[go: up one dir, main page]

TWI876721B - A cascade control winding system - Google Patents

A cascade control winding system Download PDF

Info

Publication number
TWI876721B
TWI876721B TW112146650A TW112146650A TWI876721B TW I876721 B TWI876721 B TW I876721B TW 112146650 A TW112146650 A TW 112146650A TW 112146650 A TW112146650 A TW 112146650A TW I876721 B TWI876721 B TW I876721B
Authority
TW
Taiwan
Prior art keywords
winding
wire feeding
tension
wire
model
Prior art date
Application number
TW112146650A
Other languages
Chinese (zh)
Other versions
TW202523606A (en
Inventor
陳彥君
許智評
黃建泩
Original Assignee
財團法人金屬工業研究發展中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人金屬工業研究發展中心 filed Critical 財團法人金屬工業研究發展中心
Priority to TW112146650A priority Critical patent/TWI876721B/en
Application granted granted Critical
Publication of TWI876721B publication Critical patent/TWI876721B/en
Publication of TW202523606A publication Critical patent/TW202523606A/en

Links

Images

Landscapes

  • Control Of Electric Motors In General (AREA)

Abstract

A cascade control winding system is disclosed. The cascade control winding system comprises a winding motor, a winding tension meter, a winding-end learning parameter model, a winding controller, a wire feeding motor, a wire feeding tension meter, a wire feeding-end learning parameter model, and a wire feeding controller. The winding motor drives the iron core to rotate with torque, so that a flat wire is wound around the iron core. The winding tension meter measures a winding tension. The winding-end learning parameter model predicts torque gain parameters according to a difference between a predetermined value and a measured value of the winding tension. The winding controller outputs the torque and the target value of the wire feeding tension according to the torque gain parameters. The wire feeding motor drives the flat wire spool to rotate at a rotational speed so that the flat wire with the wire feeding tension is fed out. The wire feeding tension meter measures the wire feeding tension. The wire feeding-end learning parameter model predicts rotational speed gain parameters according to a difference between the target value of the wire feeding tension and the measured value of the winding tension. The wire feeding controller outputs the rotational speed according to the rotational speed gain parameters.

Description

串級控制捲繞系統Cascade Control Winding System

本發明是有關於一種繞線系統,特別是指一種串級控制捲繞系統。The present invention relates to a winding system, in particular to a cascade controlled winding system.

線圈導線一般截面呈圓形,後來發展為寬長比較大的扁線,而目前繞製扁線的方式可分為平繞,及立繞,一般多採用平繞的方式,其是以扁線的長邊貼靠鐵芯進行捲繞,作法上可直接繞鐵芯,也可以成形後再安裝於鐵芯上。The cross-section of coil wire is generally circular, and later developed into a relatively wide and long flat wire. The current methods of winding flat wire can be divided into flat winding and vertical winding. The flat winding method is generally used, which is to wind the long side of the flat wire against the iron core. The method can be directly wound around the iron core, or it can be formed and then installed on the iron core.

不過,平繞的問題在於散熱較差,若採用立繞便能解決散熱的問題,可提升輸出功率。然而,目前現有的扁線立繞方式是先成形後再安裝於鐵芯上,扁線無法直接貼靠鐵芯進行捲繞,故扁線與鐵芯之間容易有縫隙。而且,立繞與平繞之繞線方式相差90度,亦即,扁線立繞是以扁線之短邊緊貼定子鐵芯捲繞,其內外徑差較大,彎曲的外側大幅伸展,而內側則大幅收縮,容易有塑性變形的情況發生,例如易產生皺摺,因此難度提高甚多。However, the problem with flat winding is that the heat dissipation is poor. If vertical winding is used, the heat dissipation problem can be solved and the output power can be increased. However, the existing method of vertical winding of flat wires is to form them first and then install them on the iron core. The flat wire cannot be directly wound against the iron core, so there is a gap between the flat wire and the iron core. Moreover, the winding method of vertical winding and flat winding differs by 90 degrees, that is, the vertical winding of the flat wire is to wind the short side of the flat wire tightly against the stator iron core, and the difference between the inner and outer diameters is large. The outer side of the bend is greatly stretched, while the inner side is greatly contracted, which is prone to plastic deformation, such as wrinkles, so the difficulty is greatly increased.

再者,現有扁線立繞裝置在將扁線之短邊緊貼鐵芯捲繞的過程中,是利用繞線馬達來驅動鐵芯轉動,同時在前端利用送線馬達帶動扁線線軸,以輸送扁線並對扁線提供張力。然而,由於目前扁線立繞裝置對於該繞線馬達及該送線馬達是個別獨立控制,故易導致該扁線在送線端與繞線端張力不一致,因而無法精確控制該扁線捲繞於該鐵芯上的精準度,也無法達到較佳的佔槽率。Furthermore, in the process of winding the short side of the flat wire tightly against the iron core, the existing flat wire vertical winding device uses a winding motor to drive the iron core to rotate, and at the same time uses a wire feeding motor at the front end to drive the flat wire shaft to transport the flat wire and provide tension to the flat wire. However, since the existing flat wire vertical winding device controls the winding motor and the wire feeding motor separately and independently, it is easy to cause the tension of the flat wire at the wire feeding end and the winding end to be inconsistent, so that the accuracy of the flat wire winding on the iron core cannot be accurately controlled, and a better slot occupancy rate cannot be achieved.

因此,本發明的目的,即在提供一種串級控制捲繞系統。Therefore, an object of the present invention is to provide a cascade controlled winding system.

於是,本發明串級控制捲繞系統,適用於以立繞方式把來自於扁線線軸之扁線捲繞於鐵芯上,且包含:繞線馬達,係以轉矩驅動所述鐵芯同步轉動,使所述扁線捲繞於所述鐵芯上;繞線張力計,設置於所述鐵芯附近之所述扁線上,且量測所述扁線之繞線張力,以產生繞線張力量測值;繞線端學習參數模型,根據繞線張力設定值與來自所述繞線張力計的所述繞線張力量測值之間的繞線張力差值,預測出轉矩增益參數;繞線控制器,根據來自所述繞線端學習參數模型之所述轉矩增益參數,產生所述轉矩輸出至所述繞線馬達,其中,所述繞線控制器還輸出送線張力目標值;送線馬達,係以轉速帶動所述扁線線軸轉動,以送出具有送線張力之所述扁線;送線張力計,設置於所述扁線線軸附近之所述扁線上,且量測所述扁線之所述送線張力,以產生送線張力量測值;送線端學習參數模型,根據來自所述繞線控制器之所述送線張力目標值與來自所述送線張力計的所述送線張力量測值之間的送線張力差值,預測出轉速增益參數;及送線控制器,根據來自所述送線端學習參數模型之所述轉速增益參數,產生所述轉速輸出至所述送線馬達。Therefore, the cascade controlled winding system of the present invention is suitable for winding a flat wire from a flat wire spool onto an iron core in a vertical winding manner, and comprises: a winding motor, which drives the iron core to rotate synchronously with a torque, so that the flat wire is wound onto the iron core; a winding tension meter, which is arranged on the flat wire near the iron core and measures the winding tension of the flat wire. to generate a winding tension measurement value; a winding end learning parameter model, predicting a torque gain parameter according to a winding tension difference between a winding tension setting value and the winding tension measurement value from the winding tension meter; a winding controller, generating the torque output to the winding according to the torque gain parameter from the winding end learning parameter model motor, wherein the wire winding controller also outputs a wire feeding tension target value; a wire feeding motor, which drives the flat wire shaft to rotate with a rotational speed to feed the flat wire with wire feeding tension; a wire feeding tension meter, which is disposed on the flat wire near the flat wire shaft and measures the wire feeding tension of the flat wire to generate a wire feeding tension measurement value; a wire feeding end learning parameter model, which predicts a rotational speed gain parameter based on a wire feeding tension difference between the wire feeding tension target value from the wire winding controller and the wire feeding tension measurement value from the wire feeding tension meter; and a wire feeding controller, which generates the rotational speed output to the wire feeding motor based on the rotational speed gain parameter from the wire feeding end learning parameter model.

本發明的功效在於:因所述繞線端學習參數模型以及所述送線端學習參數模型都是基於強化學習(Reinforcement Learning)產生的策略(Policy)模型,並且所述繞線控制器是串級地輸出所述送線張力目標值做為送線端的輸入,故能夠控制所述扁線在送線端與繞線端的張力一致,以能精確控制所述扁線捲繞於所述鐵芯上的精準度,因而可達到較佳的佔槽率。The efficacy of the present invention is that: since the winding end learning parameter model and the wire feeding end learning parameter model are both policy models generated based on reinforcement learning, and the winding controller outputs the wire feeding tension target value in cascade as the input of the wire feeding end, the tension of the flat wire at the wire feeding end and the winding end can be controlled to be consistent, so as to accurately control the accuracy of the flat wire being wound on the iron core, thereby achieving a better slot occupancy rate.

參閱圖1至3,本發明串級控制捲繞系統之實施例,適用於以立繞方式將捲繞設備之扁線線軸9之導電的扁線90捲繞於鐵芯20上。如圖1所示,在本實施例中,所述串級控制捲繞系統包含繞線馬達50、繞線張力計51、繞線端學習參數模型52、繞線控制器53、送線馬達60、送線張力計61、送線端學習參數模型62,及送線控制器63。在本實施例中,所述繞線控制器53及所述送線控制器63皆是比例積分微分(PID)控制器。其中,來自於所述扁線線軸9之所述扁線90先被導線輪7導引前進而經過所述送線張力計61,繼而被導線輪8導引前進而經過所述繞線張力計51。Referring to FIGS. 1 to 3 , the embodiment of the cascade controlled winding system of the present invention is applicable to winding the conductive flat wire 90 of the flat wire spool 9 of the winding device on the iron core 20 in a vertical winding manner. As shown in FIG. 1 , in this embodiment, the cascade controlled winding system includes a winding motor 50, a winding tension meter 51, a winding end learning parameter model 52, a winding controller 53, a wire feeding motor 60, a wire feeding tension meter 61, a wire feeding end learning parameter model 62, and a wire feeding controller 63. In this embodiment, the winding controller 53 and the wire feeding controller 63 are both proportional integral derivative (PID) controllers. The flat wire 90 from the flat wire spool 9 is first guided forward by the wire wheel 7 to pass through the wire feeding tension meter 61, and then guided forward by the wire wheel 8 to pass through the wire winding tension meter 51.

其中,所述繞線端學習參數模型52及所述送線端學習參數模型62皆是基於強化學習(Reinforcement Learning)產生的策略(Policy)模型。在本實施例中,由於所述繞線端學習參數模型52及所述送線端學習參數模型62皆是基於強化學習之優勢動作器評價器(Advantage Actor Critic)技術產生的策略模型,故必須先以圖2訓練過程來訓練出繞線端策略模型54,及送線端策略模型64,再於訓練過程完成之後,將所述繞線端策略模型54及所述送線端策略模型64分別佈署成為圖1、3之繞線端學習參數模型52及送線端學習參數模型62。The winding end learning parameter model 52 and the transmission end learning parameter model 62 are both policy models generated based on reinforcement learning. In this embodiment, since the winding end learning parameter model 52 and the delivery end learning parameter model 62 are both strategy models generated based on the Advantage Actor Critic technology of enhanced learning, the winding end strategy model 54 and the delivery end strategy model 64 must first be trained using the training process of Figure 2. After the training process is completed, the winding end strategy model 54 and the delivery end strategy model 64 are respectively deployed as the winding end learning parameter model 52 and the delivery end learning parameter model 62 of Figures 1 and 3.

如圖2所示,由於本發明串級控制捲繞系統之實施例必須進行前置訓練過程,故還包含所述繞線端策略模型54、繞線端獎勵(Reward)模型55、繞線端記憶參數資料庫56、送線端策略模型64、送線端獎勵模型65,及送線端記憶參數資料庫66。As shown in FIG. 2 , since the embodiment of the cascade control winding system of the present invention must undergo a pre-training process, it also includes the winding end strategy model 54, the winding end reward model 55, the winding end memory parameter database 56, the feeding end strategy model 64, the feeding end reward model 65, and the feeding end memory parameter database 66.

在所述訓練過程中,首先所述繞線馬達50係以轉矩驅動所述鐵芯20同步轉動,使所述扁線90捲繞於所述鐵芯20上。於是,所述繞線端策略模型54可根據繞線張力量測值,產生轉矩增益參數輸出至所述繞線控制器53,並將所述轉矩增益參數儲存於所述繞線端記憶參數資料庫56中,繼而所述繞線控制器53根據所述轉矩增益參數,產生所述轉矩輸出至所述繞線馬達50,及所述繞線端獎勵模型55。然後利用所述繞線端獎勵模型55及所述繞線端記憶參數資料庫56中的繞線端記憶參數,優化所述繞線端策略模型54。In the training process, first, the winding motor 50 drives the iron core 20 to rotate synchronously with the torque, so that the flat wire 90 is wound on the iron core 20. Then, the winding end strategy model 54 can generate a torque gain parameter according to the winding tension measurement value and output it to the winding controller 53, and store the torque gain parameter in the winding end memory parameter database 56. Then, the winding controller 53 generates the torque output to the winding motor 50 and the winding end reward model 55 according to the torque gain parameter. Then, the winding end reward model 55 and the winding end memory parameters in the winding end memory parameter database 56 are used to optimize the winding end strategy model 54.

另外,所述繞線控制器53還輸出送線張力目標值至所述送線端策略模64。繼而,所述送線端策略模型64根據所述送線張力目標值與所述送線張力量測值之間的送線張力差值,產生轉速增益參數輸出至所述送線控制器63,並將所述轉速增益參數儲存於所述送線端記憶參數資料庫66中,繼而所述送線控制器63根據所述轉速增益參數,產生轉速輸出至所述送線馬達60,及所述送線端獎勵模型65。最後利用所述送線端獎勵模型65及所述送線端記憶參數資料庫66中的送線端記憶參數,優化所述送線端策略模型64。In addition, the wire winding controller 53 also outputs the wire feeding tension target value to the wire feeding end strategy model 64. Then, the wire feeding end strategy model 64 generates a speed gain parameter according to the wire feeding tension difference between the wire feeding tension target value and the wire feeding tension measurement value, and outputs it to the wire feeding controller 63, and stores the speed gain parameter in the wire feeding end memory parameter database 66. Then, the wire feeding controller 63 generates a speed output to the wire feeding motor 60 and the wire feeding end reward model 65 according to the speed gain parameter. Finally, the wire feeding end reward model 65 and the wire feeding end memory parameters in the wire feeding end memory parameter database 66 are used to optimize the wire feeding end strategy model 64.

於是,當如圖2所示完成所述訓練過程之後,便可將所述繞線端策略模型54佈署成為所述繞線端學習參數模型52,並且將所述送線端策略模型64佈署成為所述送線端學習參數模型62,如圖1、3所示。Therefore, after the training process is completed as shown in FIG. 2 , the winding end strategy model 54 can be deployed as the winding end learning parameter model 52, and the delivery end strategy model 64 can be deployed as the delivery end learning parameter model 62, as shown in FIGS. 1 and 3 .

因此,如圖1、3所示,在本實施例中,本發明串級控制捲繞系統的串級控制過程,係由所述繞線馬達50施加所述轉矩驅動所述鐵芯20同步轉動,使所述扁線90捲繞於所述鐵芯20上。於是,設置於所述鐵芯20附近之所述扁線90上的所述繞線張力計51,能夠量測到所述扁線90之繞線張力,以產生繞線張力量測值。Therefore, as shown in Figs. 1 and 3, in this embodiment, the cascade control process of the cascade control winding system of the present invention is that the winding motor 50 applies the torque to drive the iron core 20 to rotate synchronously, so that the flat wire 90 is wound on the iron core 20. Therefore, the winding tension meter 51 disposed on the flat wire 90 near the iron core 20 can measure the winding tension of the flat wire 90 to generate a winding tension measurement value.

接著,所述繞線端學習參數模型52根據繞線張力設定值與來自所述繞線張力計51的所述繞線張力量測值之間的繞線張力差值,預測出轉矩增益參數,其中,所述轉矩增益參數包括轉矩增益參數比例部分、轉矩增益參數積分部分,及轉矩增益參數微分部分。Next, the winding end learning parameter model 52 predicts a torque gain parameter based on a winding tension difference between a winding tension setting value and a winding tension measurement value from the winding tension meter 51, wherein the torque gain parameter includes a torque gain parameter proportional portion, a torque gain parameter integral portion, and a torque gain parameter differential portion.

接著,所述繞線控制器53根據來自所述繞線端學習參數模型52之所述轉矩增益參數,產生所述轉矩輸出至所述繞線馬達50。其中,所述繞線控制器53還輸出送線張力目標值。Then, the winding controller 53 generates the torque output to the winding motor 50 according to the torque gain parameter from the winding end learning parameter model 52. The winding controller 53 also outputs the wire feeding tension target value.

而在送線端部分,所述送線馬達60則是施加轉速帶動所述扁線線軸9轉動,以送出具有送線張力之所述扁線90。At the wire feeding end, the wire feeding motor 60 applies a rotational speed to drive the flat wire shaft 9 to rotate so as to feed the flat wire 90 with wire feeding tension.

於是,設置於所述扁線線軸9附近之所述扁線90上的所述送線張力計61,能夠量測到所述扁線90之所述送線張力,以產生送線張力量測值。Therefore, the wire feeding tension meter 61 disposed on the flat wire 90 near the flat wire shaft 9 can measure the wire feeding tension of the flat wire 90 to generate a wire feeding tension measurement value.

接著,所述送線端學習參數模型62根據來自所述繞線控制器53之所述送線張力目標值與來自所述送線張力計61的所述送線張力量測值之間的送線張力差值,預測出轉速增益參數。其中,所述轉速增益參數包括轉速增益參數比例部分、轉速增益參數積分部分,及轉速增益參數微分部分。Next, the wire feeding end learning parameter model 62 predicts a speed gain parameter according to the wire feeding tension difference between the wire feeding tension target value from the wire winding controller 53 and the wire feeding tension measurement value from the wire feeding tension meter 61. The speed gain parameter includes a speed gain parameter proportional part, a speed gain parameter integral part, and a speed gain parameter differential part.

繼而,所述送線控制器63可根據來自於所述送線端學習參數模型62之所述轉速增益參數,產生所述轉速輸出至所述送線馬達60。Then, the wire feeding controller 63 can generate the speed output to the wire feeding motor 60 according to the speed gain parameter from the wire feeding end learning parameter model 62.

因此,在本實施例中,由於所述繞線端學習參數模型52以及所述送線端學習參數模型62都是基於強化學習(Reinforcement Learning)產生的策略(Policy)模型,並且所述繞線控制器53是串級地輸出所述送線張力目標值做為送線端的輸入,故能夠控制所述扁線90在送線端與繞線端的張力一致,因而能夠精確控制所述扁線90捲繞於所述鐵芯20上的精準度,以達到較佳的佔槽率。Therefore, in this embodiment, since the winding end learning parameter model 52 and the wire feeding end learning parameter model 62 are both policy models generated based on reinforcement learning, and the winding controller 53 outputs the wire feeding tension target value in series as the input of the wire feeding end, the tension of the flat wire 90 at the wire feeding end and the winding end can be controlled to be consistent, thereby being able to accurately control the accuracy of the flat wire 90 wound around the iron core 20 to achieve a better slot occupancy rate.

綜上所述,由於本發明之所述繞線端學習參數模型52以及所述送線端學習參數模型62都是基於強化學習(Reinforcement Learning)之優勢動作器評價器(Advantage Actor Critic)技術產生的策略(Policy)模型,並且所述繞線控制器53是串級地輸出所述送線張力目標值做為送線端的輸入,因此能夠控制所述扁線90在送線端與繞線端的張力一致,故可精確控制所述扁線90捲繞於所述鐵芯20上的精準度,以達到較佳的佔槽率;所以確實能達成本發明的目的。In summary, since the winding end learning parameter model 52 and the wire feeding end learning parameter model 62 of the present invention are both policy models generated based on the Advantage Actor Critic technology of reinforcement learning, and the winding controller 53 outputs the wire feeding tension target value in cascade as the input of the wire feeding end, the tension of the flat wire 90 at the wire feeding end and the winding end can be controlled to be consistent, so the accuracy of the flat wire 90 being wound around the iron core 20 can be accurately controlled to achieve a better slot occupancy rate; therefore, the purpose of the present invention can be achieved.

惟以上所述者,僅為本發明的實施例而已,當不能以此限定本發明實施的範圍,凡是依本發明申請專利範圍及專利說明書內容所作的簡單的等效變化與修飾,皆仍屬本發明專利涵蓋的範圍內。However, the above is only an embodiment of the present invention and should not be used to limit the scope of implementation of the present invention. All simple equivalent changes and modifications made according to the scope of the patent application of the present invention and the content of the patent specification are still within the scope of the present patent.

20:鐵芯 50:繞線馬達 51:繞線張力計 52:繞線端學習參數模型 53:繞線控制器 54:繞線端策略模型 55:繞線端獎勵模型 56:繞線端記憶參數資料庫 60:送線馬達 61:送線張力計 62:送線端學習參數模型 63:送線控制器 64:送線端策略模型 65:送線端獎勵模型 66:送線端記憶參數資料庫 7:導線輪 8:導線輪 9:扁線線軸 90:扁線20: Iron core 50: Winding motor 51: Winding tension gauge 52: Winding end learning parameter model 53: Winding controller 54: Winding end strategy model 55: Winding end reward model 56: Winding end memory parameter database 60: Wire feeding motor 61: Wire feeding tension gauge 62: Wire feeding end learning parameter model 63: Wire feeding controller 64: Wire feeding end strategy model 65: Wire feeding end reward model 66: Wire feeding end memory parameter database 7: Wire guide wheel 8: Wire guide wheel 9: Flat wire spool 90: Flat wire

本發明的其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是示意圖,說明本發明串級控制捲繞系統的實施例,適用於利用立繞方式將扁線線軸之扁線捲繞於鐵芯上,且是基於強化學習來構建; 圖2是方塊圖,說明本實施例中強化學習之訓練過程;及 圖3是方塊圖,說明在本實施例中,本發明串級控制捲繞系統之串級控制架構。 Other features and effects of the present invention will be clearly presented in the embodiments with reference to the drawings, wherein: FIG. 1 is a schematic diagram illustrating an embodiment of the cascade control winding system of the present invention, which is suitable for winding a flat wire of a flat wire spool on an iron core using a vertical winding method and is constructed based on enhanced learning; FIG. 2 is a block diagram illustrating the training process of enhanced learning in the present embodiment; and FIG. 3 is a block diagram illustrating the cascade control architecture of the cascade control winding system of the present invention in the present embodiment.

20:鐵芯 20: Iron core

50:繞線馬達 50: Winding motor

51:繞線張力計 51: Winding tension gauge

52:繞線端學習參數模型 52: Winding end learning parameter model

53:繞線控制器 53: Winding controller

60:送線馬達 60: Wire feeding motor

61:送線張力計 61: Wire feeding tension gauge

62:送線端學習參數模型 62: Transmitter learning parameter model

63:送線控制器 63: Wire feeding controller

7:導線輪 7: Wire wheel

8:導線輪 8: Wire wheel

9:扁線線軸 9: Flat wire spool

90:扁線 90: Flat wire

Claims (7)

一種串級控制捲繞系統,適用於利用立繞方式將扁線線軸之扁線捲繞於鐵芯上,且包含: 繞線馬達,係以轉矩驅動所述鐵芯同步轉動,使所述扁線捲繞於所述鐵芯上; 繞線張力計,設置於所述鐵芯附近之所述扁線上,且量測所述扁線之繞線張力,以產生繞線張力量測值; 繞線端學習參數模型,根據繞線張力設定值與來自所述繞線張力計的所述繞線張力量測值之間的繞線張力差值,預測出轉矩增益參數; 繞線控制器,根據來自所述繞線端學習參數模型之所述轉矩增益參數,產生所述轉矩輸出至所述繞線馬達,其中,所述繞線控制器還輸出送線張力目標值; 送線馬達,係以轉速帶動所述扁線線軸轉動,以送出具有送線張力之所述扁線; 送線張力計,設置於所述扁線線軸附近之所述扁線上,且量測所述扁線之所述送線張力,以產生送線張力量測值; 送線端學習參數模型,根據來自所述繞線控制器之所述送線張力目標值與來自所述送線張力計的所述送線張力量測值之間的送線張力差值,預測出轉速增益參數;及 送線控制器,根據來自所述送線端學習參數模型之所述轉速增益參數,產生所述轉速輸出至所述送線馬達。 A cascade control winding system is suitable for winding a flat wire of a flat wire spool onto an iron core using a vertical winding method, and comprises: A winding motor drives the iron core to rotate synchronously with a torque, so that the flat wire is wound onto the iron core; A winding tension meter is disposed on the flat wire near the iron core, and measures the winding tension of the flat wire to generate a winding tension measurement value; A winding end learning parameter model predicts a torque gain parameter based on the winding tension difference between a winding tension setting value and the winding tension measurement value from the winding tension meter; A winding controller generates the torque output to the winding motor according to the torque gain parameter from the winding end learning parameter model, wherein the winding controller also outputs a wire feeding tension target value; A wire feeding motor drives the flat wire shaft to rotate at a rotation speed to feed the flat wire with wire feeding tension; A wire feeding tension meter is disposed on the flat wire near the flat wire shaft and measures the wire feeding tension of the flat wire to generate a wire feeding tension measurement value; A wire feeding end learning parameter model predicts a speed gain parameter according to a wire feeding tension difference between the wire feeding tension target value from the winding controller and the wire feeding tension measurement value from the wire feeding tension meter; and The wire feeding controller generates the speed output to the wire feeding motor according to the speed gain parameter from the wire feeding end learning parameter model. 如請求項1所述的串級控制捲繞系統,其中,所述繞線控制器及所述送線控制器皆是比例積分微分控制器。A cascade controlled winding system as described in claim 1, wherein the winding controller and the wire feeding controller are both proportional integral derivative controllers. 如請求項1所述的串級控制捲繞系統,其中,所述繞線端學習參數模型及所述送線端學習參數模型皆是基於強化學習產生的策略模型。A cascade controlled winding system as described in claim 1, wherein the winding end learning parameter model and the feeding end learning parameter model are both strategy models generated based on reinforcement learning. 如請求項3所述的串級控制捲繞系統,其中,所述繞線端學習參數模型及所述送線端學習參數模型皆是基於強化學習之優勢動作器評價器技術產生的策略模型。A cascade controlled winding system as described in claim 3, wherein the winding end learning parameter model and the feeding end learning parameter model are both strategy models generated based on the advantage actuator evaluator technology of enhanced learning. 如請求項4所述的串級控制捲繞系統,還包含用於訓練過程之繞線端策略模型、繞線端獎勵模型,及繞線端記憶參數資料庫,其中,在所述訓練過程中,所述繞線端策略模型根據所述繞線張力量測值,產生所述轉矩增益參數輸出至所述繞線控制器,並將所述轉矩增益參數儲存於所述繞線端記憶參數資料庫中,繼而所述繞線控制器根據所述轉矩增益參數,產生所述轉矩輸出至所述繞線馬達,及所述繞線端獎勵模型,繼而利用所述繞線端獎勵模型及所述繞線端記憶參數資料庫中的繞線端記憶參數,優化所述繞線端策略模型。The cascade control winding system as described in claim 4 further includes a winding end strategy model, a winding end reward model, and a winding end memory parameter database for a training process, wherein during the training process, the winding end strategy model generates the torque gain parameter output to the winding controller according to the winding tension measurement value, and outputs the torque gain parameter to the winding controller. The gain parameter is stored in the winding end memory parameter database, and then the winding controller generates the torque output to the winding motor and the winding end reward model according to the torque gain parameter, and then optimizes the winding end strategy model using the winding end reward model and the winding end memory parameters in the winding end memory parameter database. 如請求項5所述的串級控制捲繞系統,還包含用於所述訓練過程之送線端策略模型、送線端獎勵模型,及送線端記憶參數資料庫,其中,在所述訓練過程中,所述繞線控制器還輸出所述送線張力目標值至所述送線端策略模型,所述送線端策略模型根據所述送線張力目標值與所述送線張力量測值之間的送線張力差值,產生所述轉速增益參數輸出至所述送線控制器,並將所述轉速增益參數儲存於所述送線端記憶參數資料庫中,繼而所述送線控制器根據所述轉速增益參數,產生所述轉速輸出至所述送線馬達,及所述送線端獎勵模型,繼而利用所述送線端獎勵模型及所述送線端記憶參數資料庫中的送線端記憶參數,優化所述送線端策略模型。The cascade control winding system as described in claim 5 further includes a wire feeding end strategy model, a wire feeding end reward model, and a wire feeding end memory parameter database for the training process, wherein, during the training process, the winding controller also outputs the wire feeding tension target value to the wire feeding end strategy model, and the wire feeding end strategy model generates a wire feeding tension difference between the wire feeding tension target value and the wire feeding tension measurement value. The speed gain parameter is output to the wire feeding controller, and the speed gain parameter is stored in the wire feeding end memory parameter database. Then the wire feeding controller generates the speed output to the wire feeding motor and the wire feeding end reward model according to the speed gain parameter, and then optimizes the wire feeding end strategy model by using the wire feeding end reward model and the wire feeding end memory parameters in the wire feeding end memory parameter database. 如請求項6所述的串級控制捲繞系統,其中,當所述訓練過程完成之後,係將所述繞線端策略模型佈署成為所述繞線端學習參數模型,並且將所述送線端策略模型佈署成為所述送線端學習參數模型。A cascade controlled winding system as described in claim 6, wherein after the training process is completed, the winding end strategy model is deployed as the winding end learning parameter model, and the delivery end strategy model is deployed as the delivery end learning parameter model.
TW112146650A 2023-11-30 2023-11-30 A cascade control winding system TWI876721B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW112146650A TWI876721B (en) 2023-11-30 2023-11-30 A cascade control winding system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW112146650A TWI876721B (en) 2023-11-30 2023-11-30 A cascade control winding system

Publications (2)

Publication Number Publication Date
TWI876721B true TWI876721B (en) 2025-03-11
TW202523606A TW202523606A (en) 2025-06-16

Family

ID=95830294

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112146650A TWI876721B (en) 2023-11-30 2023-11-30 A cascade control winding system

Country Status (1)

Country Link
TW (1) TWI876721B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180237249A1 (en) * 2017-02-17 2018-08-23 Eaton Corporation Dynamic performance and active damping methods in web winder tension control systems
TW202128546A (en) * 2020-01-15 2021-08-01 日商日特有限公司 Winding apparatus and winding method in which even the winding speed of the wire on the winding core changes significantly, the tension of the wire wound on the winding core can be kept constant
WO2022163096A1 (en) * 2021-01-29 2022-08-04 株式会社Screenホールディングス Image forming device and image forming method
CN116304655A (en) * 2022-09-06 2023-06-23 北京百度网讯科技有限公司 Policy model acquisition and parameter adjustment method, device and storage medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180237249A1 (en) * 2017-02-17 2018-08-23 Eaton Corporation Dynamic performance and active damping methods in web winder tension control systems
TW202128546A (en) * 2020-01-15 2021-08-01 日商日特有限公司 Winding apparatus and winding method in which even the winding speed of the wire on the winding core changes significantly, the tension of the wire wound on the winding core can be kept constant
WO2022163096A1 (en) * 2021-01-29 2022-08-04 株式会社Screenホールディングス Image forming device and image forming method
CN116304655A (en) * 2022-09-06 2023-06-23 北京百度网讯科技有限公司 Policy model acquisition and parameter adjustment method, device and storage medium

Also Published As

Publication number Publication date
TW202523606A (en) 2025-06-16

Similar Documents

Publication Publication Date Title
US8844858B2 (en) Wire winding device
CN110164682B (en) Winding method of winding device
CN102910475A (en) Constant tension constant speed winding control method and system
CN102556766B (en) Tension control device
WO2007111360A1 (en) Wire drawing machine and method
CN105947793B (en) A kind of optical fiber spooling equipment and its method for winding
CN108681237B (en) Control method and device for winding frequency converter of wire drawing machine, computer equipment and medium
CN202390001U (en) Tension control device
TWI876721B (en) A cascade control winding system
CN114476850A (en) Optical fiber winding device based on automatic wire arranging technology
CN117446581A (en) A tension control method based on variable PID algorithm
CN113353704B (en) Multi-level main drive non-cache tension control mechanism, method, device and storage medium
CN206751087U (en) A kind of heavy coil steel wires take-up
CN105632654B (en) cable manufacturing device
CN117361217B (en) Control method of cable high-speed rewinder
JP2013247055A (en) Method for manufacturing tape wound electric wire
CN116635959A (en) Winding optimization
JP2017532268A5 (en)
CN115771810A (en) Spool speed control and winding machine control method and device
CN110695542A (en) Laser cutting control method, system and device and storage medium
CN119490102A (en) A battery material tension adjustment device and method
CN115417202A (en) Roll diameter calculation method and device, inkjet printer system and medium
JP2001058212A (en) Tension control method and apparatus for strip material
CN105252795A (en) Device for the production of spiral screens
JP2805562B2 (en) Plant motor control system