TWI888681B - 機械學習裝置、及機械學習方法 - Google Patents
機械學習裝置、及機械學習方法 Download PDFInfo
- Publication number
- TWI888681B TWI888681B TW110145504A TW110145504A TWI888681B TW I888681 B TWI888681 B TW I888681B TW 110145504 A TW110145504 A TW 110145504A TW 110145504 A TW110145504 A TW 110145504A TW I888681 B TWI888681 B TW I888681B
- Authority
- TW
- Taiwan
- Prior art keywords
- inference
- learning
- unit
- data
- model
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/776—Validation; Performance evaluation
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/04—Programme control other than numerical control, i.e. in sequence controllers or logic controllers
- G05B19/042—Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/088—Non-supervised learning, e.g. competitive learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/09—Supervised learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/0985—Hyperparameter optimisation; Meta-learning; Learning-to-learn
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/7715—Feature extraction, e.g. by transforming the feature space, e.g. multi-dimensional scaling [MDS]; Mappings, e.g. subspace methods
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/87—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using selection of the recognition techniques, e.g. of a classifier in a multiple classifier system
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/048—Activation functions
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Software Systems (AREA)
- Computing Systems (AREA)
- Evolutionary Computation (AREA)
- Biophysics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Computational Linguistics (AREA)
- Mathematical Physics (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Databases & Information Systems (AREA)
- Medical Informatics (AREA)
- Multimedia (AREA)
- Automation & Control Theory (AREA)
- Image Analysis (AREA)
- Manipulator (AREA)
Abstract
減少用於學習的訓練資料的收集所花費的時間與勞務,即使是較少的訓練資料,也可以得到好的績效。
一種機械學習裝置,為機械學習裝置,具備:取得部,取得用於機械學習的訓練資料與推論用資料;學習部,依據前述訓練資料與複數組學習用參數來進行機械學習,來生成複數個學習完畢模型;模型評估部,進行前述複數個學習完畢模型的學習結果的優劣評估,並且顯示評估結果;模型選擇部,可以接受學習完畢模型的選擇;推論運算部,依據前述複數個學習完畢模型的至少一部分與前述推論用資料來進行推論計算處理,而生成推論結果候選;及推論決定部,輸出前述推論結果候選的全部或一部分或其組合。
Description
本發明是有關於一種機械學習裝置、及機械學習方法。
近年來,機械學習正積極地應用在各種領域中。在監督式學習的演算法中,使用訓練資料來進行學習而生成學習完畢模型(例如,分類問題中的分類器、類神經網路等),並且也利用已生成的學習完畢模型來推論未學習的事例。在此,可得到好的績效(performance)的學習完畢模型的生成是有困難點的。
作為1個解決方法,會有增加訓練資料的變化來進行學習的作法。例如,已提出有進行整體(ensemble)學習的技術,以檢測各種物體,前述整體學習是依據於使用複數個訓練資料而生成的複數個學習完畢模型。例如,參照專利文獻1。
先前技術文獻
專利文獻
專利文獻1:日本專利特開2020-77231號公報
發明概要
發明欲解決之課題
作為第2個解決方法,是花費較長的時間來設法順利地調整學習完畢模型中所包含的各種學習用參數(以下,也稱為「超參數(Hyper parameter)」)。
然而,有以下3個問題。
(1)增加訓練資料的變化來學習的方法有極限,即使增加變化也會有無法順利學習的情況,在大量的訓練資料的收集上會花費時間與勞務。
(2)難以進行學習完畢模型所包含的各種學習用參數(超參數)的調整,而會有即使花費時間在調整上,也無法得到好的績效的問題。
(3)在圖像辨識領域中,作為利用了藉由利用訓練圖像資料的學習而生成的學習完畢模型的推論結果,會產生未檢測到推論用圖像上所顯現的工件的問題,而在取出工件時產生遺漏問題,而會有生產效率降低的問題。
於是,所期望的是減少用於學習的訓練資料的收集所花費的時間與勞務,即使是較少的訓練資料,也可以得到好的績效。
用以解決課題之手段
本揭示之機械學習裝置的一態樣是一種機械學習裝置,具備:取得部,取得用於機械學習的訓練資料與推論用資料;學習部,依據前述訓練資料與複數組學習用參數來進行機械學習,來生成複數個學習完畢模型;模型評估部,進行前述複數個學習完畢模型的學習結果的優劣評估,並且顯示評估結果;模型選擇部,可以接受學習完畢模型的選擇;推論運算部,依據前述複數個學習完畢模型的至少一部分與前述推論用資料來進行推論計算處理,而生成推論結果候選;及推論決定部,輸出前述推論結果候選的全部或一部分或其組合。
本揭示之機械學習方法,是藉由電腦來實現的機械學習方法,具備:取得步驟,取得用於機械學習的訓練資料與推論用資料;學習步驟,依據前述訓練資料與複數組學習用參數來進行機械學習,來生成複數個學習完畢模型;模型評估步驟,進行前述複數個學習完畢模型的學習結果的優劣評估,並且顯示評估結果;模型選擇步驟,可以接受學習完畢模型的選擇;推論運算步驟,依據前述複數個學習完畢模型的至少一部分與前述推論用資料來進行推論計算處理,而生成推論結果候選;及推論決定步驟,輸出前述推論結果候選的全部或一部分或其組合。
發明效果
根據一態樣,可以減少用於學習的訓練資料的收集所花費的時間與勞務,即使是較少的訓練資料,也可以得到好的績效。
用以實施發明之形態
<一實施形態>
針對本實施形態的構成,使用圖式來詳細地說明。
圖1是顯示一實施形態之機器人系統1的構成的一例的圖。
如圖1所示,機器人系統1具有機械學習裝置10、機器人控制裝置20、機器人30、計測器40、複數個工件50、及容器60。
機械學習裝置10、機器人控制裝置20、機器人30、及計測器40亦可透過未圖示的連接介面來互相直接連接。另外,機械學習裝置10、機器人控制裝置20、機器人30、及計測器40亦可透過LAN(Local Area Network,區域網路)或網際網路等之未圖示的網路來相互連接。在此情況下,機械學習裝置10、機器人控制裝置20、機器人30、及計測器40具備用於藉由所述的連接來相互進行通訊的未圖示的通訊部。又,為了容易說明,圖1亦可分別獨立地描繪機械學習裝置10與機器人控制裝置20,此情況下的機械學習裝置10亦可藉由例如電腦來構成。並不限定於像這樣的構成,例如,機械學習裝置10亦可組裝於機器人控制裝置20的內部,而和機器人控制裝置20一體化。
<機器人控制裝置20>
機器人控制裝置20是用來控制機器人30的動作的對於所屬技術領域中具有通常知識者而言公知的裝置。機器人控制裝置20是例如從後述的機械學習裝置10,接收散裝的工件50當中藉由機械學習裝置10選擇的工件50的取出位置資訊。機器人控制裝置20是生成用於控制機器人30的動作的控制訊號,以將位於從機械學習裝置10接收的取出位置之工件50取出。並且,機器人控制裝置20是將已生成的控制訊號對機器人30輸出。又,機器人控制裝置20是將機器人30所進行的取出動作的執行結果輸出至機械學習裝置10。
圖2是顯示一實施形態之機器人控制裝置20的功能構成例的功能方塊圖。
機器人控制裝置20是對所屬技術領域中具有通常知識者而言為公知的電腦,且如圖2所示,具有控制部21。又,控制部21具有動作執行部210。
<控制部21>
控制部21對所屬技術領域中具有通常知識者而言為公知的控制部,具有CPU(Central Processing Unit,中央處理單元)、ROM(Read-Only Memory,唯讀記憶體)、RAM(Random Access Memory,隨機存取記憶體)、CMOS(Complementary Metal-Oxide-Semiconductor,互補式金屬氧化物半導體)記憶體等,這些是構成為可以透過匯流排而相互通訊。
CPU是對機器人控制裝置20進行整體控制的處理器。CPU是透過匯流排來讀出ROM所保存的系統程式及應用程式,並且依照系統程式及應用程式來控制整個機器人控制裝置20。藉此,如圖2所示,控制部21構成為實現動作執行部210的功能。在RAM中會保存暫時的計算資料或顯示資料等各種資料。又,CMOS記憶體是受到未圖示的電池備援,而構成為即使機器人控制裝置20的電源關閉仍可保持記憶狀態的非揮發性記憶體。
<動作執行部210>
動作執行部210是將後述的機器人30的取出手31控制成:依據後述的機械學習裝置10所輸出的取出位置的推論結果,藉由取出手31來取出工件50。並且,動作執行部210亦可依據例如來自設置於取出手31的感測器的訊號,將顯示取出手31所進行的工件50的取出是否已成功之資訊,作為取出動作的執行結果來反饋至機械學習裝置10。
另外,機器人控制裝置20亦可如後述地包含機械學習裝置10。
機器人30是依據機器人控制裝置20的控制而動作的機器人。機器人30具備:用於以鉛直方向的軸為中心來旋轉的基部、移動及旋轉的臂、及為了保持工件50而裝設於臂的取出手31。
具體而言,取出手31亦可設為可以逐一地保持工件50的任意的構成。例如,取出手31亦可設為具有吸附工件50的吸附式墊的構成。雖然亦可為像這樣地利用空氣的氣密性來吸附工件50的吸附式手,但是亦可為不要求空氣的氣密性之吸引力較強的吸引式手。又,取出手31亦可為具有將工件50夾入來保持的一對把持手指或3支以上的把持手指之把持式手的構成,亦可為具有複數個吸附墊的構成。或者,取出手31亦可設為具有如以磁力來保持鐵製等的工件50的磁性式手之構成。
又,當在取出手31例如為空氣吸附式手的情況下,亦可組裝有感測器,來檢測未保持與保持工件50時之手內部的空氣壓力的變化。又,當取出手31為把持式手的情況下,亦可組裝有接觸感測器或力感測器等來偵測工件保持的有無,亦可組裝有位置感測器來偵測進行動作的把持手指的位置。又,當取出手31為磁性手的情況下,亦可將永久磁鐵組裝於手內部,並且組裝偵測其位置的位置感測器。
機器人30是因應於機器人控制裝置20輸出的控制訊號,來驅動臂或取出手31,使取出手31移動至機械學習裝置10所選擇的取出位置,並且保持住散裝的工件50而從容器60取出。在此情況下,機器人控制裝置20的動作執行部210亦可依據來自已組裝於取出手31的感測器之訊號,將是否已成功取出工件50的資訊,作為取出動作的執行結果來自動地收集,亦可將已收集的執行結果反饋至機械學習裝置10。
另外,針對已取出的工件50的移載目的地則省略圖示。又,關於機器人30的具體構成,由於是所屬技術領域中具有通常知識者已經知道的,因此省略詳細的說明。
又,機械學習裝置10或機器人控制裝置20是藉由事先進行的校正(calibration),將用於控制機器人30的機械座標系統、及顯示工件50的取出位置之後述的計測器40的座標系統建立對應。
計測器40亦可構成為例如包含相機感測器等,並且拍攝下述圖像:將容器60內散裝的工件50投影到相對於計測器40的光軸而垂直的平面之二維圖像資料的RGB彩色圖像或灰階圖像、深度圖像等之可見光圖像。又,計測器40亦可構成為包含紅外線感測器來拍攝熱圖像,亦可構成為包含紫外線感測器來拍攝檢查物體表面的損傷或斑點等用的紫外線圖像。又,計測器40亦可構成為包含X光相機感測器來拍攝X光圖像,亦可構成為包含超音波感測器來拍攝超音波圖像。
另外,計測器40亦可為三維計測器,亦可構成為取得三維資訊(以下,也稱為「距離圖像」),前述三維資訊是將由相對於三維計測器的光軸而垂直的平面與容器60內散裝的工件50的表面的各點之間的距離換算後的值設為像素值。例如,如圖1所示,距離圖像上的工件50的點A的像素值,是由在計測器40的三維座標系統(X、Y、Z)中的Z軸方向上的計測器40與工件50的點A之間的距離(計測器40起算的高度)來換算的像素值。亦即,三維座標系統的Z軸方向是計測器40的光軸方向。又,計測器40亦可藉由例如立體相機、或固定在機器人30的指尖或移動裝置的1台相機、1台相機與雷射掃瞄器或音波感測器等之距離感測器的組合而構成,來取得在容器60內裝載的複數個工件50的三維點群資料。像這樣取得的三維點群資料可以在3D視圖之中顯示,前述3D視圖是可以從三維空間上的所有視點來確認的視圖,且三維點群資料是能夠以三維方式確認裝載於容器60的複數個工件50的重疊的狀態之離散化的資料。
工件50是在容器60內以包含散裝的狀態而雜亂地放置。工件50只要是可以用裝設於機器人30的臂的取出手31來保持的工件即可,其形狀等並無特別限定。
<機械學習裝置10>
圖3是顯示一實施形態之機械學習裝置10的功能構成例的功能方塊圖。
機械學習裝置10亦可為對所屬技術領域中具有通常知識者而言為公知的電腦,且如圖3所示,具有控制部11。又,控制部11具有取得部110、參數提取部111、學習部112、模型評估部113、模型選擇部114、推論運算部115、及推論決定部116。又,取得部110具有資料保存部1101。
<控制部11>
控制部11具有CPU、ROM、RAM、CMOS記憶體等,這些是構成為可以透過匯流排來相互通訊,且對所屬技術領域中具有通常知識者而言為公知的構成。
CPU是對機械學習裝置10進行整體控制的處理器。CPU是透過匯流排來讀出ROM所保存的系統程式及應用程式,並且依照系統程式及應用程式來控制整個機械學習裝置10。藉此,如圖3所示,控制部11構成為實現取得部110、參數提取部111、學習部112、模型評估部113、模型選擇部114、推論運算部115、及推論決定部116的功能。又,取得部110是構成為實現資料保存部1101的功能。在RAM中會保存暫時的計算資料或顯示資料等各種資料。又,CMOS記憶體是受到未圖示的電池備援,而構成為即使機械學習裝置10的電源關閉仍可保持記憶狀態的非揮發性記憶體。
<取得部110>
取得部110亦可構成為具有資料保存部1101,且構成為從雲端或終端裝置(edge device)上的資料庫70取得用於機械學習的訓練資料,並且保存到資料保存部1101。例如,取得部110是經由LAN等之網路而從雲端或終端裝置上的資料庫70,來取得HDD(Hard Disk Drive,硬式磁碟機)或USB(Universal Serial Bus,通用序列匯流排)記憶體等記錄媒體所記錄的訓練資料,並且複製而保存至機械學習裝置10的HDD或USB記憶體等記錄媒體(資料保存部1101)中。
又,取得部110亦可構成為從計測器40取得用於機械學習的推論用資料,並且保存至資料保存部1101。推論用資料亦可為圖像資料,亦可為作為三維計測資料的三維點群資料或距離圖像。
<參數提取部111>
參數提取部111亦可構成為從全部的超參數等之中提取重要的超參數等。
具體而言,參數提取部111可以定義並評估例如對於學習績效的貢獻度,而將貢獻度高的超參數等提取作為重要的超參數等。例如,損失函數是評估學習完畢模型的預測結果與教師資料的差的函數,由於損失越小能得到越好的績效,因此可以將損失函數中的超參數的貢獻度設定為比學習率或批次大小(batch size)等之超參數的貢獻度更高,而提取作為重要的超參數。
又,參數提取部111亦可設為調查各種超參數等的獨立性,並且將不互相相依之獨立的參數提取作為重要的超參數等。
參數提取部111亦可構成為對於藉由上述方法而賦與有貢獻度的複數個超參數,在進行機械學習時分階段地減少超參數。
具體而言,例如,在進行機械學習時,後述的模型評估部113是在線上評估學習完畢模型的優劣,當判斷為學習完畢模型所預測的輸出值或損失已幾乎收斂時,參數提取部111是判定為已發現學習率或學習回合(epoch)的最佳值,之後僅會著重於其餘的重要的超參數,而分階段地減少要調整的超參數的種類。
<學習部112>
學習部112亦可構成為依據取得部110所取得的訓練資料,來設定超參數等並進行機械學習,來生成複數個學習完畢模型。在此,學習部112亦可對於1組訓練資料,將複數組超參數等設定成複數次,來進行複數次機械學習,藉此生成複數個學習完畢模型。又,學習部112亦可對於複數組訓練資料的每一組,將複數組超參數等設定成複數次,來進行複數次機械學習,藉此生成複數個學習完畢模型。
在監督式學習的情況下,用於學習的訓練資料亦可藉由學習輸入資料與輸出資料(教師標籤資料)來構成。學習完畢模型亦可由從學習輸入資料到輸出資料(教師標籤資料)的映射函數來構成,超參數等是由映射函數所包含的各種參數來構成。又,學習完畢模型亦可藉由分類問題中的分類器(例如,SVM:Support Vector Machine,支援向量機)來構成,前述分類問題是從分類標籤(教師標籤資料)為已知的學習輸入資料來分類的分類問題,超參數等是藉由為了解開分類問題而定義之損失函數中的參數等而構成。或者,學習完畢模型亦可藉由從學習輸入資料算出輸出資料的預測值的類神經網路等所構成,超參數等是藉由類神經網路的層數或單元數、學習率、批次大小、學習回合等來構成。
在無監督學習的情況下,用於學習的訓練資料亦可藉由學習輸入資料來構成。學習完畢模型亦可藉由例如分類問題中的分類器(例如,k-means分群法)來構成,前述分類問題是從分類標籤為未知的學習輸入資料來分類的分類問題,超參數等是藉由為了解開分類問題而定義之損失函數中的參數等而構成。
當學習輸入資料為圖像資料的情況下,訓練資料構成為包含圖像資料、與該圖像資料上所顯現的工件的取出位置的位置教示資料(教師標籤資料),學習完畢模型亦可藉由CNN(Convolutional Neural Network,卷積神經網路)來構成。像這樣,CNN的構造亦可構成為包含例如三維(或二維)的Convolution(卷積)層、或保持資料的正規化的Batch Normalization(批次正規化)層、激勵函數ReLu層等。
當學習輸入資料為三維點群資料(或距離圖像資料)的情況下,訓練資料構成為包含三維點群資料(或距離圖像資料)上的工件的取出位置的位置教示資料(教師標籤資料),學習完畢模型亦可藉由CNN來構成。像這樣,CNN的構造亦可構成為包含例如三維(或二維)的Convolution(卷積)層、或保持資料的正規化的Batch Normalization(批次正規化)層、激勵函數ReLu層等。
當學習完畢模型具有前述CNN構造的情況下,學習部112可以將例如CNN的層數、單元數、Convolution(卷積)層的濾波器尺寸、學習率、批次大小、學習回合1次設定為預定的值,來作為1組超參數等,並且以1組訓練資料作為學習輸入資料來進行機械學習,而生成1個學習完畢模型(以下,也稱為「學習完畢模型M1」),即擅長圖像上的宏觀性的特徵(例如,更大的平面)的特定之學習完畢模型M1。
具體而言,例如,當訓練資料包含圖像資料與顯現於圖像資料上的工件的取出位置的位置教示資料的情況下,學習部112可以將1組圖像資料代入於學習完畢模型即CNN,藉由CNN來計算工件的取出位置的預測值並輸出。學習部112能夠利用誤差反向傳播法(Backpropagation)來使已輸出的工件的取出位置的預測值與教師標籤資料即位置教示資料的差逐漸地變小,進行機械學習並生成1個可以輸出接近於位置教示資料的預測值的學習完畢模型。
又,學習部112可以對於複數組訓練資料的每一組,將複數組超參數等設定成複數次,來進行複數次如前述的機械學習,藉此生成複數個學習完畢模型。由於所利用的複數組訓練資料是互相不相依的獨立的資料,且複數組超參數等為互相不相依的獨立的資料,因此學習部112在進行複數次如前述的機械學習時,可以並列地進行而縮短總計的學習時間。
當學習完畢模型具有前述CNN構造的情況下,學習部112可以將例如CNN的層數、單元數、Convolution(卷積)層的濾波器尺寸、學習率、批次大小、學習回合再1次設定為和學習完畢模型M1時不同的值,來作為另1組超參數等,並且以1組訓練資料作為學習輸入資料來再1次進行機械學習,而生成另1個學習完畢模型(以下,也稱為「學習完畢模型M2」),即擅長圖像上的微觀性的特徵(例如,可顯示材質之工件的質地)的特定之學習完畢模型M2。
可以綜合地利用像這樣利用各自設定的複數組有偏差的超參數而生成的複數個有偏差的學習完畢模型M1與M2,例如,以一面將圖像上的較大的平面的中心推定為工件的取出位置,一面也同時推定工件的材質的方式,來得到綜合上較好的績效。
學習部112亦可構成為具有GPU(Graphics Processing Unit,圖形處理單元)與HDD或SSD(Solid State Drive,固態硬碟)等記錄媒體,將訓練資料與學習完畢模型導入至GPU,並且高速地進行機械學習的運算(例如,前述的誤差反向傳播演算等),來生成複數個學習完畢模型並保存於HDD或SSD等記錄媒體。
<模型評估部113>
模型評估部113亦可構成為進行學習部112所生成的複數個學習完畢模型的學習結果的優劣評估,並且顯示評估結果。
具體而言,模型評估部113亦可將例如Average Precision(平均精確度,以下也稱為「AP」)定義為評估函數,並且對未使用於學習的測試資料算出AP,將具有超過事先決定的閾值的AP之學習完畢模型的學習結果評估為「佳」,並且將AP的算出值記錄為學習完畢模型的評估值。
模型評估部113亦可構成為:在作為機械學習裝置10所包含的顯示部(未圖示)的螢幕或平板電腦等,顯示對於複數個學習完畢模型的上述評估結果,亦即「佳」或「不佳」以及AP等的評估值,來提示給使用者。另外,模型評估部113亦可以數值方式來顯示評估值,亦可以圖式方式來顯示評估值。
又,模型評估部113亦可如前述地構成為依據機器人控制裝置20的動作執行部210所進行之工件50的取出動作是否成功的結果資訊,來評估學習部112所生成的複數個學習完畢模型的優劣。例如,模型評估部113亦可設為:利用從動作執行部210收集到的顯示取出動作的成功與否的結果資訊,將預測了取出成功率較高的推論結果候選的學習完畢模型評估為「佳」,將預測了成功率較低的推論結果候選的學習完畢模型評估為「不佳」。此外,模型評估部113亦可設為和取出成功率的值成比例地來賦與顯示學習完畢模型的優劣之程度的評估值。
<模型選擇部114>
模型選擇部114亦可構成為接受學習完畢模型的選擇。
例如,模型選擇部114亦可構成為透過作為機械學習裝置10所包含的輸入部(未圖示)的鍵盤或滑鼠、或者觸控面板,接受使用者從複數個學習完畢模型選擇的學習完畢模型並記錄。模型選擇部114亦可接受1個學習完畢模型的選擇,亦可接受2個以上的複數個學習完畢模型的選擇。
又,使用者亦可確認上述顯示部所顯示的模型評估部113之複數個學習完畢模型的評估結果,藉此,當模型選擇部114透過機械學習裝置10的輸入部(未圖示)而接受了得到「佳」的較高評估值的1個以上的學習完畢模型的選擇之情況下,接受包含已選擇的1個以上的學習完畢模型的選擇結果並記錄。
模型選擇部114亦可構成為依據模型評估部113所算出的評估結果,從複數個學習完畢模型中自動地選擇至少1個。
例如,模型選擇部114亦可從模型評估部113評估為「佳」的複數個學習完畢模型之中,自動地選擇已得到最高評估值的學習完畢模型,亦可自動地選擇評估值超過事先指定的閾值之全部的學習完畢模型。
又,模型選擇部114亦可構成為依據顯示上述機器人控制裝置20的動作執行部210所進行的工件50的取出動作是否成功的結果資訊,從學習部112所生成的複數個學習完畢模型中選擇至少1個。例如,模型選擇部114亦可依據上述取出成功率,選擇已得到最高成功率的學習完畢模型並在下次使用,亦可因應於需要按照成功率較高的順序來選擇複數個學習完畢模型並一邊切換一邊使用。
<推論運算部115>
推論運算部115亦可構成為依據取得部110所取得的推論用資料、以及學習部112所生成的複數個學習完畢模型的至少一部分,來進行推論計算處理,並且生成推論結果候選。
例如,針對下述情況來說明:訓練資料是由對複數個工件50的存在區域拍攝的圖像資料、以及該圖像資料上所顯現的工件的取出位置之位置教示資料所構成,學習部112是使用像這樣的訓練資料來進行機械學習,並且生成具有上述CNN構造的學習完畢模型。在此情況下,推論運算部115可以將推論用圖像資料作為輸入資料而代入至學習完畢模型即CNN,算出推論用圖像上所顯現的工件50的取出位置的預測位置清單,並且輸出作為推論結果候選。在使用複數個學習完畢模型,例如m個學習完畢模型CNN1~CNNm來進行推論計算處理的情況下,推論運算部115可以生成推論用圖像上所顯現的工件50的取出位置的m個預測位置清單1~m(m為1以上的整數)。推論運算部115是構成為包含資料保存部(未圖示),亦可構成為保存已算出的推論結果候選即工件50的取出位置的m個預測位置清單1~m。
另外,亦可構成為:模型評估部113利用推論運算部115的推論結果候選,來評估學習部112所生成的複數個學習完畢模型的優劣,模型選擇部114是從已評估的複數個學習完畢模型之中,選擇至少1個學習完畢模型。
具體而言,例如,在從已對上述複數個工件50的存在區域進行拍攝的推論用圖像資料中,藉由推論計算處理來預測圖像上所顯現的工件50的取出位置之情況下,推論運算部115是算出推論用圖像上所顯現的工件50的取出位置的預測位置清單,並且輸出作為推論結果候選。在使用複數個學習完畢模型,例如CNN1~CNNm來進行推論計算處理的情況下,推論運算部115是生成並輸出m個預測位置清單1~m。
模型評估部113亦可從這些預測位置清單1~m之中,對於與取出位置的候選數量較多的清單相對應的學習完畢模型賦與較高的評估值而評估為「佳」,對於與取出位置的候選數量較少的清單相對應的學習完畢模型賦與較低的評估值而評估為「不佳」。
模型選擇部114雖然亦可從這些預測位置清單1~m之中,選擇與取出位置的候選數量最多的清單相對應的學習完畢模型,但是亦可以達到事先指定的總數的方式,依候選數較多的順序來只選擇需要的與複數個清單相對應的複數個學習完畢模型。藉此,機械學習裝置10可以對於1次拍攝所拍到的1張推論用圖像,預測更多的取出位置候選,而可以藉由1次的取出動作來取出更多的工件50,並可以提升取出工件50的效率。
推論運算部115亦可構成為利用模型評估部113評估為「佳」的學習完畢模型,來代入推論用資料並進行推論計算處理,來生成推論結果候選。
藉由如此進行,由於機械學習裝置10即使利用無法順利學習而生成之「不佳」的學習完畢模型來進行推論計算處理,也無法得到好的推論結果候選,因此可以消除像這樣的無謂的推論計算處理時間,而提升推論計算處理的效率。
<推論決定部116>
推論決定部116亦可構成為從推論運算部115所算出的推論結果候選中輸出其全部或一部分或其組合。
例如,當推論運算部115生成上述推論用圖像上的工件50的取出位置的預測位置清單1~m來作為推論結果候選的情況下,推論決定部116亦可組合m個預測位置清單1~m之全部清單所包含的預測位置的資訊,來生成為1個位置清單100並輸出。又,推論決定部116亦可組合其一部分的複數個清單,例如預測位置清單1與預測位置清單3所包含的預測位置的資訊,來生成為1個位置清單100並輸出。又,推論決定部116亦可將預測位置的數量最多的清單(例如,預測位置清單2)輸出為1個位置清單100。
藉此,機械學習裝置10可以對於1次計測中所取得的1張推論用圖像,將有偏差的複數個學習完畢模型(CNN1~CNNm)所預測的預測位置清單1~m組合,藉此藉由1次計測來輸出更多的取出位置候選,變得可以藉由1次取出動作來取出更多的工件50,而可以提升取出工件50的效率。
機械學習裝置10即使是在超參數等的數量過多而無法順利地調整的情況下,仍然可以使用複數組超參數等來進行複數次機械學習,並且利用已生成的複數個學習完畢模型來得到整體上良好的績效。
列舉一個例子來針對使用機械學習來實現以下任務的應用程式進行描述:利用對位於容器60內的複數個工件50的存在區域進行拍攝的圖像或已計測的三維計測資料,來連續地取出複數個工件50。會有下述任務:教示具有複雜形狀的工件50上的複數個位置處的取出位置,例如,使用教示了A種的工件50上的取出位置A1、A2、A3等的訓練資料,來學習並推論A種的工件50的取出位置。又,也有下述任務:在多種類的工件混合存在的狀況之中教示各種工件50的取出位置,例如,使用教示了B種的工件50上的取出位置B1、C種的工件50上的取出位置C1、D種的工件50上的取出位置D1、D2等的訓練資料,來學習並推論各個種類的工件50的取出位置。
在這些複雜的任務中,即使再怎麼調整數量眾多的超參數等並學習,由於在已生成的學習完畢模型中存在有偏差,因此藉由1個學習完畢模型難以得到整體上良好的績效。例如,雖然可以使用1個學習完畢模型來順利地推論並預測A種的工件50上的取出位置A1,但是會有無法順利地推論並預測A種的工件50上的取出位置A2之情況。又,雖然可以使用1個學習完畢模型來順利地推論並預測B種的工件50上的取出位置B1,但是會有無法順利地推論並預測C種的工件50上的取出位置C1之情況。
若依據利用像這樣有偏差的1個學習完畢模型而推論的推論結果來取出工件50,則會無法將容器60內的工件50全部取出,而產生無法順利推論並預測的一部分的工件50的遺漏,使得生產效率降低。
在此,說明順利地利用已生成之有偏差的複數個學習完畢模型(例如CNN1~CNNm)來得到整體上良好的績效的方法。
機械學習裝置10是利用複數組超參數等來進行複數次學習,藉此生成例如擅長B種的工件50上的取出位置B1與C種的工件50上的取出位置C1的推論預測,但是不擅長其他種類的工件50上的取出位置的推論預測之學習完畢模型CNN1,並且也生成雖然擅長D種的工件50上的取出位置D1、D2的推論預測,但是不擅長其他種類的工件50上的取出位置的推論預測之學習完畢模型CNN2。藉此,機械學習裝置10藉由對於已對B、C、D三種工件50混合存在的容器60的內部進行拍攝的1個推論用圖像資料,將學習完畢模型CNN1與學習完畢模型CNN2分別推論並預測的取出位置資訊組合,可以得到對B~D種全部的工件50的取出位置B1~D2全部都預測的推論結果。藉此,機械學習裝置10可以改善未檢測到或遺漏一部分的工件50的問題,而得到整體上良好的績效。
又,若一直將工件50取出,則會有容器60內的工件50減少,並且在例如已拍攝的圖像上變得沒有D種的工件50的情況。因應於像這樣的實際狀況,機械學習裝置10亦可選擇並切換到擅長B種與C種的工件的取出位置的推論預測之學習完畢模型CNN1來推論。
亦可構成為在推論決定部116已無輸出時,模型選擇部114從複數個學習完畢模型中重新選擇至少1個學習完畢模型,推論運算部115是依據新選擇的學習完畢模型來進行推論計算處理,推論決定部116是輸出此新的推論結果候選。
藉由如此進行,即使在上述預測位置清單中連1個取出位置的預測資訊都沒有的情況下,機械學習裝置10仍然可以重新選擇學習完畢模型,並且到已推論預測的新的取出位置進行取出,來實現連續的取出動作。藉此,機械學習裝置10可以防止手31的工件50的取出動作之運作停止,來提升生產線的生產效率。
<學習階段中的機械學習裝置10的機械學習處理>
接著,說明學習階段中的本實施形態之機械學習裝置10的機械學習處理的動作。
圖4是說明學習階段中的機械學習裝置10的機械學習處理之流程圖。
另外,雖然圖4的流程是例示批次學習,但亦可取代於批次學習而置換為線上學習或小批次(mini batch)學習。
在步驟S11中,取得部110是從資料庫70取得訓練資料。
在步驟S12中,參數提取部111是從全部的超參數等之中提取出重要的超參數。在此雖然說明為提取出重要的超參數,但是並不限定於此。例如,當超參數的總數較少的情況下,亦可不進行步驟S12之重要的超參數的提取。
在步驟S13中,學習部112是依據在步驟S11中已取得的訓練資料,將複數組超參數等設定成複數次來進行複數次機械學習,而生成複數個學習完畢模型。
<運用階段中的機械學習裝置10的推論計算處理>
接著,說明運用階段中的本實施形態之機械學習裝置10的推論計算處理的動作。
圖5是說明運用階段中的機械學習裝置10的推論計算處理之流程圖。
在步驟S21中,取得部110是從計測器40取得推論用資料。
在步驟S22中,模型評估部113是對學習部112以圖4的機械學習處理所生成的複數個學習完畢模型的學習結果的優劣進行評估,並且將評估結果顯示於機械學習裝置10的顯示部(未圖示)。在此,雖然亦可分成學習階段與運用階段來說明,並在學習階段全部完成後,將已生成的複數個學習完畢模型一併移交至模型評估部113來評估,但是並不限定於此。例如,亦可在學習階段的步驟S13的途中,在生成1個學習完畢模型後,立即移交至模型評估部113來評估其學習結果,像這樣在線上執行學習完畢模型的學習結果的評估。
在步驟S23中,模型選擇部114是透過機械學習裝置10的輸入部(未圖示)來判定是否有使用者對學習完畢模型的選擇。在已有使用者對學習完畢模型的選擇的情況下,處理是移至步驟S25。另一方面,在沒有使用者對學習完畢模型的選擇的情況下,處理是進入至步驟S24。
在步驟S24中,模型選擇部114是依據在步驟S22中算出的評估結果,從複數個學習完畢模型中選擇至少1個較好的學習完畢模型。
在步驟S25中,推論運算部115是依據在步驟S21中已取得的推論用資料、以及在步驟S23或步驟S24中已選擇的學習完畢模型,來進行推論計算處理,而生成推論結果候選。
在步驟S26中,模型評估部113是利用在步驟S25中已生成的推論結果候選,來對複數個學習完畢模型的優劣進行再評估。在此,雖然是說明為進行再評估,但是並不限定於此。例如,亦可跳過此步驟S26,以減少整體的計算處理時間。在此情況下,也跳過步驟S27,而直接轉變至步驟S28。
在步驟S27中,模型選擇部114是從已在步驟S26中再評估的複數個學習完畢模型之中,判定是否再選擇至少1個學習完畢模型。當再選擇學習完畢模型的情況下,處理是返回至步驟S24。另一方面,當不再選擇學習完畢模型的情況下,處理是移至步驟S28。
在步驟S28中,推論決定部116是從步驟S25中已算出的推論結果候選中,輸出其全部或一部分或其組合。
在步驟S29中,推論決定部116是判定是否沒有在步驟S28中輸出的推論結果候選。在沒有輸出的情況下,處理會為了再選擇學習完畢模型而返回至步驟S24。另一方面,在有輸出的情況下,處理是進入至步驟S30。
在步驟S30中,機械學習裝置10是將步驟S28中輸出的推論結果候選作為取出位置資訊,來判定機器人控制裝置20的動作執行部210是否已依據此取出位置資訊來執行取出動作。在已執行取出動作的情況下,處理是移至步驟S31。另一方面,在未執行取出動作的情況下,即結束推論計算處理。
在步驟S31中,機械學習裝置10是判定是否已接收到機器人控制裝置20的動作執行部210所進行之工件50的取出動作的執行結果的反饋。在已接收到反饋的情況下,處理是返回至步驟S22、S24。另一方面,在未接收到反饋的情況下,推論計算處理即結束。
藉由以上,一實施形態之機械學習裝置10是從資料庫70取得訓練資料,並且依據已取得的訓練資料,對於1組訓練資料,將複數組超參數設定成複數次來進行複數次機械學習,而生成複數個學習完畢模型。機械學習裝置10是對已生成的複數個學習完畢模型各自的學習結果的優劣進行評估,並且依據評估結果而從複數個學習完畢模型中選擇至少1個較好的學習完畢模型。機械學習裝置10是依據從計測器40取得的推論用資料與已選擇的學習完畢模型,來進行推論計算處理,並生成推論結果候選。機械學習裝置10是輸出已生成的推論結果候選的全部或一部分或其組合。
藉此,機械學習裝置10是生成有偏差的複數個學習完畢模型並綜合地利用,藉此可以減少用於學習的訓練資料的收集所花費的時間與勞務,即使是較少的訓練資料,也可以得到好的績效。亦即,減少用於學習的訓練資料的收集所花費的時間與勞務,即使是較少的訓練資料,也可以得到好的績效。
又,機械學習裝置10即使在需要調整的超參數的數量較多,且再怎麼調整都無法生成好的學習完畢模型的情況下,仍然可藉由將利用有偏差的複數個學習完畢模型而生成的有偏差的複數個推論結果候選組合,或因應於實際狀況來選擇至少1個好的學習完畢模型,來提供整體上良好的績效。
又,機械學習裝置10可以解決圖像辨識中的未檢測到工件的問題或遺漏工件的問題,而可以實現較高的生產效率。
以上,雖然針對一實施形態進行了說明,但機械學習裝置10並不限定於上述實施形態,且包含在可以達成目的之範圍內的變形、改良等。
<變形例1>
在上述一實施形態中,雖然是將機械學習裝置10例示為和機器人控制裝置20不同的裝置,但是亦可構成為機器人控制裝置20具備機械學習裝置10的一部分或全部的功能。
或者,亦可設為例如伺服器具備機械學習裝置10的取得部110、參數提取部111、學習部112、模型評估部113、模型選擇部114、推論運算部115、及推論決定部116的一部分或全部。又,亦可在雲端上利用虛擬伺服器功能等,來實現機械學習裝置10的各個功能。
此外,機械學習裝置10亦可設為將機械學習裝置10的各功能適當地分散於複數個伺服器的分散處理系統。
<變形例2>
又例如,在上述實施形態中,雖然機械學習裝置10是分別執行機械學習處理與推論計算處理,但並不限定於此。例如,機械學習裝置10亦可設為一邊在線上學習中執行機械學習處理,一邊執行推論計算處理。
另外,一實施形態中的機械學習裝置10所包含的各個功能,可以藉由硬體、軟體、或這些的組合來分別實現。在此,藉由軟體來實現是指藉由電腦讀入程式來執行而實現。
程式可以使用各種類型的非暫時的電腦可讀取媒體(Non-transitory computer readable medium)來保存,並且供給至電腦。非暫時的電腦可讀取媒體包含各種類型之有實體的記錄媒體(Tangible storage medium)。非暫時的電腦可讀取媒體的例子包含:磁性記錄媒體(例如軟式磁碟、磁帶、硬式磁碟機)、光磁記錄媒體(例如磁光碟)、CD-ROM(Read Only Memory,唯讀記憶體)、CD-R、CD-R/W、半導體記憶體(例如mask ROM(遮罩唯讀記憶體)、PROM(Programmable ROM,可程式唯讀記憶體)、EPROM(Erasable PROM,可抹除可程式唯讀記憶體)、快閃ROM、RAM)。又,程式亦可藉由各種類型之暫時的電腦可讀取媒體(Transitory computer readable medium)來供給至電腦。暫時的電腦可讀取媒體的例子包含電氣訊號、光訊號、及電磁波。暫時的電腦可讀取媒體可以透過電線以及光纖等之有線通訊路徑或無線通訊路徑將程式供給至電腦。
另外,記述記錄媒體所記錄的程式的步驟當然包含沿著其順序以時間序列方式進行的處理,但並不一定要以時間序列方式進行處理,也包含並行或個別地執行的處理。
換言之,本揭示的機械學習裝置及機械學習方法可以採取具有如下的構成之各式各樣的實施形態。
(1)本揭示之機械學習裝置10是一種機械學習裝置,具備:取得部110,取得用於機械學習的訓練資料與推論用資料;學習部112,依據訓練資料與複數組學習用參數來進行機械學習,來生成複數個學習完畢模型;模型評估部113,進行複數個學習完畢模型的學習結果的優劣評估,並且顯示評估結果;模型選擇部114,可以接受學習完畢模型的選擇;推論運算部115,依據複數個學習完畢模型的至少一部分與推論用資料來進行推論計算處理,而生成推論結果候選;及推論決定部116,輸出推論結果候選的全部或一部分或其組合。
藉由此機械學習裝置10,可以減少用於學習的訓練資料的收集所花費的時間與勞務,即使是較少的訓練資料,也可以得到好的績效。
(2)在(1)所記載的機械學習裝置10中,模型選擇部114亦可接受:使用者依據模型評估部113所顯示的評估結果而選擇的學習完畢模型。
藉由如此進行,機械學習裝置10即使在電腦所計算的評估結果有錯誤的情況下,仍然可以進行與使用者配合認識到的現場的實際狀況而選擇的最適合的學習完畢模型相對應之推論運算處理。此外,也可以反饋使用者的選擇結果來學習,來進行電腦的計算錯誤的修正或機械學習的演算法的改善,而提升機械學習裝置10的預測精確度。
(3)在(1)所記載的機械學習裝置10中,模型選擇部114亦可不倚賴使用者的介入,而是依據模型評估部113的評估結果來自動地選擇學習完畢模型。
藉由如此進行,機械學習裝置10可以依照在無人的環境中自行學習而得到的規則來自律地選擇最適合的學習完畢模型,並且使用最適合的學習完畢模型來進行推論運算處理。
(4)在(1)~(3)中任一項所記載的機械學習裝置10中,亦可更具備參數提取部111,參數提取部111是從複數個超參數中提取出重要的超參數,學習部112是依據已提取的超參數來進行機械學習,而生成複數個學習完畢模型。
藉由如此進行,機械學習裝置10可以減少超參數的調整所花費的時間來提升學習的效率。
(5)在(1)~(4)中任一項所記載的機械學習裝置10中,模型評估部113亦可依據推論運算部115所生成的推論結果候選,來評估學習完畢模型的優劣。
藉由如此進行,機械學習裝置10可以依據不曾用於學習的實際的推論用資料,來正確地評估學習完畢模型的實力。
(6)在(5)所記載的機械學習裝置10中,亦可依據以推論運算部115所生成的推論結果候選為基礎之模型評估部113的評估結果,來選擇已得到較好的推論結果候選的學習完畢模型。
藉由如此進行,機械學習裝置10可以選擇可得到最佳的績效的最佳的學習完畢模型。
(7)在(1)~(6)中任一項所記載的機械學習裝置10中,推論運算部115亦可依據模型評估部113已評估為佳的學習完畢模型,來進行推論計算處理,而生成推論結果候選。
藉由如此進行,由於機械學習裝置10即使利用無法順利學習而生成之「不佳」的學習完畢模型來進行推論計算處理,也無法得到好的推論結果候選,因此可以消除像這樣的無謂的推論計算處理時間,而提升推論計算處理的效率。
(8)在(1)~(7)中任一項所記載的機械學習裝置10中,模型選擇部114亦可依據推論運算部115所生成的推論結果候選,來選擇學習完畢模型。
藉由如此進行,機械學習裝置10可以對於1次拍攝所拍到的1張推論用圖像,選擇可以預測更多的取出位置候選的學習完畢模型,而可以藉由1次的取出動作來取出更多的工件,並可以提升取出工件的效率。
(9)在(1)至(8)中任一項所記載的機械學習裝置10中,亦可在推論決定部116已無輸出時,模型選擇部114是從複數個學習完畢模型中重新選擇至少1個學習完畢模型,推論運算部115是依據新選擇的至少1個學習完畢模型來進行推論計算處理,而生成至少1個新的推論結果候選,推論決定部116是輸出新的推論結果候選的全部或一部分或其組合。
藉由如此進行,即使在作為推論結果而輸出的取出位置連1個都沒有的情況下,機械學習裝置10仍然可重新選擇學習完畢模型,並且到重新推論預測的新的取出位置進行取出,藉此防止手31的工件50的取出動作之運作停止,而可以實現連續的取出動作,並且可以提升生產線的生產效率。
(10)在(1)~(9)中任一項所記載的機械學習裝置10中,學習部112亦可依據複數組訓練資料來進行機械學習。
藉由如此進行,機械學習裝置10可以利用變化較多的訓練資料來學習,而可得到能夠順利地推論各種狀況之穩健性好的學習完畢模型,並且可以提供整體上良好的績效。
(11)在(1)~(10)中任一項所記載的機械學習裝置10中,取得部110亦可取得複數個工件50的存在區域的圖像資料,來作為訓練資料與推論用資料,訓練資料包含圖像資料上的工件50的至少1個特徵的教示資料。
藉由如此進行,機械學習裝置10可以藉由機械學習來生成如下的學習完畢模型:可以輸出接近於教示資料的預測值,且可以在各種推論用圖像資料上特定出和教示資料所包含的特徵相似的特徵。
(12)在(1)~(11)中任一項所記載的機械學習裝置10中,取得部110亦可取得複數個工件50的存在區域的三維計測資料,來作為訓練資料與推論用資料,訓練資料包含三維計測資料上的工件50的至少1個特徵的教示資料。
藉由如此進行,機械學習裝置10可以藉由機械學習來生成如下的學習完畢模型:可以輸出接近於教示資料的預測值,且可以在各種推論用三維計測資料上特定出和教示資料所包含的特徵相似的特徵。
(13)在(11)或(12)所記載的機械學習裝置10中,學習部112亦可依據訓練資料來進行機械學習,推論運算部115是生成包含工件50的至少1個特徵的資訊之推論結果候選。
藉由如此進行,機械學習裝置10可以順利地利用複數個學習完畢模型來得到整體上良好的績效,前述學習完畢模型可以在各種推論用資料上特定出和教示資料所包含的特徵相似的特徵。
(14)在(1)~(10)中任一項所記載的機械學習裝置10中,取得部110亦可取得複數個工件50的存在區域的圖像資料,來作為訓練資料與推論用資料,訓練資料包含圖像資料上的工件50的至少1個取出位置的教示資料。
藉由如此進行,機械學習裝置10可以藉由機械學習來生成如下的學習完畢模型:可以輸出接近於教示資料的預測值,且可以在各種推論用圖像資料上推定出和教示資料所包含的取出位置相似的位置。
(15)在(1)~(10)及(14)中任一項所記載的機械學習裝置10中,取得部110亦可取得複數個工件50的存在區域的三維計測資料,來作為訓練資料與推論用資料,訓練資料包含三維計測資料上的工件50的至少1個取出位置的教示資料。
藉由如此進行,機械學習裝置10可以藉由機械學習來生成如下的學習完畢模型:可以輸出接近於教示資料的預測值,且可以在各種推論用三維計測資料上推定出和教示資料所包含的取出位置相似的位置。
(16)在(14)或(15)所記載的機械學習裝置10中,學習部112亦可依據訓練資料來進行機械學習,推論運算部115是生成包含工件50的至少1個取出位置的資訊之推論結果候選。
藉由如此進行,機械學習裝置10可以順利地利用複數個學習完畢模型來得到整體上良好的績效,前述學習完畢模型可以在各種推論用資料上推定出和教示資料所包含的取出位置相似的位置。
(17)在(16)所記載的機械學習裝置10中,模型評估部113亦可從包含動作執行部210的機器人控制裝置20,接受以機械學習裝置10所輸出之工件50的至少1個取出位置的推論結果為基礎之動作執行部210的取出動作的執行結果,並且依據取出動作的執行結果來評估複數個學習完畢模型的學習結果的優劣,前述動作執行部210可使具有取出工件50的手31之機器人30執行手31對工件50的取出動作。
藉由如此進行,機械學習裝置10可以對於預測了工件50的取出成功率較高的推論結果候選的學習完畢模型賦與較高的評估值。
(18)在(16)或(17)所記載的機械學習裝置10中,模型選擇部114亦可從包含動作執行部210的機器人控制裝置20,接受以機械學習裝置10所輸出之工件50的至少1個取出位置的推論結果為基礎之動作執行部210的取出動作的執行結果,並且依據取出動作的執行結果來選擇學習完畢模型,前述動作執行部210可使具有取出工件50的手31之機器人30執行手31對工件50的取出動作。
藉由如此進行,機械學習裝置10可以選擇預測工件50的取出成功率較高的推論結果候選的學習完畢模型。
(19)本揭示之機械學習方法是藉由電腦來實現的機械學習方法,具備:取得步驟,取得用於機械學習的訓練資料與推論用資料;學習步驟,依據訓練資料與複數組學習用參數來進行機械學習,來生成複數個學習完畢模型;模型評估步驟,進行複數個學習完畢模型的學習結果的優劣評估,並且顯示評估結果;模型選擇步驟,可以接受學習完畢模型的選擇;推論運算步驟,依據複數個學習完畢模型的至少一部分與推論用資料來進行推論計算處理,而生成推論結果候選;及推論決定步驟,輸出推論結果候選的全部或一部分或其組合。
根據此機械學習方法,可以發揮和(1)同樣的效果。
1:機器人系統
10:機械學習裝置
11:控制部
20:機器人控制裝置
21:控制部
30:機器人
31:取出手
40:計測器
50:工件
60:容器
70:資料庫
110:取得部
111:參數提取部
112:學習部
113:模型評估部
114:模型選擇部
115:推論運算部
116:推論決定部
210:動作執行部
1101:資料保存部
A:點
S11~S13,S21~S31:步驟
圖1是顯示一實施形態之機器人系統的構成的一例的圖。
圖2是顯示一實施形態之機器人控制裝置的功能構成例的功能方塊圖。
圖3是顯示一實施形態之機械學習裝置的功能構成例的功能方塊圖。
圖4是針對學習階段中的機械學習裝置的機械學習處理來說明的流程圖。
圖5是針對運用階段中的機械學習裝置的推論計算處理來說明的流程圖。
10:機械學習裝置
11:控制部
70:資料庫
110:取得部
111:參數提取部
112:學習部
113:模型評估部
114:模型選擇部
115:推論運算部
116:推論決定部
1101:資料保存部
Claims (19)
- 一種機械學習裝置,前述機械學習裝置預測機器人所進行之工件的取出位置,且具備:取得部,取得用於機械學習的訓練資料與推論用資料;學習部,依據前述訓練資料與複數組學習用參數來進行機械學習,來生成複數個學習完畢模型;模型評估部,進行前述複數個學習完畢模型的學習結果的優劣評估,並且顯示評估結果;模型選擇部,可以接受學習完畢模型的選擇;推論運算部,依據前述複數個學習完畢模型的至少一部分與前述推論用資料來進行推論計算處理,而算出前述工件的取出位置之1個以上的預測位置清單,並作為推論結果候選;及推論決定部,輸出前述推論結果候選的全部或一部分或其組合。
- 如請求項1之機械學習裝置,其中前述模型選擇部是接受:使用者依據前述模型評估部所顯示的前述評估結果而選擇的學習完畢模型。
- 如請求項1之機械學習裝置,其中前述模型選擇部是依據前述模型評估部的前述評估結果來選擇學習完畢模型。
- 如請求項1至3中任一項之機械學習裝置,其更具備參數提取部,前述參數提取部是從複數個前述學習用參數中提取重要的學習用參數,前述學習部是依據已提取的前述學習用參數來進行機械學習,而生成前述複數個學習完畢模型。
- 如請求項1至3中任一項之機械學習裝置,其中前述模型評估部是依據前述推論運算部所生成的前述推論結果候選,來評估前述學習完畢模型的優劣。
- 如請求項5之機械學習裝置,其中前述模型選擇部是依據以前述推論運算部所生成的前述推論結果候選為基礎之前述模型評估部的前述評估結果,來選擇學習完畢模型。
- 如請求項1至3中任一項之機械學習裝置,其中前述推論運算部是依據前述模型評估部已評估為佳的學習完畢模型,來進行前述推論計算處理,而生成前述推論結果候選。
- 如請求項1至3中任一項之機械學習裝置,其中前述模型選擇部是依據前述推論運算部所生成的前述推論結果候選,來選擇前述學習完畢模型。
- 如請求項1至3中任一項之機械學習裝置,其中在前述推論決定部已無輸出時,前述模型選擇部是從前述複數個學習完畢模型中重新選擇至少1個學習完畢模型,前述推論運算部是依據新選擇的前述至少1個學習完畢模型來進行前述推論計算處理,而生成至少1個新的推論結果候選,前述推論決定部是輸出新的前述推論結果候選的全部或一部分或其組合。
- 如請求項1至3中任一項之機械學習裝置,其中前述學習部是依據複數組前述訓練資料來進行機械學習。
- 如請求項1至3中任一項之機械學習裝置,其中前述取得部是取得複數個工件的存在區域的圖像資料,來作為前述訓練資料與前述推論用資料,前述訓練資料包含前述圖像資料上的前述工件的至少1個特徵的教示資料。
- 如請求項1至3中任一項之機械學習裝置,其中前述取得部是取得複數個工件的存在區域的三維計測資料,來作為前述訓練資料與前述推論用資料,前述訓練資料包含前述三維計測資料上的前述工件的至少1個特徵的教示資料。
- 如請求項11之機械學習裝置,其中前述學習部是依據前述訓練資料來進行機械學習,前述推論運算部是生成包含前述工件的至少1個前述特徵的資訊之推論結果候選。
- 如請求項1至3中任一項之機械學習裝置,其中前述取得部是取得複數個工件的存在區域的圖像資料,來作為前述訓練資料與前述推論用資料,前述訓練資料包含前述圖像資料上的前述工件的至少1個取出位置的教示資料。
- 如請求項1至3中任一項之機械學習裝置,其中前述取得部是取得複數個工件的存在區域的三維計測資料,來作為前述訓練資料與前述推論用資料,前述訓練資料包含前述三維計測資料上的前述工件的至少1個取出位置的教示資料。
- 如請求項14之機械學習裝置,其中前述學習部是依據前述訓練資料來進行機械學習,前述推論運算部是生成包含前述工件的至少1個取出位置的資訊之推論結果候選。
- 如請求項16之機械學習裝置,其中前述模型評估部是從包含動作執行部的控制裝置,接受以前述機械學習裝置所輸出之前述工件的至少1個取出位置的推論結果為基礎之前述動作執行部的前述取出動作的執行結果,並且依據前述取出動作的執行結果來評估前述複數個學習完畢模型的學習結果的優劣,前述動作執行部可使具有取出前述工件的手之機器人執行前述手對前述工件的取出動作。
- 如請求項16之機械學習裝置,其中前述模型選擇部是從包含動作執行部的控制裝置,接受以前述機械學習裝置所輸出之前述工件的至少1個取出位置的推論結果為基礎之前述動作執行部的前述取出動作的執行結果,並且依據前述取出動作的執行結果來選擇學習完畢模型,前述動作執行部可使具有取出前述工件的手之機器人執行前述手對前述工件的取出動作。
- 一種機械學習方法,是藉由電腦來實現的機械學習方法,前述機械學習方法預測機器人所進行之工件的取出位置,且具備:取得步驟,取得用於機械學習的訓練資料與推論用資料;學習步驟,依據前述訓練資料與複數組學習用參數來進行機械學習,來生成複數個學習完畢模型;模型評估步驟,進行前述複數個學習完畢模型的學習結果的優劣評估,並且顯示評估結果;模型選擇步驟,可以接受學習完畢模型的選擇;推論運算步驟,依據前述複數個學習完畢模型的至少一部分與前述推論用資料來進行推論計算處理,而算出前述工件的取出位置之1個以上的預測位置清單,並作為推論結果候選;及推論決定步驟,輸出前述推論結果候選的全部或一部分或其組合。
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2020-216583 | 2020-12-25 | ||
| JP2020216583 | 2020-12-25 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TW202226071A TW202226071A (zh) | 2022-07-01 |
| TWI888681B true TWI888681B (zh) | 2025-07-01 |
Family
ID=82157919
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW110145504A TWI888681B (zh) | 2020-12-25 | 2021-12-06 | 機械學習裝置、及機械學習方法 |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US20230419643A1 (zh) |
| JP (1) | JP7556983B2 (zh) |
| CN (1) | CN116601651A (zh) |
| DE (1) | DE112021005280T5 (zh) |
| TW (1) | TWI888681B (zh) |
| WO (1) | WO2022138545A1 (zh) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP7336503B2 (ja) * | 2021-12-27 | 2023-08-31 | Fsx株式会社 | サーバ及びおしぼり管理システム |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102713945A (zh) * | 2010-01-14 | 2012-10-03 | 日本电气株式会社 | 模式识别器、模式识别方法以及用于模式识别的程序 |
| JP2019058960A (ja) * | 2017-09-25 | 2019-04-18 | ファナック株式会社 | ロボットシステム及びワーク取り出し方法 |
| TW201939365A (zh) * | 2018-02-23 | 2019-10-01 | 荷蘭商Asml荷蘭公司 | 用於計算微影之機器學習模型的訓練方法 |
| JP2019175140A (ja) * | 2018-03-28 | 2019-10-10 | 株式会社パスコ | 建築物抽出システム |
Family Cites Families (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP6050223B2 (ja) * | 2011-11-02 | 2016-12-21 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America | 画像認識装置、画像認識方法、及び集積回路 |
| CN104036451B (zh) * | 2014-06-20 | 2018-12-11 | 深圳市腾讯计算机系统有限公司 | 基于多图形处理器的模型并行处理方法及装置 |
| US10229317B2 (en) * | 2016-08-06 | 2019-03-12 | X Development Llc | Selectively downloading targeted object recognition modules |
| JP6662836B2 (ja) * | 2017-11-24 | 2020-03-11 | ファナック株式会社 | 収容領域又は治具にワークを配置するワーク配置システム |
| WO2019164484A1 (en) * | 2018-02-21 | 2019-08-29 | Hewlett-Packard Development Company, L.P | Response based on hierarchical models |
| JP6911798B2 (ja) * | 2018-03-15 | 2021-07-28 | オムロン株式会社 | ロボットの動作制御装置 |
| JP7200610B2 (ja) | 2018-11-08 | 2023-01-10 | 富士通株式会社 | 位置検出プログラム、位置検出方法及び位置検出装置 |
| JP6801149B1 (ja) | 2020-01-20 | 2020-12-16 | 楽天株式会社 | 情報処理装置、情報処理方法およびプログラム |
| KR20220004453A (ko) * | 2020-07-03 | 2022-01-11 | 삼성전자주식회사 | 객체를 인식하는 전자 장치 및 그 동작 방법 |
| US11288797B2 (en) * | 2020-07-08 | 2022-03-29 | International Business Machines Corporation | Similarity based per item model selection for medical imaging |
| WO2022065303A1 (ja) * | 2020-09-25 | 2022-03-31 | ファナック株式会社 | 推論計算処理装置、及び推論計算処理方法 |
| WO2022130640A1 (ja) * | 2020-12-18 | 2022-06-23 | 三菱電機株式会社 | 学習装置、推論装置、診断システム、モデル生成方法及びプログラム |
-
2021
- 2021-12-06 TW TW110145504A patent/TWI888681B/zh active
- 2021-12-20 CN CN202180085154.3A patent/CN116601651A/zh active Pending
- 2021-12-20 JP JP2022571435A patent/JP7556983B2/ja active Active
- 2021-12-20 US US18/038,832 patent/US20230419643A1/en active Pending
- 2021-12-20 WO PCT/JP2021/046971 patent/WO2022138545A1/ja not_active Ceased
- 2021-12-20 DE DE112021005280.2T patent/DE112021005280T5/de active Pending
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102713945A (zh) * | 2010-01-14 | 2012-10-03 | 日本电气株式会社 | 模式识别器、模式识别方法以及用于模式识别的程序 |
| JP2019058960A (ja) * | 2017-09-25 | 2019-04-18 | ファナック株式会社 | ロボットシステム及びワーク取り出し方法 |
| TW201939365A (zh) * | 2018-02-23 | 2019-10-01 | 荷蘭商Asml荷蘭公司 | 用於計算微影之機器學習模型的訓練方法 |
| JP2019175140A (ja) * | 2018-03-28 | 2019-10-10 | 株式会社パスコ | 建築物抽出システム |
Also Published As
| Publication number | Publication date |
|---|---|
| DE112021005280T5 (de) | 2023-11-02 |
| TW202226071A (zh) | 2022-07-01 |
| JP7556983B2 (ja) | 2024-09-26 |
| US20230419643A1 (en) | 2023-12-28 |
| WO2022138545A1 (ja) | 2022-06-30 |
| CN116601651A (zh) | 2023-08-15 |
| JPWO2022138545A1 (zh) | 2022-06-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP7491971B2 (ja) | 物体把持方法、物体把持プログラム、物体把持装置、学習方法、学習プログラムおよび学習装置 | |
| CN109483573B (zh) | 机器学习装置、机器人系统以及机器学习方法 | |
| US9044858B2 (en) | Target object gripping apparatus, method for controlling the same and storage medium | |
| US11780095B2 (en) | Machine learning device, robot system, and machine learning method for learning object picking operation | |
| TWI760916B (zh) | 用於工廠自動化生產線之製造系統 | |
| US11400598B2 (en) | Information processing apparatus, method, and robot system | |
| US20210114209A1 (en) | Robot control device, and method and non-transitory computer-readable storage medium for controlling the same | |
| JP7377627B2 (ja) | 物体検出装置、物体把持システム、物体検出方法及び物体検出プログラム | |
| CN110756462B (zh) | 电源适配器测试方法、装置、系统、控制装置及存储介质 | |
| KR20170053585A (ko) | 로봇 제어 장치 및 로봇 제어 방법 | |
| CN110065068B (zh) | 一种基于逆向工程的机器人装配作业演示编程方法及装置 | |
| US20210046649A1 (en) | Robot control device | |
| Zhang et al. | Dex-net ar: Distributed deep grasp planning using a commodity cellphone and augmented reality app | |
| TWI888681B (zh) | 機械學習裝置、及機械學習方法 | |
| CN118514941A (zh) | 一种罐体倾倒检测系统 | |
| Zhang et al. | Dex-Net AR: distributed deep grasp planning using an augmented reality application and a smartphone camera | |
| Oikonomou et al. | Proactive tactile exploration for object-agnostic shape reconstruction from minimal visual priors | |
| CN116197911B (zh) | 一种机械臂随机抓取方法 | |
| CN107562050B (zh) | 一种机器人识别环境的方法及系统 | |
| US10712725B2 (en) | Non-transitory computer-readable storage medium, robot transfer time estimation method, and robot transfer time estimation device | |
| CN118858281A (zh) | 物体检测方法、装置和计算机可读存储介质 |