經組態以分析提交給在上文所描述之實施例下的受限系統的存取狀態的名稱。人工智慧文本分類引擎110可具有經組態以執行不同功能之各種模組。在一些實施例中,人工智慧文本分類引擎110可包括子模組。舉例而言,名稱/實體匹配引擎440、名稱分解器引擎444、文本分類訓練模型446及文本分類預測模型448。
如上文所論述,與檢查受限系統的存取狀態有關的功能可包括雲端120(參見圖1)。應理解,儘管本揭示內容包括關於雲端運算的詳細描述,但本文中所敍述之教示內容的實施方案不限於雲端運算環境。相反,本揭示內容之實施例能夠結合現在已知或以後開發之任何其他類型之運算環境來實施。
雲端運算係一種服務遞送模型,用於實現對可組態運算資源(例如,網路、網路帶寬、伺服器、處理、記憶體、儲存器、應用程式、虛擬機器及服務)的共用集區的便捷、隨選網路存取,可組態運算資源可藉助最少的管理工作或與服務提供商的互動來快速佈建及發佈。此雲端模型可包括至少五個特性、至少三個服務模型及至少四個部署模型。
特性如下:
隨選自助服務:雲端消費者可根據需要自動單方面佈建運算能力,諸如伺服器時間及網路儲存,而無需與服務提供商進行人工互動。
隨處網路存取:功能可經由網路獲得,並藉由促進異質精簡型用戶端或複雜型用戶端平台(例如,行動電話、膝上型電腦及PDA)使用的標準機制進行存取。
資源集用:提供商之運算資源使用多租戶模型進行池化以為多個消費者提供服務,其中根據需求動態指派及重新指派不同的實體及虛擬資源。存在位置獨立感,此係因為消費者通常無法控制或瞭解所提供資源的確切位置,但可能夠以較高抽象層級(例如,國家、州或資料中心)規定位置。
快速彈性:能力可快速且彈性地佈建(在一些狀況下自動地)以快速擴展及快速釋放以快速縮減。對於消費者而言,可用於佈建的能力通常似乎係無限的,且可隨時以任意數量購買。
量測服務:雲端系統藉由以適合於服務類型(例如,儲存、處理、帶寬及活動使用者帳戶)之某一抽象層級利用計量能力來自動地控制及最佳化資源使用。可監視、控制及報告資源使用狀況,從而為所使用服務之提供商及消費者兩者提供透明度。
服務模式如下:
軟體即服務(SaaS):提供給消費者的能力係使用在雲端基礎結構上運行之提供商之應用程式。應用程式可藉由諸如網路瀏覽器(例如,基於網路的電子郵件)之瘦用戶端介面自各種用戶端裝置存取。消費者不管理或控制基本雲端基礎結構,包括網路、伺服器、作業系統、儲存器,或甚至單個應用程式能力,其中有限的使用者特定應用程式組態設定可能除外。
平台即服務(PaaS):向消費者提供的能力係將消費者建立或獲取的應用程式部署至雲端基礎結構上,該等應用程式使用提供商支援之程式語言及工具建立。消費者不管理或控制包括網路、伺服器、作業系統或儲存器在內的基本雲端基礎結構,但可控制部署的應用程式及可能的
應用程式託管環境組態。
基礎結構即服務(IaaS):提供給消費者的能力係佈建處理、儲存器、網路及其他基礎運算資源,其中消費者能夠部署及運行任意軟體,軟體可包括作業系統及應用程式。消費者不管理或控制基本雲端基礎結構,但可控制作業系統、儲存器、部署的應用程式,並可能對選定的網路組件(例如,主機防火牆)進行有限控制。
部署模型如下:
私有雲端:雲端基礎結構僅為組織操作。其可由組織或第三方管理,且可存在內部部署或外部部署。
社區雲端:雲端基礎結構由多個組織共用,並支援具有共用關注點(例如,任務、安全要求、策略及順應性考慮)的特定社區。其可由組織或第三方管理,且可存在內部部署或外部部署。
公共雲端:雲端基礎結構可供公眾或大型行業集團使用,並由銷售雲端服務的組織擁有。
混合雲端:雲端基礎結構係兩個或多於兩個雲端(私有、社區或公共)的組合,其仍然係唯一的實體,但藉由啟用資料及應用程式可攜性的標準化或專利技術(例如,用於雲端之間負載平衡的雲端突發)綁定在一起。
雲端運算環境係服務導向的,重點係無狀態、低耦合、模組化及語義互通性。雲端運算的核心係包括互連節點網路之基礎結構。
現在參考圖5,描繪說明性雲端運算環境500。如所展示,雲端運算環境500包括一或多個雲端運算節點510,雲端消費者使用的本端運算裝置(諸如例如個人數位助理(PDA)或蜂巢式電話554A、桌上型電
腦554B、膝上型電腦554C、及/或汽車電腦系統554N)可與該等雲端運算節點通信。節點510可彼此通信。其可實體地或虛擬地分組(未展示),在一或多個網路中,諸如如上文所描述之私有、社區、公共或混合雲端,或其組合。此允許雲端運算環境550提供基礎結構、平台及/或軟體作為雲端消費者不需要在本端運算裝置上維護資源的服務。應理解,圖5中所展示之運算裝置554A-N的類型旨在僅為說明性的,且運算節點510及雲端運算環境550可經由任何類型的網路及/或網路可定址連接(例如,使用網路瀏覽器)與任何類型之電腦化裝置通信。
現在參考圖6,展示由雲端運算環境550(圖5)提供的一組功能抽象層。應預先理解,圖6中所展示之組件、層及功能旨在僅為說明,且本揭示內容之實施例不限於此。如所描繪,提供以下層及對應功能:
硬體及軟體層660包括硬體及軟體組件。硬體組件之實例包括:大型主機661;基於RISC(精簡指令集電腦)架構之伺服器662;伺服器663;刀鋒型伺服器664;儲存裝置665;以及網路及網路組件666。在一些實施例中,軟體組件包括網路應用程式伺服器軟體667及資料庫軟體668。
虛擬化層670提供抽象層,自該抽象層可提供虛擬實體之以下實例:虛擬伺服器671;虛擬儲存器672;虛擬網路673,包括虛擬專用網路;虛擬應用程式及作業系統674;及虛擬用戶端675。
在一個實例中,管理層680可提供下文所描述之功能。資源佈建681提供運算資源及用於在雲端運算環境內執行任務的其他資源的動態採購。計量及定價682在雲端運算環境內利用資源時提供成本追蹤,
並為此等資源的消耗開具賬單或開具發票。在一個實例中,此等資源可包括應用程式軟體執照。安全性為雲端消費者及任務提供身分驗證,以及對資料及其他資源的保護。使用者入口683為消費者及系統管理員提供對雲端運算環境的存取。服務等級管理684提供雲端運算資源分配及管理,使得滿足所需的服務等級。服務等級協定(SLA)規劃及履行985為根據SLA預計未來需求的雲端運算資源提供預先配置及採購。
工作負載層690提供可利用雲端運算環境的功能性之實例。可自此層提供之工作負載及功能之實例包括:地圖及導航691;軟體開發及生命週期管理692;虛擬課堂教學遞送693;資料分析處理694;異動處理695;及存取權限服務696,如本文中所論述。
本教示內容之各種實施例的描述係出於說明的目的而呈現,並非意欲為窮盡性或限制於所揭示實施例。在不脫離所描述之具體實例的範疇及精神的情況下,對於熟習此項技術者而言,諸多修改及變化將係顯而易見的。本文中所使用之術語經選擇來最佳地解釋具體實例之原理、實踐應用,或優於市場中找到技術的技術改良,或使得熟習此項技術者能夠理解本文中所揭示之具體實例。
儘管前述內容已描述被視為最佳狀態及/或其他實例的內容,但應理解可在其中做出各種修改且本文中揭示之標的物可以各種形式及實例來實施,且教示內容可應用於眾多應用中(本文中僅描述了其中的一些應用)。所附申請專利範圍打算主張任何及所有歸屬於本發明教示內容之真實範疇內的應用、修改及變化。
本文中論述之組件、步驟、特徵、目的、益處及優點僅僅
係說明性的。其中之任何一個,以及與其相關的論述,旨在限制保護範疇。儘管本文中已論述各種優點,但應理解,並非所有實施例必須包括所有優點。除非另有所述,否則本說明書(包括隨後的申請專利範圍)中所闡述之所有量測值、值、額定值、位置、量值、大小及其他規格係近似的,而非精確的。其旨在具有與其所涉及的功能以及其所涉及的領域中的慣例一致的合理範圍。
亦設想許多其他實施例。此等包括具有更少、額外及/或不同組件、步驟、特徵、目的、益處及優點的實施例。此等亦包括組件及/或步驟以不同方式配置及/或排序的實施例。
本文中參考根據本揭示內容之實施例的方法、設備(系統)及電腦程式產品的流程圖說明及/或方塊圖描述本揭示內容之各態樣。將理解,流程圖說明及/或方塊圖之每一步驟以及在流程圖說明及/或方塊圖中之區塊的組合可藉由電腦可讀程式指令實施。
此等電腦程式指令可提供至電腦、專用電腦或其他可程式化資料處理設備之處理器,以產生機器,使得該等指令(其經由電腦或其他可程式化資料處理設備之處理器執行)形成用於實施流程圖程序及/或方塊圖方塊中所規定之功能/動作之構件。該等電腦可讀程式指令亦可儲存在可指示電腦、可程式化資料處理設備及/或其他裝置從而以特定方式操作的電腦可讀儲存媒體中,使得在其中儲存有指令之電腦可讀儲存媒體包含包括在流程圖程序及/或方塊圖區塊(或多個區塊)中規定的功能/行為的各態樣的指令的製造物件。
電腦可讀程式指令亦可加載至電腦、其他可程式化資料處理設備或其他裝置上,以致使對電腦、其他可程式化設備或其他裝置執行
一系列操作步驟以產生電腦實施過程,使得在電腦、其他可程式化設備或其他裝置上執行的指令實施在流程圖程序及/或方塊圖區塊(或多個區塊)中規定的功能/動作。
諸圖中之流程圖及方塊圖說明根據本揭示內容之各種具體實例的系統、方法及電腦程式產品的可能實施方案的架構、功能性及操作。就此而言,流程圖程序或方塊圖中之每一區塊可表示指令之模組、區段或部分,其包含用於實施規定邏輯功能之一或多個可執行指令。在一些替代實施方案中,區塊中所敍述之功能可不按圖中所敍述的順序發生。舉例而言,事實上,可取決於所涉及之功能性,實質上同時執行兩個連續示出之區塊,或有時可按相反次序執行該等區塊。亦應注意,方塊圖及/或流程圖說明中之每一區塊以及方塊圖及/或流程圖說明中之區塊的組合可由執行所規定功能或動作或實施專用硬體及電腦指令檔組合的基於專用硬體之系統來實施。
儘管已結合例示性實施例描述前述內容,但應理解,術語「例示性」僅意為實例,而非最好的或最佳的。除上文所述外,任何已陳述或說明的內容均無意或不應解釋為將任何組件、步驟、特徵、對象、利益、優勢或等同物奉獻給公眾,無論是否申請專利範圍中未提及。
應理解,除非本文中另外闡述特定含義,否則本文中所使用的術語及表達具有與此等術語及表達相對於其對應各別調查及研究領域一致的普通含義。諸如第一及第二以及諸如此類之相關術語可僅用於將一個實體或動作與另一實體或動作進行區分,而未必需要或暗示此等實體或動作之間的任何實際此關係或次序。術語「包含(comprises)」、「包含(comprising)」或其任何其他變化形式皆意欲涵蓋一非排他性包含,使得
包含一連串元件之一程序、方法、物件或設備並非僅包含彼等元件,而是可包含其他未明確列出或此程序、方法、物件或設備所固有之元件。在不存在較多約束之情況下,跟隨在「一(a)」或「一(an)」之後的元件不排除在包含該元件之程序、方法、物件或設備中存在額外相同元件。
提供本揭示內容之摘要以允許讀者迅速地確定本技術揭示內容的本質。提交上文描述是基於以下理解:其將不被用於解釋或限制申請專利範圍之範疇或含義。另外,在前述具體實施方式中,可看出,出於簡化本揭示內容之目的,將各種特徵一起分組於各種實施例中。本發明之此方法不應解釋為反映以下意圖:所主張之實施例具有比每一技術方案中所明確陳述之特徵更多之特徵。相反,如所附申請專利範圍所反映,發明性標的物在於少於單個所揭示實施例之所有特徵。因此,特此將所附申請專利範圍併入至具體實施方式中,其中每一請求項獨立地作為單獨主張的標的物。
300:方法
310:提取
315:啟動
320:比較
325:檢查
330:拒絕
335:指示
340:分解
345:查詢
350:判定
375:檢查
380:拒絕
385:指示
390:審查
395:驗證
Claims (20)
- 一種用於判定對受限系統的基於網路的存取的方法,其包含:接收對尋求對該等受限系統中之一者的存取的一方的一存取權限狀態的一請求;存取一電腦伺服器中之一資料庫,其中該資料庫包括一週期性更新的實體清單;自該請求提取該方之一名稱;判定該名稱是否與該週期性更新的實體清單中之該等實體中之一者不匹配;回應於該名稱與該等實體中之一者不匹配而將該名稱分解成多個部分;判定該名稱之該等部分中之任一者是否與該週期性更新的實體清單中之該等實體中之一或多者匹配;回應於該名稱之該等部分中之該任一者與該週期性更新的實體清單中之該等實體中之一者匹配,將一拒絕存取狀態自該電腦伺服器轉發至一外部運算裝置;及回應於該名稱之該等部分中之該任一者與該週期性更新的實體清單中之該等實體中之一者未明確匹配,藉由一神經網路模型將該名稱推薦為被拒絕或被准許。
- 如請求項1之方法,其進一步包含:回應於該等部分中之任一者與該週期性更新的實體清單中之該等實 體中之一者不匹配,將該名稱及其部分轉發至該神經網路模型;藉由該神經網路模型預測該名稱或該等部分中之任一者是否係該週期性更新的實體清單中之該等實體中之一者;及藉由操作該神經網路模型之一引擎推薦將該所提取名稱標記為該週期性更新的實體清單中之該等實體中之一者。
- 如請求項2之方法,其進一步包含:回應於該神經網路模型預測該名稱或其部分中無一者與該週期性更新的實體清單中之該等實體中之一者匹配,藉由操作該神經網路模型之該引擎推薦將該所提取名稱標記為具有一准許存取狀態。
- 如請求項1之方法,其進一步包含:回應於該名稱與該週期性更新的實體清單中之該等實體中之一者不匹配,將指示該所提取名稱具有一准許存取狀態的一訊息自該電腦伺服器轉發至該外部運算裝置。
- 如請求項1之方法,其中該資料庫包括一或多個被拒絕方清單(DPL),其中該DPL基於標記為被拒絕存取該一或多個受限系統的實體。
- 如請求項1之方法,其中該資料庫包括標記有異常的一自訂實體集合,該等異常指示對該等受限系統中之一或多者的一允許存取狀態。
- 如請求項1之方法,其進一步包含從複數個不同來源接收該等實體之更新的存取權限狀態。
- 一種用於判定對受限系統的基於網路的存取的電腦程式產品,該電腦程式產品包含:一或多個電腦可讀儲存媒體,及共同儲存在該一或多個電腦可讀儲存媒體上之程式指令,該等程式指令包含:接收對尋求對該等受限系統中之一者的存取的一方的一存取權限狀態的一請求;存取一電腦伺服器中之一資料庫,其中該資料庫包括一週期性更新的實體清單;自該請求提取該方之一名稱;判定該名稱是否與該週期性更新的實體清單中之該等實體中之一者不匹配;回應於該名稱與該等實體中之一者不匹配而將該名稱分解成多個部分;判定該名稱之該等部分中之任一者是否與該週期性更新的實體清單中之該等實體中之一或多者匹配;回應於該名稱之該等部分中之該任一者與該週期性更新的實體清單中之該等實體中之一者匹配,將一拒絕存取狀態自該電腦伺服器轉發至一外部運算裝置;及回應於該名稱之該等部分中之該任一者與該週期性更新的實體清單中之該等實體中之一者未明確匹配,藉由一神經網路模型將該名稱推薦為被拒絕或被准許。
- 如請求項8之電腦程式產品,其中該等程式指令進一步包含:回應於該等部分中之任一者與該週期性更新的實體清單中之該等實體中之一者不匹配,將該名稱及其部分轉發至該神經網路模型;藉由該神經網路模型預測該名稱或該等部分中之任一者是否係該週期性更新的實體清單中之該等實體中之一者;及藉由操作該神經網路模型之一引擎推薦將該所提取名稱標記為該週期性更新的實體清單中之該等實體中之一者。
- 如請求項9之電腦程式產品,其中該等程式指令進一步包含:回應於該神經網路模型預測該名稱或該等部分中無一者與該週期性更新的實體清單中之該等實體中之一者匹配,藉由操作該神經網路模型之該引擎推薦將該所提取名稱標記為具有一准許存取狀態。
- 如請求項8之電腦程式產品,其中該等程式指令進一步包含:回應於該名稱與該週期性更新的實體清單中之該等實體中之一者不匹配,將指示該所提取名稱具有一准許存取狀態的一訊息自該電腦伺服器轉發至該外部運算裝置。
- 如請求項8之電腦程式產品,其中該資料庫包括一或多個被拒絕方清單(DPL),其中該DPL基於標記為被拒絕存取該一或多個受限系統的實體。
- 如請求項8之電腦程式產品,其中該資料庫包括標記有異常的一自訂 實體集合,該等異常指示對該等受限系統中之一或多者的一允許存取狀態。
- 如請求項8之電腦程式產品,其中該等程式指令進一步包含從複數個不同來源接收該等實體之更新的存取權限狀態。
- 一種用於判定對受限系統的基於網路的存取的電腦伺服器,其包含:一網路連接;一或多個電腦可讀儲存媒體;一處理器,其耦合至該網路連接並耦合至該一或多個電腦可讀儲存媒體;及一電腦程式產品,其包含共同儲存在該一或多個電腦可讀儲存媒體上之程式指令,該等程式指令包含:接收對尋求對該等受限系統中之一者的存取的一方的一存取權限狀態的一請求;存取該電腦伺服器中之一資料庫,其中該資料庫包括一週期性更新的實體清單;自該請求提取該方之一名稱;判定該名稱是否與該週期性更新的實體清單中之該等實體中之一者不匹配;回應於該名稱與該等實體中之一者不匹配而將該名稱分解成多個部分; 判定該名稱或其部分中之任一者是否與該週期性更新的實體清單中之該等實體中之一或多者匹配;回應於該名稱之該等部分中之該任一者與該週期性更新的實體清單中之該等實體中之一者匹配,將一拒絕存取狀態自該電腦伺服器轉發至一外部運算裝置;及回應於該名稱之該等部分中之該任一者與該週期性更新的實體清單中之該等實體中之一者未明確匹配,藉由一神經網路模型將該名稱推薦為被拒絕或被准許。
- 如請求項15之電腦伺服器,其中該等程式指令進一步包含:回應於該等部分中之任一者與該週期性更新的實體清單中之該等實體中之一者不匹配,將該名稱及其部分轉發至該神經網路模型;藉由該神經網路模型預測該名稱或該等部分中之任一者是否可為該週期性更新的實體清單中之該等實體中之一者;及藉由操作該神經網路模型之一引擎推薦將該所提取名稱標記為該週期性更新的實體清單中之該等實體中之一者。
- 如請求項16之電腦伺服器,其中該等程式指令進一步包含:回應於該神經網路模型預測該名稱或該等部分中無一者與該週期性更新的實體清單中之該等實體中之一者匹配,藉由操作該神經網路模型的該引擎推薦將該所提取名稱標記為具有一准許存取狀態。
- 如請求項15之電腦伺服器,其中該等程式指令進一步包含:回應於 該名稱與該週期性更新的實體清單中之該等實體中之一者不匹配,將指示該所提取名稱具有一准許存取狀態的一訊息自該電腦伺服器轉發至該外部運算裝置。
- 如請求項15之電腦伺服器,其中該資料庫包括標記有異常的一自訂實體集合,該等異常指示對該等受限系統中之一或多者的一允許存取狀態。
- 如請求項15之電腦伺服器,其中該等程式指令進一步包含從複數個不同來源接收該等實體之更新的存取權限狀態。
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP21382970.8 | 2021-10-27 | ||
| EP21382970 | 2021-10-27 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TW202318325A TW202318325A (zh) | 2023-05-01 |
| TWI890001B true TWI890001B (zh) | 2025-07-11 |
Family
ID=78528868
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW111130167A TWI890001B (zh) | 2021-10-27 | 2022-08-11 | 用於判定對受限系統的基於網路的存取的方法、電腦程式產品及電腦伺服器 |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US12244596B2 (zh) |
| TW (1) | TWI890001B (zh) |
| WO (1) | WO2023071649A1 (zh) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US12455779B2 (en) * | 2023-06-12 | 2025-10-28 | Arista Networks, Inc. | Processing natural language network queries |
Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20140156261A1 (en) * | 2012-12-03 | 2014-06-05 | International Business Machines Corporation | Determining similarity of unfielded names using feature assignments |
| CN107516044A (zh) * | 2016-06-15 | 2017-12-26 | 阿里巴巴集团控股有限公司 | 一种识别方法、装置和系统 |
| US20170372232A1 (en) * | 2016-06-27 | 2017-12-28 | Purepredictive, Inc. | Data quality detection and compensation for machine learning |
| US20180007053A1 (en) * | 2016-06-29 | 2018-01-04 | International Business Machines Corporation | Dynamic Cognitive Access Control List Management |
| CN110442312A (zh) * | 2019-08-01 | 2019-11-12 | 佛山普瑞威尔科技有限公司 | 一种客户信息监测方法、系统和计算机可读存储介质 |
| WO2019227576A1 (zh) * | 2018-05-31 | 2019-12-05 | 平安科技(深圳)有限公司 | 发票校验方法、装置、计算机设备及存储介质 |
| US20200014697A1 (en) * | 2018-07-04 | 2020-01-09 | Microsoft Technology Licensing, Llc | Whitelisting of trusted accessors to restricted web pages |
| US11038897B1 (en) * | 2020-01-22 | 2021-06-15 | Valimail Inc. | Interaction control list determination and device adjacency and relative topography |
| TW202123036A (zh) * | 2019-12-13 | 2021-06-16 | 大陸商支付寶(杭州)信息技術有限公司 | 存取控制方法和存取控制裝置 |
| US20210209172A1 (en) * | 2020-01-06 | 2021-07-08 | International Business Machines Corporation | Name matching using enhanced name keys |
Family Cites Families (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8423563B2 (en) * | 2003-10-16 | 2013-04-16 | Sybase, Inc. | System and methodology for name searches |
| US7581112B2 (en) | 2004-12-30 | 2009-08-25 | Ebay, Inc. | Identifying fraudulent activities and the perpetrators thereof |
| US8594996B2 (en) | 2007-10-17 | 2013-11-26 | Evri Inc. | NLP-based entity recognition and disambiguation |
| US20110131652A1 (en) | 2009-05-29 | 2011-06-02 | Autotrader.Com, Inc. | Trained predictive services to interdict undesired website accesses |
| US10042993B2 (en) | 2010-11-02 | 2018-08-07 | Homayoon Beigi | Access control through multifactor authentication with multimodal biometrics |
| CN103107948B (zh) | 2011-11-15 | 2016-02-03 | 阿里巴巴集团控股有限公司 | 一种流量控制方法和装置 |
| US20170083924A1 (en) | 2012-05-01 | 2017-03-23 | Netspective Communications Llc | Global positioning system (gps) for linking network access platforms with social network profile electronic documents |
| US9190055B1 (en) | 2013-03-14 | 2015-11-17 | Amazon Technologies, Inc. | Named entity recognition with personalized models |
| US10701079B1 (en) * | 2016-12-15 | 2020-06-30 | Open Invention Network Llc | Collaborative data sharing and co-browsing with natural language masking |
| US20190228411A1 (en) * | 2018-01-23 | 2019-07-25 | First Performance LLC | Methods and systems for improving merchant data |
| US11003705B2 (en) | 2018-02-26 | 2021-05-11 | International Business Machines Corporation | Natural language processing and classification |
| KR102389331B1 (ko) | 2018-05-07 | 2022-04-21 | 구글 엘엘씨 | 컴퓨팅 디바이스간의 액세스 제어 동기화 |
| WO2020170806A1 (ja) * | 2019-02-20 | 2020-08-27 | 日本電信電話株式会社 | 推定方法、推定装置及び推定プログラム |
| US11366798B2 (en) * | 2020-04-14 | 2022-06-21 | Accenture Global Solutions Limited | Intelligent record generation |
| US11777987B2 (en) * | 2020-09-21 | 2023-10-03 | Tata Consultancy Services Limited. | Method and system for layered detection of phishing websites |
| US12067132B2 (en) * | 2021-12-23 | 2024-08-20 | Oracle International Corporation | Just-in-time data object permission restriction |
| CN116094780A (zh) * | 2022-12-29 | 2023-05-09 | 天翼云科技有限公司 | 一种dns响应ip黑名单过滤方法及系统 |
-
2021
- 2021-12-28 US US17/564,168 patent/US12244596B2/en active Active
-
2022
- 2022-08-11 TW TW111130167A patent/TWI890001B/zh active
- 2022-09-23 WO PCT/CN2022/120913 patent/WO2023071649A1/en not_active Ceased
Patent Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20140156261A1 (en) * | 2012-12-03 | 2014-06-05 | International Business Machines Corporation | Determining similarity of unfielded names using feature assignments |
| CN107516044A (zh) * | 2016-06-15 | 2017-12-26 | 阿里巴巴集团控股有限公司 | 一种识别方法、装置和系统 |
| US20170372232A1 (en) * | 2016-06-27 | 2017-12-28 | Purepredictive, Inc. | Data quality detection and compensation for machine learning |
| US20180007053A1 (en) * | 2016-06-29 | 2018-01-04 | International Business Machines Corporation | Dynamic Cognitive Access Control List Management |
| WO2019227576A1 (zh) * | 2018-05-31 | 2019-12-05 | 平安科技(深圳)有限公司 | 发票校验方法、装置、计算机设备及存储介质 |
| US20200014697A1 (en) * | 2018-07-04 | 2020-01-09 | Microsoft Technology Licensing, Llc | Whitelisting of trusted accessors to restricted web pages |
| CN110442312A (zh) * | 2019-08-01 | 2019-11-12 | 佛山普瑞威尔科技有限公司 | 一种客户信息监测方法、系统和计算机可读存储介质 |
| TW202123036A (zh) * | 2019-12-13 | 2021-06-16 | 大陸商支付寶(杭州)信息技術有限公司 | 存取控制方法和存取控制裝置 |
| US20210209172A1 (en) * | 2020-01-06 | 2021-07-08 | International Business Machines Corporation | Name matching using enhanced name keys |
| US11038897B1 (en) * | 2020-01-22 | 2021-06-15 | Valimail Inc. | Interaction control list determination and device adjacency and relative topography |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2023071649A1 (en) | 2023-05-04 |
| US20230208841A1 (en) | 2023-06-29 |
| TW202318325A (zh) | 2023-05-01 |
| US12244596B2 (en) | 2025-03-04 |
| US20240039919A9 (en) | 2024-02-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN116547948B (zh) | 计算资源漏洞的基于上下文的风险评估 | |
| US11824894B2 (en) | Defense of targeted database attacks through dynamic honeypot database response generation | |
| CN110730156B (zh) | 用于异常检测的分布式机器学习 | |
| US10977389B2 (en) | Anonymity assessment system | |
| US10643135B2 (en) | Linkage prediction through similarity analysis | |
| US20180115573A1 (en) | Phishing detection with machine learning | |
| US11636386B2 (en) | Determining data representative of bias within a model | |
| US11178186B2 (en) | Policy rule enforcement decision evaluation with conflict resolution | |
| US20170140297A1 (en) | Generating efficient sampling strategy processing for business data relevance classification | |
| CN112384889B (zh) | 工作负载供应中的数据隐私意识 | |
| US12293393B2 (en) | Predictive service orchestration using threat modeling analytics | |
| US11455554B2 (en) | Trustworthiness of artificial intelligence models in presence of anomalous data | |
| CN114556867A (zh) | 使用位置确证的认证机制 | |
| US12327112B2 (en) | Compliance adaption plans and software component matchmaking | |
| CN113206855B (zh) | 数据访问异常的检测方法、装置、电子设备及存储介质 | |
| CN115408263A (zh) | 利用和训练用于控件标识的人工智能模型 | |
| TWI890001B (zh) | 用於判定對受限系統的基於網路的存取的方法、電腦程式產品及電腦伺服器 | |
| US11893132B2 (en) | Discovery of personal data in machine learning models | |
| US11785038B2 (en) | Transfer learning platform for improved mobile enterprise security | |
| US20220405525A1 (en) | Reliable inference of a machine learning model | |
| US11520846B2 (en) | Petition creation through social analytics | |
| US11755775B2 (en) | Upload management | |
| Ahmed et al. | Modeling cloud computing risk assessment using ensemble methods | |
| US12045365B2 (en) | Governed database connectivity (GDBC) through and around data catalog to registered data sources | |
| Roy et al. | Analytical Study of Security Enhancement Methods on Diverse Cloud Computing Platforms |