TWI879635B - Six-dimensional object posture tracking method and device, computer-readable recording medium - Google Patents
Six-dimensional object posture tracking method and device, computer-readable recording medium Download PDFInfo
- Publication number
- TWI879635B TWI879635B TW113126397A TW113126397A TWI879635B TW I879635 B TWI879635 B TW I879635B TW 113126397 A TW113126397 A TW 113126397A TW 113126397 A TW113126397 A TW 113126397A TW I879635 B TWI879635 B TW I879635B
- Authority
- TW
- Taiwan
- Prior art keywords
- dimensional
- dimensional object
- tracking
- posture
- rgb image
- Prior art date
Links
Images
Landscapes
- Image Analysis (AREA)
Abstract
一種六維物件姿態追蹤方法,由六維物件姿態追蹤裝置其中的二維物件追蹤模組對輸入的一RGB影像進行物件偵測、追蹤及分類,並產生與該RGB影像中的各該物件對應一二維物件追蹤結果,接著六維物件姿態追蹤裝置其中的六維物件姿態估測模組判斷該等二維物件追蹤結果其中之一包含的識別碼未出現在一物件清單中時,六維物件姿態估測模組根據未出現在該物件清單中的識別碼所屬的二維物件追蹤結果對RGB影像中與未出現在該物件清單中的識別碼對應的物件進行六維姿態估測,並將對應產生的六維姿態估測結果記錄在該物件清單中;然後六維物件姿態追蹤裝置其中的六維物件姿態追蹤模組根據該物件清單包含的所有六維姿態估測結果,對該RGB影像中的物件進行六維物件姿態追蹤。A six-dimensional object posture tracking method, wherein a two-dimensional object tracking module in a six-dimensional object posture tracking device detects, tracks and classifies an object on an input RGB image, and generates a two-dimensional object tracking result corresponding to each object in the RGB image. Then, when a six-dimensional object posture estimation module in the six-dimensional object posture tracking device determines that an identification code included in one of the two-dimensional object tracking results does not appear in an object list, the six-dimensional object posture estimation module According to the two-dimensional object tracking results of the identification codes that do not appear in the object list, six-dimensional posture estimation is performed on the objects in the RGB image that correspond to the identification codes that do not appear in the object list, and the corresponding six-dimensional posture estimation results are recorded in the object list; then the six-dimensional object posture tracking module in the six-dimensional object posture tracking device performs six-dimensional object posture tracking on the objects in the RGB image according to all six-dimensional posture estimation results contained in the object list.
Description
本發明是有關於一種追蹤影像中的物件方法,特別是指一種追蹤影像中的物件之六維姿態的六維物件姿態追蹤方法。The present invention relates to a method for tracking an object in an image, and more particularly to a six-dimensional object posture tracking method for tracking the six-dimensional posture of an object in an image.
現有的六維物件姿態追蹤技術能追蹤影像中的物件的六維姿態(包括三個平移自由度(x、y、z軸方向的位移)和三個旋轉自由度(繞x、y、z軸的旋轉角度))。六維物件姿態追蹤技術主要包含物件姿態估測和物件姿態追蹤兩個部分,其中物件姿態估測相對較為耗時,因此,當影像中的物件數量較多時,在物件姿態估測階段將耗費更多時間。The existing 6D object posture tracking technology can track the 6D posture of objects in the image (including three translational degrees of freedom (displacement in the x, y, and z axes) and three rotational degrees of freedom (rotation angles around the x, y, and z axes)). The 6D object posture tracking technology mainly includes two parts: object posture estimation and object posture tracking. Object posture estimation is relatively time-consuming. Therefore, when there are more objects in the image, more time will be spent in the object posture estimation stage.
此外,現有的六維物件姿態追蹤技術會對輸入的每一張影像中的所有物件皆進行六維姿態估測及追蹤,因此,即使輸入的一張影像與前一張影像中的物件完全不變或只有新增一個物件,六維物件姿態追蹤技術仍會對輸入的該張影像中的所有物件再次進行姿態估測及追蹤,導致現有的六維物件姿態追蹤技術的效能無法有效提升。In addition, the existing six-dimensional object posture tracking technology will perform six-dimensional posture estimation and tracking on all objects in each input image. Therefore, even if the objects in an input image are completely unchanged from the previous image or only one object is added, the six-dimensional object posture tracking technology will still perform posture estimation and tracking on all objects in the input image again, resulting in the performance of the existing six-dimensional object posture tracking technology cannot be effectively improved.
因此,本發明之目的,即在提供一種六維物件姿態追蹤方法及實現該方法的一種六維物件姿態追蹤裝置和一種電腦可讀取的記錄媒體,其能縮短六維物件姿態追蹤技術其中估測六維物件姿態的時間以提升其追蹤效能。Therefore, the purpose of the present invention is to provide a six-dimensional object posture tracking method and a six-dimensional object posture tracking device and a computer-readable recording medium for implementing the method, which can shorten the time of estimating the six-dimensional object posture in the six-dimensional object posture tracking technology to improve its tracking performance.
於是,本發明一種六維物件姿態追蹤方法,應用於一六維物件姿態追蹤裝置;該方法包括下列步驟。Therefore, the present invention provides a six-dimensional object posture tracking method, which is applied to a six-dimensional object posture tracking device; the method includes the following steps.
該六維物件姿態追蹤裝置的一二維物件追蹤模組對輸入的一RGB影像進行物件偵測、追蹤及分類,並產生與該RGB影像中的各該物件對應一二維物件追蹤結果,各該二維物件追蹤結果包含相對應的該物件的識別碼及邊界框。A two-dimensional object tracking module of the six-dimensional object posture tracking device performs object detection, tracking and classification on an input RGB image, and generates a two-dimensional object tracking result corresponding to each object in the RGB image, each of which includes an identification code and a bounding box of the corresponding object.
該六維物件姿態追蹤裝置的一六維物件姿態估測模組比對該等二維物件追蹤結果與一物件清單,並於判斷該等二維物件追蹤結果其中之一包含的該識別碼未出現在該物件清單中時,該六維物件姿態估測模組根據未出現在該物件清單中的該識別碼所屬的該二維物件追蹤結果及該RGB影像對應的一深度圖,對該RGB影像中與未出現在該物件清單中的該識別碼對應的該物件進行六維姿態估測,並將對應產生的一六維姿態估測結果記錄在該物件清單中。A six-dimensional object posture estimation module of the six-dimensional object posture tracking device compares the two-dimensional object tracking results with an object list, and when it is determined that the identification code included in one of the two-dimensional object tracking results does not appear in the object list, the six-dimensional object posture estimation module performs six-dimensional posture estimation on the object corresponding to the identification code that does not appear in the object list in the RGB image based on the two-dimensional object tracking result to which the identification code that does not appear in the object list belongs and a depth map corresponding to the RGB image, and records the corresponding six-dimensional posture estimation result in the object list.
該六維物件姿態追蹤裝置的一六維物件姿態追蹤模組根據該物件清單包含的所有六維姿態估測結果及該RGB影像對應的該深度圖,對該RGB影像中的物件進行六維物件姿態追蹤。A six-dimensional object posture tracking module of the six-dimensional object posture tracking device performs six-dimensional object posture tracking on the object in the RGB image according to all six-dimensional posture estimation results included in the object list and the depth map corresponding to the RGB image.
再者,本發明實現上述方法的一種六維物件姿態追蹤裝置,包括一儲存單元及一處理單元;該儲存單元中儲存一物件清單;該處理單元包含一二維物件追蹤模組、一六維物件姿態估測模組及一六維物件姿態追蹤模組。Furthermore, the present invention implements a six-dimensional object posture tracking device for the above method, including a storage unit and a processing unit; the storage unit stores an object list; the processing unit includes a two-dimensional object tracking module, a six-dimensional object posture estimation module and a six-dimensional object posture tracking module.
該處理單元執行該二維物件追蹤模組以對輸入的一RGB影像進行物件偵測、追蹤及分類,並產生與該RGB影像中的各該物件對應一二維物件追蹤結果,各該二維物件追蹤結果包含相對應的該物件的識別碼及邊界框。The processing unit executes the two-dimensional object tracking module to detect, track and classify objects on an input RGB image, and generates a two-dimensional object tracking result corresponding to each object in the RGB image. Each of the two-dimensional object tracking results includes an identification code and a bounding box of the corresponding object.
該處理單元執行該六維物件姿態估測模組,使其比對該等二維物件追蹤結果與該儲存單元儲存的該物件清單,並於判斷該等二維物件追蹤結果其中之一包含的該識別碼未出現在該物件清單中時,該六維物件姿態估測模組根據未出現在該物件清單中的該識別碼所屬的該二維物件追蹤結果及該RGB影像對應的一深度圖,對該RGB影像中與未出現在該物件清單中的該識別碼對應的該物件進行六維姿態估測,並將對應產生的一六維姿態估測結果記錄在該物件清單中。The processing unit executes the six-dimensional object posture estimation module to compare the two-dimensional object tracking results with the object list stored in the storage unit. When it is determined that the identification code included in one of the two-dimensional object tracking results does not appear in the object list, the six-dimensional object posture estimation module performs six-dimensional posture estimation on the object corresponding to the identification code that does not appear in the object list in the RGB image based on the two-dimensional object tracking result to which the identification code does not appear in the object list and a depth map corresponding to the RGB image, and records the corresponding six-dimensional posture estimation result in the object list.
該處理單元執行該六維物件姿態追蹤模組,使其根據該物件清單包含的所有六維姿態估測結果及該RGB影像對應的該深度圖,對該RGB影像中的物件進行六維物件姿態追蹤。The processing unit executes the six-dimensional object posture tracking module so that it performs six-dimensional object posture tracking on the object in the RGB image according to all six-dimensional posture estimation results contained in the object list and the depth map corresponding to the RGB image.
在本發明的一些實施態樣中,該六維物件姿態估測模組判斷該物件清單中的六維姿態估測結果其中之一包含的該識別碼未出現在該等二維物件追蹤結果其中之一時,該六維物件姿態估測模組將未出現在該等二維物件追蹤結果其中之一的該識別碼所屬的該六維姿態估測結果從該物件清單中移除。In some implementations of the present invention, when the six-dimensional object pose estimation module determines that the identification code included in one of the six-dimensional pose estimation results in the object list does not appear in one of the two-dimensional object tracking results, the six-dimensional object pose estimation module will remove the six-dimensional pose estimation result to which the identification code that does not appear in one of the two-dimensional object tracking results belongs from the object list.
在本發明的一些實施態樣中,該二維物件追蹤模組和該六維物件姿態估測模組是透過多執行緒機制進行非同步運算。In some embodiments of the present invention, the 2D object tracking module and the 6D object posture estimation module perform asynchronous operations via a multi-thread mechanism.
在本發明的一些實施態樣中,該六維物件姿態估測模組是根據該RGB影像中與未出現在該物件清單中的該識別碼對應的該物件對應的一CAD模型,對該RGB影像中與未出現在該物件清單中的該識別碼對應的該物件進行六維姿態估測。In some implementations of the present invention, the six-dimensional object pose estimation module performs six-dimensional pose estimation on the object in the RGB image corresponding to the identification code that does not appear in the object list based on a CAD model corresponding to the object in the RGB image corresponding to the identification code that does not appear in the object list.
在本發明的一些實施態樣中,該六維物件姿態追蹤模組透過動態批量推論機制同時追蹤該RGB影像中的多個物件。In some embodiments of the present invention, the 6D object pose tracking module simultaneously tracks multiple objects in the RGB image through a dynamic batch inference mechanism.
在本發明的一些實施態樣中,各該二維物件追蹤結果還包括相對應的各該物件的類別名稱及遮罩,且各該六維姿態估測結果包含相對應的該物件的該識別碼、類別名稱、二維姿勢資訊、六維姿態資訊、網格、網格張量、網格直徑和模型中心。In some embodiments of the present invention, each of the two-dimensional object tracking results also includes the corresponding class name and mask of each of the objects, and each of the six-dimensional posture estimation results includes the corresponding identification code, class name, two-dimensional posture information, six-dimensional posture information, mesh, mesh tensor, mesh diameter and model center of the object.
此外,本發明實現上述方法的一種電腦可讀取的記錄媒體,其中儲存一包含一二維物件追蹤模組、一六維物件姿態估測模組及一六維物件姿態追蹤模組的軟體程式,該軟體程式被一電腦裝置載入並執行時,該電腦裝置能完成如上所述的六維物件姿態追蹤方法。In addition, the present invention implements a computer-readable recording medium for implementing the above-mentioned method, in which a software program including a two-dimensional object tracking module, a six-dimensional object posture estimation module and a six-dimensional object posture tracking module is stored. When the software program is loaded and executed by a computer device, the computer device can complete the six-dimensional object posture tracking method as described above.
本發明之功效在於:藉由該二維物件追蹤模組先對輸入的RGB影像進行物件偵測、追蹤及分類,產生與RGB影像中的各該物件對應的二維物件追蹤結果,並由該六維物件姿態估測模組比對該等二維物件追蹤結果與該物件清單,以找出存在該等二維物件追蹤結果中但不存在該物件清單中之與RGB影像中的物件對應的識別碼,且只對該RGB影像中與未出現在該物件清單中的識別碼對應的物件進行六維姿態估測,藉此,節省軟硬體運算資源、縮短六維姿態估測的運算時間並加快六維物件姿態追蹤的速度及效能。The effect of the present invention is that: the two-dimensional object tracking module first performs object detection, tracking and classification on the input RGB image to generate two-dimensional object tracking results corresponding to each object in the RGB image, and the six-dimensional object posture estimation module compares the two-dimensional object tracking results with the object list to find out the identification codes corresponding to the objects in the RGB image that exist in the two-dimensional object tracking results but not in the object list, and only performs six-dimensional posture estimation on the objects in the RGB image that correspond to the identification codes that do not appear in the object list, thereby saving software and hardware computing resources, shortening the computing time of six-dimensional posture estimation, and accelerating the speed and performance of six-dimensional object posture tracking.
在本發明被詳細描述之前,應當注意在以下的說明內容中,類似的元件是以相同的編號來表示。Before the present invention is described in detail, it should be noted that similar components are represented by the same reference numerals in the following description.
參閱圖1所示,是本發明六維物件姿態追蹤方法的一實施例的流程步驟,該方法是由圖2所示的一六維物件姿態追蹤裝置100實現,該六維物件姿態追蹤裝置100是一電腦裝置,其主要包括一儲存單元1及一處理單元2。該儲存單元1(例如記憶體模組)儲存一物件清單11。Referring to FIG. 1 , there is shown a flow chart of an embodiment of a six-dimensional object posture tracking method of the present invention, which is implemented by a six-dimensional object
該處理單元2例如但不限於中央處理器(CPU)、微處理器(MPU)、圖形處理器(GPU) 、張量處理單元(Tensor Processing Unit,TPU)等其中之一或其任意組合,且該處理單元2載入並執行儲存於一電腦可讀取的記錄媒體(例如但不限於該儲存單元1)的一軟體程式,該軟體程式包含二維物件追蹤模組21、六維物件姿態估測模組22及六維物件姿態追蹤模組23。The
其中,該二維物件追蹤模組21包含執行物件偵測的物件偵測模型,例如但不限於YoloV8、執行物件追蹤的物件追蹤模組,例如但不限於BoT-SORT,以及執行物件分類的物件分類模型,例如但不限於DINO-V2。其中YOLOv8與BoT-SORT的結合實現多目標追蹤(Multi-Object Tracking, MOT),在多變的環境條件下,如光線變化、遮擋等情況,YOLOv8能夠準確地檢測出影像中的目標物件,而BoT-SORT則能夠有效地跟蹤這些物件。此外,該二維物件追蹤模組21還包含一過濾模型,用以過濾影像中微小的目標物件。且在本實施例中,該二維物件追蹤模組21是一已預先藉由樣本數據訓練完成的模型。The two-dimensional
該六維物件姿態估測模組22可以是但不限於包含(採用)SAM-6D演算法,SAM-6D是一個無需預先藉由樣本數據訓練的零樣本六維(6D)姿態估計框架,藉由給定任意目標物件的CAD 模型,SAM-6D能從RGB影像及其對應的深度圖中對目標物件進行實例分割和姿態估計。因此,在本實施例中,該六維物件姿態估測模組22會預先取得要進行六維物件姿態估測的RGB影像中的各該物件對應的CAD模型。此外,本實施例的該處理單元2能夠讓該二維物件追蹤模組21和該六維物件姿態估測模組22透過多執行緒(multithreading)機制進行非同步運算,以提升整體處理效能。The six-dimensional object
該六維物件姿態追蹤模組23在本實施例中可以是但不限於包含(採用)NVIDIA發表的Foundation Pose演算法其中關於物件追蹤的技術。且該六維物件姿態追蹤模組23應用動態批量推論機制(dynamic batch inference)同時追蹤影像中的多個物件。動態批量推論是在深度學習模型上線推論階段的一種技巧,主要目的是提升效能,讓該處理單元2其中的例如GPU、TPU這類硬體資源充分發揮硬體平行運算能力,以在吞吐量和延遲之間取得較好的平衡,使該處理單元2運用得更有效率。The six-dimensional object
此外,為了說明本實施例的功效,在進行圖1的流程之前,假設該物件清單11一開始是空的,且此時該處理單元2收到輸入的第一張RGB影像P1及其對應的一深度圖D1,例如圖3所示。如圖4舉例,該第一張RGB影像P1中具有三種物件,包括兩個長方體物件41、42、一個正方體物件43及兩個圓柱體物件44、45;接著,如圖1的步驟S1,該處理單元2執行該二維物件追蹤模組21,以對該第一張RGB影像P1進行物件偵測、追蹤及分類,而產生如圖3所示一第一張追蹤結果影像T1(可暫存於該儲存單元1)以及與該第一張RGB影像P1中的各該物件41~45對應一二維物件追蹤結果T11(可暫存於該儲存單元1)。In addition, in order to illustrate the effectiveness of this embodiment, before performing the process of FIG. 1 , it is assumed that the
如圖4所示,該第一張追蹤結果影像T1中標示出該第一張RGB影像P1中被偵測到的各該物件41~45的一識別碼(例如ID1、ID2、ID3、ID4、ID5)、一分類名稱(例如長方體物件41、42的分類名稱為a、正方體物件43的分類名稱為b、圓柱體物件44、45的分類名稱為c)、一邊界框(如圖4所示界定物件邊界的虛線方框)及一遮罩(界定物件表面範圍的半透明層,圖未示),且各該二維物件追蹤結果T11包含相對應的該物件的該識別碼、該類別名稱、該邊界框及該遮罩。As shown in FIG4 , the first tracking result image T1 indicates an identification code (e.g., ID1, ID2, ID3, ID4, ID5) of each of the
接著,如圖1的步驟S2,該處理單元2執行該六維物件姿態估測模組22,比對從該儲存單元1讀取的該物件清單11及該等二維物件追蹤結果T11,並判斷是否該等二維物件追蹤結果T11其中之一(例如至少其中一個或多個)包含的該識別碼未出現在該物件清單11中,若否,表示該等二維物件追蹤結果T11包含的該識別碼皆已出現在該物件清單11中,則直接進入步驟S4;若是,表示該等二維物件追蹤結果T11至少其中之一包含的該識別碼未出現在該物件清單11中,則如圖1的步驟S3,該六維物件姿態估測模組22根據未出現在該物件清單11中的該識別碼所屬的該二維物件追蹤結果T11及該第一RGB影像P1對應的該第一張深度圖D1,對該第一張RGB影像P1中與未出現在該物件清單11中的該識別碼對應的該物件進行六維姿態估測,並將對應產生的一包含該識別碼的六維姿態估測結果記錄在該物件清單11中,再進入步驟S4。Next, as shown in step S2 of FIG. 1 , the
此時,由於該物件清單11是空的,因此,在步驟S3中,該六維物件姿態估測模組22將對該第一張RGB影像P1中的全部物件41~45進行六維姿態估測,並將對應各該物件的各該六維姿態估測結果T12記錄在該物件清單11中;因此,在此步驟S3完成時,該物件清單11中記錄了該第一張RGB影像P1中的全部物件41~45的該等六維姿態估測結果T12,如圖5所示。其中,各該六維姿態估測結果T12包含相對應的該物件的識別碼(例如ID、ID2…)、類別名稱(例如a、b、c)、二維姿勢資訊、六維姿態資訊、網格、網格張量、網格直徑和模型中心。At this time, since the
接著,如步驟S4,該六維物件姿態估測模組22判斷是否該物件清單11包含的該等六維姿態估測結果T12其中之一(例如至少其中一個或多個)包含的該識別碼未對應出現在該等二維物件追蹤結果T11其中之一,若是,表示該物件清單11中存有不存在該第一張RGB影像P1中的物件的六維姿態估測結果,則如步驟S5,該六維物件姿態估測模組22將未出現在該等二維物件追蹤結果T11其中之一的該識別碼所屬的該六維姿態估測結果從該物件清單11中移除,再接著進行步驟S6;而在此階段,因為該物件清單11中記錄的該等六維姿態估測結果T12其中的識別碼皆對應於該等二維物件追蹤結果T11其中的識別碼,因此,步驟S4的判斷結果為否,而直接進入步驟S6。Next, as in step S4, the 6D object
在步驟S6中,該處理單元2執行該六維物件姿態追蹤模組23,使該六維物件姿態追蹤模組23根據該物件清單11包含的所有六維姿態估測結果T12及該第一張RGB影像P1對應的該第一張深度圖D1,對該第一張RGB影像P1中的物件進行六維姿態追蹤。In step S6, the
接著,如圖3所示,當第二張RGB影像P2及其對應的第二張深度圖D2輸入該處理單元2時,將重覆步驟S1,由該二維物件追蹤模組21對輸入的第二張RGB影像P2進行物件偵測、追蹤及分類,而對應產生一第二張追蹤結果影像T2以及與該第二張RGB影像P2中的各該物件對應一二維物件追蹤結果T21,如圖3和圖6所示。且如圖4和圖6所示,在本實施例中,該第二張RGB影像P2相較於第一張RGB影像P1新增了一個正方體物件46,因此該等二維物件追蹤結果T21中將包括新增的該正方體物件46的二維物件追蹤結果(其中包含識別碼ID6及分類名稱b)。Next, as shown in FIG3, when the second RGB image P2 and its corresponding second depth map D2 are input to the
然後,進行步驟S2,由該六維物件姿態估測模組22比對該等二維物件追蹤結果T21與該物件清單11,此時,該六維物件姿態估測模組22判斷出該等二維物件追蹤結果T21其中之一(即新增的該正方體物件46的該二維物件追蹤結果)包含的該識別碼(ID6)未出現在該物件清單11中的該等六維姿態估測結果T12,因此,執行步驟S3,根據新增的該正方體物件46的該二維物件追蹤結果及該第二張RGB影像P2對應的該第二張深度圖D2,對該第二張RGB影像P2中新增的該正方體物件46進行六維姿態估測,而產生與新增的該正方體物件46對應的一包含該正方體物件46的該識別碼(ID6)的六維姿態估測結果T22,並將該六維姿態估測結果T22記錄(新增)在該物件清單11中,如圖7所示。Then, step S2 is performed, and the six-dimensional object
然後,該六維物件姿態估測模組22執行步驟S4,並判斷該物件清單11包含的該等六維姿態估測結果T12、T22包含的該識別碼皆出現在該等二維物件追蹤結果T21後,即進行步驟S6,由該六維物件姿態追蹤模組23根據該物件清單11包含的該等六維姿態估測結果T12、T22及該第二張RGB影像P2對應的該第二張深度圖D2,對該第二張RGB影像P2中的物件41~46進行六維姿態追蹤。Then, the six-dimensional object
由此可知,本實施例會參考該RGB影像的該等二維物件追蹤結果,並且只對該RGB影像中包含在該等二維物件追蹤結果中但未出現在該物件清單11中的該或該等識別碼所對應的該或該等物件(即該RGB影像其中相較於前一張RGB影像新增的物件)進行六維姿態估測,而不會再次對同時包含在該等二維物件追蹤結果及在該物件清單11中的該或該等識別碼所對應的該或該等物件進行姿態估測,藉此,在對RGB影像進行六維物件姿態追蹤的過程中,能縮短估測六維物件姿態的時間、節省硬體運算資源而提升六維物件姿態追蹤的效能。It can be seen from this that the present embodiment will refer to the two-dimensional object tracking results of the RGB image, and only perform six-dimensional posture estimation on the object or objects corresponding to the one or more identification codes included in the two-dimensional object tracking results but not appearing in the object list 11 (i.e., the objects newly added to the RGB image compared to the previous RGB image), and will not perform posture estimation again on the one or more objects corresponding to the one or more identification codes included in both the two-dimensional object tracking results and in the
再者,如圖3所示,當第三張RGB影像P3及其對應的第三張深度圖D3輸入該處理單元2時,將再次重覆步驟S1,由該二維物件追蹤模組21對輸入的第三張RGB影像P3進行物件偵測、追蹤及分類,而對應產生一第三張追蹤結果影像T3以及與該第三張RGB影像P3中的各該物件對應一二維物件追蹤結果T31。且如圖8所示,在本實施例中,該第三張RGB影像P3相較於圖6所示的該第二張RGB影像P2少了一個該長方體物件42。因此,該等二維物件追蹤結果T31中將少了該長方體物件42的該二維物件追蹤結果。Furthermore, as shown in FIG3 , when the third RGB image P3 and its corresponding third depth map D3 are input to the
然後,進行步驟S2,該六維物件姿態估測模組22比對該等二維物件追蹤結果T31與圖7所示的該物件清單11,並判斷該等二維物件追蹤結果T31包含的該等識別碼皆有出現在該物件清單11中的該等六維姿態估測結果T12、T22後,接著執行步驟S4,在步驟S4中,該六維物件姿態估測模組22判斷出圖7所示的該物件清單11包含的該等六維姿態估測結果T12、T22其中與該長方體物件42對應的六維姿態估測結果包含的該識別碼(ID2)並未出現在該等二維物件追蹤結果T31時,即進行步驟S5,將該長方體物件42對應的六維姿態估測結果從該物件清單11中移除,如圖9所示,然後,進行步驟S6,該六維物件姿態追蹤模組23根據圖9的該物件清單11包含的該等六維姿態估測結果T12、T22及該第三張RGB影像P3對應的該第三張深度圖D3,對該第三張RGB影像P3中的物件41、43~46進行六維姿態追蹤。Then, step S2 is performed, the six-dimensional object
由此可知,每一張輸入該處理單元2的RGB影像皆需經過上述步驟S1,並經由步驟S2判斷後接著進行步驟S3、S4或者直接進行步驟S4,再經由步驟S4判斷後進行步驟S5、S6或直接進行步驟S6。此外,如圖10所示,步驟S4、S5也可以和步驟S2、S3對調,亦即步驟S1之後可先執行步驟S4、S5再執行步驟S2、S3。It can be seen that each RGB image input to the
此外,由於該六維物件姿態估測模組22是根據(參考)該二維物件追蹤模組21預先產生的該等二維物件追蹤結果T11、T21、T31產生該物件清單11中的該等六維姿態估測結果T12、T22,因此該六維物件姿態追蹤模組23根據該物件清單11中的該等六維姿態估測結果T12、T22對RGB影像進行物件姿態追蹤時會更準確。In addition, since the six-dimensional object
綜上所述,上述實施例藉由該二維物件追蹤模組21對輸入的RGB影像進行物件偵測、追蹤及分類,產生與RGB影像中的各該物件對應的二維物件追蹤結果,並由該六維物件姿態估測模組22比對該等二維物件追蹤結果與該物件清單,以找出存在該等二維物件追蹤結果中但不存在該物件清單中之與RGB影像中的物件對應的識別碼,且只對該RGB影像中與未出現在該物件清單中的該識別碼對應的該物件進行六維姿態估測,藉此,相較於現有的六維物件姿態追蹤技術,除了節省軟硬體運算資源、縮短六維姿態估測的運算時間並加快六維物件姿態追蹤的速度及效能,確實達到本發明的功效與目的。In summary, the above embodiment uses the two-dimensional
惟以上所述者,僅為本發明之實施例而已,當不能以此限定本發明實施之範圍,凡是依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。However, the above is only an example of the implementation of the present invention, and it should not be used to limit the scope of the implementation of the present invention. All simple equivalent changes and modifications made according to the scope of the patent application of the present invention and the content of the patent specification are still within the scope of the patent of the present invention.
S1~S6:步驟
100:六維物件姿態追蹤裝置
1:儲存單元
11:物件清單
2:處理單元
21:二維物件追蹤模組
22:六維物件姿態估測模組
23:六維物件姿態追蹤模組
P1:第一張RGB影像
D1:第一張深度圖
P2:第二張RGB影像
D2:第二張深度圖
P3:第三張RGB影像
D3:第三張深度圖
T1:第一張追蹤結果影像
T2:第二張追蹤結果影像
T3:第三張追蹤結果影像
T11、T21、T31:二維物件追蹤結果
T12、T22:六維姿態估測結果
41、42:(長方體)物件
43、46:(正方體)物件
44、45:(圓柱體)物件S1~S6: Steps
100: Six-dimensional object posture tracking device
1: Storage unit
11: Object list
2: Processing unit
21: Two-dimensional object tracking module
22: Six-dimensional object posture estimation module
23: Six-dimensional object posture tracking module
P1: First RGB image
D1: First depth map
P2: Second RGB image
D2: Second depth map
P3: Third RGB image
D3: Third depth map
T1: First tracking result image
T2: Second tracking result image
T3: Third tracking result image
T11, T21, T31: Two-dimensional object tracking results
T12, T22: Six-dimensional posture estimation results
41, 42: (rectangular)
本發明之其他的特徵及功效,將於參照圖式的實施方式中清楚地顯示,其中: 圖1是本發明六維物件姿態追蹤方法的一實施例的主要流程步驟; 圖2是本發明六維物件姿態追蹤裝置的一實施例包括的軟硬體方塊示意圖; 圖3說明本實施例的該二維物件追蹤模組追蹤RGB影像而產生的追蹤結果; 圖4說明本實施例的第一張RGB影像及其對應的第一張追蹤結果影像; 圖5說明本實施例根據第一張RGB影像的該等二維物件追蹤結果更新物件清單的示意圖; 圖6說明本實施例的第二張RGB影像及其對應的第二張追蹤結果影像; 圖7說明本實施例根據第二張RGB影像的該等二維物件追蹤結果更新物件清單的示意圖; 圖8說明本實施例的第三張RGB影像及其對應的第三張追蹤結果影像; 圖9說明本實施例根據第三張RGB影像的該等二維物件追蹤結果更新物件清單的示意圖;及 圖10是本實施例的另一種流程步驟。 Other features and functions of the present invention will be clearly shown in the implementation method with reference to the drawings, in which: FIG. 1 is the main process steps of an embodiment of the six-dimensional object posture tracking method of the present invention; FIG. 2 is a schematic diagram of the software and hardware blocks included in an embodiment of the six-dimensional object posture tracking device of the present invention; FIG. 3 illustrates the tracking results generated by the two-dimensional object tracking module of the present embodiment tracking the RGB image; FIG. 4 illustrates the first RGB image of the present embodiment and its corresponding first tracking result image; FIG. 5 illustrates a schematic diagram of updating the object list according to the two-dimensional object tracking results of the first RGB image of the present embodiment; FIG. 6 illustrates the second RGB image of the present embodiment and its corresponding second tracking result image; FIG. 7 is a schematic diagram illustrating the updating of the object list according to the two-dimensional object tracking results of the second RGB image in the present embodiment; FIG. 8 is a schematic diagram illustrating the third RGB image and its corresponding third tracking result image in the present embodiment; FIG. 9 is a schematic diagram illustrating the updating of the object list according to the two-dimensional object tracking results of the third RGB image in the present embodiment; and FIG. 10 is another process step of the present embodiment.
S1~S6:步驟 S1~S6: Steps
Claims (13)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW113126397A TWI879635B (en) | 2024-07-15 | 2024-07-15 | Six-dimensional object posture tracking method and device, computer-readable recording medium |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW113126397A TWI879635B (en) | 2024-07-15 | 2024-07-15 | Six-dimensional object posture tracking method and device, computer-readable recording medium |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TWI879635B true TWI879635B (en) | 2025-04-01 |
| TW202605747A TW202605747A (en) | 2026-02-01 |
Family
ID=96142313
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW113126397A TWI879635B (en) | 2024-07-15 | 2024-07-15 | Six-dimensional object posture tracking method and device, computer-readable recording medium |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI879635B (en) |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20120106784A1 (en) * | 2010-10-28 | 2012-05-03 | Korea University Research And Business Foundation | Apparatus and method for tracking object in image processing system |
| TWI696149B (en) * | 2019-04-26 | 2020-06-11 | 未來市股份有限公司 | Method, apparatus, medium for interactive image processing using depth engine |
| TWI696981B (en) * | 2019-04-26 | 2020-06-21 | 未來市股份有限公司 | Interactive image processing system using infrared cameras |
| US20210316463A1 (en) * | 2020-04-14 | 2021-10-14 | Hong Kong Applied Science And Technology Research Institute Co., Ltd. | Candidate six dimensional pose hypothesis selection |
| CN116934848A (en) * | 2022-03-31 | 2023-10-24 | 腾讯科技(深圳)有限公司 | Data processing methods, devices, equipment and media |
-
2024
- 2024-07-15 TW TW113126397A patent/TWI879635B/en active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20120106784A1 (en) * | 2010-10-28 | 2012-05-03 | Korea University Research And Business Foundation | Apparatus and method for tracking object in image processing system |
| TWI696149B (en) * | 2019-04-26 | 2020-06-11 | 未來市股份有限公司 | Method, apparatus, medium for interactive image processing using depth engine |
| TWI696981B (en) * | 2019-04-26 | 2020-06-21 | 未來市股份有限公司 | Interactive image processing system using infrared cameras |
| US20210316463A1 (en) * | 2020-04-14 | 2021-10-14 | Hong Kong Applied Science And Technology Research Institute Co., Ltd. | Candidate six dimensional pose hypothesis selection |
| CN116934848A (en) * | 2022-03-31 | 2023-10-24 | 腾讯科技(深圳)有限公司 | Data processing methods, devices, equipment and media |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR102856911B1 (en) | Simultaneous training of functional subnetworks of a neural network | |
| JP6724267B1 (en) | Learning device, inference device, learning model generation method, and inference method | |
| US11704553B2 (en) | Neural network system for single processing common operation group of neural network models, application processor including the same, and operation method of neural network system | |
| JP6657137B2 (en) | Information processing apparatus, information processing method, and program | |
| JP2019032820A (en) | Data set for learning functions with image as input | |
| CN111582105A (en) | Unsupervised point cloud feature learning method and unsupervised point cloud feature learning device based on local global bidirectional reasoning | |
| CN112711478B (en) | Task processing method and device based on neural network, server and storage medium | |
| JP6935356B2 (en) | Semiconductor devices, information processing systems, and information processing methods | |
| US11954755B2 (en) | Image processing device and operation method thereof | |
| JP2018022476A (en) | Querying database with morphology criterion | |
| US20230237342A1 (en) | Adaptive lookahead for planning and learning | |
| CN118762075B (en) | End-to-end multi-person head pose estimation method and device based on 6D rotation representation | |
| TW202329042A (en) | Three-dimensional modeling method, system for three-dimensional modeling and non-transitory computer-readable storage medium | |
| Tang et al. | Two-stage filtering method to improve the performance of object detection trained by synthetic dataset in heavily cluttered industry scenes | |
| CN113869225A (en) | A face detection method, device and electronic device | |
| TWI879635B (en) | Six-dimensional object posture tracking method and device, computer-readable recording medium | |
| KR102710479B1 (en) | Apparatus and method for accelerating neural network inference based on efficient address translation | |
| US20220405447A1 (en) | Machine learning-based selective incarnation of computer-aided design objects | |
| JP2023502804A (en) | Goal-directed reinforcement learning method and device for performing the same | |
| CN118133637A (en) | A real-time simulation and mapping method of clamping stress field based on RBF model | |
| Yu et al. | INCAME: Interruptible CNN accelerator for multirobot exploration | |
| CN118397305A (en) | Pedestrian re-identification method, system, medium and electronic equipment based on pedestrian changing | |
| CN112686277B (en) | Model training method and device | |
| JPH09128436A (en) | Element data forming method, object analysis method and recording medium | |
| KR102840781B1 (en) | Apparatus and method for detecting mesh collisions in electronics device |