TWI885935B - Display parameter adjustment method and electronic device - Google Patents
Display parameter adjustment method and electronic device Download PDFInfo
- Publication number
- TWI885935B TWI885935B TW113120736A TW113120736A TWI885935B TW I885935 B TWI885935 B TW I885935B TW 113120736 A TW113120736 A TW 113120736A TW 113120736 A TW113120736 A TW 113120736A TW I885935 B TWI885935 B TW I885935B
- Authority
- TW
- Taiwan
- Prior art keywords
- image
- neural network
- network model
- display
- training
- Prior art date
Links
Images
Landscapes
- Image Analysis (AREA)
Abstract
Description
本發明是有關於一種顯示參數調整方法與電子裝置。The present invention relates to a display parameter adjustment method and an electronic device.
部分類型的顯示器或顯示裝置支援讓使用者在顯示器的多種顯示模式之間進行手動切換。但是,實務上讓使用者進行手動的顯示模式的切換是不切實際的。原因是,大多數的使用者即便一開始將顯示器的顯示模式設定為某一種顯示模式(例如文書模式),但在切換顯示器的顯示內容(例如從瀏覽工作報表切換為觀看影片)後,使用者往往會選擇沿用先前設定的顯示模式,進而在不適合的顯示模式下觀看顯示器所呈現的影像。此外,即便使用者願意手動或由系統自動選擇顯示模式,當顯示器所呈現的影像內容發生較大幅度的變化時,選定的顯示模式也無法即時針對顯示器的顯示參數進行動態調整,從而導致使用者始終無法獲得顯示器呈現的影像的最佳的觀看體驗。Some types of monitors or display devices support users to manually switch between multiple display modes of the monitor. However, in practice, it is impractical to allow users to manually switch display modes. The reason is that even if most users initially set the display mode of the monitor to a certain display mode (such as document mode), after switching the display content of the monitor (such as switching from browsing a work report to watching a video), users often choose to use the previously set display mode, thereby viewing the image presented by the monitor in an inappropriate display mode. Furthermore, even if the user is willing to select a display mode manually or automatically by the system, when the image content displayed by the monitor changes significantly, the selected display mode cannot be dynamically adjusted according to the display parameters of the monitor in real time, resulting in the user never being able to obtain the best viewing experience of the image displayed by the monitor.
有鑑於此,本發明提供一種顯示參數調整方法與電子裝置,可改善上述問題,並可有效提高使用者對顯示器呈現的影像的觀看體驗。In view of this, the present invention provides a display parameter adjustment method and an electronic device, which can improve the above-mentioned problems and effectively enhance the user's viewing experience of the images presented by the display.
本發明的實施例提供一種顯示參數調整方法,其包括:將神經網路模型設定為第一訓練模式並基於所述第一訓練模式對所述神經網路模型進行第一影像分類訓練;在完成所述第一影像分類訓練後,將所述神經網路模型設定為第二訓練模式並基於所述第二訓練模式對所述神經網路模型進行第二影像分類訓練,其中在所述神經網路模型中,參與所述第二影像分類訓練的卷積層的總數少於參與所述第一影像分類訓練的卷積層的總數;透過顯示器呈現影像;獲得對應於所述影像的第一色彩分布資訊;將所述第一色彩分布資訊提供至所述神經網路模型,以透過所述神經網路模型對所述影像進行分類;根據所述神經網路模型對所述影像的分類結果,對所述顯示器使用的顯示參數進行第一階段調整;根據所述第一階段調整的結果,獲得對應於所述影像的第二色彩分布資訊;根據所述第二色彩分布資訊,計算色彩補償資訊;以及根據所述色彩補償資訊對所述顯示器使用的所述顯示參數進行第二階段調整。An embodiment of the present invention provides a display parameter adjustment method, which includes: setting a neural network model to a first training mode and performing a first image classification training on the neural network model based on the first training mode; after completing the first image classification training, setting the neural network model to a second training mode and performing a second image classification training on the neural network model based on the second training mode, wherein in the neural network model, the total number of convolution layers participating in the second image classification training is less than the total number of convolution layers participating in the first image classification training; presenting an image through a display ; obtaining first color distribution information corresponding to the image; providing the first color distribution information to the neural network model to classify the image through the neural network model; performing a first-stage adjustment on the display parameters used by the display according to the classification result of the neural network model on the image; obtaining second color distribution information corresponding to the image according to the result of the first-stage adjustment; calculating color compensation information according to the second color distribution information; and performing a second-stage adjustment on the display parameters used by the display according to the color compensation information.
本發明的實施例另提供一種電子裝置,其包括顯示器、儲存電路及處理器。所述儲存電路用以儲存神經網路模型。所述處理器耦接至所述顯示器與所述儲存電路。所述處理器用以:將所述神經網路模型設定為第一訓練模式並基於所述第一訓練模式對所述神經網路模型進行第一影像分類訓練;在完成所述第一影像分類訓練後,將所述神經網路模型設定為第二訓練模式並基於所述第二訓練模式對所述神經網路模型進行第二影像分類訓練,其中在所述神經網路模型中,參與所述第二影像分類訓練的卷積層的總數少於參與所述第一影像分類訓練的卷積層的總數;透過所述顯示器呈現影像;獲得對應於所述影像的第一色彩分布資訊;將所述第一色彩分布資訊提供至所述神經網路模型,以透過所述神經網路模型對所述影像進行分類;根據所述神經網路模型對所述影像的分類結果,對所述顯示器使用的顯示參數進行第一階段調整;根據所述第一階段調整的結果,獲得對應於所述影像的第二色彩分布資訊;根據所述第二色彩分布資訊,計算色彩補償資訊;以及根據所述色彩補償資訊對所述顯示器使用的所述顯示參數進行第二階段調整。The embodiment of the present invention further provides an electronic device, which includes a display, a storage circuit and a processor. The storage circuit is used to store a neural network model. The processor is coupled to the display and the storage circuit. The processor is used to: set the neural network model to a first training mode and perform a first image classification training on the neural network model based on the first training mode; after completing the first image classification training, set the neural network model to a second training mode and perform a second image classification training on the neural network model based on the second training mode, wherein in the neural network model, the total number of convolutional layers participating in the second image classification training is less than the total number of convolutional layers participating in the first image classification training; present an image through the display; obtain a corresponding The method comprises: providing the first color distribution information of the image; providing the first color distribution information to the neural network model to classify the image through the neural network model; performing a first-stage adjustment on the display parameters used by the display according to the classification result of the neural network model on the image; obtaining second color distribution information corresponding to the image according to the result of the first-stage adjustment; calculating color compensation information according to the second color distribution information; and performing a second-stage adjustment on the display parameters used by the display according to the color compensation information.
基於上述,在完成第一訓練模式下的第一影像分類訓練後,神經網路模型中參與第二訓練模式下的第二影像分類訓練的卷積層的總數可被減少,以有效鎖定已經完成更新的特徵參數,並進一步針對細部特徵的辨識進行訓練。此外,在完成神經網路模型的訓練後,顯示器使用的顯示參數可進行兩階段的調整。其中,第一階段的調整是基於神經網路模型對影像的分類結果執行,而第二階段的調整則是在第一階段的調整的基礎上進一步對顯示器使用的顯示參數進行動態補償。藉此,可有效提高使用者對顯示器呈現的影像的觀看體驗。Based on the above, after completing the first image classification training in the first training mode, the total number of convolutional layers in the neural network model that participate in the second image classification training in the second training mode can be reduced to effectively lock the feature parameters that have been updated and further train the recognition of detailed features. In addition, after completing the training of the neural network model, the display parameters used by the display can be adjusted in two stages. Among them, the adjustment in the first stage is based on the classification results of the image by the neural network model, and the adjustment in the second stage is to further dynamically compensate the display parameters used by the display on the basis of the adjustment in the first stage. In this way, the user's viewing experience of the image presented by the display can be effectively improved.
圖1是根據本發明的實施例所繪示的電子裝置的示意圖。FIG. 1 is a schematic diagram of an electronic device according to an embodiment of the present invention.
請參照圖1,電子裝置10可為智慧型手機、平板電腦、筆記型電腦、桌上型電腦、遊戲機、伺服器或車載電腦等各式支援影像處理及影像呈現功能的電子裝置,且電子裝置10的類型不限於此。1 , the
電子裝置10包括顯示器11、儲存電路12及處理器13。顯示器11用以呈現影像。例如,顯示器11可包括電漿顯示器(Plasma Display)、液晶顯示器(liquid-crystal display, LCD)、薄膜電晶體液晶顯示器(Thin film transistor liquid crystal display, TFT-LCD)、有機發光二極體(Organic Light-Emitting Diode, OLED)及發光二極體顯示器(LED display)等,且顯示器11的類型不限於此。The
在一實施例中,顯示器11是結合設置於電子裝置10中。在一實施例中,顯示器11亦可設置於電子裝置10外部並可透過有線或無線方式耦接至電子裝置10。In one embodiment, the
儲存電路12用以儲存資料。例如,儲存電路12可包括唯讀記憶體(Read Only Memory, ROM)、固態硬碟(solid state disk, SSD)、傳統硬碟(Hard disk drive, HDD)、快閃記憶體模組、嵌入式多媒體卡(embedded MultiMedia Card, eMMC)、通用快閃儲存(Universal Flash Storage, UFS)裝置或其他類型的非揮發性儲存媒體。The
處理器13耦接至顯示器11與儲存電路12。處理器13可用以負責電子裝置10的整體或部分運作。例如,處理器13可包括中央處理單元(Central Processing Unit, CPU)、或是其他可程式化之一般用途或特殊用途的微處理器、數位訊號處理器(Digital Signal Processor, DSP)、可程式化控制器、特殊應用積體電路(Application Specific Integrated Circuits, ASIC)、可程式化邏輯裝置(Programmable Logic Device, PLD)或其他類似裝置或這些裝置的組合。在一實施例中,處理器13還可包括圖像處理單元(Graphic Processing Unit, GPU)、視覺處理單元(Vision Processing Unit, VPU)、神經網路處理器(Neural network Processing Unit, NPU)或其他專用以(或有利於)執行影像處理或神經網路處理的處理器。The
在一實施例中,電子裝置10還可包括網路介面卡、滑鼠、鍵盤、觸控板、揚聲器、麥克風、及/或電源管理電路等各式周邊裝置及/或輸入/輸出裝置。本發明不限制所述周邊裝置及/或所述輸入/輸出裝置的類型。In one embodiment, the
在一實施例中,儲存電路12中可儲存神經網路模型101。神經網路模型101可用以對顯示器11所呈現的影像進行分類。例如,神經網路模型101可採用EfficientNet或其他類型的卷積神經網路(Convolutional Neural Network, CNN)架構來實現,本發明不加以限制。In one embodiment, the
圖2是根據本發明的實施例所繪示的神經網路模型的示意圖。FIG2 is a schematic diagram of a neural network model according to an embodiment of the present invention.
請參照圖2,神經網路模型101包括輸入端21、輸出端22及運算核心23。運算核心23耦接於輸入端21與輸出端22之間。輸入端21用以接收輸入資料並將所接收到的輸入資料輸入至運算核心23。輸出端22可用以根據運算核心23的運算結果產生輸出資料。運算核心23包括卷積層(convolutional layer)24(1)~24(m)。在對神經網路模型101進行訓練的期間,卷積層24(1)~24(m)可依序執行預先定義的運算,且卷積層24(1)~24(m)所使用的特徵參數可被更新。例如,此特徵參數可包括權重參數或其他類型的參數,本發明不加以限制。2, the
在一實施例中,在對神經網路模型101進行訓練的期間,卷積層24(1)~24(m)可依序對輸入資料進行處理並透過輸出端22產生輸出結果。例如,此輸出結果可反映神經網路模型101所辨識或認為的輸入資料所對應的影像的類型。In one embodiment, during the training of the
在一實施例中,處理器13可使用驗證資料來驗證神經網路模型101的輸出,並根據驗證結果來更新卷積層24(1)~24(m)的至少其中之一所使用的特徵參數。藉此,在使用大量訓練資料來對神經網路模型101進行影像的分類訓練後,神經網路模型101對影像的分類準確率可逐漸提升。In one embodiment, the
在一實施例中,在對神經網路模型101進行訓練的期間,處理器13可將卷積層24(1)~24(m)的至少其中之一設定為鎖定狀態或非鎖定狀態。特別是,在卷積層24(1)~24(m)中,只有被設定為非鎖定狀態的卷積層(或未被設定為鎖定狀態的卷積層)所使用的特徵參數可以被更新,而被設定為鎖定狀態的卷積層所使用的特徵參數將無法被更新。例如,在對神經網路模型101進行訓練的期間,假設卷積層24(i)被設定為非鎖定狀態且卷積層24(j)被設定為鎖定狀態,則只有卷積層24(i)所使用的特徵參數可以被更新,而卷積層24(j)所使用的特徵參數將無法被更新。此外,處理器13可動態設定或切換卷積層24(1)~24(m)中的每一個卷積層處於鎖定狀態或非鎖定狀態。In one embodiment, during the training of the
在一實施例中,在對神經網路模型101進行訓練的初期,處理器13可將神經網路模型101設定為特定的訓練模式(亦稱為第一訓練模式)。處理器13可基於第一訓練模式對神經網路模型101進行影像分類訓練(亦稱為第一影像分類訓練)。例如,在第一訓練模式中,處理器13可將訓練資料輸入至神經網路模型101,根據驗證資料來驗證神經網路模型101的輸出,並根據驗證結果來更新卷積層24(1)~24(m)中當前非處於鎖定狀態的至少一卷積層所使用的特徵參數。In one embodiment, in the early stage of training the
在一實施例中,在完成第一影像分類訓練後,處理器13可進一步將神經網路模型101設定為另一訓練模式(亦稱為第二訓練模式)。處理器13可基於第二訓練模式對神經網路模型101進行影像分類訓練(亦稱為第二影像分類訓練)。例如,在第二訓練模式中,處理器13同樣可將訓練資料輸入至神經網路模型101,根據驗證資料來驗證神經網路模型101的輸出,並根據驗證結果來更新卷積層24(1)~24(m)中當前非處於鎖定狀態的至少一卷積層所使用的特徵參數。須注意的是,在神經網路模型101中,參與第二影像分類訓練的卷積層的總數可少於參與第一影像分類訓練的卷積層的總數。In one embodiment, after completing the first image classification training, the
在一實施例中,假設在第一訓練模式中,卷積層24(1)~24(m)中有N(1)個卷積層未被設定為鎖定狀態(或N(1)個卷積層被設定為非鎖定狀態),則這N(1)個未被設定為鎖定狀態的卷積層可參與第一影像分類訓練。特別是,這N(1)個未被設定為鎖定狀態的卷積層所使用的特徵參數可在第一影像分類訓練中被更新,以反映第一影像分類訓練的訓練結果。In one embodiment, assuming that in the first training mode, N(1) of the convolutional layers 24(1)-24(m) are not set to a locked state (or N(1) of the convolutional layers are set to an unlocked state), then the N(1) convolutional layers that are not set to a locked state can participate in the first image classification training. In particular, the feature parameters used by the N(1) convolutional layers that are not set to a locked state can be updated in the first image classification training to reflect the training results of the first image classification training.
另一方面,假設在第二訓練模式中,卷積層24(1)~24(m)中有N(2)個卷積層未被設定為鎖定狀態(或N(2)個卷積層被設定為非鎖定狀態),則這N(2)個未被設定為鎖定狀態的卷積層可參與第二影像分類訓練。N(1)可大於N(2)。特別是,這N(2)個未被設定為鎖定狀態的卷積層所使用的特徵參數可在第二影像分類訓練中被更新,以反映第二影像分類訓練的訓練結果。On the other hand, assuming that in the second training mode, N(2) of the convolutional layers 24(1)~24(m) are not set to a locked state (or N(2) convolutional layers are set to an unlocked state), then these N(2) convolutional layers that are not set to a locked state can participate in the second image classification training. N(1) can be greater than N(2). In particular, the feature parameters used by these N(2) convolutional layers that are not set to a locked state can be updated in the second image classification training to reflect the training results of the second image classification training.
在一實施例中,假設神經網路模型101中的至少一卷積層(亦稱為第一卷積層)在第一訓練模式中未被設定為鎖定狀態。因此,在第一訓練模式中,第一卷積層可參與神經網路模型101的第一影像分類訓練,且第一卷積層所使用的特徵參數可在第一訓練模式中被更新,以反映第一影像分類訓練的訓練結果。In one embodiment, it is assumed that at least one convolution layer (also referred to as the first convolution layer) in the
然而,在離開第一訓練模式並進入第二訓練模式後,在第二訓練模式中,處理器13可將第一卷積層設定為鎖定狀態(即將第一卷積層從第一訓練模式中的非鎖定狀態切換為鎖定狀態)。因此,在第二訓練模式中,此第一卷積層將無法參與神經網路模型101的第二影像分類訓練,且第一卷積層所使用的特徵參數將不會在第二訓練模式中被更新。因此,在第二訓練模式中,處理器13可僅針對神經網路模型101中未被設定為鎖定狀態的至少一卷積層(亦稱為第二卷積層)進行第二影像分類訓練,並可對應更新第二卷積層所使用的特徵參數,以反映第二影像分類訓練的訓練結果。However, after leaving the first training mode and entering the second training mode, in the second training mode, the
在一實施例中,相較於第二卷積層,第一卷積層在神經網路模型101的運算核心中更遠離神經網路模型101的輸出端。或者,從另一角度而言,相較於第二卷積層,第一卷積層在神經網路模型101的運算核心中更接近神經網路模型101的輸入端。In one embodiment, compared with the second convolution layer, the first convolution layer is farther away from the output end of the
圖3是根據本發明的實施例所繪示的處於第一訓練模式的神經網路模型的示意圖。FIG3 is a schematic diagram of a neural network model in a first training mode according to an embodiment of the present invention.
請參照圖3,在第一訓練模式中,處理器13可將卷積層24(1)~24(m)設定為非鎖定狀態(在圖3中標記為T)。在第一訓練模式中,透過對處於非鎖定狀態的卷積層24(1)~24(m)執行第一影像分類訓練,卷積層24(1)~24(m)中至少部分的卷積層所使用的特徵參數可被更新,以反映第一影像分類訓練的執行結果。3 , in the first training mode, the
圖4是根據本發明的實施例所繪示的處於第二訓練模式的神經網路模型的示意圖。FIG4 is a schematic diagram of a neural network model in a second training mode according to an embodiment of the present invention.
請參照圖4,在第二訓練模式中,處理器13可將卷積層24(1)~24(n)(即第一卷積層)切換為鎖定狀態(在圖4中標記為F),並將卷積層24(n+1)~24(m)(即第二卷積層)維持於非鎖定狀態(在圖4中標記為T)。特別是,相較於卷積層24(n+1)~24(m)的至少其中之一,卷積層24(1)~24(n)的至少其中之一更加遠離神經網路模型101的輸出端22及/或更加靠近神經網路模型101的輸入端21。4 , in the second training mode, the
在第二訓練模式中,透過對處於非鎖定狀態的卷積層24(n+1)~24(m)執行第二影像分類訓練,卷積層24(n+1)~24(m)中至少部分的卷積層所使用的特徵參數可被更新,以反映第二影像分類訓練的執行結果。同時,在第二訓練模式中,處於鎖定狀態的卷積層24(1)~24(n)未參與第二影像分類訓練。因此,卷積層24(1)~24(n)所使用的特徵參數不會在第二訓練模式中被更新。In the second training mode, by performing the second image classification training on the convolutional layers 24(n+1)~24(m) in the unlocked state, the feature parameters used by at least part of the convolutional layers 24(n+1)~24(m) can be updated to reflect the execution result of the second image classification training. At the same time, in the second training mode, the convolutional layers 24(1)~24(n) in the locked state do not participate in the second image classification training. Therefore, the feature parameters used by the convolutional layers 24(1)~24(n) will not be updated in the second training mode.
須注意的是,在圖3與圖4的實施例中,被設定為鎖定狀態及/或非鎖定狀態的卷積層的總數及/或分布皆可根據實務需求調整,本發明不加以限制。It should be noted that in the embodiments of FIG. 3 and FIG. 4 , the total number and/or distribution of convolutional layers set to a locked state and/or an unlocked state can be adjusted according to practical needs, and the present invention is not limited thereto.
在一實施例中,在對神經網路模型101進行訓練的初期(即第一訓練模式中),將第一卷積層納入第一影像分類訓練,可對第一卷積層所使用的特徵參數進行初步更新,以針對神經網路模型101對輸入資料所對應的影像提供較為概略或較大範圍的辨識能力。然而,在對神經網路模型101完成第一影像分類訓練後,在對神經網路模型101進行訓練的後期(即第二訓練模式中),將第一卷積層從第二影像分類訓練中排除(即將第一卷積層設定為鎖定狀態),則可有效保留第一卷積層在第一訓練模式中建立的特徵參數,同時對更靠近神經網路模型101的輸出端的第二卷積層所使用的特徵參數進行進一步更新。藉此,可提高神經網路模型101對更加精細或較小範圍的影像的辨識能力。在一實施例中,透過在不同時期採用不同訓練模式(例如第一訓練模式與第二訓練模式)來訓練神經網路模型101,可有效提高針對神經網路模型101的訓練效率。In one embodiment, in the early stage of training the neural network model 101 (i.e., in the first training mode), the first convolutional layer is included in the first image classification training, and the feature parameters used by the first convolutional layer can be preliminarily updated to provide the
在一實施例中,響應於神經網路模型101針對訓練資料的使用程度達到預設程度,處理器13可將神經網路模型101切換至第二訓練模式。例如,假設訓練資料包含5000筆資料。在第一訓練模式中,若處理器13偵測到已經使用一特定比例的訓練資料(例如4/5,即4000筆資料)來訓練神經網路模型101,則處理器13可判定訓練資料的使用程度已達到預設程度並將神經網路模型101從第一訓練模式切換至第二訓練模式。在第二訓練模式中,處理器13可接續使用剩下的訓練資料(例如1000筆資料)來訓練神經網路模型101。然而,若神經網路模型101針對訓練資料的使用程度未達預設程度(例如尚未使用到上述特定比例的訓練資料來訓練神經網路模型101),處理器13可將神經網路模型101維持於第一訓練模式。In one embodiment, in response to the usage level of the training data of the
須注意的是,處理器13還可根據其他的決策方式來將神經網路模型101從第一訓練模式切換至第二訓練模式。例如,在一實施例中,處理器13可判斷神經網路模型101針對輸入資料的影像分類準確率是否達到預設準確率(例如80%或其他比率)。若神經網路模型101針對輸入資料的影像分類準確率已達到預設準確率,處理器13可判定訓練資料的使用程度已達到預設程度並將神經網路模型101從第一訓練模式切換至第二訓練模式。然而,若神經網路模型101針對輸入資料的影像分類準確率未達預設準確率,處理器13可判定訓練資料的使用程度未達到預設程度並將神經網路模型101維持於第一訓練模式。It should be noted that the
在一實施例中,在完成對神經網路模型101的訓練(即完成第一訓練模式與第二訓練模式中的訓練)後,處理器13可透過顯示器11呈現影像(亦稱為目標影像)。例如,處理器13可指示顯示器11呈現目標影像。同時,處理器13可獲得對應於目標影像的色彩分布資訊(亦稱為第一色彩分布資訊)。例如,第一色彩分布資訊可反映出,在顯示器11呈現目標影像的期間,顯示器11的顯示畫面中的各個像素位置的色彩資訊。例如,每一個像素位置的色彩資訊可透過顏色向量來表示。例如,每一個顏色向量可表示為(V(R), V(G), V(B))。V(R)、V(G)及V(B)皆為0~255之間的數值。例如,V(R)、V(G)及V(B)可分別為“124”、“23”及“64”等,視當下顯示器11所呈現的影像而定,本發明不加以限制。此外,所述顏色向量還可透過符合其他類型的色彩空間的元素來表示,本發明不加以限制。In one embodiment, after completing the training of the neural network model 101 (i.e., completing the training in the first training mode and the second training mode), the
在一實施例中,處理器13可將第一色彩分布資訊提供至神經網路模型101,以透過神經網路模型101對顯示器11當下呈現的影像(即目標影像)進行分類。例如,經過上述訓練後的神經網路模型101可根據第一色彩分布資訊,將目標影像分類為屬於多個候選類型中的特定類型(亦稱為目標類型)的影像。例如,所述多個候選類型可包括通用、風景、運動、遊戲、劇院及/或護眼等多種自定義的影像類型,且所述多個候選類型不限於此。例如,假設第一色彩分布資訊反映出目標影像中有大面積的藍天、高山、大海、森林及/或湖泊,則神經網路模型101可能會根據第一色彩分布資訊辨識出目標影像的類型屬於“風景”。依此類推,神經網路模型101可根據不同的第一色彩分布資訊將目標影像辨識為屬於不同的類型。In one embodiment, the
在一實施例中,處理器13可根據神經網路模型101對目標影像的分類結果,對顯示器11使用的至少一顯示參數進行初步調整(亦稱為第一階段調整)。例如,在第一階段調整中,處理器13可根據神經網路模型101對目標影像的分類結果查詢資料表格,以獲得參數調整資訊。例如,此資料表格可記載多種類型的影像所分別對應或匹配的參數調整資訊。若神經網路模型101對目標影像的分類結果反映出目標影像屬於某一類型(即目標類型),處理器13可從資料表格中獲得目標類型所對應或匹配的參數調整資訊(亦稱為目標參數調整資訊)。然後,處理器13可根據此目標參數調整資訊來對顯示器11使用的至少一顯示參數執行第一階段調整。例如,第一階段調整可包括根據此目標參數調整資訊來對顯示器11的對比度、亮度、飽和度及/或色溫等一或多種顯示參數進行調整,以將與目標類型有關的顯示器設定套用至顯示器11。In one embodiment, the
例如,假設在將與“通用”有關的顯示設定套用至顯示器11後,第一階段調整可包括將顯示器11的對比度、亮度、飽和度及/或色溫皆設定為預設值,以滿足通用類型的影像(例如一般文書程式或瀏覽網頁)的顯示需求。或者,假設在將與“風景”有關的顯示設定套用至顯示器11後,第一階段調整可包括將顯示器11的對比度及/或亮度提高,以提高對於風景類型的影像(例如風景照片)的呈現效果。或者,假設在將與“劇院”有關的顯示設定套用至顯示器11後,第一階段調整可包括將顯示器11的亮度調低,以呈現出類似於在劇院觀看影片的臨場感。依此類推,透過第一階段調整,處理器13可初步提高顯示器11針對不同類型的影像的呈現品質。For example, assuming that after applying the display settings related to "general" to the
在一實施例中,根據第一階段調整的結果,處理器13可進一步獲得對應於目標影像的另一色彩分布資訊(亦稱為第二色彩分布資訊)。例如,類似於第一色彩分布資訊,第二色彩分布資訊同樣可反映出,在顯示器11呈現目標影像的期間,顯示器11的顯示畫面中的各個像素位置的色彩資訊。但是,與第一色彩分布資訊的不同處在於,第二色彩分布資訊可進一步反映出,在第一階段調整中,處理器13針對顯示器11的至少一顯示參數的調整結果。例如,假設在將與“風景”有關的顯示設定套用至顯示器11後,相較於第一色彩分布資訊,第二色彩分布資訊可反映出顯示器11當下呈現的影像(即目標影像)的對比度及/或亮度被提高。或者,假設在將與“劇院”有關的顯示設定套用至顯示器11後,相較於第一色彩分布資訊,第二色彩分布資訊可反映出顯示器11當下呈現的影像(即目標影像)的亮度被降低。依此類推,在套用不同類型的顯示設定後,第二色彩分布資訊可反映出在第一階段調整中,處理器13針對顯示器11的顯示參數的不同調整結果。In one embodiment, according to the result of the first stage adjustment, the
在一實施例中,處理器13可根據第二色彩分布資訊,計算色彩補償資訊。例如,此色彩補償資訊可用以改善第一階段調整對於顯示器11的顯示參數的調整所引起或所遺漏的顯示器11的影像呈現品質的缺陷。處理器13可根據此色彩補償資訊對顯示器11使用的至少一顯示參數進行進階調整(亦稱為第二階段調整)。In one embodiment, the
例如,假設在第一階段調整中,處理器13將與“劇院”(即目標類型)有關的顯示設定套用至顯示器11,以降低顯示器11的顯示畫面的亮度。在此情況下,若使用者突然將顯示器11的顯示畫面切換為呈現風景照片(即不屬於所述目標類型的影像),則第二色彩分布資訊可反映出當下顯示器11所呈現的目標影像的色彩分布發生明顯變化。此時,處理器13可根據第二色彩分布資訊偵測出當下採用的“劇院”有關的顯示設定不利於呈現這種“風景”類型的影像。因此,處理器13可根據第二色彩分布資訊,以第一階段調整的調整結果為基礎,進一步對顯示器11使用的對比度、亮度、飽和度及/或色溫等一或多種顯示參數進行第二階段調整,以嘗試將顯示器11的顯示設定調整為更適合呈現顯示器11當下所呈現的目標影像。For example, assume that in the first stage of adjustment, the
在一實施例中,處理器13可根據第二色彩分布資訊,獲得對應於目標影像中的多個像素位置的灰階向量資訊。例如,處理器13可透過以下方程式(1.1)至(1.5)獲得所述灰階向量資訊。In one embodiment, the
(1.1)(1.1)
R (1.2)R (1.2)
G (1.3)G (1.3)
B (1.4)B (1.4)
(1.5)(1.5)
在方程式(1.1)至(1.5)中,矩陣W、R、G及B分別用來表示對應於目標影像中的多個像素位置的灰階向量資訊、紅色向量資訊、綠色向量資訊及藍色向量資訊。m用來表示顯示器11的顯示畫面的長度,n用來表示顯示器11的顯示畫面的寬度,且m×n可用來表示顯示器11的顯示畫面的尺寸(或解析度)。R(ij)、G(ij)及B(ij)可用來表示顯示器11的顯示畫面中在位置(i,j)處的像素的色彩資訊,其中R(ij)為紅色分量的色彩資訊,G(ij)為綠色分量的色彩資訊,且B(ij)為藍色分量的色彩資訊。例如,顯示器11的顯示畫面中在位置(i,j)處的像素的色彩資訊可以顏色向量(R(ij), G(ij), B(ij))來表示。W(ij)用來表示顯示器11的顯示畫面中在位置(i,j)處的像素的灰階資訊(例如灰階值)。此外,a、b及c可為常數。例如,a、b及c可分別為“0.2126”、“0.7152”及“0.0722”,且a、b及c的數值皆可根據實務需求調整。須注意的是,關於矩陣乘法與矩陣加法的計算方式屬習知技術,在此不多加贅述。In equations (1.1) to (1.5), matrices W, R, G, and B are used to represent gray vector information, red vector information, green vector information, and blue vector information corresponding to multiple pixel positions in the target image, respectively. m is used to represent the length of the display screen of the
在一實施例中,處理器13可根據所述灰階向量資訊計算對應於目標影像的灰階期望值。例如,處理器13可透過以下方程式(2.1)獲得所述灰階期望值。In one embodiment, the
E[W]=a×E[R]+b×E[G]+c×E[B] (2.1)E[W]=a×E[R]+b×E[G]+c×E[B] (2.1)
在方程式(2.1)中,E[W]可用來表示對應於目標影像的灰階期望值。須注意的是,關於期望值的計算方式屬習知技術,在此不多加贅述。然後,處理器13可根據此灰階期望值獲得所述色彩補償資訊。In equation (2.1), E[W] can be used to represent the grayscale expected value corresponding to the target image. It should be noted that the calculation method of the expected value belongs to the known technology and will not be elaborated here. Then, the
在一實施例中,處理器13可判斷所述灰階期望值是否大於臨界值(亦稱為第一臨界值)。例如,第一臨界值可為“231”或其他數值。若所述灰階期望值大於第一臨界值,處理器13可指示顯示器11降低顯示器11的顯示畫面的亮度。例如,若所述灰階期望值大於第一臨界值,處理器13可指示顯示器11將顯示參數中的亮度值減去一個調整參數(亦稱為第一調整參數),以降低顯示器11的顯示畫面的亮度。第一臨界值與第一調整參數皆可根據實務需求進行設定與調整,本發明不加以限制。例如,在一實施例中,所述色彩補償資訊可包括此第一調整參數。In one embodiment, the
在一實施例中,處理器13可判斷所述灰階期望值是否小於臨界值(亦稱為第二臨界值)。例如,第二臨界值可為“39”或其他數值,且第二臨界值小於第一臨界值。若所述灰階期望值小於第二臨界值,處理器13可指示顯示器11提高顯示器11的顯示畫面的亮度。例如,若所述灰階期望值小於第二臨界值,處理器13可指示顯示器11將顯示參數中的亮度值加上一個調整參數(亦稱為第二調整參數),以提高顯示器11的顯示畫面的亮度。第二臨界值與第二調整參數皆可根據實務需求進行設定與調整,本發明不加以限制。例如,在一實施例中,所述色彩補償資訊可包括此第二調整參數。In one embodiment, the
在一實施例中,處理器13可根據上述方程式(1.2)至(1.4)中的紅色向量資訊(R)、綠色向量資訊(G)及藍色向量資訊(B)分別獲得目標影像中對應於紅色通道的變異數、對應於綠色通道的變異數及對應於藍色通道的變異數。例如,對應於紅色通道的變異數可反映出R(11)~R(mn)分別與R(11)~R(mn)之平均值之間的(平均)距離的度量,對應於綠色通道的變異數可反映出G(11)~G(mn)分別與G(11)~G(mn)之平均值之間的(平均)距離的度量,且對應於藍色通道的變異數可反映出B(11)~B(mn)分別與B(11)~B(mn)之平均值之間的(平均)距離的度量。處理器13可將這些變異數的至少其中之一帶入特定演算法或方程式,來計算獲得所需的色彩補償資訊。然後,處理器13可使用此色彩補償資訊對顯示器11的至少一顯示參數進行第二階段調整。In one embodiment, the
在一實施例中,處理器13還可配置其他的顏色檢測與調整規則,來根據第二色彩分布資訊對顯示器11的至少一顯示參數進行第二階段調整。所配置的顏色檢測與調整規則可根據實務需求進行設定與調整,本發明不加以限制。In one embodiment, the
在一實施例中,處理器13可判斷顯示器11所呈現的多個連續影像中的前一影像的顯示內容與後一影像的顯示內容之差異是否小於臨界值(亦稱為第三臨界值)。若所述前一影像的顯示內容與所述後一影像的顯示內容之差異小於第三臨界值,處理器13可沿用針對前一影像的色彩補償資訊,而不需要針對後一影像重新計算色彩補償資訊。藉此,可有效減少處理器13的運算負擔。然而,若所述前一影像的顯示內容與所述後一影像的顯示內容之差異不小於(例如大於或等於)第三臨界值,處理器13可針對後一影像重新計算色彩補償資訊並根據此色彩補償資訊來對顯示器11的至少一顯示參數進行第二階段調整。In one embodiment, the
在一實施例中,處理器13可判斷所述色彩補償資訊所指示的針對顯示器11的至少部分顯示參數的調整幅度是否大於臨界值(亦稱為第四臨界值)。若所述色彩補償資訊所指示的針對顯示器11的至少部分顯示參數的調整幅度大於第四臨界值,在第二階段調整中,處理器13可切換為對所述顯示參數執行分段調整。例如,假設在第二階段調整中,預設是要一次性的將顯示器11的顯示畫面的亮度值提高30個單位。在判定此針對亮度值的調整幅度大於第四臨界值後,在第二階段調整中,處理器13可切換為對此亮度值執行分段調整,例如將預設的單次將顯示器11的亮度值提高30個單位調整為連續3次提高顯示器11的亮度值,且每一次只提高10個單位。此外,每一次的分段調整皆可根據預設的分段規則進行配置,本發明不加以限制。藉此,可避免因單次對顯示器11的顯示參數進行太大幅度的調整,從而對使用者的眼睛造成過度刺激。In one embodiment, the
在一實施例中,若一個目標影像中存在多種類型的子影像,則神經網路模型101對目標影像的分類可能會失準或者存在多個可靠的分類結果。在此情況下,若選擇機率最高的分類結果來對顯示器11執行所述第一階段調整,可能會導致所套用的顯示設定會嚴重影像到目標影像中其餘的不同類型的子影像的影像呈現品質。In one embodiment, if there are multiple types of sub-images in a target image, the classification of the target image by the
在一實施例中,若一個目標影像中存在多種類型的子影像,處理器13可根據神經網路模型101對目標影像的多個分類結果,獲得平均調整參數。然後,處理器13可根據此平均調整參數,對顯示器11使用的顯示參數進行所述第一階段調整。藉此,可針對目標影像同時存在的多種類型的子影像進行較為平均的顯示品質的優化。In one embodiment, if there are multiple types of sub-images in a target image, the
圖5是根據本發明的實施例所繪示的目標影像中存在多種類型的子影像的示意圖。FIG. 5 is a schematic diagram showing a target image having multiple types of sub-images according to an embodiment of the present invention.
請參照圖5,假設影像51為目標影像,且影像51中同時存在屬於類型A的影像(亦稱為第一子影像)501與屬於類型B的影像(亦稱為第二子影像)502。在此情況下,若將對應於影像51的第一色彩分部資訊提供給神經網路模型101進行分析,則神經網路模型101可能會判定影像51的類型屬於類型A或類型B的其中之一。但是,若單純將類型A所對應的顯示設定套用至顯示器11,則雖然可有效提升屬於類型A的影像501的顯示品質,但卻可能同時嚴重影響到屬於類型B的影像502的顯示品質。或者,若單純將類型B所對應的顯示設定套用至顯示器11,則雖然可有效提升屬於類型B的影像502的顯示品質,但卻可能同時嚴重影響到屬於類型A的影像501的顯示品質。Please refer to FIG. 5 , assuming that
在一實施例中,在影像51中同時存在屬於類型A的影像501(即第一子影像)與屬於類型B的影像502(即第二子影像)的情況下,處理器13可將對應於影像501的調整參數(亦稱為第一子調整參數)與對應於影像502的調整參數(亦稱為第二子調整參數)取平均(或加權平均),以獲得平均調整參數。然後,處理器13可根據此平均調整參數,對顯示器11使用的顯示參數進行所述第一階段調整。藉此,雖然無法完美達到前述單獨針對單一類型影像的顯示品質的優化效果,但仍有機會平均地對單一目標影像中多種類型的子影像進行顯示品質的優化。In one embodiment, when there are both an image 501 (i.e., the first sub-image) belonging to type A and an image 502 (i.e., the second sub-image) belonging to type B in the
在一實施例中,處理器13可判斷神經網路模型101對目標影像的分類結果是否存在多個可靠的分類結果。例如,假設神經網路模型101針對目標影像的分類結果中包含高於決策值(例如0.5)的多個機率值。例如,這些高於決策值的機率值分別反映出神經網路模型101對目標影像的分類結果。此時,處理器13可判定目標影像中同時存在多種類型的子影像。同時,處理器13可根據這些高於決策值的機率值來決定目標影像中的多個子影像各別的類型。In one embodiment, the
在一實施例中,若神經網路模型101對目標影像的分類結果中只存在一個可靠的分類結果(例如一個高於所述決策值的機率值),則處理器13可判定目標影像中未同時存在多種類型的子影像。例如,此單一個高於決策值的機率值可反映出神經網路模型101對目標影像的分類結果。此外,處理器13可根據此高於決策值的機率值來決定目標影像的類型。In one embodiment, if there is only one reliable classification result (e.g., a probability value higher than the decision value) in the classification result of the target image by the
藉此,無論神經網路模型101的決策結果為何,處理器13皆可採用相應的調整策略來對顯示器11的至少部分顯示參數進行調整,以對顯示器11的影像顯示品質進行優化。相關操作細節皆已詳述於上,在此不重複贅述。Thus, regardless of the decision result of the
圖6是根據本發明的實施例所繪示的顯示參數調整方法的流程圖。FIG. 6 is a flow chart of a display parameter adjustment method according to an embodiment of the present invention.
請參照圖6,在步驟S601中,將神經網路模型設定為第一訓練模式並基於第一訓練模式對神經網路模型進行第一影像分類訓練。在完成第一影像分類訓練後,在步驟S602中,將神經網路模型設定為第二訓練模式並基於第二訓練模式對神經網路模型進行第二影像分類訓練。特別是,在所述神經網路模型中,參與第二影像分類訓練的卷積層的總數可少於參與第一影像分類訓練的卷積層的總數。Referring to FIG. 6 , in step S601, the neural network model is set to the first training mode and the first image classification training is performed on the neural network model based on the first training mode. After the first image classification training is completed, in step S602, the neural network model is set to the second training mode and the second image classification training is performed on the neural network model based on the second training mode. In particular, in the neural network model, the total number of convolutional layers participating in the second image classification training may be less than the total number of convolutional layers participating in the first image classification training.
圖7是根據本發明的實施例所繪示的顯示參數調整方法的流程圖。FIG. 7 is a flow chart of a display parameter adjustment method according to an embodiment of the present invention.
請參照圖7,在步驟S701中,透過顯示器呈現影像。在步驟S702中,獲得對應於所述影像的第一色彩分布資訊。在步驟S703中,將第一色彩分布資訊提供至神經網路模型,以透過神經網路模型對所述影像進行分類。在步驟S704中,根據神經網路模型對所述影像的分類結果,對顯示器使用的顯示參數進行第一階段調整。在步驟S705中,根據第一階段調整的結果,獲得對應於所述影像的第二色彩分布資訊。在步驟S706中,根據第二色彩分布資訊,計算色彩補償資訊。在步驟S707中,根據色彩補償資訊對顯示器使用的顯示參數進行第二階段調整。Please refer to FIG. 7 . In step S701, an image is presented through a display. In step S702, first color distribution information corresponding to the image is obtained. In step S703, the first color distribution information is provided to a neural network model so as to classify the image through the neural network model. In step S704, a first stage adjustment is performed on display parameters used by the display according to the classification result of the neural network model for the image. In step S705, second color distribution information corresponding to the image is obtained according to the result of the first stage adjustment. In step S706, color compensation information is calculated according to the second color distribution information. In step S707, the display parameters used by the display are adjusted in the second stage according to the color compensation information.
然而,圖6與圖7中各步驟已詳細說明如上,在此便不再贅述。值得注意的是,圖6與圖7中各步驟可以實作為多個程式碼或是電路,本發明不加以限制。此外,圖6與圖7的方法可以搭配以上範例實施例使用,也可以單獨使用,本發明不加以限制。However, each step in FIG. 6 and FIG. 7 has been described in detail above, and will not be repeated here. It is worth noting that each step in FIG. 6 and FIG. 7 can be implemented as multiple program codes or circuits, and the present invention is not limited thereto. In addition, the methods in FIG. 6 and FIG. 7 can be used in conjunction with the above exemplary embodiments, or can be used alone, and the present invention is not limited thereto.
綜上所述,本發明的實施例所提出的顯示參數調整方法與電子裝置,可透過在不同時期採用不同訓練模式(例如第一訓練模式與第二訓練模式)來訓練神經網路模型,以有效提高針對神經網路模型的訓練效率。此外,本發明的實施例所提出的顯示參數調整方法與電子裝置,還可透過兩階段的調整機制,來根據顯示器當下顯示的影像的類型,對應調整顯示器使用的顯示參數。特別是,在第一階段調整中,主要是參考神經網路模型對顯示器所呈現的影像的分類結果,來對應調整顯示器使用的顯示參數。在第二階段調整中,則是以第一階段調整的結果為基礎,對顯示器使用的顯示參數作進一步微調,從而改善第一階段調整對於顯示器的顯示參數的調整所引起或所遺漏的顯示器的影像呈現品質的缺陷。藉此,可有效提高顯示器的影像呈現品質,進而提高使用者對顯示器呈現的影像的觀看體驗。In summary, the display parameter adjustment method and electronic device proposed in the embodiment of the present invention can train the neural network model by adopting different training modes (such as the first training mode and the second training mode) at different times to effectively improve the training efficiency of the neural network model. In addition, the display parameter adjustment method and electronic device proposed in the embodiment of the present invention can also use a two-stage adjustment mechanism to adjust the display parameters used by the display according to the type of image currently displayed by the display. In particular, in the first stage of adjustment, the display parameters used by the display are adjusted accordingly, mainly referring to the classification results of the neural network model on the image presented by the display. In the second stage of adjustment, the display parameters used by the monitor are further fine-tuned based on the results of the first stage of adjustment, thereby improving the defects in the image presentation quality of the monitor caused or omitted by the adjustment of the display parameters of the monitor in the first stage of adjustment. In this way, the image presentation quality of the monitor can be effectively improved, thereby improving the user's viewing experience of the images presented by the monitor.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed as above by the embodiments, they are not intended to limit the present invention. Any person with ordinary knowledge in the relevant technical field can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be defined by the scope of the attached patent application.
10: 電子裝置 11: 顯示器 12: 儲存電路 13: 處理器 101: 神經網路模型 21: 輸入端 22: 輸出端 23: 運算核心 24(1)~24(m): 卷積層 51: 影像 501: 影像(第一子影像) 502: 影像(第二子影像) S601, S602, S701~S707: 步驟 10: electronic device 11: display 12: storage circuit 13: processor 101: neural network model 21: input port 22: output port 23: computing core 24(1)~24(m): convolutional layer 51: image 501: image (first sub-image) 502: image (second sub-image) S601, S602, S701~S707: steps
圖1是根據本發明的實施例所繪示的電子裝置的示意圖。 圖2是根據本發明的實施例所繪示的神經網路模型的示意圖。 圖3是根據本發明的實施例所繪示的處於第一訓練模式的神經網路模型的示意圖。 圖4是根據本發明的實施例所繪示的處於第二訓練模式的神經網路模型的示意圖。 圖5是根據本發明的實施例所繪示的目標影像中存在多種類型的子影像的示意圖。 圖6是根據本發明的實施例所繪示的顯示參數調整方法的流程圖。 圖7是根據本發明的實施例所繪示的顯示參數調整方法的流程圖。 FIG. 1 is a schematic diagram of an electronic device according to an embodiment of the present invention. FIG. 2 is a schematic diagram of a neural network model according to an embodiment of the present invention. FIG. 3 is a schematic diagram of a neural network model in a first training mode according to an embodiment of the present invention. FIG. 4 is a schematic diagram of a neural network model in a second training mode according to an embodiment of the present invention. FIG. 5 is a schematic diagram of a target image according to an embodiment of the present invention in which there are multiple types of sub-images. FIG. 6 is a flow chart of a display parameter adjustment method according to an embodiment of the present invention. FIG. 7 is a flow chart of a display parameter adjustment method according to an embodiment of the present invention.
S701~S707:步驟 S701~S707: Steps
Claims (16)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW113120736A TWI885935B (en) | 2024-06-05 | 2024-06-05 | Display parameter adjustment method and electronic device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW113120736A TWI885935B (en) | 2024-06-05 | 2024-06-05 | Display parameter adjustment method and electronic device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TWI885935B true TWI885935B (en) | 2025-06-01 |
| TW202548729A TW202548729A (en) | 2025-12-16 |
Family
ID=97227501
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW113120736A TWI885935B (en) | 2024-06-05 | 2024-06-05 | Display parameter adjustment method and electronic device |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI885935B (en) |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20210256937A1 (en) * | 2017-05-19 | 2021-08-19 | Semiconductor Energy Laboratory Co., Ltd. | Machine learning method, machine learning system, and display system |
| TW202309736A (en) * | 2018-07-03 | 2023-03-01 | 美商谷歌有限責任公司 | Display supporting multiple views, and method for such display |
| CN116453438A (en) * | 2023-06-19 | 2023-07-18 | 深圳市瑞桔电子有限公司 | Display screen parameter detection method, device, equipment and storage medium |
| CN117478902A (en) * | 2022-07-15 | 2024-01-30 | 华为技术有限公司 | Image display method, encoding method and related devices applied to electronic equipment |
-
2024
- 2024-06-05 TW TW113120736A patent/TWI885935B/en active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20210256937A1 (en) * | 2017-05-19 | 2021-08-19 | Semiconductor Energy Laboratory Co., Ltd. | Machine learning method, machine learning system, and display system |
| TW202309736A (en) * | 2018-07-03 | 2023-03-01 | 美商谷歌有限責任公司 | Display supporting multiple views, and method for such display |
| CN117478902A (en) * | 2022-07-15 | 2024-01-30 | 华为技术有限公司 | Image display method, encoding method and related devices applied to electronic equipment |
| CN116453438A (en) * | 2023-06-19 | 2023-07-18 | 深圳市瑞桔电子有限公司 | Display screen parameter detection method, device, equipment and storage medium |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Sun et al. | A deep learning based no-reference quality assessment model for ugc videos | |
| WO2021057848A1 (en) | Network training method, image processing method, network, terminal device and medium | |
| CN110189714A (en) | Display method and device with area-adjustable backlight, electronic equipment, medium | |
| CN112102164B (en) | Image processing method, device, terminal and storage medium | |
| US20140218552A1 (en) | Electronic device and image composition method thereof | |
| WO2024041108A1 (en) | Image correction model training method and apparatus, image correction method and apparatus, and computer device | |
| CN111182212B (en) | Image processing method, device, storage medium, and electronic device | |
| CN111047543B (en) | Image enhancement method, device and storage medium | |
| CN108961267B (en) | Picture processing method, picture processing device and terminal equipment | |
| WO2020151156A1 (en) | Video stream playing method and system, computer apparatus and readable storage medium | |
| US20240346726A1 (en) | Image Processing Method, Electronic Device, and Non-Transitory Readable Storage Medium | |
| CN116843566B (en) | Tone mapping method, tone mapping device, display device and storage medium | |
| Ma et al. | Study of subjective and objective quality assessment of retargeted images | |
| CN111800626B (en) | Photographing consistency evaluation method and device, mobile terminal and storage medium | |
| TWI885935B (en) | Display parameter adjustment method and electronic device | |
| CN115170383A (en) | Image blurring method and device, storage medium and terminal equipment | |
| CN116739936A (en) | Tone mapping method, device, display device and storage medium | |
| KR102234795B1 (en) | Method of processing image data and display system for display power reduction | |
| TW202548729A (en) | Display parameter adjustment method and electronic device | |
| CN108629767A (en) | A kind of method, device and mobile terminal of scene detection | |
| US20090208114A1 (en) | Image Processing Apparatus | |
| CN111754411A (en) | Image noise reduction method, image noise reduction device and terminal equipment | |
| US10026201B2 (en) | Image classifying method and image displaying method | |
| CN117135330A (en) | Model training and image processing methods, devices and electronic equipment | |
| CN115761809A (en) | Projector control method, device and equipment based on gesture recognition and storage medium |