TWI889549B - Automated method for fan reinforced structure design and device thereof - Google Patents
Automated method for fan reinforced structure design and device thereof Download PDFInfo
- Publication number
- TWI889549B TWI889549B TW113135707A TW113135707A TWI889549B TW I889549 B TWI889549 B TW I889549B TW 113135707 A TW113135707 A TW 113135707A TW 113135707 A TW113135707 A TW 113135707A TW I889549 B TWI889549 B TW I889549B
- Authority
- TW
- Taiwan
- Prior art keywords
- fan
- displacement
- bottom case
- laptop bottom
- laptop
- Prior art date
Links
Images
Landscapes
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Description
本發明涉及筆電風扇結構設計,更進一步地,涉及筆電風扇補強結構設計自動化方法及其裝置。 The present invention relates to the design of a laptop fan structure, and further relates to an automated method and device for designing a laptop fan reinforcement structure.
在筆電風扇設計中,先前技術的做法為在確定設計需求後,由工程師手動繪製風扇圖檔,接著把圖檔交給電腦輔助工程(Computer-aided engineering,CAE)部門利用有限元素分析(Finite element method,FEM)驗證結構強度,並在這兩步之間反覆調整強度直至滿足設計需求,這過程中需要大量的人力,且非常仰賴工程師的經驗。 In the design of laptop fans, the previous technical approach was that after the design requirements were determined, engineers would manually draw fan drawings, and then hand the drawings over to the Computer-aided Engineering (CAE) department to verify the structural strength using Finite Element Method (FEM). Between these two steps, the strength was repeatedly adjusted until the design requirements were met. This process required a lot of manpower and relied heavily on the experience of engineers.
風扇設計的一個常見問題是筆電底殼(D Cover)與風扇外殼(Fan Cover)的結構強度平衡。先前技術中的結構補強方式是在風扇外殼上增加風扇支撐肋(Rib),然而這樣的作法會使筆電底殼與風扇外殼的結構強度出現互制現象,也就是若加強筆電底殼結構,風扇外殼結構的強度可能會下降而無法滿足設計需求,反之亦然。這種強度平衡難以在初次設計中達成,因此繪製圖檔與分析驗證的過程通常需要機構與CAE部門反覆溝通調整,使得分析所需的軟硬體成本及時間成本大幅提高,甚至可能導致量產期程延後。因此,如何有效率地完成風扇設計,同時達到筆電底殼與風扇外殼的結構強度平衡為一個重要的問題。 A common problem in fan design is the structural strength balance between the laptop bottom case (D Cover) and the fan cover (Fan Cover). The previous method of structural reinforcement was to add fan support ribs (Rib) to the fan cover. However, this approach would cause the structural strength of the laptop bottom case and the fan cover to restrain each other. That is, if the laptop bottom case structure is strengthened, the strength of the fan cover structure may decrease and fail to meet the design requirements, and vice versa. This strength balance is difficult to achieve in the first design, so the process of drawing and analysis verification usually requires repeated communication and adjustment between the organization and the CAE department, which greatly increases the software and hardware costs and time costs required for analysis, and may even cause delays in mass production. Therefore, how to efficiently complete the fan design and achieve a balance in the structural strength of the laptop bottom case and the fan outer case is an important issue.
根據本發明的一實施例,一種風扇補強結構設計自動化方法包含產生風扇參數資料集,於風扇參數資料集中挑選參數組合,根據參數組合筆電底殼與風扇外殼的受力位移組合,筆電底殼與風扇外殼的受力位移組合進行最佳化運算以獲得風扇支撐肋設計參數,及根據風扇支撐肋設計參數計算筆電底殼的當前受力位移及風扇外殼的當前受力位移。 According to an embodiment of the present invention, a fan reinforcement structure design automation method includes generating a fan parameter data set, selecting a parameter combination in the fan parameter data set, optimizing the force displacement combination of the laptop bottom case and the fan outer case according to the parameter combination to obtain the fan support rib design parameters, and calculating the current force displacement of the laptop bottom case and the current force displacement of the fan outer case according to the fan support rib design parameters.
根據本發明的另一實施例,一種風扇補強結構設計自動化裝置包含處理器及記憶體。記憶體用於儲存指令。指令由處理器執行以執行:產生風扇參數資料集,於風扇參數資料集中挑選參數組合,根據參數組合計算筆電底殼與風扇外殼的受力位移組合,根據筆電底殼與風扇外殼的受力位移組合進行最佳化運算以獲得風扇支撐肋設計參數,及根據風扇支撐肋設計參數計算筆電底殼的當前受力位移及風扇外殼的當前受力位移。 According to another embodiment of the present invention, a fan reinforcement structure design automation device includes a processor and a memory. The memory is used to store instructions. The instructions are executed by the processor to perform: generating a fan parameter data set, selecting a parameter combination in the fan parameter data set, calculating the force displacement combination of the laptop bottom case and the fan outer case according to the parameter combination, performing an optimization operation according to the force displacement combination of the laptop bottom case and the fan outer case to obtain the fan support rib design parameters, and calculating the current force displacement of the laptop bottom case and the current force displacement of the fan outer case according to the fan support rib design parameters.
1、2:筆電風扇 1, 2: Laptop fan
D1、D1’、D2、D2’:筆電底殼 D1, D1’, D2, D2’: Laptop bottom case
C1、C11、C12、C11’、C12’、C2、C21、C22、C21’、C22’:風扇外殼 C1, C11, C12, C11’, C12’, C2, C21, C22, C21’, C22’: Fan casing
H1、H2:風扇軸 H1, H2: Fan shaft
B1、B2:風扇扇葉 B1, B2: fan blades
R11、R12、R21、R22:風扇支撐肋 R11, R12, R21, R22: Fan support ribs
E1、E2:撞擊位置 E1, E2: Impact position
F1、F2:外力 F1, F2: External force
3:風扇補強結構設計自動化方法 3: Automated design method for fan reinforcement structure
S301-S309、S401-S404:步驟 S301-S309, S401-S404: Steps
P1、P2、P3、P4:點 P1, P2, P3, P4: points
6:風扇補強結構設計自動化裝置 6: Fan reinforcement structure design automation device
61:中央處理器 61:Central Processing Unit
62:圖形化使用者介面 62: Graphical User Interface
63:顯示裝置 63: Display device
64:輸入裝置 64: Input device
65:記憶體 65: Memory
第1圖為根據本發明一實施例的筆電風扇的風扇外殼強度不足的示意圖。 Figure 1 is a schematic diagram showing that the fan housing of a laptop fan according to an embodiment of the present invention is insufficiently strong.
第2圖為根據本發明一實施例的筆電風扇的筆電底殼強度不足的示意圖。 Figure 2 is a schematic diagram showing that the laptop bottom case strength is insufficient for a laptop fan according to an embodiment of the present invention.
第3圖為根據本發明一實施例的風扇補強結構設計自動化方法流程圖。 Figure 3 is a flow chart of an automated method for designing a fan reinforcement structure according to an embodiment of the present invention.
第4圖為第3圖中步驟S303的流程圖。 Figure 4 is a flow chart of step S303 in Figure 3.
第5圖為根據本發明一實施例的最佳化求解過程示意圖。 Figure 5 is a schematic diagram of the optimization solution process according to an embodiment of the present invention.
第6圖為根據本發明一實施例的風扇補強結構設計自動化裝置示意圖 Figure 6 is a schematic diagram of an automated device for designing a fan reinforcement structure according to an embodiment of the present invention.
在風扇設計中,筆電底殼(D Cover)與風扇外殼(Fan Cover)的結構強度平衡為一重要的問題。常見的結構補強方式是在風扇外殼上增加風扇支撐肋(Rib),然而這樣的作法會使筆電底殼與風扇外殼的結構強度出現互制現象,如第1圖及第2圖所示。 In fan design, the structural strength balance between the laptop bottom case (D Cover) and the fan cover (Fan Cover) is an important issue. The common structural reinforcement method is to add fan support ribs (Rib) to the fan cover. However, this approach will cause the structural strength of the laptop bottom case and the fan cover to be mutually restrained, as shown in Figures 1 and 2.
第1圖為根據本發明一實施例的筆電風扇1的風扇外殼強度不足的示意圖。如第1圖所示,筆電風扇1包含筆電底殼D1、風扇外殼C1、風扇軸H1、風扇扇葉B1。風扇軸H1及風扇扇葉B1位於風扇外殼C1內,風扇外殼C1包含上方風扇外殼C11及C12,風扇支撐肋R11及R12分別位於風扇外殼C11及C12與筆電底殼D1之間,用於穩定筆電風扇1的結構。第1圖中所描繪的為風扇外殼C11及C12強度不足的情況,也就是在加強筆電底殼D1的結構後,導致風扇外殼C1結構的強度下降而無法滿足設計需求的情況。如第1圖所示,當筆電風扇1受到來自上方的一外力F1時,筆電底殼D1會變形如虛線D1’所示,而外力F1透過風扇支撐肋R11及R12施加至風扇外殼C11及C12,使風扇外殼C11及C12分別位移如虛線C11’及C12’所示。由於在此實施例中,風扇外殼C11及C12強度不足,故風扇外殼C11及C12在變形後可能在受到外力後過度地位移,導致於E1的位置產生撞擊,而對風扇扇葉B1造成損害。
FIG. 1 is a schematic diagram showing that the fan housing of a
第2圖為根據本發明一實施例的筆電風扇2的筆電底殼強度不足的示意圖。如第2圖所示,筆電風扇2包含筆電底殼D2、風扇外殼C2、風扇軸H2、風扇扇葉B2。風扇軸H2及風扇扇葉B2位於風扇外殼C2內,風扇外殼C2包含上方風扇外殼C21及C22,風扇支撐肋R21及R22分別位於風扇外殼C21及C22與筆電底殼D2之間,用於穩定筆電風扇2的結構。第2圖中所描繪的為筆電底殼D2強度不足
的情況,也就是在加強風扇外殼C2的結構後,導致筆電底殼D2結構的強度下降而無法滿足設計需求的情況。如第2圖所示,當筆電風扇2受到來自上方的一外力F2時,筆電底殼D2會變形如虛線D2’所示,而外力F2透過風扇支撐肋R21及R22施加至風扇外殼C21及C22,使風扇外殼C21及C22分別位移如虛線C21’及C22’所示。由於在此實施例中,筆電底殼D2的強度不足,故筆電底殼D2在變形後可能在受到外力後過度地位移,導致於E2的位置產生撞擊,而對風扇軸H2造成損害。
FIG. 2 is a schematic diagram showing that the laptop bottom case of the
無論是第1圖中風扇外殼強度不足的情況,或是第2圖中筆電底殼強度不足的情況,對於風扇都可能造成損害。故需調整風扇支撐肋設計以達到筆電底殼與風扇外殼的結構強度平衡。第3圖為根據本發明一實施例的風扇補強結構設計自動化方法3的流程圖。風扇補強結構設計自動化方法3包含步驟S301至S309,任何合理的技術變更或是步驟調整都屬於本發明所揭露的範疇。步驟S301至S309如下:步驟S301:定義風扇參數及範圍;步驟S302:挑選參數組合;步驟S303:最佳化設計;步驟S304:計算當前受力位移;步驟S305:是否符合設計需求?若是,執行步驟S308;若否,執行步驟S306;步驟S306:是否已嘗試所有參數?若是,執行步驟S307;若否,執行步驟S302;步驟S307:調整設計;結束方法3;
步驟S308:計算最大受力;步驟S309:輸出結果;結束方法3。
Whether the fan housing is not strong enough in FIG. 1 or the laptop bottom case is not strong enough in FIG. 2, the fan may be damaged. Therefore, the fan support rib design needs to be adjusted to achieve a structural strength balance between the laptop bottom case and the fan housing. FIG. 3 is a flow chart of a fan reinforcement structure
在步驟S301,定義風扇參數及其範圍以產生風扇參數資料集。風扇參數可包含風扇尺寸、風扇形狀、網孔高度、筆電底殼厚度、風扇外殼厚度及/或風扇支撐肋長度等參數,但不限於此。參數的範圍則是由使用者設定的可接受的參數範圍。在步驟S302,於步驟S301中所產生的風扇參數資料集中挑選一組或複數組參數組合,每一組參數組合可對應為一組風扇設計。 In step S301, fan parameters and their ranges are defined to generate a fan parameter data set. Fan parameters may include, but are not limited to, fan size, fan shape, mesh height, laptop bottom case thickness, fan outer case thickness and/or fan support rib length. The parameter range is an acceptable parameter range set by the user. In step S302, one or more parameter combinations are selected from the fan parameter data set generated in step S301, and each parameter combination may correspond to a fan design.
接著於步驟S303進行最佳化設計,最佳化設計為利用最佳化運算取得風扇支撐肋設計參數,步驟S303的細節可參考第4圖。第4圖為第3圖中步驟S303的流程圖。步驟S303包含步驟S401至S404,任何合理的技術變更或是步驟調整都屬於本發明所揭露的範疇。步驟S401至S404如下:步驟S401:計算受力位移;步驟S402:設定目標函數;步驟S403:選擇演算法;步驟S404:迭代求解。 Then, in step S303, an optimization design is performed. The optimization design is to obtain the fan support rib design parameters by using optimization calculation. The details of step S303 can be referred to Figure 4. Figure 4 is a flow chart of step S303 in Figure 3. Step S303 includes steps S401 to S404. Any reasonable technical changes or step adjustments belong to the scope disclosed by the present invention. Steps S401 to S404 are as follows: Step S401: Calculate force displacement; Step S402: Set the target function; Step S403: Select the algorithm; Step S404: Iterate and solve.
在步驟S401,根據於步驟S302挑選的一組或複數組參數組合,計算參數組合中的每一組參數組合所對應的風扇設計在特定外力下筆電底殼的受力位移及風扇外殼的受力位移,以得到筆電底殼與風扇外殼的受力位移組合,該特定外力可由使用者設定。計算方式可為透過訓練過的類神經網路模型來計算,但不限於此。舉例而言,若在步驟S302於風扇參數資料集中挑選了3組參數 組合,則在步驟S401,可根據該3組參數組合計算3組參數組合中的每一組參數組合所對應的風扇設計在特定外力下筆電底殼的受力位移及風扇外殼的受力位移,以得到3組筆電底殼與風扇外殼的受力位移組合。 In step S401, according to one or more parameter combinations selected in step S302, the force displacement of the laptop bottom case and the force displacement of the fan outer case of the fan design corresponding to each parameter combination in the parameter combination is calculated under a specific external force to obtain the force displacement combination of the laptop bottom case and the fan outer case. The specific external force can be set by the user. The calculation method can be calculated by a trained neural network model, but is not limited thereto. For example, if three parameter combinations are selected from the fan parameter data set in step S302, then in step S401, the force displacement of the laptop bottom case and the force displacement of the fan outer case of the fan design corresponding to each of the three parameter combinations under a specific external force can be calculated based on the three parameter combinations to obtain three force displacement combinations of the laptop bottom case and the fan outer case.
在步驟S402,設定最佳化運算所要使用的目標函數,在本實施例中,目標函數可為如下所示:F(ud,uc,td,tc)=1×(ud)2+1×(uc)2+P(ud,td)+P(uc,tc) In step S402, the target function to be used in the optimization operation is set. In this embodiment, the target function can be as follows: F(u d ,u c ,t d ,t c )=1×(u d ) 2 +1×(u c ) 2 +P(u d ,t d )+P(u c ,t c )
其中ud為筆電底殼受壓後的位移;uc為風扇外殼受壓後的位移;P(u,t)為筆電底殼位移或風扇外殼位移超過設計門檻的懲罰項;fp為懲罰係數;td為筆電底殼位移門檻;tc為風扇外殼位移門檻。在本實施例中,fp設定為100。舉例而言,若於步驟S401得到3組筆電底殼與風扇外殼的受力位移組合(u1d,u1c)、(u2d,u2c)、(u3d,u3c),其中u1d、u2d、u3d分別為對應於3組風扇設計筆電底殼受壓後的位移,u1c、u2c、u3c分別為對應於3組風扇設計的風扇外殼受壓後的位移。舉例而言,若(u1d,u1c)的值為(10,3),而筆電底殼位移門檻td為5;風扇外殼位移門檻tc為5,由於筆電底殼受壓後的位移u1d的值大於筆電底殼位移門檻td(10>5),故須計算懲罰項,筆電底殼位移超過設計門檻的懲罰項P(u,t)=fp×(u-t)=100×(u1d-td)=100×(10-5)=500。由於風扇外殼受壓後的位移u1c的值小於風扇外殼位移門檻tc(3<5),故風扇外殼位移超過設計門檻的懲罰項為零。而將u1d、u1c及其懲罰項代回目標函數可計算出F(ud,uc,td,tc)=1×(10)2+1×(3)2+500+0=609。故(u1d,u1c)的目標函數值為609,透過同樣的方式,可計算出每一組筆電底殼與風扇外殼的受力位移組合的目標函數值。本案的目標是找出使目標函數值 最小的解。在一些實施例中,目標函數可為:F(ud,uc,td,tc)=a×(ud)2+b×(uc)2+P(ud,td)+P(uc,tc),其中a及b為係數,且可適應性地調整為不同數值,在上述實施例中a與b皆為1,然而本發明不限於此。在其他實施例中,可定義不同的目標函數及不同的懲罰項計算方式,並不限於此。 Wherein, ud is the displacement of the laptop bottom case after being compressed; uc is the displacement of the fan housing after being compressed; P(u,t) is the penalty item when the laptop bottom case displacement or the fan housing displacement exceeds the design threshold; fp is the penalty coefficient; td is the laptop bottom case displacement threshold; tc is the fan housing displacement threshold. In this embodiment, fp is set to 100. For example, if in step S401, force-displacement combinations (u1 d , u1 c ), (u2 d , u2 c ), (u3 d , u3 c ) of three laptop bottom cases and fan outer cases are obtained, u1 d , u2 d , u3 d are respectively the displacements of the laptop bottom cases under pressure corresponding to the three fan designs, and u1 c , u2 c , u3 c are respectively the displacements of the fan outer cases under pressure corresponding to the three fan designs. For example, if the value of (u1 d ,u1 c ) is (10,3), and the laptop bottom case displacement threshold t d is 5; the fan casing displacement threshold t c is 5, since the value of the laptop bottom case displacement u1 d after being compressed is greater than the laptop bottom case displacement threshold t d (10>5), the penalty item must be calculated. The penalty item for the laptop bottom case displacement exceeding the design threshold is P(u,t)=f p ×(ut)=100×(u1 d -t d )=100×(10-5)=500. Since the displacement u1c of the fan housing after being compressed is less than the fan housing displacement threshold tc (3<5), the penalty term for the fan housing displacement exceeding the design threshold is zero. Substituting u1d , u1c and their penalty terms back into the objective function, we can calculate F( ud , uc , td , tc ) = 1×(10) 2 + 1×(3) 2 + 500+0 = 609. Therefore, the objective function value of ( u1d , u1c ) is 609. In the same way, the objective function value of each combination of force displacement of the laptop bottom case and the fan housing can be calculated. The goal of this case is to find a solution that minimizes the objective function value. In some embodiments, the target function may be: F(u d ,u c ,t d ,t c )=a×(u d ) 2 +b×(u c ) 2 +P(u d ,t d )+P(u c ,t c ), where a and b are coefficients and can be adaptively adjusted to different values. In the above embodiment, a and b are both 1, but the present invention is not limited thereto. In other embodiments, different target functions and different penalty term calculation methods may be defined, but are not limited thereto.
在步驟S403,選擇進行最佳化運算的演算法,演算法可為差分進化最佳化演算法(Differential Evolution,DE),差分進化最佳化演算法為一種全域最佳化的演算法,常用於非線性且多維函數問題。其原理是利用迭代改進候選解群體來進行運作以搜尋出最佳解。其優點在於結構簡單,但計算穩定且效率高。在其他實施例中,可選擇不同的演算法,並不限於此。 In step S403, an algorithm for performing optimization operations is selected. The algorithm may be a differential evolution optimization algorithm (DE). The differential evolution optimization algorithm is a global optimization algorithm, which is commonly used for nonlinear and multidimensional function problems. Its principle is to use iterative improvement of candidate solution groups to search for the best solution. Its advantages are simple structure, stable calculation and high efficiency. In other embodiments, different algorithms may be selected, but are not limited to this.
在設定好目標函數及確定演算法後,在步驟S404開始迭代求解,迭代求解係為在選定的演算法下,通過反覆計算,逐步地改善解以朝著最佳解的方向前進,每次迭代都會生成一個新的解,直到解滿足使用者設定的條件或是達到使用者設定的最大迭代次數後停止。透過此種方式可有效率地找到較佳的筆電底殼與風扇外殼的受力位移組合,而根據該筆電底殼與風扇外殼的受力位移組合,可得到其參數組合(即在步驟S401用來產生該筆電底殼與風扇外殼的受力位移組合的該組參數組合),該組參數組合包含支撐肋的設計參數(例如支撐肋長度)。也就是說,透過此種方式可得到支撐肋設計的最佳解,但不限於此。 After setting the objective function and determining the algorithm, iterative solution is started in step S404. Iterative solution is to improve the solution step by step through repeated calculations under the selected algorithm to move towards the optimal solution. Each iteration will generate a new solution until the solution meets the conditions set by the user or reaches the maximum number of iterations set by the user. In this way, a better force-displacement combination of the laptop bottom case and the fan housing can be found efficiently, and according to the force-displacement combination of the laptop bottom case and the fan housing, its parameter combination (i.e., the parameter combination used to generate the force-displacement combination of the laptop bottom case and the fan housing in step S401) can be obtained. The parameter combination includes the design parameters of the support rib (e.g., the support rib length). In other words, the best solution for supporting rib design can be obtained through this method, but it is not limited to this.
第5圖為根據本發明一實施例的最佳化求解過程示意圖。如第5圖所示,橫軸為筆電底殼的受力位移ud,縱軸則為風扇外殼的受力位移uc,而圖上的點所在位置的值則為根據該筆電底殼與風扇外殼的受力位移組合所得的目標函數值。圖中Gen 0-3分別代表不同次數的迭代,如第5圖所示,每一次迭代會於
三組筆電底殼與風扇外殼的受力位移組合及上一次迭代得到的解中選出一組當前最佳解(即目標函數值最小的解),並透過數次迭代逐漸朝最佳解前進,直到解滿足使用者設定的條件或是達到使用者設定的最大迭代次數後停止。以第5圖為例,使用者設定條件可為當筆電底殼的受力位移ud和風扇外殼的受力位移uc皆小於0.5時停止。第5圖中的點P1為第一次迭代Gen 0後得到的當前最佳解;點P2為第二次迭代Gen 1後得到的當前最佳解;點P3為第三次迭代Gen 2後得到的當前最佳解;點P4為第四次迭代Gen 3後得到的當前最佳解。如第5圖所示,在一次次迭代的過程中,結果會逐漸朝更佳的解前進,並形成第5圖中的最佳化路徑(Optimization path)。透過此種方式可有效率地找到較佳的筆電底殼與風扇外殼的受力位移組合,並根據該筆電底殼與風扇外殼的受力位移組合,可得到其參數組合,並根據該參數組合得到所包含參數的最佳解。
FIG. 5 is a schematic diagram of the optimization solution process according to an embodiment of the present invention. As shown in FIG. 5, the horizontal axis is the force displacement u d of the laptop bottom case, and the vertical axis is the force displacement u c of the fan housing, and the value of the point on the graph is the target function value obtained based on the force displacement combination of the laptop bottom case and the fan housing. In the figure, Gen 0-3 respectively represent different numbers of iterations. As shown in FIG. 5, each iteration will select a current best solution (i.e., the solution with the smallest target function value) from the three sets of force displacement combinations of the laptop bottom case and the fan housing and the solution obtained in the previous iteration, and gradually move towards the best solution through several iterations until the solution meets the conditions set by the user or stops after reaching the maximum number of iterations set by the user. Taking Figure 5 as an example, the user can set the condition to stop when the force displacement u d of the laptop bottom case and the force displacement u c of the fan housing are both less than 0.5. Point P1 in Figure 5 is the current best solution obtained after the
完成最佳化設計後,接著在步驟S304,根據在步驟S403找到的較佳的筆電底殼與風扇外殼的受力位移組合,得到其對應的當前參數組合,當前參數組合可包含支撐肋的設計參數。接著根據當前參數組合計算出此參數組合所對應的風扇設計在特定外力下筆電底殼的當前受力位移及風扇外殼的當前受力位移,計算方式可為透過訓練過的類神經網路模型來計算,但不限於此。接著於步驟S305判斷於步驟S304計算出的筆電底殼的當前受力位移及風扇外殼的當前受力位移是否符合設計需求。設計需求可以是,但不限於筆電底殼位移門檻td及風扇外殼位移門檻tc。 After the optimization design is completed, in step S304, the current parameter combination corresponding to the better force-displacement combination of the laptop bottom case and the fan outer case found in step S403 is obtained. The current parameter combination may include the design parameters of the support ribs. Then, the current force-displacement of the laptop bottom case and the current force-displacement of the fan outer case of the fan design corresponding to this parameter combination under a specific external force is calculated based on the current parameter combination. The calculation method can be calculated through a trained neural network model, but is not limited to this. Then, in step S305, it is determined whether the current force-displacement of the laptop bottom case and the current force-displacement of the fan outer case calculated in step S304 meet the design requirements. The design requirement may be, but is not limited to, a laptop bottom case displacement threshold t d and a fan housing displacement threshold t c .
若在步驟S305,判斷計算出的筆電底殼的當前受力位移及風扇外殼的當前受力位移不符合設計需求,則在步驟S306確認是否已嘗試過於步驟S301中所產生的風扇參數資料集中的所有參數。若所有參數都已被嘗試過,則在步
驟S307由使用者調整風扇設計或參數設定,並結束方法3。若尚有參數未被使用過,則執行步驟S302以於風扇參數資料集中重新挑選未曾被挑選的參數組合,並再次於後續步驟進行最佳化設計。
If in step S305, it is determined that the calculated current force displacement of the laptop bottom case and the current force displacement of the fan housing do not meet the design requirements, then in step S306, it is confirmed whether all parameters in the fan parameter data set generated in step S301 have been tried. If all parameters have been tried, in step S307, the user adjusts the fan design or parameter setting, and
若在步驟S305,判斷計算出的筆電底殼的當前受力位移及風扇外殼的當前受力位移符合設計需求,則在步驟S308計算當前參數組合所對應的風扇設計的筆電底殼及風扇外殼的最大受力,於步驟S309輸出結果,並結束方法3。透過風扇補強結構設計自動化方法3,可以讓風扇補強結構不被單一組設計參數所侷限,能夠更大範圍的取得最有效的補強方案,並快速地找到符合需求的風扇設計參數組合,達到筆電底殼與風扇外殼的結構強度平衡,同時有效減少開發時間與人力、耗能成本,並提高風扇設計的可靠性與穩定性。
If in step S305, it is determined that the calculated current force displacement of the laptop bottom case and the current force displacement of the fan housing meet the design requirements, then in step S308, the maximum force of the laptop bottom case and the fan housing of the fan design corresponding to the current parameter combination is calculated, and the result is output in step S309, and
第6圖為根據本發明一實施例的風扇補強結構設計自動化裝置6示意圖。風扇補強結構設計自動化裝置6可以包括中央處理器(central processing unit,CPU)61、圖形化使用者介面(graphical user interface,GUI)62、顯示裝置63、輸入裝置64及記憶體65。顯示裝置63、輸入裝置64和記憶體65耦接於中央處理器(CPU)61。使用者可以透過輸入裝置64與顯示裝置63上的圖形化使用者介面62進行互動並進行操作,例如定義風扇參數及範圍或設定目標函數。輸入裝置64可為滑鼠、觸控板或鍵盤。記憶體65可儲存指令,而CPU 61可執行記憶體65所儲存的指令以執行風扇補強結構設計自動化方法。
FIG. 6 is a schematic diagram of a fan reinforcement structure
透過本發明的風扇補強結構設計自動化方法及裝置,可以快速地找到符合需求的風扇設計參數組合,相較於傳統的人工分析方式能顯著提升風扇設計的效率和準確性,減少開發時間與人力、耗能成本,並提高風扇設計的可 靠性與穩定性。 Through the fan reinforcement structure design automation method and device of the present invention, it is possible to quickly find a fan design parameter combination that meets the requirements. Compared with the traditional manual analysis method, it can significantly improve the efficiency and accuracy of fan design, reduce development time and manpower and energy costs, and improve the reliability and stability of fan design.
以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above is only the preferred embodiment of the present invention. All equivalent changes and modifications made according to the scope of the patent application of the present invention shall fall within the scope of the present invention.
3:風扇補強結構設計自動化方法 3: Automated design method for fan reinforcement structure
S301-S309:步驟 S301-S309: Steps
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW113135707A TWI889549B (en) | 2024-09-20 | 2024-09-20 | Automated method for fan reinforced structure design and device thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW113135707A TWI889549B (en) | 2024-09-20 | 2024-09-20 | Automated method for fan reinforced structure design and device thereof |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| TWI889549B true TWI889549B (en) | 2025-07-01 |
Family
ID=97227909
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW113135707A TWI889549B (en) | 2024-09-20 | 2024-09-20 | Automated method for fan reinforced structure design and device thereof |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI889549B (en) |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWM443210U (en) * | 2012-08-08 | 2012-12-11 | Forcecon Technology Co Ltd | Channel post-like support structure of heat dissipation fan |
| CN105320822A (en) * | 2015-12-07 | 2016-02-10 | 天津工业大学 | Double-objective comprehensive optimization design method for LED radiator structure parameters |
| TW201925629A (en) * | 2017-11-23 | 2019-07-01 | 英業達股份有限公司 | Airflow generating apparatus |
| CN213089268U (en) * | 2020-09-10 | 2021-04-30 | 苏州圆锋电子有限公司 | Notebook louvre strutting arrangement for manufacturing |
| US11269388B2 (en) * | 2020-01-09 | 2022-03-08 | Lenovo (Singapore) Pte. Ltd. | Electronic apparatus with fan device |
| TW202210729A (en) * | 2020-09-01 | 2022-03-16 | 奇鋐科技股份有限公司 | Centrifugal fan frame body structure |
-
2024
- 2024-09-20 TW TW113135707A patent/TWI889549B/en active
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWM443210U (en) * | 2012-08-08 | 2012-12-11 | Forcecon Technology Co Ltd | Channel post-like support structure of heat dissipation fan |
| CN105320822A (en) * | 2015-12-07 | 2016-02-10 | 天津工业大学 | Double-objective comprehensive optimization design method for LED radiator structure parameters |
| TW201925629A (en) * | 2017-11-23 | 2019-07-01 | 英業達股份有限公司 | Airflow generating apparatus |
| US11269388B2 (en) * | 2020-01-09 | 2022-03-08 | Lenovo (Singapore) Pte. Ltd. | Electronic apparatus with fan device |
| TW202210729A (en) * | 2020-09-01 | 2022-03-16 | 奇鋐科技股份有限公司 | Centrifugal fan frame body structure |
| CN213089268U (en) * | 2020-09-10 | 2021-04-30 | 苏州圆锋电子有限公司 | Notebook louvre strutting arrangement for manufacturing |
Non-Patent Citations (2)
| Title |
|---|
| 網路文獻 彭聖翔及蔡傳暉 筆記型電腦機殼結構設計與強度分析 華梵大學機電工程學系暨研究所(https://me.hfu.edu.tw/main.php) 2015年 https://me.hfu.edu.tw/download.php?filename=793_e486ba7a.pdf&dir=archive&title=29%E7%AD%86%E8%A8%98%E5%9E%8B%E9%9B%BB%E8%85%A6%E6%A9%9F%E6%AE%BC%E7%B5%90%E6%A7%8B%E8%A8%AD%E8%A8%88%E8%88%87%E5%BC%B7%E5%BA%A6%E5%88%86+%E6%9E%90;網路文獻 吳培立及周榮華 筆記型電腦散熱系統之研究 臺灣博碩士論文知識加值系統(https://ndltd.ncl.edu.tw/) 2004年 https://hdl.handle.net/11296/pdz8qh;網路文獻 陳振秀及鄭良安 風扇框體結構強度模擬分析 臺灣博碩士論文知識加值系統(https://ndltd.ncl.edu.tw/) 2011年08月18日 https://hdl.handle.net/11296/84f8ck * |
| 網路文獻 陳振秀及鄭良安 風扇框體結構強度模擬分析 臺灣博碩士論文知識加值系統(https://ndltd.ncl.edu.tw/) 2011年08月18日 https://hdl.handle.net/11296/84f8ck |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN107844676B (en) | A structural topology optimization design method based on multiple performance constraints | |
| Koziel et al. | Multi-level CFD-based airfoil shape optimization with automated low-fidelity model selection | |
| US20210034801A1 (en) | Methods and systems for designing metamaterials | |
| CN112528411B (en) | A method for calculating the vibration response of geometrically nonlinear structural noise based on modal reduction | |
| US10896270B2 (en) | Method for solving multi-fidelity optimization problems | |
| CN110222356A (en) | Comprehensively consider plate/shell structure lightweight method of topological optimization design of stability and vibration characteristics | |
| CN106096134A (en) | A kind of Structural Metallic Fatigue fail-safe analysis based on damage mechanics and Optimization Design | |
| CN115544674B (en) | Intermediate case rapid modeling method based on Abaqus secondary development | |
| CN115577453A (en) | A method, device and system for aerodynamic design of a variable pitch propeller | |
| CN117813632A (en) | Deformation-based curve mesh generation | |
| CN116816509A (en) | Correction method and system for variable coefficient characteristic curve of gas turbine | |
| CN117932960A (en) | Agent model-based aero-engine overall performance multi-objective optimization method | |
| CN112926153B (en) | Continuous body structure fatigue topology optimization design method combining K-S function | |
| CN111079326A (en) | Two-dimensional anisotropic grid unit measurement tensor field smoothing method | |
| TWI889549B (en) | Automated method for fan reinforced structure design and device thereof | |
| CN113378314A (en) | Application method of TW-EI in design of finger part of mechanical clamping jaw | |
| Wu | Optimal hole shape for minimum stress concentration using parameterized geometry models | |
| Luo et al. | Enhancing aerodynamic and aeroelastic performance of axial compressor through multi-degree-of-freedom parameterization and data-driven multidisciplinary optimization | |
| Song et al. | Blade shape optimization of transonic axial flow fan in terms of sectional profiles and stacking line | |
| CN117574771B (en) | Component performance margin design method of self-adaptive variable cycle engine | |
| CN118350223A (en) | A data filling method combining particle swarm optimization and Gappy POD | |
| CN117421870A (en) | Method and device for optimizing design parameters of fuel system of gas turbine | |
| Luo et al. | Multidisciplinary Design Optimization With Multiple Degrees of Freedom for an Axial Compressor Based on Data-Driven | |
| CN116092603B (en) | Composite material damage analysis method, device, equipment and storage medium | |
| JP7138401B1 (en) | Design support device |