[go: up one dir, main page]

TWI889340B - Method and system for predicting nutritional risk of critically ill patients using machine learning - Google Patents

Method and system for predicting nutritional risk of critically ill patients using machine learning Download PDF

Info

Publication number
TWI889340B
TWI889340B TW113117895A TW113117895A TWI889340B TW I889340 B TWI889340 B TW I889340B TW 113117895 A TW113117895 A TW 113117895A TW 113117895 A TW113117895 A TW 113117895A TW I889340 B TWI889340 B TW I889340B
Authority
TW
Taiwan
Prior art keywords
data
nutritional risk
machine learning
nutritional
patients
Prior art date
Application number
TW113117895A
Other languages
Chinese (zh)
Other versions
TW202546844A (en
Inventor
謝惠敏
王振宇
陳昭秀
詹益瑞
許筱翎
許瑞愷
陳倫奇
白鎧誌
Original Assignee
臺中榮民總醫院
東海大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 臺中榮民總醫院, 東海大學 filed Critical 臺中榮民總醫院
Priority to TW113117895A priority Critical patent/TWI889340B/en
Application granted granted Critical
Publication of TWI889340B publication Critical patent/TWI889340B/en
Publication of TW202546844A publication Critical patent/TW202546844A/en

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本發明係揭露一種以機器學習預測重症患者營養風險之方法與其系統,其係藉由將複數病患之關鍵特徵資料以一機器學習模型進行演算分析,以產出一營養風險預測模型,而透過將待測病患之關鍵特徵資料輸入至該營養風險預測模型內進行演算分析,即可得到該待測病患之營養風險。據此,藉由本發明所揭以機器學習預測重症患者營養風險之方法與其系統係能夠定期或即時地快速且準確地評估患者之營養風險,以能達到提高照護品質、提升病患預後且降低照護負擔之功效。The present invention discloses a method and system for predicting the nutritional risk of critically ill patients by machine learning, which generates a nutritional risk prediction model by calculating and analyzing the key feature data of multiple patients with a machine learning model, and then inputs the key feature data of the patient to be tested into the nutritional risk prediction model for calculation and analysis to obtain the nutritional risk of the patient to be tested. Accordingly, the method and system for predicting the nutritional risk of critically ill patients by machine learning disclosed in the present invention can quickly and accurately evaluate the nutritional risk of patients on a regular or real-time basis, so as to achieve the effect of improving the quality of care, enhancing the prognosis of patients and reducing the burden of care.

Description

以機器學習預測重症患者營養風險之方法及其系統Method and system for predicting nutritional risk of critically ill patients using machine learning

本發明係有關於將機器學習技術應用於臨床輔助決策系統之方法,特別係指一種以機器學習預測重症患者營養風險之方法及其系統。The present invention relates to a method for applying machine learning technology to a clinical decision-making system, and more particularly to a method and system for predicting nutritional risks of critically ill patients using machine learning.

按,美國靜脈與腸道營養學會指南(American Society for Parenteral and Enteral Nutrition guideline)係建議以NRS2002、NUTRIC評分來定義高營養風險患者,但是歐洲靜脈與腸道營養學會指南(Europe Society for Parenteral and Enteral Nutrition guideline)則認為營養風險沒有黃金標準,凡入住加護病房(ICU)超過48小時都該是為高風險病人。According to the American Society for Parenteral and Enteral Nutrition guideline, NRS2002 and NUTRIC scores should be used to define patients with high nutritional risk. However, the European Society for Parenteral and Enteral Nutrition guideline believes that there is no gold standard for nutritional risk and that anyone who stays in the intensive care unit (ICU) for more than 48 hours should be considered a high-risk patient.

雖然研究指出對於營養風險高之患者來說,積極之營養支持策略係能夠有助於改善患者預後,然基於重症患者係具有高度異質性病患,而目前臨床上係未有提供可以普遍使用於所有重症患者之營養支持策略,僅能仰賴營養師進行營養風險評估;但囿於營養師人數及工作時數之限制,無法提供患者持續性之營養評估及照護。Although studies have shown that for patients with high nutritional risk, active nutritional support strategies can help improve patient prognosis, critically ill patients are highly heterogeneous and there is currently no nutritional support strategy that can be universally used for all critically ill patients in clinical practice. Nutritional risk assessment can only be performed by dietitians; however, due to the limited number of dietitians and working hours, it is impossible to provide patients with continuous nutritional assessment and care.

本發明之主要目的係在於提供一種以機器學習預測重症患者營養風險之方法及其系統,其係能夠透過人工智慧技術與臨床數據之結合,以能夠建構出一重症患者營養風險預測模組,藉此達到即時且正確地評估重症病患營養風險,讓營養師能快速進行適切營養介入,且能減輕醫護人員及營養師之人力負擔。The main purpose of the present invention is to provide a method and system for predicting the nutritional risk of critically ill patients by machine learning. The method can construct a nutritional risk prediction module for critically ill patients by combining artificial intelligence technology with clinical data, thereby achieving real-time and accurate assessment of the nutritional risk of critically ill patients, allowing nutritionists to quickly perform appropriate nutritional interventions, and reducing the manpower burden of medical staff and nutritionists.

是以,為能達成上述目的,本發明係揭露一種以機器學習預測重症患者營養風險之方法,其主要係藉由複數病患之關鍵特徵資料訓練一機器學習模型,以建構出一營養風險預測模組,並藉由該營養風險預測模組來評估一待測病患之營養風險。Therefore, in order to achieve the above-mentioned purpose, the present invention discloses a method for predicting the nutritional risk of critically ill patients by machine learning, which mainly trains a machine learning model by key feature data of multiple patients to construct a nutritional risk prediction module, and uses the nutritional risk prediction module to evaluate the nutritional risk of a patient to be tested.

其中,該病患係為入住加護病房之患者。Among them, the patient was admitted to the intensive care unit.

具體來說,以機器學習預測重症患者營養風險之方法係主要包含下列步驟:Specifically, the method of predicting nutritional risk of critically ill patients using machine learning mainly includes the following steps:

步驟a:取得複數病患之關鍵特徵資料及其營養風險,作為一資料集,其中,該關鍵特徵係包含有APACHE II評分、白蛋白、年紀、身體質量指數及血紅素。Step a: Obtain key characteristic data of multiple patients and their nutritional risks as a data set, wherein the key characteristics include APACHE II score, albumin, age, body mass index and hemoglobin.

步驟b:以步驟a中該資料集的之一部訓練一預定機器學習模型,以產生該營養風險預測模型;並得將步驟a中該資料集之另一部用於驗證該營養風險預測模型之預測準確度。Step b: training a predetermined machine learning model with a portion of the data set in step a to generate the nutritional risk prediction model; and using another portion of the data set in step a to verify the prediction accuracy of the nutritional risk prediction model.

步驟c:將一待測病患之一關鍵特徵資料輸入至該營養風險預測模型進行分析,得到該待測病患之營養風險。Step c: inputting a key characteristic data of a patient to be tested into the nutritional risk prediction model for analysis to obtain the nutritional risk of the patient to be tested.

其中,於本發明所揭以機器學習預測重症患者營養風險之方法中之分析、取得、訓練等動作係由一處理器所執行。Among them, the analysis, acquisition, training and other actions in the method of predicting nutritional risks of critically ill patients by machine learning disclosed in the present invention are executed by a processor.

其中,該機器學習模型係為一演算分析法,如XGBoost、CatBoost、LightGBM及邏輯回歸。Among them, the machine learning model is an algorithmic analysis method, such as XGBoost, CatBoost, LightGBM and logical regression.

其中,該關鍵資料特徵係來自於該病患進入加護病房前24小時至進入加護病房後48小時之間所得到者。Among them, the key data features are obtained from the patient 24 hours before entering the intensive care unit to 48 hours after entering the intensive care unit.

其中,該關鍵特徵係由該些病患於住院期間之特徵資料經該機器學習模型進行演算分析後所得者。而該特徵資料係包含有一體位檢測數據、一臨床檢測數據、一藥物使用數據、一生理參數數據、一重症指標數據;具體來說,該特徵資料係包含如年紀、血糖、血紅素、身體質量指數、APACHE II 評分、SOFA 評分、性別、用藥情形等特徵因子之對應資料。The key features are obtained by calculating and analyzing the characteristic data of the patients during hospitalization through the machine learning model. The characteristic data includes body position detection data, clinical detection data, drug use data, physiological parameter data, and critical illness index data; specifically, the characteristic data includes corresponding data of characteristic factors such as age, blood sugar, hemoglobin, body mass index, APACHE II score, SOFA score, gender, and medication status.

於本發明之另一實施例係揭露一種以機器學習預測重症患者營養風險之系統,其主要包含有一資料庫及一處理器,其中,該資料庫係用於存放複數病患之一特徵資料;該處理器係與該資料庫連接而能夠存取該資料庫中之資料並加以進行演算分析處理。Another embodiment of the present invention discloses a system for predicting nutritional risks of critically ill patients using machine learning, which mainly includes a database and a processor, wherein the database is used to store characteristic data of multiple patients; the processor is connected to the database and can access the data in the database and perform calculation and analysis processing on the data.

其中,該特徵資料之取得時間區間為該患者入院期間,而包含有一體位檢測數據、一臨床檢測數據、一藥物使用數據、一生理參數數據、一重症指標數據。The characteristic data is obtained during the patient's hospitalization period and includes a body position detection data, a clinical detection data, a drug use data, a physiological parameter data, and a critical illness indicator data.

具體來說,該處理器係包含有一資料接收模組及一營養風險預測模組;而該資料接收模組係接收一待測病患之關鍵特徵資料,而該關鍵特徵係如上所述而包含有APACHE II評分、白蛋白、年紀、身體質量指數及血紅素。Specifically, the processor includes a data receiving module and a nutritional risk prediction module; the data receiving module receives key characteristic data of a patient to be tested, and the key characteristics include APACHE II score, albumin, age, body mass index and hemoglobin as described above.

該營養風險預測模組係以上述營養風險預測模型分析該待測病患之該關鍵特徵資料,以產出該待測病患之營養風險。The nutritional risk prediction module analyzes the key characteristic data of the patient to be tested using the nutritional risk prediction model to output the nutritional risk of the patient to be tested.

其中,該資料接收模組係能夠自該資料庫中篩選出該待測病患之該關鍵特徵資料。The data receiving module is capable of screening out the key characteristic data of the patient to be tested from the database.

於本發明之另一實施例中,該處理器係更包含有一資料處理模組,其係將複數病患之關鍵特徵資料以一機器學習模型進行演算分析後,以得到該營養風險預測模型。In another embodiment of the present invention, the processor further includes a data processing module, which performs calculation and analysis on key feature data of multiple patients using a machine learning model to obtain the nutritional risk prediction model.

其中,該機器學習模型係為XGBoost、CatBoost、LightGBM或邏輯回歸。The machine learning model is XGBoost, CatBoost, LightGBM, or logical regression.

本發明係揭露一種以機器學習預測重症患者營養風險之方法與其系統,其係藉由將複數病患之關鍵特徵資料及其營養風險以一機器學習模型進行演算分析,以產出一營養風險預測模型,而透過將待測病患之關鍵特徵資料輸入至該營養風險預測模型內進行演算分析,即可得到該待測病患之營養風險。據此,藉由本發明所揭以機器學習預測重症患者營養風險之方法與其系統係能夠定期或即時地快速且準確地評估患者之營養風險,讓營養師能及時適切的介入,,以能達到提高照護品質、提升病患預後且降低照護負擔之功效。The present invention discloses a method and system for predicting the nutritional risk of critically ill patients by machine learning. The method uses a machine learning model to perform calculation and analysis on the key feature data of a plurality of patients and their nutritional risks to generate a nutritional risk prediction model. The key feature data of the patient to be tested is input into the nutritional risk prediction model for calculation and analysis to obtain the nutritional risk of the patient to be tested. Accordingly, the method and system disclosed in the present invention for predicting nutritional risk of critically ill patients by machine learning can quickly and accurately assess the nutritional risk of patients on a regular or real-time basis, allowing nutritionists to intervene appropriately and timely, thereby achieving the effects of improving the quality of care, enhancing patient prognosis, and reducing the burden of care.

以下將說明本發明中所使用之術語,若未列於以下說明者,將依據本發明所屬技術領域且具通常知識者所認可參考資料,如辭典、字典、文獻或周知常識進行解釋。The following will explain the terms used in the present invention. If they are not listed in the following description, they will be interpreted according to reference materials recognized by those with ordinary knowledge in the technical field to which the present invention belongs, such as dictionaries, literature or common knowledge.

術語「體位檢測數據」,係指與身高、體重或身體組成相關之資訊。The term "postural measurement data" refers to information related to height, weight, or body composition.

術語「臨床檢測數據」,係指醫生為診斷之目的而對病患進行檢查所得到之資訊,包含有生化數值、文字數據、影像數據等。The term "clinical test data" refers to the information obtained by doctors from examining patients for the purpose of diagnosis, including biochemical values, text data, image data, etc.

術語「藥物使用數據」,係為施加或投予於病患之藥物訊息,包含藥名、劑量、副作用等。The term "drug use data" refers to information about medications administered or administered to patients, including drug name, dosage, side effects, etc.

術語「生理參數數據」,係指為診斷或照護目的而以機器不定期或定期地測量患者所得之資訊,例如血壓、心跳、呼吸次數等。The term "physiological parameter data" refers to information obtained by measuring patients' blood pressure, heart rate, respiratory rate, etc. by machines at irregular or regular intervals for diagnosis or care purposes.

術語「重症指標數據」,係指為判斷病患嚴重程度之判斷結果,通常會需要綜合多項參數後經統計分析後才能得到。The term "critical illness index data" refers to the judgment result of the severity of the patient's illness, which usually requires a comprehensive statistical analysis of multiple parameters to obtain.

術語「關鍵特徵資料」,係指對應一關鍵特徵之數值、數據、檢測結果、分析結果或運算結果,而以本發明來說,該關鍵特徵係為APACHE II評分、白蛋白、年紀、身體質量指數及血紅素。The term "key characteristic data" refers to a value, data, test result, analysis result or calculation result corresponding to a key characteristic. In the present invention, the key characteristics are APACHE II score, albumin, age, body mass index and hemoglobin.

術語「資料庫」,係指一結構化之資訊或資料集合,會以一預定方式儲存於一設備或是一裝置中,如電腦系統、硬碟或是雲端空間等。The term "database" refers to a structured collection of information or data that is stored in a predetermined manner on a device or a device, such as a computer system, hard drive, or cloud space.

術語「處理器」,係指能夠用以一系列執行程式、指令或是對資料進行操作之硬體,如電腦、計算機處理設備等。The term "processor" refers to hardware that can be used to execute a series of programs, instructions, or operate on data, such as computers, computer processing equipment, etc.

術語「機器學習」,係會以一機器學習模型於資料中進行學習以及改善,尋找到模式與關連,並根據其學習及分析結果制訂出決策與預測。以本發明中所列舉之實例來說,該機器學習模型係包含有XGBoost (Extreme Gradient Boosting)、CatBoost (Categorical Boosting)、LightGBM(Light Gradient Boosting Machine)、邏輯回歸(Logistic Regression,LR)。The term "machine learning" refers to using a machine learning model to learn and improve in data, find patterns and relationships, and make decisions and predictions based on its learning and analysis results. For example, the machine learning model listed in the present invention includes XGBoost (Extreme Gradient Boosting), CatBoost (Categorical Boosting), LightGBM (Light Gradient Boosting Machine), and Logistic Regression (LR).

術語「加護病房(Intensive Care Unit)」,係為提供給被認定需要額外照護或是病況嚴重患者使用的病房,會依據科別而有隸屬於不同科室。The term "Intensive Care Unit" refers to a ward provided to patients who are deemed to require additional care or are in serious condition. It belongs to different departments depending on the department.

術語「APACHE II」,係為Acute Physiology and Chronic Health Evaluation II之縮寫,為一種疾病嚴重程度分級系統。具體來說,APACHE II係根據患者入住加護病房後之24小時內依據年紀及12個生理檢測變數,如體溫、心博數、平均動脈壓、呼吸速率、動脈血氧分壓、吸入氧氣分壓、血鈉、血鉀、血中肌酸酐、白血球計數、血小板數目、Glasgow昏迷指數等,進行分析而得到一0-71間之整數分數。The term "APACHE II" is the abbreviation of Acute Physiology and Chronic Health Evaluation II, which is a disease severity grading system. Specifically, APACHE II is based on the patient's age and 12 physiological test variables within 24 hours after admission to the intensive care unit, such as body temperature, heart rate, mean arterial pressure, respiratory rate, arterial oxygen partial pressure, inspired oxygen partial pressure, blood sodium, blood potassium, blood creatinine, white blood cell count, platelet count, Glasgow Coma Index, etc., and analyzes them to obtain an integer score between 0-71.

術語「SOFA」,係為相繼器官衰竭評估(Sequential Organ Failure Assessment)之縮寫,為用於評估加護病房中患者器官功能或衰竭率之系統;SOFA係依據呼吸、心血管、肝臟、凝血、腎臟、神經等六個系統進行評分並加總所得者。The term "SOFA" is an abbreviation for Sequential Organ Failure Assessment, which is a system used to assess the organ function or failure rate of patients in the intensive care unit. SOFA is based on the scores of six systems, including respiratory, cardiovascular, liver, coagulation, kidney, and nervous system, and the total score is added up.

術語「SHAP力值(SHAP force plot)」或「SHAP數值」,係指當一預定機器學習模型對一數據或是一組數據產生一個預測值,於數據或是該組數據中每個特徵所被分配到之數值。The term "SHAP force plot" or "SHAP value" refers to the value assigned to each feature in a data set or a set of data when a given machine learning model produces a prediction for the data set or a set of data.

於本發明之一實施例係揭露一種以機器學習預測重症患者營養風險之方法,其係包含有下列步驟:One embodiment of the present invention discloses a method for predicting nutritional risk of critically ill patients using machine learning, which comprises the following steps:

步驟a:取得複數病患之關鍵特徵資料及其營養風險,作為一資料集,其中,該關鍵特徵共有5個,包含有APACHE II評分、白蛋白、年紀、身體質量指數及血紅素;而營養風險係為至少一營養師依據該患者之狀態所進行評估之結果,包含有高營養風險、低營養風險。Step a: Obtain key characteristic data and nutritional risk of multiple patients as a data set, wherein the key characteristics include five, including APACHE II score, albumin, age, body mass index and hemoglobin; and nutritional risk is the result of at least one nutritionist's assessment based on the patient's condition, including high nutritional risk and low nutritional risk.

步驟b:將步驟a中之該資料集的一部作為一訓練資料,輸入至一機器學習模型進行演算訓練,以產生一營養風險預測模型;並得將該資料集之另一部份作為驗證資料,透過機器學習模型之演算分析,以驗證該營養風險預測模型之預測準確率。Step b: using a portion of the data set in step a as training data and inputting it into a machine learning model for computational training to generate a nutritional risk prediction model; and using another portion of the data set as validation data and performing computational analysis of the machine learning model to verify the prediction accuracy of the nutritional risk prediction model.

步驟c:取得一待測病患之一關鍵特徵資料,並將該關鍵特徵資料以該營養風險預測模型進行分析,以得到該待測病患之營養風險。Step c: obtaining a key characteristic data of a patient to be tested, and analyzing the key characteristic data using the nutritional risk prediction model to obtain the nutritional risk of the patient to be tested.

其中,各病患之關鍵特徵資料係來自於各病患入住加護病房前後一預定期間內之數據資料,舉例來說,該預定期間係為自該病患進入加護病房前24小時至進入加護病房後48小時。Among them, the key feature data of each patient comes from the data within a predetermined period before and after each patient is admitted to the ICU. For example, the predetermined period is from 24 hours before the patient enters the ICU to 48 hours after entering the ICU.

以本發明所揭以機器學習預測重症患者營養風險之方法所得到之該待測病患之營養風險係得為一文字、一數字、一圖形或是上述任二之組合等,舉例來說,該營養風險係為0-9之分數、高或低之文字、笑臉或哭臉之圖形。The nutritional risk of the patient to be tested obtained by the method of predicting the nutritional risk of critically ill patients by machine learning disclosed in the present invention can be a word, a number, a graphic, or a combination of any two of the above. For example, the nutritional risk is a score of 0-9, a word of high or low, or a graphic of a smiling face or a crying face.

於本發明之一實施例中,該機器學習模型係分別為本領域之通常知識者所通用之演算法,如XGBoost (Extreme Gradient Boosting)、CatBoost (Categorical Boosting)、LightGBM(Light Gradient Boosting Machine)、邏輯回歸(Logistic Regression,LR)。In one embodiment of the present invention, the machine learning model is an algorithm commonly used by those skilled in the art, such as XGBoost (Extreme Gradient Boosting), CatBoost (Categorical Boosting), LightGBM (Light Gradient Boosting Machine), and Logistic Regression (LR).

於本發明之實施例中,該病患係為入住加護病房者。In an embodiment of the present invention, the patient is admitted to an intensive care unit.

本發明之另一實施例中,該以機器學習預測重症患者營養風險之方法,其更包含有一前處理步驟,用於選定該關鍵特徵,而該前處理步驟係為:In another embodiment of the present invention, the method for predicting nutritional risk of critically ill patients by machine learning further comprises a pre-processing step for selecting the key feature, and the pre-processing step is:

(1)取得複數患者於入院期間之特徵資料及其營養風險,其中,該特徵資料係得區分為五大類數據:體位檢測數據、臨床檢測數據、藥物使用數據、生理參數數據、重症指標數據;具體來說,該特徵資料為包含有年紀、血糖、血紅素、身體質量指數、APACHE II 評分、SOFA 評分、性別、用藥情形等。如同前所述者,各患者之營養風險係由其營養師依據一判斷標準而得者。(1) Obtain the characteristic data and nutritional risk of multiple patients during hospitalization. The characteristic data can be divided into five categories: postural measurement data, clinical test data, drug use data, physiological parameter data, and critical illness index data. Specifically, the characteristic data includes age, blood sugar, hemoglobin, body mass index, APACHE II score, SOFA score, gender, medication status, etc. As mentioned above, the nutritional risk of each patient is obtained by his nutritionist based on a judgment standard.

(2)將該些特徵資料及營養風險資料之一部用以進行一機器學習模型之訓練,而能產生一營養風險預測模型雛形;其中,該機器學習模型係為一演算分析法,如XGBoost (Extreme Gradient Boosting)、CatBoost (Categorical Boosting)、LightGBM(Light Gradient Boosting Machine)、邏輯回歸(Logistic Regression,LR)或其他本發明所屬技術領域周知之演算法。(2) Using a portion of the feature data and the nutritional risk data to train a machine learning model to generate a nutritional risk prediction model prototype; wherein the machine learning model is an algorithmic analysis method, such as XGBoost (Extreme Gradient Boosting), CatBoost (Categorical Boosting), LightGBM (Light Gradient Boosting Machine), Logistic Regression (LR) or other algorithms well known in the art to which the present invention belongs.

(3)分析該營養風險預測模型雛形中之各特徵因子對於營養風險影響之重要性,以得到本發明所揭之該關鍵特徵。(3) Analyze the importance of each characteristic factor in the nutritional risk prediction model prototype in terms of its impact on nutritional risk, so as to obtain the key characteristics disclosed in the present invention.

其中,於上述前處理步驟(2)中,得將該些特徵資料及營養風險資料之另部用於驗證該營養風險預測模型雛形。In the above-mentioned pre-processing step (2), part of the characteristic data and the nutritional risk data may be used to verify the nutritional risk prediction model prototype.

又,於本發明之另一實施例中係揭露一種以機器學習預測重症患者營養風險之系統,其係用以執行或運作上述方法,以能夠得到一病患之營養風險評估結果。該以機器學習預測重症患者營養風險之系統主要係包含有一資料庫及一處理器,其中:In another embodiment of the present invention, a system for predicting the nutritional risk of critically ill patients by machine learning is disclosed, which is used to execute or operate the above method to obtain a nutritional risk assessment result of a patient. The system for predicting the nutritional risk of critically ill patients by machine learning mainly includes a database and a processor, wherein:

該資料庫係用以存放複數病患於住院期間之一特徵資料及其營養風險,其中,該特徵資料係包含有一體位檢測數據、一臨床檢測數據、一藥物使用數據、一生理參數數據、一重症指標數據。The database is used to store characteristic data and nutritional risks of multiple patients during hospitalization, wherein the characteristic data includes body position detection data, clinical detection data, drug use data, physiological parameter data, and critical illness indicator data.

該處理器係與該資料庫以有線或無線方式連接,以能夠自該資料庫中存取資料,並且加以進行分析處理,以產出病患之營養風險預測結果。具體來說,該處理器係具有一資料接收模組、一資料處理模組及一營養風險預測模組,其中:The processor is connected to the database in a wired or wireless manner to access data from the database and analyze and process the data to generate a nutritional risk prediction result of the patient. Specifically, the processor has a data receiving module, a data processing module and a nutritional risk prediction module, wherein:

該資料接收模組係得自一外部單元或是該資料庫獲取及/或篩選一待測病患之一關鍵特徵資料,其中,該關鍵特徵資料係為APACHE II評分、白蛋白含量、年紀、身體質量指數及血紅素;而該外部單元係得為一電腦、一平板、一醫療照護系統等。The data receiving module obtains and/or screens a key characteristic data of a patient to be tested from an external unit or the database, wherein the key characteristic data is APACHE II score, albumin content, age, body mass index and hemoglobin; and the external unit can be a computer, a tablet, a medical care system, etc.

該資料處理模組係自該資料庫中獲取複數病患之關鍵特徵資料及其營養風險,並以一機器學習模型進行一演算分析程序,產出一營養風險預測模型,其中,該機器學習模型係包含有XGBoost、CatBoost、LightGBM、邏輯回歸等;並該演算分析程序係包含有一訓練程序及一驗證程序,而該訓練程序及該驗證程序係分別以該些關鍵特徵資料及營養風險之至少一部作為處理對象。The data processing module obtains key feature data and nutritional risks of multiple patients from the database, and performs an algorithmic analysis program using a machine learning model to generate a nutritional risk prediction model, wherein the machine learning model includes XGBoost, CatBoost, LightGBM, logical regression, etc.; and the algorithmic analysis program includes a training program and a verification program, and the training program and the verification program respectively use at least part of the key feature data and nutritional risks as processing objects.

該營養風險預測模組係以該營養風險預測模型分析該待測病患之該關鍵特徵資料,以產出該待測病患之營養風險。The nutritional risk prediction module analyzes the key characteristic data of the patient to be tested using the nutritional risk prediction model to output the nutritional risk of the patient to be tested.

於本發明之次一實施例中,該關鍵特徵資料為一病患進入加護病房前24小時至進入加護病房後48小時之間所得到者。In the next embodiment of the present invention, the key feature data is obtained from 24 hours before a patient enters the intensive care unit to 48 hours after entering the intensive care unit.

以下,為能說明本發明之技術特徵及其功效,將以若干試驗結果進行詳細說明如後,其中,所有試驗皆獲得臺中榮民總醫院審查委員之核准。In order to illustrate the technical features and efficacy of the present invention, several test results are described in detail below. All tests have been approved by the review committee of Taichung Veterans General Hospital.

以下實例中之SHAP圖係用於說明營養風險與特徵間之關連性。The SHAP diagram in the following example is used to illustrate the relationship between nutritional risks and traits.

實例一:受試者數據Example 1: Subject data

受試者共為1994名患者,分別皆滿足年齡大於20歲,需要呼吸器支持之呼吸衰竭、接受完整營養風險評估之篩選標準,並排除入住加護病房(intensive care unit,ICU)少於3天或懷孕之患者,所有資料都已經經過去識別化處理,其中:A total of 1,994 patients were included in the study. All of them met the screening criteria of being over 20 years old, having respiratory failure requiring ventilator support, and receiving complete nutritional risk assessment. Patients who had been admitted to the intensive care unit (ICU) for less than 3 days or were pregnant were excluded. All data had been de-identified.

所有受試者之資料收集區間為進入加護病房前24小時至進入加護病房後48小時之間,所收集之資料包含有年齡、性別、人體測量數據(身高及體重)、生化數據(白蛋白、肝功能檢查、腎功能檢查等)、其他參數(急性生理及慢性健康評估(APACHE)II評分、SOFA評分、合併症)等。The data collection period for all subjects was between 24 hours before and 48 hours after entering the ICU. The collected data included age, gender, anthropometric data (height and weight), biochemical data (albumin, liver function tests, kidney function tests, etc.), and other parameters (Acute Physiology and Chronic Health Evaluation (APACHE) II score, SOFA score, comorbidities), etc.

經由6位資深營養師以共識決之方式判斷各受試者之營養風險;營養風險判斷結果為:具有高營養風險者之受試者為701位(35.16%),具有低營養風險者有1293位;其中,以Fleiss' kappa評估可信度(一致性)結果為0.64。The nutritional risk of each subject was determined by consensus decision by six experienced nutritionists. The results of the nutritional risk determination were as follows: 701 subjects (35.16%) had a high nutritional risk, and 1,293 subjects had a low nutritional risk. The reliability (consistency) evaluated by Fleiss' kappa was 0.64.

將上述受試者依據營養風險進行分組,並分析兩組間之資料,結果如表1所示,其中,兩組資料之分析比較係採用t檢定或卡方檢定;數值表示方法為平均值±標準差。The subjects were divided into groups according to nutritional risk, and the data between the two groups were analyzed. The results are shown in Table 1. The analysis and comparison of the two groups of data were performed using t-test or chi-square test; the values are expressed as mean ± standard deviation.

根據表1之內容可知,相較於低營養風險組之受試者,高營養風險組之受試者係具有下列特徵:高齡(72.83 ± 14.58 vs. 61.68 ± 15.87,p < 0.01)、較低體重(58.58 ± 12.58 vs. 64.44 ± 14.20,p < 0.01)、較低身體質量指數(22.72 ± 4.52 vs. 24.28 ± 4.79,p < 0.01)及較低白蛋白(2.58 ± 0.57 vs. 3.14 ± 0.64,p < 0.01)。According to Table 1, compared with the subjects in the low nutritional risk group, the subjects in the high nutritional risk group had the following characteristics: older age (72.83 ± 14.58 vs. 61.68 ± 15.87, p < 0.01), lower weight (58.58 ± 12.58 vs. 64.44 ± 14.20, p < 0.01), lower body mass index (22.72 ± 4.52 vs. 24.28 ± 4.79, p < 0.01) and lower albumin (2.58 ± 0.57 vs. 3.14 ± 0.64, p < 0.01).

再者,與低營養風險之受試者相比,高營養風險組之受試者的 APACHE II 和 SOFA 評分等疾病嚴重程度較高;並且,高營養風險組之臨床結果,如ICU 天數、呼吸器使用天數、住院天數和死亡率都較低營養風險組差。Furthermore, compared with the subjects with low nutritional risk, the subjects in the high nutritional risk group had higher disease severity, such as APACHE II and SOFA scores; and the clinical outcomes, such as ICU days, ventilator use days, hospital stay days, and mortality, were worse in the high nutritional risk group than in the low nutritional risk group.

表1:患者之人口統計特徵、嚴重程度評分、臨床預後 特徵因子 全部 (n = 1994) 高營養風險組(n = 701) 低營養風險組(n = 1293) P值 人口統計特徵 年紀(歲) 65.60±16.32 72.83±14.58 61.68±15.87 <0.001** 性別(女性) 706 (35.41%) 262 (37.38%) 444 (34.34%) 0.192 體重(公斤) 62.38±14.02 58.58±12.85 64.44±14.20 <0.001** 身體質量指數 23.73±4.75 22.72±4.52 24.28±4.79 <0.001** 白蛋白(mg/dl) 2.92±0.67 2.58±0.57 3.14±0.64 <0.001** 併發症 (n,%) 糖尿病 658 (33.0%) 256 (36.52%) 402 (31.09%) 0.016* 肝硬化 157 (7.87%) 70 (9.99%) 87 (6.73%) 0.013* 尿毒症 633 (31.75%) 287 (40.94%) 346 (26.76%) <0.001** 中樞神經系統疾病 407 (20.41%) 142 (20.26%) 265 (20.49%) 0.946 慢性肺部疾病 300 (15.05%) 126 (17.97%) 174 (13.46%) 0.009** 免疫功能低下疾病 175 (8.78%) 76 (10.84%) 99 (7.66%) 0.021* 任何惡性腫瘤,包括淋巴瘤和白血病,皮膚惡性腫瘤除外 661 (33.15%) 273 (38.94%) 388 (30.01%) <0.001** 充血性心臟衰竭 358 (17.95%) 143 (20.4%) 215 (16.63%) 0.042* 慢性肺部疾病 300 (15.05%) 126 (17.97%) 174 (13.46%) 0.009** 疾病嚴重程度評分 APACHE II評分 23.78±7.80 29.37±5.62 20.42±6.96 <0.001** SOFA評分 7.55±3.91 9.54±3.69 6.46±3.59 <0.001** 臨床預後 加護病房入住天數(天) 10.34±10.14 13.36±10.62 8.70±9.48 <0.001** 呼吸器使用天數(天) 5.27±10.97 7.49±12.43 4.06±9.89 <0.001** 住院天數(天) 5.27±10.97 7.49±12.43 4.06±9.89 <0.001** 醫院死亡率 27.01±27.34 31.42±25.69 24.62±27.91 <0.001** 加護病房(n,%) <0.001** 醫療 1432 (71.82%) 562 (80.17%) 870 (67.29%) 手術 562 (28.18%) 139 (19.83%) 423 (32.71%) Table 1: Patients’ demographic characteristics, severity scores, and clinical outcomes Characteristic Factors All (n = 1994) High nutritional risk group (n = 701) Low nutritional risk group (n = 1293) P-value Demographic characteristics Age (years) 65.60±16.32 72.83±14.58 61.68±15.87 <0.001** Gender (female) 706 (35.41%) 262 (37.38%) 444 (34.34%) 0.192 Weight (kg) 62.38±14.02 58.58±12.85 64.44±14.20 <0.001** Body mass index 23.73±4.75 22.72±4.52 24.28±4.79 <0.001** Albumin (mg/dl) 2.92±0.67 2.58±0.57 3.14±0.64 <0.001** Complications (n,%) diabetes 658 (33.0%) 256 (36.52%) 402 (31.09%) 0.016* Cirrhosis 157 (7.87%) 70 (9.99%) 87 (6.73%) 0.013* Uremia 633 (31.75%) 287 (40.94%) 346 (26.76%) <0.001** Central nervous system diseases 407 (20.41%) 142 (20.26%) 265 (20.49%) 0.946 Chronic lung disease 300 (15.05%) 126 (17.97%) 174 (13.46%) 0.009** Immunocompromising diseases 175 (8.78%) 76 (10.84%) 99 (7.66%) 0.021* Any malignant tumor, including lymphoma and leukemia, except malignant tumors of the skin 661 (33.15%) 273 (38.94%) 388 (30.01%) <0.001** Congestive heart failure 358 (17.95%) 143 (20.4%) 215 (16.63%) 0.042* Chronic lung disease 300 (15.05%) 126 (17.97%) 174 (13.46%) 0.009** Disease severity score APACHE II Scoring 23.78±7.80 29.37±5.62 20.42±6.96 <0.001** SOFA Rating 7.55±3.91 9.54±3.69 6.46±3.59 <0.001** Clinical prognosis Number of days in ICU (days) 10.34±10.14 13.36±10.62 8.70±9.48 <0.001** Respirator use days (days) 5.27±10.97 7.49±12.43 4.06±9.89 <0.001** Hospital stay (days) 5.27±10.97 7.49±12.43 4.06±9.89 <0.001** Hospital mortality rate 27.01±27.34 31.42±25.69 24.62±27.91 <0.001** Intensive care unit (n,%) <0.001** Medical 1432 (71.82%) 562 (80.17%) 870 (67.29%) Operation 562 (28.18%) 139 (19.83%) 423 (32.71%)

實例二:建構預測模型(一)Example 2: Constructing a prediction model (I)

如圖1所示,隨機選取實例一中80%之受試者及其特徵因子作為訓練資料集,並以使用5折交叉驗證;而其餘20%之受試者資料則用於作為測試資料集;其中,用以訓練預測模型之分類器包含有XGBoost、CatBOOST、LightGBM、Logistic Regression。As shown in Figure 1, 80% of the subjects and their feature factors in Example 1 were randomly selected as the training data set, and a 5-fold cross-validation was used; the remaining 20% of the subject data was used as the test data set; among them, the classifiers used to train the prediction model include XGBoost, CatBOOST, LightGBM, and Logistic Regression.

將訓練資料集分別以上述四種分類器及 5 折交叉驗證進行訓練,結果如表2所示;並將測試資料集分別投入上述四種分類器進行演算,測試結果係如圖2及圖3所示。The training datasets were trained with the above four classifiers and 5-fold cross validation, and the results are shown in Table 2. The test datasets were also put into the above four classifiers for calculation, and the test results are shown in Figures 2 and 3.

表2:將所有特徵以不同分類器訓練及測試預測模型之結果 分類器 精準率 敏感度 專一性 正確率 AUROC 5折交叉驗證(5-fold Cross-Validation) XGBoost 0.832 ± 0.039 0.915 ± 0.020 0.780 ± 0.044 0.868 ± 0.027 0.928 ± 0.023 Catboost 0.832 ± 0.039 0.916 ± 0.018 0.771 ± 0.059 0.865 ± 0.031 0.932 ± 0.024 LightGBM 0.803 ± 0.039 0.897 ± 0.022 0.780 ± 0.046 0.856 ± 0.027 0.925 ± 0.025 Logistic Regression 0.737 ± 0.069 0.872 ± 0.040 0.655 ± 0.069 0.796 ± 0.040 0.863 ± 0.035 測試 XGBoost 0.779 0.876 0.801 0.850 0.921 Catboost 0.803 0.888 0.837 0.869 0.926 LightGBM 0.784 0.876 0.823 0.857 0.923 Logistic Regression 0.713 0.849 0.688 0.792 0.852 Table 2: Results of training and testing the prediction model using all features with different classifiers Classifier Accuracy Sensitivity Specificity Accuracy AUROC 5-fold Cross-Validation XGBoost 0.832 ± 0.039 0.915 ± 0.020 0.780 ± 0.044 0.868 ± 0.027 0.928 ± 0.023 Catboost 0.832 ± 0.039 0.916 ± 0.018 0.771 ± 0.059 0.865 ± 0.031 0.932 ± 0.024 LightGBM 0.803 ± 0.039 0.897 ± 0.022 0.780 ± 0.046 0.856 ± 0.027 0.925 ± 0.025 Logistic Regression 0.737 ± 0.069 0.872 ± 0.040 0.655 ± 0.069 0.796 ± 0.040 0.863 ± 0.035 Test XGBoost 0.779 0.876 0.801 0.850 0.921 Catboost 0.803 0.888 0.837 0.869 0.926 LightGBM 0.784 0.876 0.823 0.857 0.923 Logistic Regression 0.713 0.849 0.688 0.792 0.852

由表2之結果可知,演算法:XGBoost 和Catboost之精準度、敏感性、專一性及正確率等數值相近,且相較其他演算法來得佳,尤其是在5折交叉驗證中之精確度、靈敏度和AUROC表現較佳;演算法:LightGBM之預測表現次之,而演算法Logistic回歸則是預測表現較差。From the results in Table 2, we can see that the accuracy, sensitivity, specificity and accuracy of algorithms: XGBoost and Catboost are similar and better than other algorithms, especially the accuracy, sensitivity and AUROC performance in 5-fold cross validation. Algorithm: LightGBM has the second best prediction performance, while algorithm Logistic regression has the worst prediction performance.

由圖2及圖3之結果可知,Catboost、XGBoost和LightGBM等模型之預測凈效益係高於Logistic Regression。From the results in Figures 2 and 3, we can see that the prediction net benefits of models such as Catboost, XGBoost, and LightGBM are higher than Logistic Regression.

實例三:特徵重要性分析Example 3: Feature Importance Analysis

由實例二之結果可知,Catboost、XGBoost和LightGBM之預測結果較佳,故於本實例中,將以Catboost為例,並以SHAP圖分析來自受試者之特徵因子對於營養風險影響之重要度,結果如圖4及圖5所示。From the results of Example 2, we can see that Catboost, XGBoost, and LightGBM have better prediction results. Therefore, in this example, Catboost will be used as an example, and the SHAP diagram will be used to analyze the importance of the characteristic factors from the subjects on the impact of nutritional risks. The results are shown in Figures 4 and 5.

由圖4之結果可知能夠影響營養風險之前20個特徵因子,並且可知前5特徵因子依序為 APACHE II評分、白蛋白、年齡、身體質量指數(BMI)及血紅素。又,由圖5之結果可知APACHE II評分及年齡係與營養風險呈正相關;而白蛋白、身體質量指數及血紅素係與營養風險呈負相關。From the results of Figure 4, we can see the top 20 characteristic factors that can affect nutritional risk, and the top 5 characteristic factors are APACHE II score, albumin, age, body mass index (BMI) and hemoglobin. In addition, from the results of Figure 5, we can see that APACHE II score and age are positively correlated with nutritional risk; while albumin, body mass index and hemoglobin are negatively correlated with nutritional risk.

實例四:建構預測模型(二)Example 4: Constructing a Prediction Model (II)

參考實例二之訓練及測試流程,並以實例三特徵重要性之結果,選定前五重要作為本實例中模型預測模型建構因子,意即於本實例中,訓練資料集及測試資料集中的特徵因子有5個,分別為APACHE II評分、白蛋白、年齡、身體質量指數(BMI)及血紅素。訓練及測試結果如下表3所示。Referring to the training and testing process of Example 2, and based on the results of feature importance in Example 3, the top five important factors were selected as the model prediction model construction factors in this example. That is, in this example, there are five feature factors in the training data set and the test data set, namely APACHE II score, albumin, age, body mass index (BMI) and hemoglobin. The training and testing results are shown in Table 3 below.

表3:將5個特徵因子以不同分類器訓練及測試預測模型之結果 分類器 精準率 敏感度 專一性 正確率 AUROC 5折交叉驗證(5-fold Cross-Validation) XGBoost 0.825 ± 0.037 0.910 ± 0.020 0.784 ± 0.057 0.866 ± 0.028 0.929 ± 0.020 Catboost 0.833 ± 0.043 0.916 ± 0.020 0.779 ± 0.061 0.868 ± 0.033 0.934 ± 0.018 LightGBM 0.796 ± 0.033 0.892 ± 0.020 0.779 ± 0.049 0.852 ± 0.022 0.923 ± 0.018 Logistic Regression 0.786 ± 0.053 0.892 ± 0.029 0.730 ± 0.047 0.835 ± 0.032 0.902 ± 0.030 測試 XGBoost 0.774 0.872 0.801 0.847 0.919 Catboost 0.803 0.891 0.809 0.862 0.923 LightGBM 0.777 0.872 0.816 0.852 0.913 Logistic Regression 0.720 0.837 0.766 0.812 0.890 Table 3: Results of training and testing the prediction model using five feature factors with different classifiers Classifier Accuracy Sensitivity Specificity Accuracy AUROC 5-fold Cross-Validation XGBoost 0.825 ± 0.037 0.910 ± 0.020 0.784 ± 0.057 0.866 ± 0.028 0.929 ± 0.020 Catboost 0.833 ± 0.043 0.916 ± 0.020 0.779 ± 0.061 0.868 ± 0.033 0.934 ± 0.018 LightGBM 0.796 ± 0.033 0.892 ± 0.020 0.779 ± 0.049 0.852 ± 0.022 0.923 ± 0.018 Logistic Regression 0.786 ± 0.053 0.892 ± 0.029 0.730 ± 0.047 0.835 ± 0.032 0.902 ± 0.030 Test XGBoost 0.774 0.872 0.801 0.847 0.919 Catboost 0.803 0.891 0.809 0.862 0.923 LightGBM 0.777 0.872 0.816 0.852 0.913 Logistic Regression 0.720 0.837 0.766 0.812 0.890

比較表2及表3之結果,以相同分類器來說,以5個特徵因子進行營養風險預測之表現係與以所有特徵因子進行營養風險預測之表現一樣佳;意即由本實例之結果係能證實下列5個特徵因子:APACHE II評分、白蛋白、年齡、身體質量指數(BMI)及血紅素係為本發明所揭預測患者營養風險模型中之關鍵特徵因子。Comparing the results of Table 2 and Table 3, for the same classifier, the performance of nutritional risk prediction using 5 characteristic factors is as good as the performance of nutritional risk prediction using all characteristic factors; that is, the results of this example can confirm that the following 5 characteristic factors: APACHE II score, albumin, age, body mass index (BMI) and hemoglobin are the key characteristic factors in the model for predicting patient nutritional risk disclosed in the present invention.

又,由表3中所示測試結果可知,以5個特徵因子所得之營養風險預測模型預測患者之營養風險的準確率為86.2%。Furthermore, from the test results shown in Table 3, it can be seen that the nutritional risk prediction model obtained by using 5 characteristic factors has an accuracy rate of 86.2% in predicting the nutritional risk of patients.

實例五:SHAP(Shapley additive explanations)分析Example 5: SHAP (Shapley additive explanations) analysis

藉由SHAP力圖(SHAP force plot)分析本發明所揭5個特徵:APACHE II評分、白蛋白含量、年紀、身體質量指數及血紅素分別對於預測模型之影響,結果如圖6至圖10所示,其中,各圖中每一個點代表1個受試者,當SHAP質超過0時,代表營養風險增加。The SHAP force plot was used to analyze the effects of the five characteristics disclosed in the present invention: APACHE II score, albumin content, age, body mass index and hemoglobin on the prediction model. The results are shown in Figures 6 to 10, where each point in each figure represents a subject. When the SHAP force plot exceeds 0, it means that the nutritional risk increases.

綜合圖6至圖10之結果可知年齡約70歲以下、APACHE II評分約為25以下時,預測受試者之營養風險較低;而當身體質量指數約小於20、白蛋白約小於3 mg/dl及血紅素低於約11 g/dl 時,預測受試者之營養風險為高。Combining the results of Figures 6 to 10, it can be seen that when the age is about 70 years old or below and the APACHE II score is about 25 or below, the nutritional risk of the subject is predicted to be low; and when the body mass index is about less than 20, the albumin is about less than 3 mg/dl, and the hemoglobin is less than about 11 g/dl, the nutritional risk of the subject is predicted to be high.

without

圖1係為實例二建構模型之流程圖。 圖2係為測試資料分別以不同演算法進行演算後所得之ROC曲線圖。 圖3係為測試資料分別以不同演算法進行分析後所得之決策曲線。 圖4係為特徵因子對於營養風險影響度進行排名之結果。 圖5係顯示特徵因子之預測影響,其中,紅色代表總SHAP值較高,對於預測影響較大;藍色代表總SHAP值較低,對於預測影響較小。 圖6係以SHAP力圖分析年齡對於預測營養風險影響之結果。 圖7係為以SHAP力圖分析APACHE II評分對於預測營養風險影響之結果。 圖8係為以SHAP力圖分析身體質量指數對於預測營養風險影響之結果。 圖9係為以SHAP力圖分析白蛋白對於預測營養風險影響之結果。 圖10係為以SHAP力圖分析血紅素對於預測營養風險影響之結果。 Figure 1 is a flowchart of the model construction in Example 2. Figure 2 is a ROC curve obtained after the test data is calculated using different algorithms. Figure 3 is a decision curve obtained after the test data is analyzed using different algorithms. Figure 4 is the result of ranking the influence of characteristic factors on nutritional risk. Figure 5 shows the predicted influence of characteristic factors, where red represents a higher total SHAP value and a greater influence on the prediction; blue represents a lower total SHAP value and a smaller influence on the prediction. Figure 6 is the result of using SHAP to analyze the influence of age on the prediction of nutritional risk. Figure 7 shows the results of using SHAP to analyze the impact of APACHE II score on predicting nutritional risk. Figure 8 shows the results of using SHAP to analyze the impact of body mass index on predicting nutritional risk. Figure 9 shows the results of using SHAP to analyze the impact of albumin on predicting nutritional risk. Figure 10 shows the results of using SHAP to analyze the impact of hemoglobin on predicting nutritional risk.

without

Claims (6)

一種以機器學習預測重症患者營養風險之方法,其係包含以一營養風險預測模型分析一待測病患之關鍵特徵資料,以得到該待測病患之營養風險;其中:該關鍵特徵係為APACHE II評分、白蛋白、年紀、身體質量指數及血紅素;該營養風險預測模型係由下列步驟所獲得者:步驟a:取得複數病患之關鍵特徵資料及其營養風險,作為一資料集;步驟b:將該資料集之至少一部作為一訓練資料,用以訓練一機器學習模型,以產生一營養風險預測模型,其中,該機器學習模型係選自由XGBoost (Extreme Gradient Boosting)、CatBoost (Categorical Boosting)、LightGBM(Light Gradient Boosting Machine)及邏輯回歸(Logistic Regression,LR)所組成之群;上述分析、取得、訓練之動作係由一處理器進行。A method for predicting nutritional risk of critically ill patients by machine learning, comprising analyzing key feature data of a patient to be tested by a nutritional risk prediction model to obtain the nutritional risk of the patient to be tested; wherein: the key features are APACHE II score, albumin, age, body mass index and hemoglobin; the nutritional risk prediction model is obtained by the following steps: step a: obtaining key feature data of a plurality of patients and their nutritional risk as a data set; step b: using at least a part of the data set as a training data to train a machine learning model to generate a nutritional risk prediction model, wherein the machine learning model is selected from XGBoost (Extreme Gradient Boosting), CatBoost (Categorical Boosting), LightGBM (Light Gradient Boosting Machine) and Logistic Regression (LR); the above analysis, acquisition and training operations are performed by a processor. 如請求項1所述以機器學習預測重症患者營養風險之方法,其中,該步驟b中係更包含有將該資料集之另一部分作為一測試資料,用以分析該營養風險預測模型之預測準確率。A method for predicting nutritional risk of critically ill patients by machine learning as described in claim 1, wherein step b further includes using another part of the data set as a test data to analyze the prediction accuracy of the nutritional risk prediction model. 如請求項1所述以機器學習預測重症患者營養風險之方法,其中,該病患係為入住加護病房之病患。A method for predicting nutritional risk of critically ill patients using machine learning as described in claim 1, wherein the patients are patients admitted to an intensive care unit. 如請求項1所述以機器學習預測重症患者營養風險之方法,其中,該關鍵特徵資料之收集時間區間係為該病患進入加護病房前24小時至進入加護病房後48小時之間。A method for predicting nutritional risk of critically ill patients using machine learning as described in claim 1, wherein the key feature data is collected during a time period from 24 hours before the patient enters the intensive care unit to 48 hours after the patient enters the intensive care unit. 一種以機器學習預測重症患者營養風險之系統,其係包含有:一資料庫,係收集複數病患於入院期間之特徵資料及其營養風險,其中,該特徵資料包含有一體位檢測數據、一臨床檢測數據、一藥物使用數據、一生理參數數據、一重症指標數據;一處理器,與該資料庫以有線或無線方式連接並得傳輸彼此間之資料,而具有一資料接收模組、一資料處理模組及一營養風險預測模組;其中:該資料接收模組係接收一待測病患之一關鍵特徵資料,而該關鍵特徵資料係為APACHE II評分、白蛋白、年紀、身體質量指數及血紅素;該資料處理模組係將複數病患之關鍵特徵資料及其營養風險以一機器學習模型進行演算分析後,產出該營養風險預測模型,其中,該機器學習模型該機器學習模型係選自由XGBoost (Extreme Gradient Boosting)、CatBoost (Categorical Boosting)、LightGBM(Light Gradient Boosting Machine)及邏輯回歸(Logistic Regression,LR)所組成之群;該營養風險預測模組係以該營養風險預測模型分析該待測病患之該關鍵特徵資料,以產出該待測病患之營養風險。A system for predicting the nutritional risk of critically ill patients by machine learning comprises: a database that collects characteristic data of a plurality of patients during hospitalization and their nutritional risk, wherein the characteristic data comprises a body position detection data, a clinical detection data, a drug use data, a physiological parameter data, and a critical disease index data; a processor that is connected to the database in a wired or wireless manner and can transmit data between each other, and has a data receiving module, a data processing module, and a nutritional risk prediction module; wherein: the data receiving module receives a key characteristic data of a patient to be tested, and the key characteristic data is APACHE II score, albumin, age, body mass index and hemoglobin; the data processing module uses a machine learning model to calculate and analyze the key feature data of multiple patients and their nutritional risks to generate the nutritional risk prediction model, wherein the machine learning model is selected from a group consisting of XGBoost (Extreme Gradient Boosting), CatBoost (Categorical Boosting), LightGBM (Light Gradient Boosting Machine) and Logistic Regression (LR); the nutritional risk prediction module uses the nutritional risk prediction model to analyze the key feature data of the patient to be tested to generate the nutritional risk of the patient to be tested. 如請求項5所述以機器學習預測重症患者營養風險之系統,其中,該資料接收模組係自該資料庫中篩選出該待測病患之該關鍵特徵資料。A system for predicting nutritional risk of critically ill patients using machine learning as described in claim 5, wherein the data receiving module selects the key feature data of the patient to be tested from the database.
TW113117895A 2024-05-15 2024-05-15 Method and system for predicting nutritional risk of critically ill patients using machine learning TWI889340B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW113117895A TWI889340B (en) 2024-05-15 2024-05-15 Method and system for predicting nutritional risk of critically ill patients using machine learning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW113117895A TWI889340B (en) 2024-05-15 2024-05-15 Method and system for predicting nutritional risk of critically ill patients using machine learning

Publications (2)

Publication Number Publication Date
TWI889340B true TWI889340B (en) 2025-07-01
TW202546844A TW202546844A (en) 2025-12-01

Family

ID=97228025

Family Applications (1)

Application Number Title Priority Date Filing Date
TW113117895A TWI889340B (en) 2024-05-15 2024-05-15 Method and system for predicting nutritional risk of critically ill patients using machine learning

Country Status (1)

Country Link
TW (1) TWI889340B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107705853A (en) * 2017-09-21 2018-02-16 北京康爱营养科技股份有限公司 Clinical nutrition risk screening method and system
US20220310235A1 (en) * 2021-03-26 2022-09-29 Vydiant, Inc Personalized health system, method and device having a nutrition function
TWM642885U (en) * 2022-09-12 2023-06-21 義大醫療財團法人義大醫院 Computing device for evaluating diet
CN117894432A (en) * 2023-12-27 2024-04-16 苏州健玺信息科技有限公司 A method and system for screening nutritional risk data based on NRS assessment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107705853A (en) * 2017-09-21 2018-02-16 北京康爱营养科技股份有限公司 Clinical nutrition risk screening method and system
US20220310235A1 (en) * 2021-03-26 2022-09-29 Vydiant, Inc Personalized health system, method and device having a nutrition function
TWM642885U (en) * 2022-09-12 2023-06-21 義大醫療財團法人義大醫院 Computing device for evaluating diet
CN117894432A (en) * 2023-12-27 2024-04-16 苏州健玺信息科技有限公司 A method and system for screening nutritional risk data based on NRS assessment

Similar Documents

Publication Publication Date Title
Pierce et al. Validation of a clinical decision rule to predict abuse in young children based on bruising characteristics
CN110051324B (en) Method and system for predicting death rate of acute respiratory distress syndrome
US20250134469A1 (en) Electrocardiogram reading system in which deep learning-based model and rule-based model are integrated
US20250132039A1 (en) Preeclampsia evolution prediction, method and system
TWI852579B (en) Establishing a system and method for extubation prediction using machine learning model
Park et al. Machine learning model of facial expression outperforms models using analgesia nociception index and vital signs to predict postoperative pain intensity: a pilot study
Liu et al. A multimodal dual-branch fusion network for fetal hypoxia detection
Lu et al. Comparison of machine learning and logistic regression models for predicting emergence delirium in elderly patients: A prospective study
TWI889340B (en) Method and system for predicting nutritional risk of critically ill patients using machine learning
CN119649972B (en) Clinical medicine research evaluation system and method based on AI
Derevitskii et al. Analysis course of the disease of type 2 diabetes patients using Markov chains and clustering methods.
Chang et al. Using machine learning algorithms in medication for cardiac arrest early warning system construction and forecasting
Wang et al. Method of non-invasive parameters for predicting the probability of early in-hospital death of patients in intensive care unit
Golovco et al. Acute kidney injury prediction with gradient boosting decision trees enriched with temporal features
TW202546844A (en) Methods and systems for predicting nutritional risks in critically ill patients using machine learning
López-Izquierdo et al. Utility of non-invasive monitoring of exhaled carbon dioxide and perfusion index in adult patients in the emergency department
Jin et al. Prediction indicators for acute exacerbations of chronic obstructive pulmonary disease by combining non-linear analyses and machine
JP7798342B2 (en) Clinical data classification method, clinical data classification device, and control program
Lin et al. A pretrain-finetune approach for improving model generalizability in outcome prediction of acute respiratory distress syndrome patients
AlSaad et al. Artificial intelligence models for predicting the mode of delivery in maternal care
Keles et al. The past, current, and future of neonatal intensive care units with artificial intelligence
He et al. Development and validation of an explainable model of brain injury in premature infants: A prospective cohort study
Umut et al. Prediction of sepsis disease by Artificial Neural Networks
Soni et al. Ensembled Deep Learning Technique for Cardiovascular Disease Detection: A CNN-GRU Approach
CN112820368A (en) Method, system, device and storage medium for constructing critical patient data set