TWI877038B - Depth image generation method and depth image generation system for semiconductor device inspection - Google Patents
Depth image generation method and depth image generation system for semiconductor device inspection Download PDFInfo
- Publication number
- TWI877038B TWI877038B TW113123767A TW113123767A TWI877038B TW I877038 B TWI877038 B TW I877038B TW 113123767 A TW113123767 A TW 113123767A TW 113123767 A TW113123767 A TW 113123767A TW I877038 B TWI877038 B TW I877038B
- Authority
- TW
- Taiwan
- Prior art keywords
- image
- images
- depth image
- initial cross
- comparison
- Prior art date
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
Description
本發明是關於檢測技術,特別是關於用於半導體裝置檢測的深度影像產生方法及深度影像產生系統。The present invention relates to detection technology, and more particularly to a depth image generation method and a depth image generation system for semiconductor device detection.
為了確保半導體裝置的品質,各種檢測方法及檢測系統被應用在半導體裝置上。舉例而言,諸如晶圓、晶片的半導體裝置可能會在製程中產生崩裂(chipping)等缺陷。為此,可使用自動光學檢測設備或檢測系統來確認這些崩裂的位置或尺寸。然而,當崩裂發生在半導體裝置的內部時(例如,隱崩),針對崩裂的檢測會變得更加困難。換言之,雖然現存的檢測方法及檢測系統已逐步滿足它們既定的用途,但它們並非在各方面皆符合要求。因此,關於用於半導體裝置的檢測方法及檢測系統仍有一些問題需要克服。In order to ensure the quality of semiconductor devices, various inspection methods and inspection systems are applied to semiconductor devices. For example, semiconductor devices such as wafers and chips may produce defects such as chipping during the manufacturing process. To this end, automatic optical inspection equipment or inspection systems can be used to confirm the location or size of these cracks. However, when the cracks occur inside the semiconductor device (for example, hidden chipping), the detection of the cracks becomes more difficult. In other words, although existing inspection methods and inspection systems have gradually met their established uses, they do not meet the requirements in all aspects. Therefore, there are still some problems to be overcome regarding the inspection methods and inspection systems used for semiconductor devices.
在一些實施例中,提供一種用於半導體裝置檢測的深度影像產生方法。深度影像產生方法包括:以紅外光拍攝待測物的複數個橫切面,以形成對應於橫切面的複數個初始橫切面影像,其中橫切面沿著第一方向彼此間隔;比較初始橫切面影像中相鄰的影像,產生複數個比較影像,並疊加比較影像中相鄰的影像,以形成複數個解析度強化影像;以及依序地比較解析度強化影像的相鄰影像,並針對解析度強化影像中的各個位置處,選擇具有最高灰階值的像素,以形成對應於待測物的深度影像。In some embodiments, a depth image generation method for semiconductor device detection is provided. The depth image generation method includes: photographing a plurality of cross-sections of an object to be tested with infrared light to form a plurality of initial cross-section images corresponding to the cross-sections, wherein the cross-sections are spaced apart from each other along a first direction; comparing adjacent images in the initial cross-section images to generate a plurality of comparison images, and superimposing adjacent images in the comparison images to form a plurality of resolution-enhanced images; and sequentially comparing adjacent images of the resolution-enhanced images, and selecting pixels with the highest grayscale value at each position in the resolution-enhanced images to form a depth image corresponding to the object to be tested.
在一些實施例中,提供一種用於半導體裝置檢測的深度影像產生系統。深度影像產生系統包括光源、影像擷取模組及處理模組。光源提供紅外光以照射待測物。影像擷取模組藉由紅外光拍攝待測物的複數個橫切面,以形成對應於橫切面的複數個初始橫切面影像,其中橫切面沿著第一方向彼此間隔。處理模組比較初始橫切面影像中相鄰的影像,產生複數個比較影像,並疊加比較影像中相鄰的影像,以形成複數個解析度強化影像,且處理模組更依序地比較解析度強化影像的相鄰影像,並針對解析度強化影像中的各個位置處,選擇具有最高灰階值的像素,以形成對應於待測物的深度影像。In some embodiments, a depth image generation system for semiconductor device detection is provided. The depth image generation system includes a light source, an image capture module, and a processing module. The light source provides infrared light to illuminate the object to be tested. The image capture module uses infrared light to photograph a plurality of cross-sections of the object to be tested to form a plurality of initial cross-section images corresponding to the cross-sections, wherein the cross-sections are spaced apart from each other along a first direction. The processing module compares adjacent images in the initial cross-sectional image to generate a plurality of comparison images, and superimposes adjacent images in the comparison image to form a plurality of resolution-enhanced images. The processing module also sequentially compares adjacent images of the resolution-enhanced image, and selects pixels with the highest grayscale value at each position in the resolution-enhanced image to form a depth image corresponding to the object to be measured.
本揭露的用於半導體裝置檢測的深度影像產生方法及深度影像產生系統可建構半導體裝置的透視三維影像(亦即,深度影像),以藉由深度影像對半導體裝置進行非接觸式檢測,且深度影像產生方法及深度影像產生系統可應用於多種半導體裝置中,具有較高的應用廣泛性。為讓本揭露之特徵及優點能更明顯易懂,下文特舉出各種實施例,並配合所附圖式,作詳細說明如下。The depth image generation method and depth image generation system disclosed in the present invention for semiconductor device detection can construct a perspective three-dimensional image (i.e., a depth image) of a semiconductor device to perform non-contact detection of the semiconductor device through the depth image, and the depth image generation method and the depth image generation system can be applied to a variety of semiconductor devices and have a high degree of application. In order to make the features and advantages of the present invention more obvious and easy to understand, various embodiments are specifically cited below, and are described in detail with the accompanying drawings as follows.
以下揭露提供了很多不同的實施例或範例,用於實施所提供的裝置。各部件及其配置的具體範例描述如下,以簡化本揭露實施例,當然並非用以限定本揭露。舉例而言,敘述中若提及第一部件形成在第二部件之上,可能包括第一部件及第二部件直接接觸的實施例,也可能包括形成額外的部件在第一部件及第二部件之間,使得第一部件及第二部件不直接接觸的實施例。此外,本揭露可能在不同的實施例或範例中重複元件符號及/或字符。如此重複是為了簡明及清楚,而非用以表示所討論的不同實施例及/或範例之間的關係。The following disclosure provides many different embodiments or examples for implementing the provided device. Specific examples of each component and its configuration are described below to simplify the embodiments of the present disclosure, but of course are not intended to limit the present disclosure. For example, if the description refers to a first component formed on a second component, it may include an embodiment in which the first component and the second component are directly in contact, and it may also include an embodiment in which an additional component is formed between the first component and the second component so that the first component and the second component are not in direct contact. In addition, the present disclosure may repeat component symbols and/or characters in different embodiments or examples. Such repetition is for simplicity and clarity, and is not used to indicate the relationship between the different embodiments and/or examples discussed.
在本揭露的一些實施例中,關於設置、連接之用語例如「設置」、「連接」及其類似用語,除非特別定義,否則可指兩個部件直接接觸,或者亦可指兩個部件並非直接接觸,其中有額外結部件位於此兩個結構之間。關於設置、連接之用語亦可包括兩個結構都可移動,或者兩個結構都固定的情況。In some embodiments of the present disclosure, terms such as "disposed", "connected" and similar terms, unless otherwise specifically defined, may refer to two components being in direct contact, or may refer to two components not being in direct contact, wherein an additional component is located between the two structures. Terms related to disposition and connection may also include situations where both structures are movable, or both structures are fixed.
另外,本說明書或申請專利範圍中提及的「第一」、「第二」及其類似用語是用以命名不同的部件或區別不同實施例或範圍,而並非用來限制部件數量上的上限或下限,也並非用以限定部件的製造順序或設置順序。In addition, the terms "first", "second" and similar terms mentioned in this specification or patent application are used to name different components or distinguish different embodiments or scopes, and are not used to limit the upper or lower limit of the number of components, nor are they used to limit the manufacturing order or setting order of the components.
於本文中,「約(approximate)」、「大約(about)」、「實質上(substantially)」之用語通常表示在一給定值或範圍的10%內、或5%內、或3%之內、或2%之內、或1%之內、或0.5%之內。在此給定的數量為大約的數量,亦即在沒有特定說明「約」、「大約」、「實質上」的情況下,仍可隱含「約」、「大約」、「實質上」之含義。用語「範圍介於第一數值至第二數值之間」表示所述範圍包括第一數值、第二數值以及它們之間的其他數值。再者,任意兩個用來比較的數值或方向,可存在著一定的誤差。若第一數值等於第二數值,其隱含著第一數值與第二數值之間可存在著約10%、或5%內、或3%之內、或2%之內、或1%之內、或0.5%之內的誤差。若第一方向垂直於第二方向,則第一方向與第二方向之間的角度可介於80度至100度之間。若第一方向平行於第二方向,則第一方向與第二方向之間的角度可介於0度至10度之間。In this article, the terms "approximate", "about", and "substantially" generally mean within 10%, within 5%, within 3%, within 2%, within 1%, or within 0.5% of a given value or range. The quantities given here are approximate quantities, that is, in the absence of specific description of "about", "approximately", and "substantially", the meanings of "about", "approximately", and "substantially" can still be implied. The term "ranging from a first value to a second value" means that the range includes the first value, the second value, and other values therebetween. Furthermore, there may be a certain error between any two values or directions used for comparison. If the first value is equal to the second value, it implies that there may be an error of about 10%, or within 5%, or within 3%, or within 2%, or within 1%, or within 0.5% between the first value and the second value. If the first direction is perpendicular to the second direction, the angle between the first direction and the second direction may be between 80 degrees and 100 degrees. If the first direction is parallel to the second direction, the angle between the first direction and the second direction may be between 0 degrees and 10 degrees.
除非另外定義,在此使用的全部用語(包括技術及科學用語)具有與所屬技術領域中具有通常知識者通常理解的相同涵義。能理解的是,這些用語例如在通常使用的字典中定義用語,應被解讀成具有與相關技術及本揭露的背景或上下文一致的意思,而不應以一理想化或過度正式的方式解讀,除非在本揭露的實施例有特別定義。Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by those of ordinary skill in the art. It is understood that these terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning consistent with the background or context of the relevant technology and the present disclosure, and should not be interpreted in an idealized or overly formal manner unless specifically defined in the embodiments of the present disclosure.
應理解的是,為了清楚說明,圖式中省略裝置的部份元件,僅示意地繪示部份元件。在一些實施例中,可添加額外部件於以下所述的裝置中。在另一些實施例中,以下所述的裝置的部份部件可以被取代或省略。應理解的是,在一些實施例中,可於裝置的形成方法之前、期間中及/或之後提供額外的操作步驟。在一些實施例中,所述的一些操作步驟可能被取代或省略,並且所述的一些操作步驟的順序為可互換的。It should be understood that for the sake of clarity, some elements of the device are omitted in the drawings and only some elements are schematically shown. In some embodiments, additional components may be added to the device described below. In other embodiments, some components of the device described below may be replaced or omitted. It should be understood that in some embodiments, additional operating steps may be provided before, during and/or after the method of forming the device. In some embodiments, some of the operating steps described may be replaced or omitted, and the order of some of the operating steps described is interchangeable.
本揭露提供了一種用於半導體裝置檢測的深度影像產生方法及深度影像產生系統,其藉由紅外光取得待測物(例如,諸如晶圓、晶片等的半導體裝置)的多個橫切面的影像,並藉由影像處理(例如,下文中所描述的比較、疊加、相減等影像處理)將多個橫切面的影像合併成深度影像,以有效地判別崩裂等缺陷的具體位置或是尺寸。如此一來,可避免對不良品的半導體裝置進行後續加工,從而導致不必要的耗損。在一些實施例中,待測物可為或可包括晶圓(wafer)、晶片(chip)、其組合或其他合適的半導體裝置,但本揭露不限於此。The present disclosure provides a depth image generation method and a depth image generation system for semiconductor device detection, which obtains multiple cross-sectional images of an object to be tested (e.g., semiconductor devices such as wafers and chips) by infrared light, and merges the multiple cross-sectional images into a depth image by image processing (e.g., image processing such as comparison, superposition, and subtraction described below) to effectively determine the specific location or size of defects such as cracks. In this way, subsequent processing of defective semiconductor devices can be avoided, thereby avoiding unnecessary waste. In some embodiments, the object to be tested may be or may include a wafer, a chip, a combination thereof, or other suitable semiconductor devices, but the present disclosure is not limited thereto.
接下來,將參照第1圖及第2圖來描述本揭露的深度影像產生系統的一些實施例,以使本揭露更加清楚且易懂。其中,第1圖是根據本揭露的一些實施例,顯示用於半導體裝置檢測的深度影像產生系統的方塊圖。第2圖是根據本揭露的一些實施例,顯示用於半導體裝置檢測的深度影像產生方法在不同階段的示意圖。Next, some embodiments of the depth image generation system of the present disclosure will be described with reference to FIG. 1 and FIG. 2 to make the present disclosure clearer and easier to understand. FIG. 1 is a block diagram showing a depth image generation system for semiconductor device detection according to some embodiments of the present disclosure. FIG. 2 is a schematic diagram showing a depth image generation method for semiconductor device detection at different stages according to some embodiments of the present disclosure.
如第1圖所示,深度影像產生系統1用於拍攝待測物2(亦即,如上所述的各種半導體裝置),以形成待測物2的深度影像。其中,深度影像產生系統1包括光源10、影像擷取模組12及處理模組14,且影像擷取模組12電性連接處理模組14。As shown in FIG. 1 , the depth image generation system 1 is used to photograph the object to be tested 2 (i.e., the various semiconductor devices described above) to form a depth image of the object to be tested 2. The depth image generation system 1 includes a light source 10, an image capture module 12, and a processing module 14, and the image capture module 12 is electrically connected to the processing module 14.
如第1圖所示,光源10提供紅外光以照射待測物2。在一些實施例中,由光源10所提供的紅外光的波長可在760奈米(nm)至1毫米(mm)之間。舉例而言,由光源10所提供的紅外光的波長可為760nm、800nm、1µm、10µm、100µm、500µm、1mm、上述數值之間的任意數值或任意範圍,但本揭露不限於此。在一些實施例中,紅外光的波長可根據待測物2的種類而定。舉例而言,可使光源10發出具有較長波長的紅外光以提高對待測物2的穿透性,或者可使光源10發出具有不同波長的多個紅外光以提高對待測物2的不同部位的穿透性。As shown in FIG. 1 , a light source 10 provides infrared light to illuminate the object to be tested 2. In some embodiments, the wavelength of the infrared light provided by the light source 10 may be between 760 nanometers (nm) and 1 millimeter (mm). For example, the wavelength of the infrared light provided by the light source 10 may be 760nm, 800nm, 1µm, 10µm, 100µm, 500µm, 1mm, any value or any range between the above values, but the present disclosure is not limited thereto. In some embodiments, the wavelength of the infrared light may be determined according to the type of the object to be tested 2. For example, the light source 10 may emit infrared light with a longer wavelength to improve the penetration of the object to be tested 2, or the light source 10 may emit a plurality of infrared lights with different wavelengths to improve the penetration of different parts of the object to be tested 2.
一併參照第2圖,在一些實施例中,光源10可沿著待測物2的法線方向(例如,第一方向DR1)照射待測物2。舉例而言,光源10可沿著第一方向DR1發出紅外光L1照射待測物2,但本揭露不限於此。在其他實施例中,光源10也可沿著不同於第一方向DR1的第二方向DR2照射待測物2。舉例而言,光源10可沿著第二方向DR2發出紅外光L2照射待測物2。在一些實施例中,第一方向DR1與第二方向DR2之間可夾有介於0度至180度之間的角度,例如3度、10度、30度、45度、90度、120度、150度、175度、上述數值之間的任意數值或任意範圍,但本揭露不限於此。藉由使光源10提供不同方向的紅外光,可使影像擷取模組12獲得不同的初始橫切面影像,從而提供不同的深度影像以供後續的辨識。Referring to FIG. 2 , in some embodiments, the light source 10 may illuminate the object 2 to be tested along the normal direction of the object 2 (e.g., the first direction DR1). For example, the light source 10 may emit infrared light L1 along the first direction DR1 to illuminate the object 2 to be tested, but the present disclosure is not limited thereto. In other embodiments, the light source 10 may also illuminate the object 2 to be tested along a second direction DR2 different from the first direction DR1. For example, the light source 10 may emit infrared light L2 along the second direction DR2 to illuminate the object 2 to be tested. In some embodiments, the first direction DR1 and the second direction DR2 may have an angle between 0 degrees and 180 degrees, such as 3 degrees, 10 degrees, 30 degrees, 45 degrees, 90 degrees, 120 degrees, 150 degrees, 175 degrees, any value or any range between the above values, but the present disclosure is not limited thereto. By making the light source 10 provide infrared light in different directions, the image capture module 12 can obtain different initial cross-sectional images, thereby providing different depth images for subsequent recognition.
在一些實施例中,光源10可為背光燈、環形燈、平行光燈、漫射光燈、同軸光燈組、其組合或其他合適的光源,但本揭露不限於此。在一些實施例中,可藉由提供複數個光源10,以提升影像擷取的效率。在一些實施例中,更可提供連接至不同的光源10(例如,具有不同種類、不同波長或不同照射角度)的燈光切換控制器。藉由切換燈光模式突顯特徵之間的對比度,可有利於獲得不同的初始橫切面影像,從而提供不同的深度影像以供後續的辨識。In some embodiments, the light source 10 may be a backlight, a ring light, a parallel light, a diffuse light, a coaxial light set, a combination thereof, or other suitable light sources, but the present disclosure is not limited thereto. In some embodiments, the efficiency of image capture may be improved by providing a plurality of light sources 10. In some embodiments, a light switching controller connected to different light sources 10 (e.g., having different types, different wavelengths, or different illumination angles) may be provided. By switching the light mode to highlight the contrast between features, it is beneficial to obtain different initial cross-sectional images, thereby providing different depth images for subsequent recognition.
如第1圖及第2圖所示,影像擷取模組12藉由紅外光拍攝待測物2的複數個橫切面,以形成對應於橫切面的複數個初始橫切面影像ICS,其中這些橫切面沿著第一方向DR1彼此間隔。具體而言,影像擷取模組12藉由紅外光對待測物2(半導體裝置)的高穿透性,以特定間隔擷取待測物2的複數個橫切面的影像。如此一來,可在不破壞待測物2的情況下取得待測物2的內部結構的影像(亦即,初始橫切面影像ICS)。在一些實施例中,影像擷取模組12從待測物2的最底部的橫切面朝向最頂部的橫切面的方向依序擷取初始橫切面影像ICS,如第2圖所示。然而,本揭露不限於此。在一些實施例中,影像擷取模組12從待測物2的最頂部的橫切面朝向最底部的橫切面的方向依序擷取初始橫切面影像ICS。As shown in FIG. 1 and FIG. 2, the image capture module 12 uses infrared light to photograph a plurality of cross-sections of the object to be tested 2 to form a plurality of initial cross-section images ICS corresponding to the cross-sections, wherein these cross-sections are spaced apart from each other along the first direction DR1. Specifically, the image capture module 12 uses the high penetration of infrared light to the object to be tested 2 (semiconductor device) to capture the images of the plurality of cross-sections of the object to be tested 2 at specific intervals. In this way, the image of the internal structure of the object to be tested 2 (i.e., the initial cross-section image ICS) can be obtained without destroying the object to be tested 2. In some embodiments, the image capture module 12 sequentially captures the initial cross-sectional image ICS from the bottommost cross-sectional surface of the object 2 to the topmost cross-sectional surface, as shown in FIG. 2. However, the present disclosure is not limited thereto. In some embodiments, the image capture module 12 sequentially captures the initial cross-sectional image ICS from the topmost cross-sectional surface of the object 2 to the bottommost cross-sectional surface.
在一些實施例中,最底部的橫切面可為待測物2的底表面,但本揭露不限於此。在一些實施例中,最頂部的橫切面可為待測物2的頂表面,但本揭露不限於此。換言之,可根據實際需求選擇特定的橫切面(可包括或不包括待測物2的底表面及頂表面),以擷取所需的初始橫切面影像ICS。In some embodiments, the bottom cross-section may be the bottom surface of the object 2, but the present disclosure is not limited thereto. In some embodiments, the top cross-section may be the top surface of the object 2, but the present disclosure is not limited thereto. In other words, a specific cross-section (which may or may not include the bottom and top surfaces of the object 2) may be selected according to actual needs to capture the required initial cross-section image ICS.
在一些實施例中,影像擷取模組12可包括光學鏡頭及耦合至光學鏡頭的感光元件。舉例而言,光學鏡頭可為或可包括遠心鏡(telecentric lens),其可使拍攝到的影像在一定的物理距離內不受鏡頭視差影響,並同時獲得寬景深的效果。替代地,光學鏡頭也可為一般鏡頭、廣角鏡頭、長焦鏡頭、其組合或其他的合適的鏡頭,但本揭露不限於此。舉例而言,感光元件可為光電耦合元件(charge-coupled device)或互補金屬氧化物半導體(complementary metal-oxide-semiconductor,CMOS)、其組合或其他的合適的感光元件,但本揭露不限於此。In some embodiments, the image capture module 12 may include an optical lens and a photosensitive element coupled to the optical lens. For example, the optical lens may be or may include a telecentric lens, which can make the captured image not affected by lens parallax within a certain physical distance and at the same time obtain a wide depth of field effect. Alternatively, the optical lens may also be a general lens, a wide-angle lens, a telephoto lens, a combination thereof, or other suitable lenses, but the present disclosure is not limited thereto. For example, the photosensitive element may be a charge-coupled device or a complementary metal-oxide-semiconductor (CMOS), a combination thereof, or other suitable photosensitive elements, but the present disclosure is not limited thereto.
值得一提的是,第1圖及第2圖所示的待測物2及複數個橫切面的形狀、相對位置及尺寸僅用於說明,而不旨在限制本揭露。在一些實施例中,待測物2的形狀可為或可包括:板體,諸如圓形板體、橢圓板體、三角板體、矩形板體或多邊形板體;柱體,諸如圓柱體、橢圓柱體、三角柱體、矩形柱體或多邊形柱體;不規則塊體;上述組合或其他合適的形狀,但本揭露不限於此。在一些實施例中,各組相鄰的橫切面之間的間距可相同或不同。舉例而言,可以固定間距來擷取多個橫切面的影像。替代地,可在容易發生崩裂的位置處以較小的間距來擷取橫切面的影像,並在不容易發生崩裂的位置處以較大的間距來擷取橫切面的影像。在一些實施例中,各個橫切面的投影面積實質上相同,以避免不易進行後續的影像處理。然而,本揭露不限於此。在一些實施例中,當待測物2具有上寬下窄、上窄下寬、漏斗型等不等寬的結構時,可僅擷取橫切面的一部分,以使各個初始橫切面影像ICS所對應的投影面積實質上相同。It is worth mentioning that the shapes, relative positions and sizes of the object 2 to be tested and the multiple cross-sections shown in FIG. 1 and FIG. 2 are only for illustration and are not intended to limit the present disclosure. In some embodiments, the shape of the object 2 to be tested may be or may include: a plate, such as a circular plate, an elliptical plate, a triangular plate, a rectangular plate or a polygonal plate; a cylinder, such as a cylinder, an elliptical cylinder, a triangular cylinder, a rectangular cylinder or a polygonal cylinder; an irregular block; a combination of the above or other suitable shapes, but the present disclosure is not limited thereto. In some embodiments, the spacing between each group of adjacent cross-sections may be the same or different. For example, the images of multiple cross-sections may be captured at a fixed spacing. Alternatively, the image of the cross section may be captured at a smaller interval at a position where the cracking is likely to occur, and the image of the cross section may be captured at a larger interval at a position where the cracking is not likely to occur. In some embodiments, the projection areas of the various cross sections are substantially the same to avoid difficulty in subsequent image processing. However, the present disclosure is not limited thereto. In some embodiments, when the object to be measured 2 has a structure of unequal widths such as wide at the top and narrow at the bottom, narrow at the top and wide at the bottom, or funnel-shaped, only a portion of the cross section may be captured so that the projection areas corresponding to the various initial cross section images ICS are substantially the same.
如第1圖及第2圖所示,處理模組14用於比較初始橫切面影像ICS中相鄰的影像,以產生對應於初始橫切面影像ICS的複數個比較影像。具體而言,可將當前初始橫切面影像ICS(對應於某一個橫切面)與前一張初始橫切面影像ICS(對應於前一個橫切面)作比對從而得到前比較影像(例如,第8圖中的前比較影像FCn),及/或將當前初始橫切面影像ICS(對應於某一個橫切面)與後一張初始橫切面影像ICS(對應於後一個橫切面)作比對,從而得到後比較影像(例如,第8圖中的後比較影像RCn)。As shown in FIG. 1 and FIG. 2, the processing module 14 is used to compare adjacent images in the initial cross-sectional image ICS to generate a plurality of comparison images corresponding to the initial cross-sectional image ICS. Specifically, the current initial cross-sectional image ICS (corresponding to a certain cross-sectional surface) can be compared with the previous initial cross-sectional image ICS (corresponding to the previous cross-sectional surface) to obtain a front comparison image (e.g., the front comparison image FCn in FIG. 8), and/or the current initial cross-sectional image ICS (corresponding to a certain cross-sectional surface) can be compared with the next initial cross-sectional image ICS (corresponding to the next cross-sectional surface) to obtain a rear comparison image (e.g., the rear comparison image RCn in FIG. 8).
在本揭露中,「前比較影像」指的是呈現當前橫切面所對應的初始橫切面影像與前一個橫切面所對應的初始橫切面影像之間的差異(例如,差異可為像素的灰階變化值,且其取絕對值)的影像,且「後比較影像」指的是呈現當前橫切面所對應的初始橫切面影像與後一個橫切面所對應的初始橫切面影像之間的差異的影像。In the present disclosure, a “pre-comparison image” refers to an image that presents the difference between an initial cross-section image corresponding to a current cross-section and an initial cross-section image corresponding to a previous cross-section (for example, the difference may be a grayscale change value of a pixel, and it is an absolute value), and a “post-comparison image” refers to an image that presents the difference between an initial cross-section image corresponding to a current cross-section and an initial cross-section image corresponding to a subsequent cross-section.
除此之外,處理模組14還用於疊加比較影像,以形成複數個解析度強化影像(例如,第10圖中的解析度強化影像RE)。這些解析度強化影像可用於形成對應於待測物2的深度影像(例如,第12圖中的深度影像DI)。在一些實施例中,所獲得之深度影像可用於檢測半導體裝置中的缺陷,例如崩裂,但本揭露不限於此。關於用來比較、疊加及形成深度影像的影像處理的具體步驟可參考後文中的產生方法。In addition, the processing module 14 is also used to superimpose the comparison images to form a plurality of resolution-enhanced images (e.g., the resolution-enhanced image RE in FIG. 10 ). These resolution-enhanced images can be used to form a depth image corresponding to the object under test 2 (e.g., the depth image DI in FIG. 12 ). In some embodiments, the obtained depth image can be used to detect defects in semiconductor devices, such as cracks, but the present disclosure is not limited thereto. The specific steps of image processing for comparing, superimposing, and forming depth images can be referred to the generation method described later.
在一些實施例中,處理模組14可包括諸如處理器、電腦可讀媒體及記憶體的處理及儲存組件,以執行電腦程式來實現上文所述的功能。其中,處理器的示例可包括中央處理器(central processing unit,CPU)、多核CPU、圖形處理器(graphics processing unit,GPU)等,但本揭露不限於此。電腦可讀媒體的示例可包括唯讀光碟驅動器(compact disc read-only memory,CD-ROM)、硬碟驅動器、可擦除可程式設計唯讀記憶體(erasable programable read-only memory,EPROM)、電可擦除可程式設計唯讀記憶體(electrically erasable programable read-only memory,EEPROM)等,但本揭露不限於此。記憶體的示例可包括動態隨機存取記憶體(dynamic random access memory,DRAM)、靜態隨機存取記憶體(static random access memory,SRAM)、快閃記憶體(flash memory)等,但本揭露不限於此。In some embodiments, the processing module 14 may include processing and storage components such as a processor, a computer-readable medium, and a memory to execute a computer program to implement the functions described above. Examples of the processor may include a central processing unit (CPU), a multi-core CPU, a graphics processing unit (GPU), etc., but the present disclosure is not limited thereto. Examples of the computer-readable medium may include a compact disc read-only memory (CD-ROM), a hard disk drive, an erasable programable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), etc., but the present disclosure is not limited thereto. Examples of memory may include dynamic random access memory (DRAM), static random access memory (SRAM), flash memory, etc., but the present disclosure is not limited thereto.
值得一提的是,本文中所使用之術語「電腦程式」指的是儲存在電腦可讀媒體中的應用程式,其可以被讀入記憶體中以供處理器處理。在一些實施例中,應用程式可以用一種或多種程式設計語言的任何組合編寫。程式設計語言包括物件導向的程式設計語言,諸如Java、Smalltalk、C++或類似語言,以及包括傳統的程式性程式設計語言,諸如C程式設計語言或類似程式設計語言。It is worth mentioning that the term "computer program" used herein refers to an application program stored in a computer-readable medium that can be read into a memory for processing by a processor. In some embodiments, the application program can be written in any combination of one or more programming languages. Programming languages include object-oriented programming languages such as Java, Smalltalk, C++, or similar languages, and traditional procedural programming languages such as C programming language or similar programming languages.
在上文中,已描述了深度影像產生系統1的可能配置,並描述了這些配置之間的功用。在下文中,將進一步描述根據本揭露的一些實施例,採用如上文所述的深度影像產生系統1所執行的深度影像產生方法。值得一提的是,在一些實施例中,本揭露也可採用具有相似或相同功能的裝置來執行深度影像產生方法,而不限於僅能採用如上文所述的裝置。In the above, possible configurations of the depth image generation system 1 have been described, and the functions between these configurations have been described. In the following, some embodiments of the present disclosure will be further described, using the depth image generation method executed by the depth image generation system 1 as described above. It is worth mentioning that in some embodiments, the present disclosure can also use devices with similar or identical functions to execute the depth image generation method, and is not limited to using only the devices described above.
一併參照第3圖至第12圖。其中,第3圖至第5圖分別是根據本揭露的一些實施例,顯示用於半導體裝置檢測的深度影像產生方法的流程圖。第6圖至第12圖分別是根據本揭露的一些實施例,顯示用於半導體裝置檢測的深度影像產生方法在不同階段的示意圖。Refer to Figures 3 to 12. Figures 3 to 5 are flowcharts of a depth image generation method for semiconductor device detection according to some embodiments of the present disclosure. Figures 6 to 12 are schematic diagrams of a depth image generation method for semiconductor device detection at different stages according to some embodiments of the present disclosure.
如第2圖及第3圖所示,在步驟S10中,以紅外光拍攝待測物2的複數個橫切面,以形成對應於橫切面的複數個初始橫切面影像ICS,其中橫切面沿著第一方向DR1彼此間隔。如第2圖所示,在一些實施例中,紅外光可以第一方向DR1、第二方向DR2、其組合或其他方向來照射待測物2,但本揭露不限於此。As shown in FIG. 2 and FIG. 3, in step S10, a plurality of cross-sections of the object to be tested 2 are photographed with infrared light to form a plurality of initial cross-section images ICS corresponding to the cross-sections, wherein the cross-sections are spaced apart from each other along the first direction DR1. As shown in FIG. 2, in some embodiments, the infrared light can illuminate the object to be tested 2 in the first direction DR1, the second direction DR2, a combination thereof, or other directions, but the present disclosure is not limited thereto.
如第6圖所示,在一些實施例中,初始橫切面影像ICS包括第1初始橫切面影像ICS1至第(n+1)初始橫切面影像ICS(n+1),且n為大於或等於1的正整數。舉例而言,當n=1時,初始橫切面影像ICS包括第1初始橫切面影像ICS1及第2初始橫切面影像ICS2。替代地,當n=2時,初始橫切面影像ICS包括第1初始橫切面影像ICS1、第2初始橫切面影像ICS2及第3初始橫切面影像ICS3。As shown in FIG. 6 , in some embodiments, the initial cross-sectional image ICS includes the first initial cross-sectional image ICS1 to the (n+1)th initial cross-sectional image ICS(n+1), and n is a positive integer greater than or equal to 1. For example, when n=1, the initial cross-sectional image ICS includes the first initial cross-sectional image ICS1 and the second initial cross-sectional image ICS2. Alternatively, when n=2, the initial cross-sectional image ICS includes the first initial cross-sectional image ICS1, the second initial cross-sectional image ICS2, and the third initial cross-sectional image ICS3.
如第3圖所示,在步驟S12中,比較初始橫切面影像ICS中相鄰的影像,產生複數個比較影像,並疊加比較影像中相鄰的影像,以形成複數個解析度強化影像RE。在一些實施例中,藉由諸如處理模組14的裝置所執行的影像處理可更包括子步驟S140至子步驟S148,其用於取得各個橫切面的比較影像(例如,前比較影像及後比較影像),且所獲得之前比較影像與後比較影像可用於形成解析度強化影像RE。As shown in FIG. 3 , in step S12, adjacent images in the initial cross-section image ICS are compared to generate a plurality of comparison images, and adjacent images in the comparison images are superimposed to form a plurality of resolution enhanced images RE. In some embodiments, the image processing performed by a device such as the processing module 14 may further include sub-steps S140 to S148, which are used to obtain comparison images (e.g., a front comparison image and a rear comparison image) of each cross-section, and the obtained front comparison image and rear comparison image can be used to form the resolution enhanced image RE.
如第4圖及第7圖所示,在子步驟S120中,對第1初始橫切面影像ICS1與第2初始橫切面影像ICS2執行相減(subtract),以形成第1後比較影像RC1(其可視為解析度強化影像RE中的第1解析度強化影像RE1)。具體而言,在此子步驟中,第1初始橫切面影像ICS1是對應於最底部橫切面的初始橫切面影像。因此,在不具有前一張初始橫切面影像的情況下,第1初始橫切面影像ICS1僅會與後一張初始橫切面影像(亦即,第2初始橫切面影像ICS2)相減。在這種情況下,所獲得之第1後比較影像RC1可直接視為解析度強化影像RE中的第1解析度強化影像RE1。As shown in FIG. 4 and FIG. 7 , in sub-step S120, the first initial cross-sectional image ICS1 and the second initial cross-sectional image ICS2 are subtracted to form the first rear comparison image RC1 (which can be regarded as the first resolution enhanced image RE1 in the resolution enhanced image RE). Specifically, in this sub-step, the first initial cross-sectional image ICS1 is the initial cross-sectional image corresponding to the bottommost cross-sectional image. Therefore, in the absence of the previous initial cross-sectional image, the first initial cross-sectional image ICS1 will only be subtracted from the next initial cross-sectional image (i.e., the second initial cross-sectional image ICS2). In this case, the obtained first post-comparison image RC1 can be directly regarded as the first resolution enhanced image RE1 in the resolution enhanced images RE.
如第4圖及第8圖所示,在子步驟S122中,對第n初始橫切面影像ICSn與第(n-1)初始橫切面影像ICS(n-1)執行相減,以形成第n前比較影像FCn。As shown in FIGS. 4 and 8 , in sub-step S122 , the nth initial cross-section image ICSn is subtracted from the (n-1)th initial cross-section image ICS(n-1) to form the nth front comparison image FCn.
如第4圖及第8圖所示,在子步驟S124中,對第n初始橫切面影像ICSn與第(n+1)初始橫切面影像ICS(n+1)執行相減,以形成第n後比較影像RCn。As shown in FIG. 4 and FIG. 8 , in sub-step S124 , the nth initial cross-section image ICSn is subtracted from the (n+1)th initial cross-section image ICS(n+1) to form the nth post-comparison image RCn.
如第4圖及第8圖所示,在子步驟S126中,對第n前比較影像FCn及第n後比較影像RCn執行疊加(add),以形成解析度強化影像RE中的第n解析度強化影像REn。藉由將當前的初始橫切面影像與前一張初始橫切面影像及後一張初始橫切面影像比較,並使比較結果疊加在一起,可獲得對應於當前橫切面的高解析度的解析度強化影像RE。As shown in FIG. 4 and FIG. 8, in sub-step S126, the nth front comparison image FCn and the nth rear comparison image RCn are superimposed (add) to form the nth resolution enhanced image REn in the resolution enhanced image RE. By comparing the current initial cross-section image with the previous initial cross-section image and the next initial cross-section image, and superimposing the comparison results together, a high-resolution resolution enhanced image RE corresponding to the current cross-section can be obtained.
如第4圖及第9圖所示,在子步驟S128中,對第(n+1)初始橫切面影像ICS(n+1)與第n初始橫切面影像ICSn執行相減,以形成第(n+1)前比較影像FC(n+1)(其可視為解析度強化影像RE中的第(n+1)解析度強化影像RE(n+1))。在此子步驟中,第(n+1)初始橫切面影像ICS(n+1)是對應於最頂部橫切面的初始橫切面影像。因此,在不具有後一張初始橫切面影像的情況下,第(n+1)初始橫切面影像ICS(n+1)僅會與前一張初始橫切面影像(亦即,第n初始橫切面影像ICSn)相減。在這種情況下,所獲得之第(n+1)前比較影像FC(n+1)可直接視為第(n+1)解析度強化影像RE(n+1)。As shown in FIG. 4 and FIG. 9, in sub-step S128, the (n+1)th initial cross-sectional image ICS(n+1) is subtracted from the nth initial cross-sectional image ICSn to form the (n+1)th front comparison image FC(n+1) (which can be regarded as the (n+1)th resolution enhanced image RE(n+1) in the resolution enhanced image RE). In this sub-step, the (n+1)th initial cross-sectional image ICS(n+1) is the initial cross-sectional image corresponding to the topmost cross-sectional image. Therefore, in the absence of a subsequent initial cross-sectional image, the (n+1)th initial cross-sectional image ICS(n+1) is only subtracted from the previous initial cross-sectional image (i.e., the nth initial cross-sectional image ICSn). In this case, the obtained (n+1)th previous comparison image FC(n+1) can be directly regarded as the (n+1)th resolution enhanced image RE(n+1).
如第3圖所示,接續步驟S12,在步驟S14中,對解析度強化影像RE執行影像處理,以形成對應於待測物2的深度影像,其中此影像處理包括:比較解析度強化影像RE的相鄰影像,並針對解析度強化影像RE中的各個位置處,選擇具有最高灰階值的像素,以形成對應於待測物2的深度影像DI。藉由選擇解析度強化影像RE中每個位置處的具有較高灰階值的像素,可形成具有立體感的深度影像DI。在一些實施例中,藉由諸如處理模組14的裝置所執行的上述影像處理可更包括子步驟S140至子步驟S146。As shown in FIG. 3 , following step S12, in step S14, image processing is performed on the resolution enhanced image RE to form a depth image corresponding to the object to be measured 2, wherein the image processing includes: comparing adjacent images of the resolution enhanced image RE, and selecting pixels with the highest grayscale value at each position in the resolution enhanced image RE to form a depth image DI corresponding to the object to be measured 2. By selecting pixels with higher grayscale values at each position in the resolution enhanced image RE, a depth image DI with a sense of three-dimensionality can be formed. In some embodiments, the above-mentioned image processing performed by a device such as the processing module 14 may further include sub-steps S140 to S146.
如第5圖及第10圖所示,在子步驟S140中,依序比較第1解析度強化影像RE1至第(n+1)解析度強化影像RE(n+1),以形成正向深度影像PDI。在本揭露中,子步驟S140中的「依序比較」指的是將第1解析度強化影像RE1依序與第2解析度強化影像RE2至第(n+1)解析度強化影像RE(n+1)比較圖中各個位置處的對應像素,並選擇留下具有較高灰階值的像素。由於是從最底部的橫切面朝向最頂部的橫切面做比較,因此稱為正向深度影像。在一些實施例中,可根據出現的先後次序來記錄具有最高灰階值的像素的所在層數。舉例而言,當認定第x層中的像素的灰階是最高值255後,即使在後續的比較過程(例如,與第x+y層比對)中再次出現灰階255的像素,也僅認定最高像素的層數為第x層。As shown in FIG. 5 and FIG. 10, in sub-step S140, the first resolution enhanced image RE1 to the (n+1)th resolution enhanced image RE(n+1) are compared sequentially to form a forward depth image PDI. In the present disclosure, "sequential comparison" in sub-step S140 refers to comparing the first resolution enhanced image RE1 with the second resolution enhanced image RE2 to the (n+1)th resolution enhanced image RE(n+1) in sequence at the corresponding pixels at each position in the image, and selecting pixels with higher grayscale values. Since the comparison is made from the bottom cross-section to the top cross-section, it is called a forward depth image. In some embodiments, the layer number of the pixel with the highest grayscale value can be recorded according to the order of appearance. For example, once the gray level of the pixel in the xth layer is determined to be the highest value 255, even if a pixel with gray level 255 appears again in a subsequent comparison process (eg, comparison with the x+yth layer), the layer with the highest pixel is only determined to be the xth layer.
如第5圖所示,接續子步驟S140,在子步驟S142中,藉由預設閥值調整正向深度影像,以形成深度影像。在本揭露中,子步驟S142中的「調整」指的是根據預設閥值刪除不明確區域中的像素。舉例而言,可將不明確區域的定義為:所有橫切面的某一區域的像素沒有明確的最大灰階值(例如,無論在哪一張橫切面影像都呈現相同的黑色雜訊(點)或是白色雜訊(點))。例如,某一個像素的灰階值為10,且在其他層(例如,第2層及第13層)的對應像素的灰階值都是10的時候,此時可稱該位置處為不明確區域。在一些實施例中,可藉由最小殘差法(ininzum residual method)來刪除不明確區域,但本揭露不限於此。替代地,也可藉由大津(Otsu)演算法來刪除不明確區域。As shown in FIG. 5 , following sub-step S140, in sub-step S142, the forward depth image is adjusted by the preset valve value to form a depth image. In the present disclosure, the “adjustment” in sub-step S142 refers to deleting pixels in the unclear area according to the preset valve value. For example, the unclear area can be defined as: the pixels in a certain area of all cross-sections do not have a clear maximum grayscale value (for example, the same black noise (dots) or white noise (dots) are presented in any cross-section image). For example, when the grayscale value of a pixel is 10, and the grayscale values of the corresponding pixels in other layers (for example, the 2nd layer and the 13th layer) are all 10, then the position can be called an unclear area. In some embodiments, the inizum residual method may be used to delete the unclear region, but the present disclosure is not limited thereto. Alternatively, the Otsu algorithm may be used to delete the unclear region.
如第5圖及第11圖所示,接續子步驟S140,在一些實施例中,可以子步驟S144及子步驟S146取代子步驟142,以形成深度影像。在子步驟S144中,依序比較第(n+1)解析度強化影像RE(n+1)至第1解析度強化影像RE1,以形成反向深度影像NDI。類似地,在本揭露中,子步驟S144中的「依序比較」指的是將第(n+1)解析度強化影像RE(n+1)依序與第n解析度強化影像REn至第1解析度強化影像RE1比較圖中各個位置處的對應像素,並選擇留下具有較高灰階值的像素。由於是從最頂部的橫切面朝向最底部的橫切面做比較,因此稱為反向深度影像。As shown in FIG. 5 and FIG. 11, following sub-step S140, in some embodiments, sub-step S144 and sub-step S146 may replace sub-step 142 to form a depth image. In sub-step S144, the (n+1)th resolution enhanced image RE(n+1) is sequentially compared to the first resolution enhanced image RE1 to form a reverse depth image NDI. Similarly, in the present disclosure, "sequentially comparing" in sub-step S144 refers to comparing the corresponding pixels at each position in the (n+1)th resolution enhanced image RE(n+1) with the nth resolution enhanced image REn to the first resolution enhanced image RE1 in sequence, and selecting pixels with higher grayscale values. Since the comparison is made from the topmost cross section toward the bottommost cross section, it is called a reverse depth image.
如第5圖及第12圖所示,接續子步驟S144,在子步驟S146中,比較正向深度影像PDI與反向深度影像NDI,以形成深度影像DI。在本揭露中,子步驟S146中的「比較」指的是調整正向深度影像PDI與反向深度影像NDI的不明確區域,以獲得清晰且具有立體感的深度影像DI。承上文所述,由於可能根據出現的先後次序來記錄具有最高灰階值的像素的所在層數,當正向深度影像PDI與反向深度影像NDI中出現的具有最高灰階值的像素的層數不同時(例如,一個在第x層,另一個在第x+y層),可認定此區域(或此像素)為不明確區域。As shown in FIG. 5 and FIG. 12, following sub-step S144, in sub-step S146, the forward depth image PDI and the reverse depth image NDI are compared to form a depth image DI. In the present disclosure, the "comparison" in sub-step S146 refers to adjusting the unclear areas of the forward depth image PDI and the reverse depth image NDI to obtain a clear and three-dimensional depth image DI. As mentioned above, since the layer number of the pixel with the highest grayscale value may be recorded according to the order of appearance, when the layer numbers of the pixel with the highest grayscale value appearing in the forward depth image PDI and the reverse depth image NDI are different (for example, one is in the xth layer and the other is in the x+yth layer), this area (or this pixel) can be identified as an unclear area.
一併參照第13A圖至第13F圖,其分別是根據本揭露的一些實施例(或稱應用例),顯示待測物的初始橫切面影像、比較影像、正向深度影像、反向深度影像、正向深度影像與反向深度影像之間的比較圖、及深度影像。如第13A圖所示,此為藉由紅外光所拍攝之待測物的某一層(例如,線路層所在的水平層)的初始橫切面影像。如第13B圖所示,此為藉由紅外光所拍攝之待測物的某一層(例如,線路層所在的水平層)的比較影像。如第13C圖所示,此為藉由處理膜組從最底層的比較影像一路向上疊加的正向深度影像。如第13D圖所示,此為藉由處理模組從最頂層的比較影像一路向下疊加的反向深度影像。如第13E圖所示,在比較正向深度影像與反向深度影像之後,可確認出不明確區域,例如圖中的黑白雜訊區域UA。如第13F圖所示,在移除不明確區域後,可得到待測物的深度影像。在一些實施例中,可藉由如第13F圖所示的深度影像確認待測物的缺陷。Referring to FIGS. 13A to 13F, they respectively show the initial cross-sectional image, the comparison image, the forward depth image, the reverse depth image, the comparison image between the forward depth image and the reverse depth image, and the depth image of the object to be tested according to some embodiments (or application examples) of the present disclosure. As shown in FIG. 13A, this is an initial cross-sectional image of a certain layer (e.g., the horizontal layer where the circuit layer is located) of the object to be tested photographed by infrared light. As shown in FIG. 13B, this is a comparison image of a certain layer (e.g., the horizontal layer where the circuit layer is located) of the object to be tested photographed by infrared light. As shown in FIG. 13C, this is a forward depth image superimposed from the comparison image of the bottom layer all the way up by processing the film group. As shown in FIG. 13D, this is a reverse depth image that is superimposed from the topmost comparison image all the way down by the processing module. As shown in FIG. 13E, after comparing the forward depth image and the reverse depth image, an unclear area can be confirmed, such as the black and white noise area UA in the figure. As shown in FIG. 13F, after removing the unclear area, a depth image of the object to be tested can be obtained. In some embodiments, the defects of the object to be tested can be confirmed by the depth image shown in FIG. 13F.
綜上所述,本揭露提供了一種用於半導體裝置檢測的深度影像產生方法及深度影像產生系統。在使用紅外光擷取待測物的初始橫切面影像之後,本揭露藉由第一影像處理提高初始橫切面影像的解析度,並藉由第二影像處理形成具有立體感的深度影像。如此一來,藉由所形成之深度影像,可在不破壞待測物的情況下確認待測物中的缺陷(例如內部的隱崩瑕疵),以避免對不良品的半導體裝置進行後續加工,從而導致不必要的耗損。In summary, the present disclosure provides a depth image generation method and a depth image generation system for semiconductor device inspection. After using infrared light to capture the initial cross-sectional image of the object to be tested, the present disclosure improves the resolution of the initial cross-sectional image by a first image processing, and forms a three-dimensional depth image by a second image processing. In this way, the defects in the object to be tested (such as internal hidden chipping defects) can be confirmed without destroying the object to be tested through the formed depth image, so as to avoid subsequent processing of defective semiconductor devices, thereby causing unnecessary waste.
以上概述數個實施例,以便本領域中的通常知識者可以更理解本揭露實施例的觀點。本領域中的通常知識者應該理解的是,能以本揭露實施例為基礎,設計或修改其他製程與結構,以達到與在此介紹的實施例相同之目的及/或優勢。本領域中的通常知識者也應該理解的是,此類等效的製程與結構並無悖離本揭露的精神與範圍,且能在不違背本揭露之精神與範圍之下,做各式各樣的改變、取代與替換。Several embodiments are summarized above so that those skilled in the art can better understand the perspective of the embodiments disclosed herein. Those skilled in the art should understand that other processes and structures can be designed or modified based on the embodiments disclosed herein to achieve the same purpose and/or advantages as the embodiments introduced herein. Those skilled in the art should also understand that such equivalent processes and structures do not deviate from the spirit and scope of the disclosure and can be variously changed, substituted and replaced without violating the spirit and scope of the disclosure.
1:深度影像產生系統 10:光源 12:影像擷取模組 14:處理模組 2:待測物 DR1:第一方向 DR2:第二方向 FCn:第n前比較影像 FC(n+1):第(n+1)前比較影像 ICS:初始橫切面影像 ICS1:第1初始橫切面影像 ICS2:第2初始橫切面影像 ICS3:第3初始橫切面影像 ICSn:第n初始橫切面影像 ICS(n-1):第(n-1)初始橫切面影像 ICS(n+1):第(n+1)初始橫切面影像 L1:紅外光 L2:紅外光 NDI:反向深度影像 PDI:正向深度影像 RC1:第1後比較影像 RCn:第n後比較影像 RE:解析度強化影像 RE1:第1解析度強化影像 REn:第n解析度強化影像 RE(n+1):第(n+1)解析度強化影像 S10-S14:步驟 S120-S128:子步驟 S140-S144:子步驟 UA:區域 1: Depth image generation system 10: Light source 12: Image acquisition module 14: Processing module 2: Object to be measured DR1: First direction DR2: Second direction FCn: nth front comparison image FC(n+1): (n+1)th front comparison image ICS: Initial cross-section image ICS1: 1st initial cross-section image ICS2: 2nd initial cross-section image ICS3: 3rd initial cross-section image ICSn: nth initial cross-section image ICS(n-1): (n-1)th initial cross-section image ICS(n+1): (n+1)th initial cross-section image L1: Infrared light L2: Infrared light NDI: Reverse depth image PDI: Forward depth image RC1: 1st rear comparison image RCn: Comparison image after the nth time RE: Resolution enhanced image RE1: 1st resolution enhanced image REn: nth resolution enhanced image RE(n+1): (n+1)th resolution enhanced image S10-S14: Steps S120-S128: Sub-steps S140-S144: Sub-steps UA: Area
藉由以下的詳細敘述配合所附圖式,能更加理解本揭露實施例的觀點。值得注意的是,根據工業上的標準慣例,一些部件(feature)可能沒有按照比例繪製。事實上,為了能清楚地描述,不同部件的尺寸可能被增加或減少。 第1圖是根據本揭露的一些實施例,顯示用於半導體裝置檢測的深度影像產生系統的方塊圖。 第2圖是根據本揭露的一些實施例,顯示用於半導體裝置檢測的深度影像產生方法在不同階段的示意圖。 第3圖是根據本揭露的一些實施例,顯示用於半導體裝置檢測的深度影像產生方法的流程圖。 第4圖是根據本揭露的一些實施例,顯示用於半導體裝置檢測的深度影像產生方法的流程圖。 第5圖是根據本揭露的一些實施例,顯示用於半導體裝置檢測的深度影像產生方法的流程圖。 第6圖至第12圖分別是根據本揭露的一些實施例,顯示用於半導體裝置檢測的深度影像產生方法在不同階段的示意圖。 第13A圖是根據本揭露的一些實施例,顯示待測物的初始橫切面影像。 第13B圖是根據本揭露的一些實施例,顯示待測物的比較影像。 第13C圖是根據本揭露的一些實施例,顯示待測物的正向深度影像。 第13D圖是根據本揭露的一些實施例,顯示待測物的反向深度影像。 第13E圖是根據本揭露的一些實施例,顯示待測物的正向深度影像與反向深度影像之間的比較圖。 第13F圖是根據本揭露的一些實施例,顯示待測物的深度影像。 The following detailed description in conjunction with the attached drawings will provide a better understanding of the viewpoints of the disclosed embodiments. It is worth noting that, according to standard industry practices, some features may not be drawn in proportion. In fact, the sizes of different features may be increased or decreased for clarity. FIG. 1 is a block diagram of a depth image generation system for semiconductor device detection according to some embodiments of the present disclosure. FIG. 2 is a schematic diagram of a depth image generation method for semiconductor device detection at different stages according to some embodiments of the present disclosure. FIG. 3 is a flow chart of a depth image generation method for semiconductor device detection according to some embodiments of the present disclosure. FIG. 4 is a flow chart of a depth image generation method for semiconductor device detection according to some embodiments of the present disclosure. FIG. 5 is a flow chart showing a depth image generation method for semiconductor device detection according to some embodiments of the present disclosure. FIG. 6 to FIG. 12 are schematic diagrams showing the depth image generation method for semiconductor device detection at different stages according to some embodiments of the present disclosure. FIG. 13A shows an initial cross-sectional image of the object to be tested according to some embodiments of the present disclosure. FIG. 13B shows a comparison image of the object to be tested according to some embodiments of the present disclosure. FIG. 13C shows a forward depth image of the object to be tested according to some embodiments of the present disclosure. FIG. 13D shows a reverse depth image of the object to be tested according to some embodiments of the present disclosure. FIG. 13E shows a comparison diagram between the forward depth image and the reverse depth image of the object to be tested according to some embodiments of the present disclosure. Figure 13F shows the depth image of the object to be tested according to some embodiments of the present disclosure.
S10-S14:步驟 S10-S14: Steps
Claims (16)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW113123767A TWI877038B (en) | 2024-06-26 | 2024-06-26 | Depth image generation method and depth image generation system for semiconductor device inspection |
| CN202510681171.3A CN121213451A (en) | 2024-06-26 | 2025-05-26 | Depth Image Generation Method and System for Semiconductor Device Inspection |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW113123767A TWI877038B (en) | 2024-06-26 | 2024-06-26 | Depth image generation method and depth image generation system for semiconductor device inspection |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TWI877038B true TWI877038B (en) | 2025-03-11 |
| TW202601551A TW202601551A (en) | 2026-01-01 |
Family
ID=95830307
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW113123767A TWI877038B (en) | 2024-06-26 | 2024-06-26 | Depth image generation method and depth image generation system for semiconductor device inspection |
Country Status (2)
| Country | Link |
|---|---|
| CN (1) | CN121213451A (en) |
| TW (1) | TWI877038B (en) |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW201826222A (en) * | 2016-12-07 | 2018-07-16 | 以色列商奧寶科技有限公司 | Method and device for judging defect quality |
| US20210148695A1 (en) * | 2017-11-13 | 2021-05-20 | Taiwan Semiconductor Manufacturing Co., Ltd. | Apparatus and method for metrology |
| US20220392793A1 (en) * | 2020-03-13 | 2022-12-08 | Carl Zeiss Smt Gmbh | Methods of cross-section imaging of an inspection volume in a wafer |
| TW202324557A (en) * | 2021-10-07 | 2023-06-16 | 德商卡爾蔡司Smt有限公司 | Wafer-tilt determination for slice-and-image process |
| US20240105169A1 (en) * | 2017-02-27 | 2024-03-28 | Emteq Limited | Optical expression detection |
| TW202416521A (en) * | 2022-06-30 | 2024-04-16 | 台灣積體電路製造股份有限公司 | Cmos image sensor |
-
2024
- 2024-06-26 TW TW113123767A patent/TWI877038B/en active
-
2025
- 2025-05-26 CN CN202510681171.3A patent/CN121213451A/en active Pending
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW201826222A (en) * | 2016-12-07 | 2018-07-16 | 以色列商奧寶科技有限公司 | Method and device for judging defect quality |
| US20240105169A1 (en) * | 2017-02-27 | 2024-03-28 | Emteq Limited | Optical expression detection |
| US20210148695A1 (en) * | 2017-11-13 | 2021-05-20 | Taiwan Semiconductor Manufacturing Co., Ltd. | Apparatus and method for metrology |
| US20220392793A1 (en) * | 2020-03-13 | 2022-12-08 | Carl Zeiss Smt Gmbh | Methods of cross-section imaging of an inspection volume in a wafer |
| TW202324557A (en) * | 2021-10-07 | 2023-06-16 | 德商卡爾蔡司Smt有限公司 | Wafer-tilt determination for slice-and-image process |
| TW202416521A (en) * | 2022-06-30 | 2024-04-16 | 台灣積體電路製造股份有限公司 | Cmos image sensor |
Also Published As
| Publication number | Publication date |
|---|---|
| CN121213451A (en) | 2025-12-26 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8126259B2 (en) | Method and apparatus for visual inspection | |
| KR101495987B1 (en) | Defect inspection apparatus | |
| US20110221886A1 (en) | Pattern defect inspecting apparatus and method | |
| JP2004271470A (en) | Pattern inspection method and apparatus | |
| JP3647416B2 (en) | Pattern inspection apparatus and method | |
| TWI731975B (en) | System and method for defect detection | |
| JP2010043941A (en) | Image inspection apparatus and image inspection method | |
| CN101529305A (en) | Microscopic device and microscopic image analysis method | |
| US10489902B2 (en) | Inspection apparatus, semiconductor device manufacturing system including the same, and method of manufacturing a semiconductor device using the same | |
| TWI877038B (en) | Depth image generation method and depth image generation system for semiconductor device inspection | |
| JP2009097928A (en) | Defect inspecting device and defect inspection method | |
| JP6259634B2 (en) | Inspection device | |
| TW202601551A (en) | Depth image generation method and depth image generation system for semiconductor device inspection | |
| KR101351004B1 (en) | Carrying apparatus having camera array detecting defects | |
| JP2009281759A (en) | Color filter defect inspection method, inspection apparatus, and color filter manufacturing method using it | |
| JP2009097959A (en) | Defect detecting device and defect detection method | |
| US9202270B2 (en) | Pattern inspection apparatus and pattern inspection method | |
| JP2012185031A (en) | Method for mask inspection and device for the same | |
| JP2014062837A (en) | Defect inspection device and defect reviewing device | |
| JP7036574B2 (en) | Pattern inspection device and pattern inspection method | |
| TWI900609B (en) | Methods, systems, and non-transitory computer readable medium for defect detection on semiconductor wafers | |
| KR20250025694A (en) | Inspection device and method for producing inspection images | |
| JP2024537955A (en) | Suppression of laser annealing patterns | |
| KR101843318B1 (en) | An apparatus for inspecting surface of specimen and method thereof | |
| JP3803677B2 (en) | Defect classification apparatus and defect classification method |