[go: up one dir, main page]

TWI880091B - Server and method for managing internet of things - Google Patents

Server and method for managing internet of things Download PDF

Info

Publication number
TWI880091B
TWI880091B TW111121798A TW111121798A TWI880091B TW I880091 B TWI880091 B TW I880091B TW 111121798 A TW111121798 A TW 111121798A TW 111121798 A TW111121798 A TW 111121798A TW I880091 B TWI880091 B TW I880091B
Authority
TW
Taiwan
Prior art keywords
internet
things
data
abnormal
iot
Prior art date
Application number
TW111121798A
Other languages
Chinese (zh)
Other versions
TW202349922A (en
Inventor
呂侑陞
張朝曦
謝文生
Original Assignee
中華電信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中華電信股份有限公司 filed Critical 中華電信股份有限公司
Priority to TW111121798A priority Critical patent/TWI880091B/en
Publication of TW202349922A publication Critical patent/TW202349922A/en
Application granted granted Critical
Publication of TWI880091B publication Critical patent/TWI880091B/en

Links

Images

Landscapes

  • Telephonic Communication Services (AREA)
  • Alarm Systems (AREA)

Abstract

A server and a method for managing Internet of Things (IoT) are provided. The method includes: receiving current data from the IoT; determining whether the IoT is in a abnormal state according to the current data; setting a cycle time to a first time interval in response to determining the IoT being in the abnormal state; and generating a data report according to the current data and outputting the data report according to the cycle time.

Description

管理物聯網的伺服器和方法Server and method for managing Internet of Things

本發明是有關於一種管理物聯網(Internet of Things,IoT)的伺服器和方法。The present invention relates to a server and method for managing the Internet of Things (IoT).

目前,物聯網逐漸開放提供以機器通訊(machine type communication,MTC)等以物對物(M2M)型態之應用為主的服務。在一些應用情境下(例如:車機、停車場管理或電錶等),物聯網可能需為大量的物聯網設備提供服務。因應於大量物聯網設備的連線管理需求,物聯網的連線管理平台扮演著第一線客服的角色。連線管理平台除了提供即時的設備資訊、連線資訊或流量等,也提供查詢障礙服務,為使用者或物聯網設備提供即時連線狀態或流量等即時資訊。當面臨到納管設備故障或惡意攻擊行為時,常常會伴隨著設備狀態的資料量暴增的情形。由於連線管理平台所能處理資料量的能力都是固定的,當資料量超出連線管理平台能處理的範圍時,可能導致連線管理平台的反應時間變長或是服務延遲的情形出現,進而影響物聯網的服務品質。Currently, the Internet of Things is gradually opening up services mainly based on machine type communication (MTC) and other object-to-object (M2M) applications. In some application scenarios (such as car computers, parking lot management or electric meters, etc.), the Internet of Things may need to provide services for a large number of IoT devices. In response to the connection management needs of a large number of IoT devices, the connection management platform of the IoT plays the role of first-line customer service. In addition to providing real-time device information, connection information or traffic, the connection management platform also provides fault query services to provide users or IoT devices with real-time information such as real-time connection status or traffic. When faced with managed device failures or malicious attacks, there is often a surge in the amount of device status data. Since the capacity of the connection management platform to process data is fixed, when the amount of data exceeds the range that the connection management platform can handle, it may cause the connection management platform's response time to become longer or service delays to occur, thereby affecting the service quality of the Internet of Things.

本發明提供一種管理物聯網的伺服器和方法,可避免異常設備產生的大量資料對伺服器的運算能力產生負面影響。The present invention provides a server and method for managing the Internet of Things, which can prevent a large amount of data generated by abnormal devices from having a negative impact on the computing capacity of the server.

本發明得一種管理物聯網的伺服器,包含處理器、儲存媒體以及收發器。儲存媒體儲存多個模組。處理器耦接儲存媒體以及收發器,並且存取和執行多個模組,其中多個模組包含緩衝器、異常偵測模組、資料處理模組以及資料輸出模組。緩衝器通過收發器接收來自物聯網的當前資料。異常偵測模組根據當前資料判斷物聯網是否處於異常狀態。資料處理模組根據當前資料產生資料報表。資料輸出模組根據周期而通過收發器輸出資料報表,其中資料處理模組響應於物聯網處於異常狀態而將周期設為第一時間間隔。The present invention provides a server for managing the Internet of Things, comprising a processor, a storage medium and a transceiver. The storage medium stores a plurality of modules. The processor is coupled to the storage medium and the transceiver, and accesses and executes a plurality of modules, wherein the plurality of modules comprises a buffer, an abnormality detection module, a data processing module and a data output module. The buffer receives current data from the Internet of Things through the transceiver. The abnormality detection module determines whether the Internet of Things is in an abnormal state according to the current data. The data processing module generates a data report according to the current data. The data output module outputs a data report through a transceiver according to a period, wherein the data processing module sets the period to a first time interval in response to the Internet of Things being in an abnormal state.

在本發明的一實施例中,上述的當前資料包含對應於第一物聯網設備的第一當前資料,其中緩衝器通過收發器接收來自物聯網的歷史資料,其中異常偵測模組根據第一當前資料和歷史資料計算第一物聯網設備的標準分數。In one embodiment of the present invention, the above-mentioned current data includes first current data corresponding to a first IoT device, wherein the buffer receives historical data from the IoT via a transceiver, and wherein the abnormality detection module calculates a standard score of the first IoT device based on the first current data and the historical data.

在本發明的一實施例中,上述的標準分數關聯於第一物聯網設備在預設時段期間的斷線次數。In one embodiment of the present invention, the above-mentioned standard score is related to the number of disconnections of the first IoT device during a preset time period.

在本發明的一實施例中,上述的異常偵測模組響應於標準分數的絕對值大於第一閾值,將第一物聯網設備添加至儲存在儲存媒體的異常設備清單中。In one embodiment of the present invention, the above-mentioned abnormality detection module adds the first Internet of Things device to the abnormal device list stored in the storage medium in response to the absolute value of the standard score being greater than the first threshold.

在本發明的一實施例中,上述的當前資料關聯於包含第一物聯網設備的多個物聯網設備,並且異常設備清單包含至少一異常物聯網設備,其中異常偵測模組響應於至少一異常物聯網設備與多個物聯網設備的比率大於第二閾值而判斷物聯網處於異常狀態。In one embodiment of the present invention, the above-mentioned current data is associated with multiple IoT devices including a first IoT device, and the abnormal device list includes at least one abnormal IoT device, wherein the abnormality detection module determines that the IoT is in an abnormal state in response to the ratio of at least one abnormal IoT device to multiple IoT devices being greater than a second threshold.

在本發明的一實施例中,上述的異常偵測模組響應於比率小於或等於第二閾值而判斷物聯網處於非異常狀態,其中資料處理模組響應於物聯網處於非異常狀態而將周期設為第二時間間隔,其中第二時間間隔小於第一時間間隔。In one embodiment of the present invention, the above-mentioned abnormality detection module responds to the ratio being less than or equal to the second threshold and determines that the Internet of Things is in an abnormal state, wherein the data processing module responds to the Internet of Things being in an abnormal state and sets the period to a second time interval, wherein the second time interval is less than the first time interval.

在本發明的一實施例中,上述的異常偵測模組響應於絕對值小於或等於第一閾值且異常設備清單包含第一物聯網設備,將第一物聯網設備自異常設備清單中刪除。In an embodiment of the present invention, the above-mentioned abnormality detection module responds that the absolute value is less than or equal to the first threshold and the abnormal device list includes the first IoT device, and deletes the first IoT device from the abnormal device list.

在本發明的一實施例中,上述的資料處理模組對歷史資料執行高斯濾波以產生分布模型,其中異常偵測模組根據分布模型計算標準分數。In one embodiment of the present invention, the data processing module performs Gaussian filtering on the historical data to generate a distribution model, wherein the anomaly detection module calculates a standard score based on the distribution model.

本發明得一種管理物聯網的方法,包含:接收來自物聯網的當前資料;根據當前資料判斷物聯網是否處於異常狀態;響應於判斷物聯網處於異常狀態而將周期設為第一時間間隔;以及根據當前資料產生資料報表,並且根據周期輸出資料報表。The present invention provides a method for managing an Internet of Things, comprising: receiving current data from the Internet of Things; determining whether the Internet of Things is in an abnormal state based on the current data; setting a period to a first time interval in response to determining that the Internet of Things is in an abnormal state; and generating a data report based on the current data, and outputting the data report based on the period.

基於上述,本發明的伺服器可根據物聯網設備的斷線次數建立物連網設備的分布模型,並且使用分布模型來判斷物聯網設備是否出現異常,從而建立異常設備清單。伺服器可根據異常設備清單判斷物聯網是否處於異常狀態,並且根據判斷結果調整回報資料報表的周期。如此,可避免物聯網所產生的大量異常資料增加物聯網之連線管理平台的負載,藉以改善連線管理平台之效能。Based on the above, the server of the present invention can establish a distribution model of IoT devices according to the number of disconnections of IoT devices, and use the distribution model to determine whether an IoT device is abnormal, thereby establishing an abnormal device list. The server can determine whether the IoT is in an abnormal state according to the abnormal device list, and adjust the cycle of reporting data reports according to the judgment result. In this way, it is possible to avoid the large amount of abnormal data generated by the IoT from increasing the load of the IoT connection management platform, thereby improving the performance of the connection management platform.

為了使本發明之內容可以被更容易明瞭,以下特舉實施例作為本發明確實能夠據以實施的範例。另外,凡可能之處,在圖式及實施方式中使用相同標號的元件/構件/步驟,係代表相同或類似部件。In order to make the content of the present invention more clearly understood, the following embodiments are specifically cited as examples by which the present invention can be truly implemented. In addition, wherever possible, elements/components/steps with the same reference numerals in the drawings and embodiments represent the same or similar components.

圖1根據本發明的一實施例由伺服器100收集在物聯網10中傳輸之資料的示意圖。伺服器100可通訊連接至物聯網10以及資料庫20,並可自物聯網10(或自物聯網10中的遠端使用者撥入驗證服務(remote authentication dial in user service,RADIUS)伺服器)收集資料。伺服器100可將收集自物聯網10的資料儲存在資料庫20中。當負責管理物聯網10的連線管理平台欲取得物聯網10的資訊時,連線管理平台可存取資料庫20以取得物聯網10的資訊。然而,若物聯網10發生異常而導致大量資料產生時,資料庫20中所儲存的資料可能會大幅地增加,進而導致連線管理平台的負載增加。為了避免上述的情況發生,伺服器100可在偵測到物聯網10發生異常時,減少被傳輸到資料庫20的資料量。FIG1 is a schematic diagram of data transmitted in the Internet of Things 10 collected by a server 100 according to an embodiment of the present invention. The server 100 can be communicatively connected to the Internet of Things 10 and the database 20, and can collect data from the Internet of Things 10 (or from a remote authentication dial in user service (RADIUS) server in the Internet of Things 10). The server 100 can store the data collected from the Internet of Things 10 in the database 20. When the connection management platform responsible for managing the Internet of Things 10 wants to obtain information of the Internet of Things 10, the connection management platform can access the database 20 to obtain the information of the Internet of Things 10. However, if an abnormality occurs in the IoT 10 and a large amount of data is generated, the data stored in the database 20 may increase significantly, thereby increasing the load of the connection management platform. To avoid the above situation, the server 100 can reduce the amount of data transmitted to the database 20 when an abnormality is detected in the IoT 10.

圖2根據本發明的一實施例繪示管理物聯網10的伺服器100的示意圖。伺服器100可包含處理器110、儲存媒體120以及收發器130。處理器110例如是中央處理單元(central processing unit,CPU),或是其他可程式化之一般用途或特殊用途的微控制單元(micro control unit,MCU)、微處理器(microprocessor)、數位信號處理器(digital signal processor,DSP)、可程式化控制器、特殊應用積體電路(application specific integrated circuit,ASIC)、圖形處理器(graphics processing unit,GPU)、影像訊號處理器(image signal processor,ISP)、影像處理單元(image processing unit,IPU)、算數邏輯單元(arithmetic logic unit,ALU)、複雜可程式邏輯裝置(complex programmable logic device,CPLD)、現場可程式化邏輯閘陣列(field programmable gate array,FPGA)或其他類似元件或上述元件的組合。處理器110可耦接至儲存媒體120以及收發器130,並且存取和執行儲存於儲存媒體120中的多個模組和各種應用程式。FIG2 is a schematic diagram of a server 100 for managing the Internet of Things 10 according to an embodiment of the present invention. The server 100 may include a processor 110, a storage medium 120, and a transceiver 130. The processor 110 is, for example, a central processing unit (CPU), or other programmable general-purpose or special-purpose micro control unit (MCU), microprocessor, digital signal processor (DSP), programmable controller, application specific integrated circuit (ASIC), graphics processing unit (GPU), image signal processor (ISP), image processing unit (IPU), arithmetic logic unit (ALU), complex programmable logic device (CPLD), field programmable gate array (FPGA), or other similar components or combinations of the above components. The processor 110 may be coupled to the storage medium 120 and the transceiver 130 , and access and execute a plurality of modules and various applications stored in the storage medium 120 .

儲存媒體120例如是任何型態的固定式或可移動式的隨機存取記憶體(random access memory,RAM)、唯讀記憶體(read-only memory,ROM)、快閃記憶體(flash memory)、硬碟(hard disk drive,HDD)、固態硬碟(solid state drive,SSD)或類似元件或上述元件的組合,而用於儲存可由處理器110執行的多個模組或各種應用程式。在本實施例中,儲存媒體120可儲存包含資料處理模組121、異常偵測模組122、資料輸出模組123以及緩衝器124等多個模組,其功能將於後續說明。在一實施例中,緩衝器124可包含訊息佇列(message queue,MQ)資料庫。The storage medium 120 is, for example, any type of fixed or removable random access memory (RAM), read-only memory (ROM), flash memory, hard disk drive (HDD), solid state drive (SSD) or similar components or a combination of the above components, and is used to store multiple modules or various applications that can be executed by the processor 110. In this embodiment, the storage medium 120 can store multiple modules including a data processing module 121, an abnormality detection module 122, a data output module 123, and a buffer 124, and their functions will be described later. In one embodiment, the buffer 124 may include a message queue (MQ) database.

收發器130以無線或有線的方式傳送及接收訊號。收發器130還可以執行例如低噪聲放大、阻抗匹配、混頻、向上或向下頻率轉換、濾波、放大以及類似的操作。The transceiver 130 transmits and receives signals wirelessly or wiredly. The transceiver 130 may also perform operations such as low noise amplification, impedance matching, frequency mixing, up or down frequency conversion, filtering, amplification, and the like.

圖3根據本發明的一實施例繪示為物聯網設備建立分布模型的流程圖。圖3的流程可由如圖1所示的伺服器100實施。在步驟S301中,緩衝器124可通過收發器130接收來自物聯網10的歷史資料並且儲存歷史資料,其中歷史資料可包含分別對應於N個物聯網設備的N筆連線記錄(N為正整數),其中連線記錄可記載發生在物聯網設備的斷線事件。在一實施例中,物聯網10中的RADIUS伺服器可在未偵測到特定物聯網設備時,記錄對應於該特定物聯網設備的斷線事件,進而產生該特定物聯網設備的連線記錄。FIG3 is a flow chart of establishing a distribution model for IoT devices according to an embodiment of the present invention. The process of FIG3 can be implemented by the server 100 shown in FIG1. In step S301, the buffer 124 can receive historical data from the IoT 10 through the transceiver 130 and store the historical data, wherein the historical data can include N connection records corresponding to N IoT devices (N is a positive integer), wherein the connection record can record disconnection events occurring in the IoT devices. In one embodiment, the RADIUS server in the IoT 10 can record the disconnection event corresponding to the specific IoT device when the specific IoT device is not detected, thereby generating a connection record of the specific IoT device.

緩衝器124可基於安全檔案傳輸協定(secure file transfer protocol,SFTP)而自RADIUS伺服器接收逗號分隔值(comma-separated values,CSV)檔案,並從CSV檔案中取得歷史資料。The buffer 124 may receive a comma-separated values (CSV) file from the RADIUS server based on a secure file transfer protocol (SFTP), and obtain the historical data from the CSV file.

在步驟S302中,資料處理模組121可對歷史資料執行高斯濾波以產生分布模型。具體來說,資料處理模組121可根據歷史資料為每一個物聯網設備統計物聯網設備在預設時段(例如:1個小時)期間的斷線次數。由於歷史資料關聯於N個物聯網設備,故資料處理模組121可根據歷史資料統計出N個斷線次數。在取得N個斷線次數後,異常偵測模組122可根據N個斷線次數產生關聯於斷線次數的分布。一般來說,由N個斷線次數所產生的分布可呈現常態分布(normal distribution)。In step S302, the data processing module 121 may perform Gaussian filtering on the historical data to generate a distribution model. Specifically, the data processing module 121 may count the number of disconnections of the IoT device during a preset time period (e.g., 1 hour) for each IoT device based on the historical data. Since the historical data is associated with N IoT devices, the data processing module 121 may count N disconnection times based on the historical data. After obtaining the N disconnection times, the abnormality detection module 122 may generate a distribution associated with the disconnection times based on the N disconnection times. Generally speaking, the distribution generated by the N disconnection times may present a normal distribution.

在取得關聯於斷線次數的分布後,異常偵測模組122可對分布執行高斯濾波(Gaussian filtering)以將落於一個標準差之外的異常值(outlier)過濾掉,從而產生分布模型,其中分布模型可包含斷線次數的平均值和標準差。After obtaining the distribution related to the number of disconnections, the anomaly detection module 122 may perform Gaussian filtering on the distribution to filter out outliers outside a standard deviation, thereby generating a distribution model, wherein the distribution model may include a mean value and a standard deviation of the number of disconnections.

圖4根據本發明的一實施例繪示調整物聯網資料之回報周期的流程圖。圖4的流程可由如圖1所示的伺服器100實施。在步驟S401中,緩衝器124可通過收發器130接收來自物聯網10的當前資料並且儲存當前資料,其中當前資料可關聯於多個物聯網設備。以多個物聯網設備中的第一物聯網設備為例,當前資料可包含對應於第一物聯網設備的第一當前資料。第一當前資料可記載發生在第一物聯網設備的斷線事件。緩衝器124可基於SFTP而自物聯網10中的RADIUS伺服器接收CSV檔案,並從CSV檔案中取得當前資料。FIG4 is a flow chart for adjusting the reporting period of IoT data according to an embodiment of the present invention. The process of FIG4 can be implemented by the server 100 shown in FIG1. In step S401, the buffer 124 can receive current data from the IoT 10 through the transceiver 130 and store the current data, wherein the current data can be associated with multiple IoT devices. Taking the first IoT device among multiple IoT devices as an example, the current data can include the first current data corresponding to the first IoT device. The first current data can record a disconnection event occurring in the first IoT device. The buffer 124 can receive a CSV file from a RADIUS server in the IoT 10 based on SFTP and obtain the current data from the CSV file.

當前資料的產生時間可晚於歷史資料的產生時間。舉例來說,若歷史資料記錄了過去90天發生在物聯網10的斷線事件,則當前資料可記錄過去1天發生在物聯網10的斷線事件。The generation time of the current data may be later than the generation time of the historical data. For example, if the historical data records the disconnection events that occurred in the IoT 10 in the past 90 days, the current data may record the disconnection events that occurred in the IoT 10 in the past day.

在步驟S402中,異常偵測模組122可根據第一當前資料計算第一物聯網設備的標準分數(standard score,z-score)。具體來說,資料處理模組121可根據第一當前資料統計第一物聯網設備在預設時段(例如:1個小時)期間的斷線次數。在取得第一物聯網設備的斷線次數後,異常偵測模組122可根據方程式(1)計算第一物聯網設備的標準分數,其中 為標準分數, 為第一物聯網設備在預設時段期間的斷線次數, 為分布模型的平均值,且 為分布模型的標準差。 …(1) In step S402, the anomaly detection module 122 may calculate the standard score (z-score) of the first IoT device based on the first current data. Specifically, the data processing module 121 may count the number of disconnections of the first IoT device during a preset time period (e.g., 1 hour) based on the first current data. After obtaining the number of disconnections of the first IoT device, the anomaly detection module 122 may calculate the standard score of the first IoT device according to equation (1), where is the standard score, is the number of disconnections of the first IoT device during a preset time period, is the mean value of the distribution model, and is the standard deviation of the distribution model. …(1)

在一實施例中,資料處理模組121可根據第一物聯網設備的網際網路協定(Internet protocol,IP)位址或設備識別碼等資訊以從當前資料中取出對應於第一物聯網設備的第一當前資料。舉例來說,在第一當前資料中,每一個資料封包的來源設備IP位址可等於第一物聯網設備的IP位址。In one embodiment, the data processing module 121 can extract the first current data corresponding to the first IoT device from the current data according to the Internet protocol (IP) address or device identification code of the first IoT device. For example, in the first current data, the source device IP address of each data packet can be equal to the IP address of the first IoT device.

在步驟S403中,異常偵測模組122可判斷對應於第一物聯網設備的標準分數的絕對值(即: )是否大於第一閾值。若標準分數的絕對值大於第一閾值,代表第一物聯網設備可能發生異常。據此,伺服器100可執行步驟S404。若標準分數的絕對值小於或等於第一閾值,代表第一物聯網設備應處於正常狀態。據此,伺服器100可執行步驟S407。 In step S403, the abnormality detection module 122 may determine the absolute value of the standard score corresponding to the first IoT device (ie: ) is greater than the first threshold. If the absolute value of the standard score is greater than the first threshold, it means that the first IoT device may be abnormal. Accordingly, the server 100 can execute step S404. If the absolute value of the standard score is less than or equal to the first threshold, it means that the first IoT device should be in a normal state. Accordingly, the server 100 can execute step S407.

在一實施例中,若在步驟S302統計出的分布為常態分布,則異常偵測模組122可將第一閾值設為2。In one embodiment, if the distribution calculated in step S302 is a normal distribution, the anomaly detection module 122 may set the first threshold to 2.

在步驟S404中,異常偵測模組122可判斷異常設備清單是否存在。若異常偵測模組122在儲存媒體120中查詢到了異常設備清單,則進入步驟S406。若異常偵測模組122並未在儲存媒體120中查詢到異常設備清單,則進入步驟S405。In step S404, the abnormality detection module 122 can determine whether the abnormal device list exists. If the abnormality detection module 122 finds the abnormal device list in the storage medium 120, the process proceeds to step S406. If the abnormality detection module 122 does not find the abnormal device list in the storage medium 120, the process proceeds to step S405.

在步驟S405中,異常偵測模組122可建立異常設備清單,並可將異常設備清單儲存在儲存媒體120中。In step S405, the abnormality detection module 122 may create an abnormal device list and store the abnormal device list in the storage medium 120.

在步驟S406中,異常偵測模組122可將第一物聯網設備添加至異常設備清單中。In step S406, the abnormality detection module 122 may add the first IoT device to the abnormal device list.

在步驟S407中,異常偵測模組122可判斷第一物聯網設備是否包含在異常設備清單中。若第一物聯網設備包含在異常設備清單中,則進入步驟S408。若第一物聯網設備未包含在異常設備清單中,則進入步驟S409。In step S407, the abnormality detection module 122 can determine whether the first IoT device is included in the abnormal device list. If the first IoT device is included in the abnormal device list, the process proceeds to step S408. If the first IoT device is not included in the abnormal device list, the process proceeds to step S409.

由於異常偵測模組122已在步驟S403判斷第一物聯網設備處於正常狀態,在步驟S408中,異常偵測模組122可將第一物聯網設備自異常設備清單刪除。Since the abnormality detection module 122 has determined in step S403 that the first IoT device is in a normal state, in step S408, the abnormality detection module 122 may delete the first IoT device from the abnormal device list.

在步驟S409中,異常偵測模組122可根據當前資料判斷物聯網10是否處於異常狀態。若物聯網10處於異常狀態,則進入步驟S410。若物聯網10處於非異常狀態,則進入步驟S411。In step S409, the abnormality detection module 122 can determine whether the Internet of Things 10 is in an abnormal state according to the current data. If the Internet of Things 10 is in an abnormal state, the process proceeds to step S410. If the Internet of Things 10 is in a non-abnormal state, the process proceeds to step S411.

具體來說,若當前資料關聯於M個物聯網設備(即:共有M個物聯網設備在物聯網10中進行通訊),且異常設備清單包含K個物聯網設備,則異常偵測模組122可根據方程式(2)計算比率R,其中M為正整數,且K為小於或等於M個正整數。異常偵測模組122可響應於比率R大於第二閾值而判斷物聯網10處於異常狀態,並可響應於比率R小於或等於第二閾值而判斷物聯網10處於非異常狀態。 …(2) Specifically, if the current data is associated with M IoT devices (i.e., there are a total of M IoT devices communicating in the IoT 10), and the abnormal device list includes K IoT devices, the abnormal detection module 122 can calculate the ratio R according to equation (2), where M is a positive integer, and K is a positive integer less than or equal to M. The abnormal detection module 122 can determine that the IoT 10 is in an abnormal state in response to the ratio R being greater than the second threshold, and can determine that the IoT 10 is in a non-abnormal state in response to the ratio R being less than or equal to the second threshold. …(2)

在一實施例中,異常偵測模組122可將第二閾值設為0.5。也就是說,若物聯網10中有超過半數的物聯網設備在異常設備清單中,則異常偵測模組122可判斷物聯網10處於異常狀態。In one embodiment, the abnormality detection module 122 may set the second threshold to 0.5. That is, if more than half of the IoT devices in the IoT 10 are in the abnormal device list, the abnormality detection module 122 may determine that the IoT 10 is in an abnormal state.

在步驟S410中,資料處理模組121可將周期設為第一時間間隔。在步驟S411中,資料處理模組121可將周期設為第一時間間隔,其中第二時間間隔小於第一時間間隔。上述的周期可為伺服器100傳送物聯網10的資料給資料庫20的周期。具體來說,資料處理模組121可根據儲存在緩衝器124中的當前資料產生物聯網10的資料報表,其中資料報表可包含物聯網10中的流量的相關資訊。資料輸出模組123可根據周期而通過收發器130輸出資料報表給資料庫20,以供連線管理平台作為管理物聯網10的依據。In step S410, the data processing module 121 may set the cycle to the first time interval. In step S411, the data processing module 121 may set the cycle to the first time interval, wherein the second time interval is less than the first time interval. The above cycle may be a cycle for the server 100 to transmit the data of the Internet of Things 10 to the database 20. Specifically, the data processing module 121 may generate a data report of the Internet of Things 10 based on the current data stored in the buffer 124, wherein the data report may include relevant information of the traffic in the Internet of Things 10. The data output module 123 may output the data report to the database 20 through the transceiver 130 according to the cycle, so that the connection management platform can use it as a basis for managing the Internet of Things 10.

換句話說,若物聯網10處於異常狀態,則資料處理模組121可將回報資料報表給資料庫20的周期延長。若物聯網10處於非異常狀態,則資料處理模組121可將回報資料報表給資料庫20的周期縮短。如此,當物聯網10因發生異常而導致流量增加時,伺服器100可藉由縮短回報資料給連線管理平台的周期來避免增加連線管理平台的負載,使連線管理平台對物聯網10的管理功能可正常運作。In other words, if the IoT 10 is in an abnormal state, the data processing module 121 can extend the cycle of reporting data to the database 20. If the IoT 10 is in an abnormal state, the data processing module 121 can shorten the cycle of reporting data to the database 20. In this way, when the IoT 10 causes an increase in traffic due to an abnormality, the server 100 can avoid increasing the load of the connection management platform by shortening the cycle of reporting data to the connection management platform, so that the management function of the connection management platform for the IoT 10 can operate normally.

在一實施例中,資料處理模組121可響應於資料輸出模組124輸出資料報表給資料庫20而清空儲存在緩衝器124中的當前資料。In one embodiment, the data processing module 121 may clear the current data stored in the buffer 124 in response to the data output module 124 outputting the data report to the database 20.

圖5根據本發明的一實施例繪示一種管理物聯網的方法的流程圖,其中所述方法可由如圖1所示的伺服器100實施。在步驟S501中,接收來自物聯網的當前資料。在步驟S502中,根據當前資料判斷物聯網是否處於異常狀態。在步驟S503中,響應於判斷物聯網處於異常狀態而將周期設為第一時間間隔。在步驟S504中,根據當前資料產生資料報表,並且根據周期輸出資料報表。FIG5 is a flow chart of a method for managing an Internet of Things according to an embodiment of the present invention, wherein the method can be implemented by the server 100 shown in FIG1. In step S501, current data from the Internet of Things is received. In step S502, whether the Internet of Things is in an abnormal state is determined based on the current data. In step S503, in response to determining that the Internet of Things is in an abnormal state, the period is set to a first time interval. In step S504, a data report is generated based on the current data, and the data report is output according to the period.

綜上所述,本發明的伺服器可分析IOT設備之連線資訊,透過自動學習方式建立出IOT設備的分布模型。伺服器可依據IOT設備即時的連線資料和分布模型判斷IOT設備是否處於異常連線狀態。一旦伺服器發現IOT設備處於異常連線狀態,伺服器可自動地調整資料報表的回報周期。據此,本發明可防止因資料量異常暴增情形而影響物聯網之連線管理平台的運算能力,以為物聯網的使用者提供更高品質的通訊服務。In summary, the server of the present invention can analyze the connection information of IOT devices and establish a distribution model of IOT devices through automatic learning. The server can determine whether the IOT device is in an abnormal connection state based on the real-time connection data and distribution model of the IOT device. Once the server finds that the IOT device is in an abnormal connection state, the server can automatically adjust the reporting cycle of the data report. Accordingly, the present invention can prevent the computing power of the connection management platform of the Internet of Things from being affected by the abnormal surge in data volume, so as to provide higher quality communication services for users of the Internet of Things.

10:物聯網 100:伺服器 110:處理器 120:儲存媒體 121:資料處理模組 122:異常偵測模組 123:資料輸出模組 124:緩衝器 130:收發器 20:資料庫 S301、S302、S401、S402、S403、S404、S405、S406、S407、S408、S409、S410、S411、S501、S502、S503、S504:步驟 10: Internet of Things 100: Server 110: Processor 120: Storage Media 121: Data Processing Module 122: Abnormal Detection Module 123: Data Output Module 124: Buffer 130: Transceiver 20: Database S301, S302, S401, S402, S403, S404, S405, S406, S407, S408, S409, S410, S411, S501, S502, S503, S504: Steps

圖1根據本發明的一實施例由伺服器收集在物聯網中傳輸之資料的示意圖。 圖2根據本發明的一實施例繪示管理物聯網的伺服器的示意圖。 圖3根據本發明的一實施例繪示為物聯網設備建立分布模型的流程圖。 圖4根據本發明的一實施例繪示調整物聯網資料之回報周期的流程圖。 圖5根據本發明的一實施例繪示一種管理物聯網的方法的流程圖。 FIG. 1 is a schematic diagram of data transmitted in the Internet of Things collected by a server according to an embodiment of the present invention. FIG. 2 is a schematic diagram of a server for managing the Internet of Things according to an embodiment of the present invention. FIG. 3 is a flowchart of establishing a distribution model for an Internet of Things device according to an embodiment of the present invention. FIG. 4 is a flowchart of adjusting the reporting period of Internet of Things data according to an embodiment of the present invention. FIG. 5 is a flowchart of a method for managing the Internet of Things according to an embodiment of the present invention.

S501、S502、S503、S504:步驟S501, S502, S503, S504: Steps

Claims (5)

一種管理物聯網的伺服器,包括: 收發器; 儲存媒體,儲存多個模組;以及 處理器,耦接所述儲存媒體以及所述收發器,並且存取和執行所述多個模組,其中所述多個模組包括: 緩衝器,通過所述收發器接收來自所述物聯網的歷史資料和當前資料,其中所述當前資料包括對應於第一物聯網設備的第一當前資料; 異常偵測模組,根據所述第一當前資料和所述歷史資料計算所述第一物聯網設備的標準分數並判斷所述物聯網是否處於異常狀態; 資料處理模組,根據所述當前資料產生資料報表;以及 資料輸出模組,根據周期而通過所述收發器輸出所述資料報表,其中所述資料處理模組響應於所述物聯網處於所述異常狀態而將所述周期設為第一時間間隔,其中 所述異常偵測模組響應於所述標準分數的絕對值大於第一閾值,將所述第一物聯網設備添加至儲存在所述儲存媒體的異常設備清單中,其中所述當前資料關聯於包含所述第一物聯網設備的多個物聯網設備,並且所述異常設備清單包含至少一異常物聯網設備,其中 所述異常偵測模組響應於所述至少一異常物聯網設備與所述多個物聯網設備的比率大於第二閾值而判斷所述物聯網處於所述異常狀態,並且響應於所述比率小於或等於所述第二閾值而判斷所述物聯網處於非異常狀態,其中 所述資料處理模組響應於所述物聯網處於所述非異常狀態而將所述周期設為第二時間間隔,其中所述第二時間間隔小於所述第一時間間隔。 A server for managing an Internet of Things, comprising: a transceiver; a storage medium storing a plurality of modules; and a processor coupled to the storage medium and the transceiver, and accessing and executing the plurality of modules, wherein the plurality of modules comprises: a buffer receiving historical data and current data from the Internet of Things through the transceiver, wherein the current data comprises first current data corresponding to a first Internet of Things device; an abnormality detection module calculating a standard score of the first Internet of Things device based on the first current data and the historical data and determining whether the Internet of Things is in an abnormal state; a data processing module generating a data report based on the current data; and A data output module outputs the data report through the transceiver according to a period, wherein the data processing module sets the period to a first time interval in response to the Internet of Things being in the abnormal state, wherein The abnormal detection module adds the first Internet of Things device to the abnormal device list stored in the storage medium in response to the absolute value of the standard score being greater than a first threshold, wherein the current data is associated with a plurality of Internet of Things devices including the first Internet of Things device, and the abnormal device list includes at least one abnormal Internet of Things device, wherein The abnormality detection module judges that the Internet of Things is in the abnormal state in response to the ratio of the at least one abnormal Internet of Things device to the multiple Internet of Things devices being greater than a second threshold, and judges that the Internet of Things is in a non-abnormal state in response to the ratio being less than or equal to the second threshold, wherein The data processing module sets the cycle to a second time interval in response to the Internet of Things being in the non-abnormal state, wherein the second time interval is less than the first time interval. 如請求項1所述的伺服器,其中所述標準分數關聯於所述第一物聯網設備在預設時段期間的斷線次數。A server as described in claim 1, wherein the standard score is associated with the number of times the first IoT device is disconnected during a preset time period. 如請求項1所述的伺服器,其中 所述異常偵測模組響應於所述絕對值小於或等於所述第一閾值且所述異常設備清單包含所述第一物聯網設備,將所述第一物聯網設備自所述異常設備清單中刪除。 A server as described in claim 1, wherein the abnormality detection module deletes the first IoT device from the abnormal device list in response to the absolute value being less than or equal to the first threshold and the abnormal device list including the first IoT device. 如請求項1所述的伺服器,其中所述資料處理模組對所述歷史資料執行高斯濾波以產生分布模型,其中所述異常偵測模組根據所述分布模型計算所述標準分數。A server as described in claim 1, wherein the data processing module performs Gaussian filtering on the historical data to generate a distribution model, and wherein the anomaly detection module calculates the standard score based on the distribution model. 一種管理物聯網的方法,包括: 接收來自所述物聯網的歷史資料和當前資料,其中所述當前資料包括對應於第一物聯網設備的第一當前資料,其中所述當前資料關聯於包含所述第一物聯網設備的多個物聯網設備; 根據所述第一當前資料和所述歷史資料計算所述第一物聯網設備的標準分數並判斷所述物聯網是否處於異常狀態,包括: 響應於所述標準分數的絕對值大於第一閾值,將所述第一物聯網設備添加至異常設備清單中,其中所述異常設備清單包含至少一異常物聯網設備;以及 響應於所述至少一異常物聯網設備與所述多個物聯網設備的比率大於第二閾值而判斷所述物聯網處於所述異常狀態,並且響應於所述比率小於或等於所述第二閾值而判斷所述物聯網處於非異常狀態; 響應於判斷所述物聯網處於所述異常狀態而將周期設為第一時間間隔; 響應於判斷所述物聯網處於所述非異常狀態而將所述周期設為第二時間間隔,其中所述第二時間間隔小於所述第一時間間隔;以及 根據所述當前資料產生資料報表,並且根據所述周期輸出所述資料報表。 A method for managing an Internet of Things, comprising: Receiving historical data and current data from the Internet of Things, wherein the current data includes first current data corresponding to a first Internet of Things device, wherein the current data is associated with a plurality of Internet of Things devices including the first Internet of Things device; Calculating a standard score of the first Internet of Things device based on the first current data and the historical data and determining whether the Internet of Things is in an abnormal state, comprising: In response to an absolute value of the standard score being greater than a first threshold, adding the first Internet of Things device to an abnormal device list, wherein the abnormal device list includes at least one abnormal Internet of Things device; and In response to the ratio of the at least one abnormal IoT device to the plurality of IoT devices being greater than a second threshold, the IoT is judged to be in the abnormal state, and in response to the ratio being less than or equal to the second threshold, the IoT is judged to be in a non-abnormal state; In response to the judgment that the IoT is in the abnormal state, the period is set to a first time interval; In response to the judgment that the IoT is in the non-abnormal state, the period is set to a second time interval, wherein the second time interval is less than the first time interval; and A data report is generated based on the current data, and the data report is output based on the period.
TW111121798A 2022-06-13 2022-06-13 Server and method for managing internet of things TWI880091B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111121798A TWI880091B (en) 2022-06-13 2022-06-13 Server and method for managing internet of things

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111121798A TWI880091B (en) 2022-06-13 2022-06-13 Server and method for managing internet of things

Publications (2)

Publication Number Publication Date
TW202349922A TW202349922A (en) 2023-12-16
TWI880091B true TWI880091B (en) 2025-04-11

Family

ID=90039233

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111121798A TWI880091B (en) 2022-06-13 2022-06-13 Server and method for managing internet of things

Country Status (1)

Country Link
TW (1) TWI880091B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201626340A (en) * 2014-09-26 2016-07-16 英特爾公司 Multisensory change detection for internet of things domain
TWI583152B (en) * 2015-08-14 2017-05-11 緯創資通股份有限公司 Anomaly prediction method and system for heterogeneous network architecture
US20180165171A1 (en) * 2016-12-13 2018-06-14 Theatro Labs Inc. Data and Analytics for Observation Platforms
TW201830921A (en) * 2017-02-10 2018-08-16 美商高通公司 Systems and methods for network monitoring
US11237939B2 (en) * 2017-03-01 2022-02-01 Visa International Service Association Predictive anomaly detection framework

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201626340A (en) * 2014-09-26 2016-07-16 英特爾公司 Multisensory change detection for internet of things domain
TWI583152B (en) * 2015-08-14 2017-05-11 緯創資通股份有限公司 Anomaly prediction method and system for heterogeneous network architecture
US20180165171A1 (en) * 2016-12-13 2018-06-14 Theatro Labs Inc. Data and Analytics for Observation Platforms
TW201830921A (en) * 2017-02-10 2018-08-16 美商高通公司 Systems and methods for network monitoring
US11237939B2 (en) * 2017-03-01 2022-02-01 Visa International Service Association Predictive anomaly detection framework

Also Published As

Publication number Publication date
TW202349922A (en) 2023-12-16

Similar Documents

Publication Publication Date Title
CN113037722B (en) Intrusion detection method and device for edge calculation scene
US11706114B2 (en) Network flow measurement method, network measurement device, and control plane device
CN110673973B (en) Exception determination method and device for application programming interface API
US20180066962A1 (en) Data collection method, apparatus, and system
WO2016017208A1 (en) Monitoring system, monitoring device, and inspection device
WO2021233109A1 (en) Blockchain-based message processing method and apparatus, and device and storage medium
CN104539471A (en) Bandwidth metering method and device and computer equipment
CN112866128A (en) Speed limiting method and device for distributed network and electronic equipment
TWI880091B (en) Server and method for managing internet of things
CN118233150A (en) Data forwarding method, gateway with same, rail transit Internet of things system and medium
CN113076333A (en) Service abnormity monitoring method and device
TWI822474B (en) Mobile network management system and method for private network
JP7714828B1 (en) Abnormality management device, abnormality management method, and abnormality management system
CN113821316A (en) Abnormal process detection method and device, storage medium and electronic equipment
CN112217740B (en) A request processing method and device based on edge computing network
TWI810110B (en) Monitoring system and monitoring method of dynamic energy consumption for equipment
CN104956614B (en) Overload control method and device for peer network element
CN113037597B (en) Flow monitoring method and device, electronic equipment and computer readable medium
JP5362769B2 (en) Network monitoring apparatus and network monitoring method
CN114095391B (en) A data detection method, baseline model construction method and electronic device
CN116074185B (en) Request detection method, system, device, electronic equipment and storage medium
TWI768462B (en) Method and electronic device for detecting abnormal connection behavior of terminal emulator
TWI892433B (en) Data collection device and data collection method for open radio access network
EP4618500A1 (en) Data management method, apparatus, and system
JP2016146588A (en) Message log removal device, message log removal method and message log removal program