[go: up one dir, main page]

TWI874449B - Charged particle beam device - Google Patents

Charged particle beam device Download PDF

Info

Publication number
TWI874449B
TWI874449B TW109131792A TW109131792A TWI874449B TW I874449 B TWI874449 B TW I874449B TW 109131792 A TW109131792 A TW 109131792A TW 109131792 A TW109131792 A TW 109131792A TW I874449 B TWI874449 B TW I874449B
Authority
TW
Taiwan
Prior art keywords
sample
image
charged particle
particle beam
learning
Prior art date
Application number
TW109131792A
Other languages
Chinese (zh)
Other versions
TW202129244A (en
Inventor
村木礼奈
上本敦
麻畑達也
Original Assignee
日商日立高新技術科學股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日立高新技術科學股份有限公司 filed Critical 日商日立高新技術科學股份有限公司
Publication of TW202129244A publication Critical patent/TW202129244A/en
Application granted granted Critical
Publication of TWI874449B publication Critical patent/TWI874449B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the object or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical, image processing or photographic arrangements associated with the tube
    • H01J37/222Image processing arrangements associated with the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3174Etching microareas
    • H01J2237/31745Etching microareas for preparing specimen to be viewed in microscopes or analyzed in microanalysers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

[課題] 能夠使自動微採樣高速化。    [解決手段] 一種帶電粒子束裝置,其從試料自動地製作試料片,前述帶電粒子束裝置具備:照射帶電粒子束的帶電粒子束照射光學系統;載置著前述試料並移動的試料台;保持並搬送從前述試料分離及摘出的前述試料片的試料片移設單元;保持移設前述試料片的試料片保持器的保持器固定台;以及基於學習包含第1對象物的第1影像的第1資訊的機械學習的模型、及包含藉由前述帶電粒子束的照射而取得的第2影像的第2資訊,進行與第2對象物相關的位置的控制的電腦。[Topic] Capable of speeding up automatic micro-sampling.   [Solution] A charged particle beam device that automatically prepares a sample sheet from a sample, the charged particle beam device comprising: a charged particle beam irradiation optical system that irradiates a charged particle beam; a sample stage that carries and moves the sample; a sample sheet transfer unit that holds and transports the sample sheet separated and extracted from the sample; a holder fixing table that holds a sample sheet holder that transfers the sample sheet; and a computer that controls a position related to a second object based on a mechanical learning model that learns first information including a first image of a first object and second information including a second image obtained by irradiation with the charged particle beam.

Description

帶電粒子束裝置Charged particle beam device

本發明涉及帶電粒子束裝置。The present invention relates to a charged particle beam device.

從前,已知有摘出藉由對試料照射由電子或離子構成的帶電粒子束而製作的試料片,將試料片加工成適合利用透射電子顯微鏡(TEM:Transmission Electron Microscope)等進行觀察、分析及計測等各種工程的形狀的裝置(專利文獻1)。在專利文獻1所記載的裝置中,進行如下所謂的微採樣(MS:Micro-sampling),即,在利用透射電子顯微鏡進行觀察的情況下,在從作為觀察對象物的試料取出微小的薄膜試料片之後,將該薄膜試料片固定在試料保持器上來製作TEM試料。Conventionally, there is known a device for extracting a sample piece produced by irradiating a sample with a charged particle beam composed of electrons or ions, and processing the sample piece into a shape suitable for various processes such as observation, analysis, and measurement using a transmission electron microscope (TEM) or the like (Patent Document 1). In the device described in Patent Document 1, so-called micro-sampling (MS) is performed, that is, when observing using a transmission electron microscope, a tiny thin film sample piece is taken out from a sample as an observation object, and the thin film sample piece is fixed on a sample holder to produce a TEM sample.

已知在TEM觀察用的薄片試料的製作中,藉由範本匹配來檢測微探針前端、薄片試料的拾取位置、網狀保持器上的支柱端等對象物的帶電粒子束裝置(專利文獻2)。在專利文獻2所記載的帶電粒子束裝置中,基於根據藉由帶電粒子束的照射而取得的對象物的影像來製作的範本、和從對象物的影像得到的位置資訊來進行與對象物相關的位置控制。由此,在專利文獻2所記載的帶電粒子束裝置中,能夠自動地執行MS(自動MS)。 [先前技術文獻] [專利文獻]It is known that in the preparation of thin-sheet samples for TEM observation, a charged particle beam device detects objects such as the tip of a microprobe, the pickup position of a thin-sheet sample, and the end of a support on a mesh holder by template matching (Patent Document 2). In the charged particle beam device described in Patent Document 2, position control related to the object is performed based on a template prepared based on an image of the object obtained by irradiation with a charged particle beam and position information obtained from the image of the object. As a result, in the charged particle beam device described in Patent Document 2, MS can be automatically executed (automatic MS). [Prior Art Document] [Patent Document]

專利文獻1:日本特開2019-102138號公報 專利文獻2:日本特開2016-157671號公報Patent document 1: Japanese Patent Publication No. 2019-102138 Patent document 2: Japanese Patent Publication No. 2016-157671

[發明所欲解決的問題][The problem the invention is trying to solve]

在專利文獻2所記載的帶電粒子束裝置中,每當進行對象物的位置控制時,都需要取得範本影像,從而與取得影像的時間的量對應地,自動MS的速度降低。例如,微探針的前端形狀會由於清潔或試料的附著等而變化,因此,每當進行對象物的位置控制時,都要取得範本影像。此外,關於薄片試料的拾取位置的範本影像,也由於匹配精度會根據對比度、焦點等的差異而降低,因此要在開始位置控制前取得範本影像。此外,由於支柱角存在個體差異,因此使用者每次都藉由滑鼠操作來登錄影像上的支柱的位置。 另一方面,在專利文獻2所記載的帶電粒子束裝置中,為了提高範本匹配的成功率,要降低掃描速度以取得高精細的影像。 這樣,從前,自動MS的速度不足,要求使自動MS高速化並提高輸送量。In the charged particle beam device described in Patent Document 2, a sample image must be acquired every time the position of the object is controlled, and the speed of the automatic MS is reduced by the amount of time required to acquire the image. For example, the shape of the tip of the microprobe changes due to cleaning or sample adhesion, so a sample image must be acquired every time the position of the object is controlled. In addition, the sample image of the pickup position of the thin sample also decreases in matching accuracy due to differences in contrast, focus, etc., so a sample image must be acquired before starting position control. In addition, since there are individual differences in the support angle, the user registers the position of the support on the image by mouse operation every time. On the other hand, in the charged particle beam device described in Patent Document 2, in order to improve the success rate of template matching, the scanning speed must be reduced to acquire a high-precision image. Thus, in the past, the speed of automatic MS was insufficient, and there was a demand to increase the speed of automatic MS and the amount of transportation.

本發明是鑒於上述問題而完成的,提供一種能夠使自動MS高速化的帶電粒子束裝置。 [解決問題的技術手段]The present invention is made in view of the above-mentioned problems, and provides a charged particle beam device capable of increasing the speed of automatic MS. [Technical means for solving the problem]

為了解決上述課題而實現該目的,本發明採用了以下方式。 (1)本發明的一個態樣是一種帶電粒子束裝置,其從試料自動地製作試料片,前述帶電粒子束裝置具備:照射帶電粒子束的帶電粒子束照射光學系統;載置著前述試料並移動的試料台;保持並搬送從前述試料分離及摘出的前述試料片的試料片移設單元;保持移設前述試料片的試料片保持器的保持器固定台;以及基於學習包含第1對象物的第1影像的第1資訊的機械學習的模型、及包含藉由前述帶電粒子束的照射而取得的第2影像的第2資訊,進行與第2對象物相關的位置的控制的電腦。In order to solve the above-mentioned problems and achieve the purpose, the present invention adopts the following method. (1) One aspect of the present invention is a charged particle beam device that automatically produces a sample sheet from a sample, the charged particle beam device comprising: a charged particle beam irradiation optical system for irradiating a charged particle beam; a sample stage for carrying and moving the sample; a sample sheet transfer unit for holding and transporting the sample sheet separated and removed from the sample; a holder fixing table for holding and transferring the sample sheet; and a computer for controlling the position related to the second object based on a mechanical learning model that learns first information including a first image of a first object and second information including a second image obtained by irradiating the charged particle beam.

在上述(1)所述的態樣的複合帶電粒子束裝置中,能夠基於機械學習來檢測對象物的位置,因此,能夠使自動MS高速化。在帶電粒子束裝置10中,由於基於機械學習來檢測對象物的位置,因此,能夠削減如使用範本匹配的情況那樣每次取得範本影像的時間,從而自動MS高速化,輸送量提高。 在帶電粒子束裝置中,從前,為了提高範本匹配的成功率而降低掃描速度以取得高精細的影像,但是,在機械學習中,即使不是高精細的影像,也能夠進行位置檢測,因此能夠提高取得影像時的掃描速度,自動MS高速化,輸送量提高。 在帶電粒子束裝置中,能夠使從前在製作加工配方時使用者藉由手動操作進行的作業自動化,由此,配方製作變得簡便。此外,在帶電粒子束裝置中,也可以不針對每個樣本來準備配方,因此成為可抵抗形狀變化的系統結構。In the composite charged particle beam device of the embodiment described in (1) above, the position of the object can be detected based on mechanical learning, so the automatic MS can be accelerated. In the charged particle beam device 10, since the position of the object is detected based on mechanical learning, the time for obtaining a template image each time as in the case of using template matching can be reduced, thereby increasing the speed of the automatic MS and improving the transmission volume. In the past, in order to improve the success rate of template matching in charged particle beam devices, the scanning speed was reduced to obtain a high-precision image, but in mechanical learning, position detection can be performed even if the image is not high-precision, so the scanning speed when obtaining the image can be increased, the automatic MS can be accelerated, and the transmission volume can be improved. In a charged particle beam device, the work that was previously performed manually by the user when preparing a processing recipe can be automated, thereby simplifying recipe preparation. In addition, in a charged particle beam device, it is not necessary to prepare a recipe for each sample, so it becomes a system structure that can resist shape changes.

(2)在上述(1)所述的帶電粒子束裝置中,前述第2對象物包含前述試料片保持器所具備的試料台的部分。 在上述(2)所述的態樣的複合帶電粒子束裝置中,由於能夠基於機械學習來檢測試料台的部分的位置,因此,在自動MS中,能夠使將試料片與試料台的部分連接的工程高速化。(2) In the charged particle beam device described in (1), the second object includes a portion of a sample table provided in the sample sheet holder. In the composite charged particle beam device of the embodiment described in (2), since the position of the portion of the sample table can be detected based on machine learning, the process of connecting the sample sheet to the portion of the sample table can be accelerated in the automatic MS.

(3)在上述(1)或(2)所述的帶電粒子束裝置中,前述第2對象物包含用於前述試料片移設單元的針。 在上述(3)所述的態樣的複合帶電粒子束裝置中,能夠基於機械學習來檢測針的前端的位置,因此,在自動MS中,能夠使移動針的工程高速化。(3) In the charged particle beam device described in (1) or (2), the second object includes a needle used for the sample sheet transfer unit. In the composite charged particle beam device described in (3), the position of the tip of the needle can be detected based on mechanical learning, so that the process of moving the needle can be accelerated in the automatic MS.

(4)在上述(1)至(3)中的任一項所述的帶電粒子束裝置中,前述第2對象物包含前述試料片,前述第1影像是示出了在摘出前述試料片的試料摘出工程中使前述試料片移設單元朝向前述試料片而接近的位置的影像。 在上述(4)所述的態樣的複合帶電粒子束裝置中,能夠基於機械學習而在摘出前述試料片的試料摘出工程中檢測使前述試料片移設單元朝向前述試料片而接近的位置,因此,在自動MS中,能夠將使針接近試料片的工程高速化。(4) In the charged particle beam device described in any one of (1) to (3), the second object includes the sample sheet, and the first image is an image showing a position where the sample sheet transfer unit is brought close to the sample sheet in a sample extraction process for removing the sample sheet. In the composite charged particle beam device described in the embodiment of (4), the position where the sample sheet transfer unit is brought close to the sample sheet can be detected in the sample extraction process for removing the sample sheet based on mechanical learning, so that in the automatic MS, the process of bringing the needle close to the sample sheet can be accelerated.

(5)在上述(1)至(4)中的任一項所述的帶電粒子束裝置中,前述第2對象物包含前述試料片,前述第1影像是示出了從前述試料分離及摘出前述試料片的位置的影像。 在上述(5)所述的態樣的複合帶電粒子束裝置中,能夠基於機械學習來檢測從試料分離及摘出試料片的位置,因此,在自動MS中,能夠使將試料片與針連接的工程高速化。(5) In the charged particle beam device described in any one of (1) to (4) above, the second object includes the sample sheet, and the first image is an image showing the position where the sample sheet is separated from the sample and removed. In the composite charged particle beam device described in the embodiment of (5) above, the position where the sample sheet is separated from the sample and removed can be detected based on mechanical learning, so that in the automatic MS, the process of connecting the sample sheet to the needle can be accelerated.

(6)在上述(1)至(5)中的任一項所述的帶電粒子束裝置中,前述第1影像是因應前述第2對象物的種類而生成的模擬影像。 在上述(6)所述的態樣的複合帶電粒子束裝置中,即使在無法以足夠的數量來準備藉由實際的帶電粒子束的照射而得到的影像作為第1影像的情況下,也能夠使用模擬影像來代替這些影像,因此,能夠提高學習第1資訊的機械學習的精度。(6) In the charged particle beam device described in any one of (1) to (5), the first image is a simulated image generated in accordance with the type of the second object. In the composite charged particle beam device described in the embodiment described in (6), even when it is not possible to prepare a sufficient number of images obtained by irradiation with an actual charged particle beam as the first image, simulated images can be used in place of these images, thereby improving the accuracy of machine learning for learning the first information.

(7)在上述(1)至(6)中的任一項所述的帶電粒子束裝置中,前述第1對象物的種類與前述第2對象物的種類相同。 在上述(7)所述的態樣的複合帶電粒子束裝置中,能夠基於學習了與第2對象物的種類相同種類的第1對象物的第1影像的第1資訊的機械學習來檢測對象物的位置,因此,與第1對象物的種類和第2對象物的種類不同的情況相比,能夠提高機械學習。 [發明的效果](7) In the charged particle beam device described in any one of (1) to (6), the type of the first object is the same as the type of the second object. In the composite charged particle beam device described in the embodiment of (7), the position of the object can be detected based on mechanical learning of the first information of the first image of the first object of the same type as the second object, so that the mechanical learning can be improved compared to the case where the types of the first object and the second object are different. [Effect of the invention]

根據本發明,能夠使自動微採樣高速化。According to the present invention, automatic micro-sampling can be accelerated.

(第1實施形態)(First implementation form)

以下,參照圖式同時對本發明的實施形態詳細地進行說明。圖1是示出本實施形態的帶電粒子束裝置10和影像處理用電腦30的結構的一例的圖。帶電粒子束裝置10所具備的控制用電腦22取得藉由帶電粒子束的照射而取得的影像資料。控制用電腦22與影像處理用電腦30之間進行資料的發送/接收。影像處理用電腦30基於機械學習模型M來判定從控制用電腦22接收到的影像資料中包含的對象物。控制用電腦22基於影像處理用電腦30的判定結果來進行與對象物相關的位置的控制。 控制用電腦22是基於學習包含第1對象物的第1影像的第1資訊的機械學習的模型、及包含藉由帶電粒子束的照射而取得的第2影像的第2資訊,進行與第2對象物相關的位置的控制的電腦之一例。 另外,影像處理用電腦30也可以於帶電粒子束裝置10中具備。Hereinafter, the embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram showing an example of the structure of a charged particle beam device 10 and an image processing computer 30 of the present embodiment. The control computer 22 of the charged particle beam device 10 acquires image data acquired by irradiation of the charged particle beam. Data is sent/received between the control computer 22 and the image processing computer 30. The image processing computer 30 determines the object contained in the image data received from the control computer 22 based on the mechanical learning model M. The control computer 22 controls the position related to the object based on the determination result of the image processing computer 30. The control computer 22 is an example of a computer that controls the position related to the second object based on a mechanical learning model that learns the first information of the first image including the first object and the second information including the second image obtained by irradiation with the charged particle beam. In addition, the image processing computer 30 may also be provided in the charged particle beam device 10.

這裡,參照圖2對帶電粒子束裝置10的結構進行說明。 (帶電粒子束裝置) 圖2是示出實施形態的帶電粒子束裝置10的結構的一例的圖。帶電粒子束裝置10具備試料室11、試料台12、台驅動機構13、集束離子束照射光學系統14、電子束照射光學系統15、檢測器16、氣體供應部17、針18、針驅動機構19、吸收電流檢測器20、顯示裝置21、控制用電腦22、和輸入裝置23。Here, the structure of the charged particle beam device 10 is described with reference to FIG. 2. (Charged particle beam device) FIG. 2 is a diagram showing an example of the structure of the charged particle beam device 10 of the embodiment. The charged particle beam device 10 includes a sample chamber 11, a sample table 12, a table driving mechanism 13, a focused ion beam irradiation optical system 14, an electron beam irradiation optical system 15, a detector 16, a gas supply unit 17, a needle 18, a needle driving mechanism 19, an absorption current detector 20, a display device 21, a control computer 22, and an input device 23.

試料室11將內部維持在真空狀態。試料台12在試料室11的內部固定試料S及試料片保持器P。這裡,試料台12具備保持試料片保持器P的保持器固定台12a。該保持器固定台12a也可以是能夠搭載複數試料片保持器P的結構。The sample chamber 11 maintains the interior in a vacuum state. The sample stage 12 fixes the sample S and the sample sheet holder P inside the sample chamber 11. Here, the sample stage 12 has a holder fixing table 12a for holding the sample sheet holder P. The holder fixing table 12a may be a structure capable of mounting a plurality of sample sheet holders P.

台驅動機構13驅動試料台12。這裡,台驅動機構13以與試料台12連接的狀態收容在試料室11的內部,因應從控制用電腦22輸出的控制信號而使試料台12相對於規定軸變位。台驅動機構13具備移動機構13a,該移動機構13a使試料台12至少沿著X軸和Y軸、以及與X軸和Y軸正交的鉛直方向的Z軸平行地移動,前述X軸和Y軸與水平面平行且彼此正交。台驅動機構13具備使試料台12繞X軸或Y軸傾斜的傾斜機構13b、及使試料台12繞Z軸旋轉的旋轉機構13c。The stage drive mechanism 13 drives the sample stage 12. Here, the stage drive mechanism 13 is housed inside the sample chamber 11 in a state connected to the sample stage 12, and displaces the sample stage 12 relative to a predetermined axis in response to a control signal output from the control computer 22. The stage drive mechanism 13 has a moving mechanism 13a that moves the sample stage 12 in parallel at least along the X-axis and the Y-axis, and the Z-axis in the vertical direction orthogonal to the X-axis and the Y-axis, and the aforementioned X-axis and the Y-axis are parallel to the horizontal plane and orthogonal to each other. The stage driving mechanism 13 includes a tilting mechanism 13b for tilting the sample stage 12 around the X-axis or the Y-axis, and a rotating mechanism 13c for rotating the sample stage 12 around the Z-axis.

集束離子束照射光學系統14對試料室11的內部的規定照射區域(即,掃描範圍)內的照射對象照射集束離子束(FIB)。這裡,集束離子束照射光學系統14從鉛直方向上方朝向下方對載置於試料台12的試料S、試料片Q、以及存在於照射區域內的針18等照射對象照射集束離子束。The focused ion beam irradiation optical system 14 irradiates the focused ion beam (FIB) to the irradiation target within the specified irradiation area (i.e., scanning range) inside the sample chamber 11. Here, the focused ion beam irradiation optical system 14 irradiates the focused ion beam to the irradiation target such as the sample S and the sample sheet Q placed on the sample stage 12 and the needle 18 existing in the irradiation area from the vertical upper side to the lower side.

集束離子束照射光學系統14具備:產生離子的離子源14a、及使從離子源14a引出的離子集束及偏轉的離子光學系統14b。離子源14a及離子光學系統14b因應從控制用電腦22輸出的控制信號而受到控制,由控制用電腦22來控制集束離子束的照射位置及照射條件等。The focused ion beam irradiation optical system 14 includes an ion source 14a for generating ions and an ion optical system 14b for focusing and deflecting ions extracted from the ion source 14a. The ion source 14a and the ion optical system 14b are controlled in response to a control signal output from a control computer 22, and the control computer 22 controls the irradiation position and irradiation conditions of the focused ion beam.

電子束照射光學系統15對試料室11的內部的規定照射區域內的照射對象照射電子束(EB)。這裡,電子束照射光學系統15能夠從相對於鉛直方向傾斜了規定角度(例如60°)的傾斜方向的上方朝向下方對固定在試料台12上的試料S、試料片Q、以及存在於照射區域內的針18等照射對象照射電子束。The electron beam irradiation optical system 15 irradiates an electron beam (EB) to an irradiation target within a predetermined irradiation area within the sample chamber 11. Here, the electron beam irradiation optical system 15 can irradiate an electron beam to an irradiation target such as a sample S fixed on the sample stage 12, a sample sheet Q, and a needle 18 existing in the irradiation area from the upper side to the lower side in an inclined direction inclined at a predetermined angle (e.g., 60°) relative to the vertical direction of the lead.

電子束照射光學系統15具備:產生電子的電子源15a、使從電子源15a射出的電子集束及偏轉的電子光學系統15b。電子源15a及電子光學系統15b因應從控制用電腦22輸出的控制信號而受到控制,由控制用電腦22來控制電子束的照射位置及照射條件等。The electron beam irradiation optical system 15 includes an electron source 15a for generating electrons and an electron optical system 15b for focusing and deflecting the electrons emitted from the electron source 15a. The electron source 15a and the electron optical system 15b are controlled in response to a control signal output from a control computer 22, and the control computer 22 controls the irradiation position and irradiation conditions of the electron beam.

另外,也可以將電子束照射光學系統15和集束離子束照射光學系統14的配置調換,將電子束照射光學系統15配置在鉛直方向上,而將集束離子束照射光學系統14配置在相對於鉛直方向傾斜了規定角度的傾斜方向上。In addition, the configurations of the electron beam irradiation optical system 15 and the focused ion beam irradiation optical system 14 may be reversed, with the electron beam irradiation optical system 15 being configured in the lead vertical direction and the focused ion beam irradiation optical system 14 being configured in an inclined direction at a predetermined angle relative to the lead vertical direction.

檢測器16用於檢測二次帶電粒子(二次電子、二次離子)R,該二次帶電粒子R是藉由集束離子束或電子束的照射而從照射對象產生的。氣體供應部17向照射對象的表面供應氣體G。針18從固定在試料台12上的試料S中取出微小的試料片Q,保持試料片Q並將其移設到試料片保持器P。針驅動機構19驅動針18來搬送試料片Q。在以下內容中,有時也將針18和針驅動機構19合起來稱為試料片移設單元。The detector 16 is used to detect secondary charged particles (secondary electrons, secondary ions) R, which are generated from the irradiated object by irradiation with a focused ion beam or an electron beam. The gas supply unit 17 supplies gas G to the surface of the irradiated object. The needle 18 takes out a tiny sample piece Q from the sample S fixed on the sample table 12, holds the sample piece Q and moves it to the sample piece holder P. The needle driving mechanism 19 drives the needle 18 to transport the sample piece Q. In the following content, the needle 18 and the needle driving mechanism 19 are sometimes collectively referred to as a sample piece transfer unit.

吸收電流檢測器20檢測流入針18的帶電粒子束的流入電流(也稱為吸收電流),並將檢測的結果作為流入電流信號輸出至控制用電腦22。The absorption current detector 20 detects the inflow current (also referred to as absorption current) of the charged particle beam flowing into the needle 18 , and outputs the detection result as an inflow current signal to the control computer 22 .

控制用電腦22至少控制台驅動機構13、集束離子束照射光學系統14、電子束照射光學系統15、氣體供應部17、以及針驅動機構19。控制用電腦22配置在試料室11的外部,連接有顯示裝置21、以及輸出與操作者的輸入操作對應的信號的滑鼠、鍵盤等輸入裝置23。控制用電腦22利用從輸入裝置23輸出的信號或藉由預先設定的自動運轉控制處理而生成的信號等來集中地控制帶電粒子束裝置10的動作。The control computer 22 controls at least the table drive mechanism 13, the focused ion beam irradiation optical system 14, the electron beam irradiation optical system 15, the gas supply unit 17, and the needle drive mechanism 19. The control computer 22 is arranged outside the sample room 11, and is connected to a display device 21 and an input device 23 such as a mouse and a keyboard that outputs a signal corresponding to an input operation of the operator. The control computer 22 centrally controls the operation of the charged particle beam device 10 using a signal output from the input device 23 or a signal generated by a preset automatic operation control process.

這裡,如上所述,控制用電腦22基於影像處理用電腦30的判定結果來進行與對象物相關的位置的控制。控制用電腦22具備用於與影像處理用電腦30之間進行通信的通信介面。Here, as described above, the control computer 22 controls the position of the object based on the determination result of the image processing computer 30. The control computer 22 has a communication interface for communicating with the image processing computer 30.

此外,控制用電腦22將從吸收電流檢測器20輸出的流入電流信號影像化作為吸收電流影像資料。這裡,控制用電腦22一邊掃描帶電粒子束的照射位置,一邊將由檢測器16檢測的二次帶電粒子R的檢測量轉換為與照射位置相對應的亮度信號,根據二次帶電粒子R的檢測量的二維位置分佈而生成示出照射對象的形狀的吸收電流影像資料。在吸收電流影像模式中,控制用電腦22一邊掃描帶電粒子束的照射位置,一邊檢測流過針18的吸收電流,由此,藉由吸收電流的二維位置分佈(吸收電流影像)而生成示出針18的形狀的吸收電流影像資料。控制用電腦22使所生成的影像資料顯示在顯示裝置21上。 顯示裝置21顯示基於由檢測器16檢測出的二次帶電粒子R的影像資料等。In addition, the control computer 22 images the inflow current signal output from the absorption current detector 20 as absorption current image data. Here, the control computer 22 converts the detection amount of the secondary charged particles R detected by the detector 16 into a brightness signal corresponding to the irradiation position while scanning the irradiation position of the charged particle beam, and generates absorption current image data showing the shape of the irradiated object based on the two-dimensional position distribution of the detection amount of the secondary charged particles R. In the absorption current image mode, the control computer 22 scans the irradiation position of the charged particle beam while detecting the absorption current flowing through the needle 18, thereby generating absorption current image data showing the shape of the needle 18 based on the two-dimensional position distribution of the absorption current (absorption current image). The control computer 22 displays the generated image data on the display device 21. The display device 21 displays image data and the like based on the secondary charged particles R detected by the detector 16 .

帶電粒子束裝置10對照射對象的表面一邊掃描一邊照射集束離子束,由此能夠執行照射對象的影像化以及通過濺鍍進行的各種加工(挖掘、整形(trimming)加工等)、沉積膜形成等。The charged particle beam device 10 irradiates the surface of an irradiation target with a focused ion beam while scanning, thereby enabling imaging of the irradiation target, various processes (excavation, trimming, etc.) by sputtering, deposition film formation, and the like.

圖3是示出在本發明的實施形態的帶電粒子束裝置10中對試料S的表面(斜線部)照射集束離子束而形成的從試料S被摘出前的試料片Q的俯視圖。符號F表示集束離子束的加工框,即集束離子束的掃描範圍,示出了通過集束離子束照射對其內側(白色部)藉由濺鍍加工而挖掘出的加工區域H。參考標記Ref是示出形成試料片Q(不進行挖掘而留下)的位置的基準點。為了知道試料片Q的大概位置而利用沉積膜,為了進行精密的位置對準而利用微小孔。在試料S中,以如下方式對試料片Q進行蝕刻加工,以留下與試料S連接的支承部Qa,而將側部側及底部側的周邊部切削而去除,利用支承部Qa將試料片Q懸臂支承於試料S。FIG3 is a top view showing a sample piece Q before being removed from the sample S, which is formed by irradiating the surface (shaded part) of the sample S with a focused ion beam in the charged particle beam device 10 of the embodiment of the present invention. Symbol F represents the processing frame of the focused ion beam, that is, the scanning range of the focused ion beam, and shows the processing area H excavated by sputtering processing on the inner side (white part) thereof by irradiation with the focused ion beam. Reference mark Ref is a reference point showing the position where the sample piece Q is formed (left without excavation). A deposited film is used to know the approximate position of the sample piece Q, and a micro-hole is used to perform precise position alignment. In the sample S, the sample piece Q is etched in the following manner so that the support portion Qa connected to the sample S is left and the peripheral portions of the side and bottom sides are cut and removed, and the sample piece Q is cantilevered and supported on the sample S by the support portion Qa.

接下來,參照圖4及圖5,對試料片保持器P進行說明。 圖4是試料片保持器P的俯視圖,圖5是側視圖。試料片保持器P具備:具有切口部41的大致半圓形板狀的基部42、和固定在切口部41上的試料台43。作為一例,基部42由圓形板狀的金屬形成。試料台43為梳齒形狀,具備分離配置並突出的複數供移設試料片Q的柱狀部(以下也稱為支柱)44。Next, the sample holder P is described with reference to FIG. 4 and FIG. 5 . FIG. 4 is a top view of the sample holder P, and FIG. 5 is a side view. The sample holder P comprises: a base 42 having a substantially semicircular plate shape with a cutout portion 41, and a sample table 43 fixed to the cutout portion 41. As an example, the base 42 is formed of a circular plate-shaped metal. The sample table 43 is in the shape of a comb and has a plurality of columnar portions (hereinafter also referred to as pillars) 44 for transferring the sample Q, which are separately arranged and protruding.

(影像處理用電腦) 接下來,參照圖6對影像處理用電腦30進行說明。圖6是示出本實施形態的影像處理用電腦30的結構的一例的圖。影像處理用電腦30具備控制部300和記憶部305。 控制部300具備學習資料取得部301、學習部302、判定影像取得部303、和判定部304。(Image processing computer) Next, the image processing computer 30 is described with reference to FIG. 6 . FIG. 6 is a diagram showing an example of the structure of the image processing computer 30 of the present embodiment. The image processing computer 30 includes a control unit 300 and a memory unit 305 . The control unit 300 includes a learning data acquisition unit 301 , a learning unit 302 , a judgment image acquisition unit 303 , and a judgment unit 304 .

學習資料取得部301取得學習資料。學習資料是用於機械學習的學習的資訊。學習資料是學習影像和示出該學習影像內的對象物的位置的資訊的組。作為一例,在學習影像內的對象物中包含試料片、針以及於試料片保持器中具備的柱狀部等。這裡,學習影像內的對象物的種類、與判定影像內的對象物的種類相同。例如,在學習影像內的對象物的種類是試料片、針或柱狀部的情況下,判定影像內的對象物的種類分別是試料片、針或柱狀部。The learning data acquisition unit 301 acquires learning data. The learning data is learning information used for mechanical learning. The learning data is a combination of a learning image and information showing the position of an object in the learning image. As an example, the objects in the learning image include a sample sheet, a needle, and a columnar portion provided in a sample sheet holder. Here, the type of the object in the learning image is the same as the type of the object in the judgment image. For example, when the type of the object in the learning image is a sample sheet, a needle, or a columnar portion, the type of the object in the judgment image is respectively a sample sheet, a needle, or a columnar portion.

這裡,在本實施形態中,作為學習影像,使用藉由向對象物照射帶電粒子束而預先得到的SIM影像和SEM影像。帶電粒子束從規定的方向向對象物照射。在帶電粒子束裝置10中,由於帶電粒子束照射系統的鏡筒的方向是固定的,因此,向對象物照射帶電粒子束的方向被預先決定。Here, in this embodiment, as learning images, SIM images and SEM images obtained in advance by irradiating a charged particle beam to an object are used. The charged particle beam is irradiated to the object from a predetermined direction. In the charged particle beam device 10, since the direction of the barrel of the charged particle beam irradiation system is fixed, the direction of irradiating the charged particle beam to the object is predetermined.

作為一例,示出學習影像內的對象物的位置的資訊是指示出該對象物的學習影像內的位置的座標。示出該學習影像內的位置的座標例如是二維正交座標、極座標等。As an example, the information indicating the position of the object in the learning image is the coordinates indicating the position of the object in the learning image. The coordinates indicating the position in the learning image are, for example, two-dimensional orthogonal coordinates, polar coordinates, and the like.

學習影像包含對象物的SIM影像和SEM影像雙方。學習影像是從相對於試料台12的鉛直方向傾斜規定角度後的傾斜方向觀察對象物時的SIM影像、和從試料台12的鉛直方向觀察對象物時的SEM影像雙方。即,學習影像包含從以試料台12為基準的第1方向觀察對象物時的影像、和從第2方向觀察該對象物時的影像。第2方向是與以試料台12為基準的第1方向不同的方向。The learning image includes both a SIM image and a SEM image of the object. The learning image is both a SIM image when the object is observed from an inclined direction after being tilted by a predetermined angle relative to the vertical direction of the sample stage 12, and a SEM image when the object is observed from the vertical direction of the sample stage 12. That is, the learning image includes an image when the object is observed from a first direction based on the sample stage 12, and an image when the object is observed from a second direction. The second direction is a direction different from the first direction based on the sample stage 12.

學習部302基於學習資料取得部301取得的學習資料來執行機械學習。學習部302將學習的結果作為機械學習模型M而記憶在記憶部305中。學習部302針對包含在學習資料中的學習影像的對象物的每個種類來執行機械學習。因此,針對包含在學習資料中的學習影像的對象物的每個種類而生成機械學習模型M。機械學習模型M是學習包含第1對象物的第1影像的第1資訊而得到的機械學習模型的一例。 另外,在以下的說明中,有將影像中所攝像的、或者所描繪的對象物稱為該影像的對象物的情況。The learning unit 302 performs mechanical learning based on the learning data acquired by the learning data acquisition unit 301. The learning unit 302 stores the learning result in the memory unit 305 as a mechanical learning model M. The learning unit 302 performs mechanical learning for each type of object of the learning image included in the learning data. Therefore, a mechanical learning model M is generated for each type of object of the learning image included in the learning data. The mechanical learning model M is an example of a mechanical learning model obtained by learning the first information of the first image including the first object. In the following description, an object captured or depicted in an image may be referred to as an object of the image.

這裡,學習部302執行的機械學習是指例如使用卷積神經網路(CNN:Convolutional Neural Network)等的深層學習。該情況下,機械學習模型M是指,節點間的權重因應學習影像、與該學習影像內的對象物的位置之間的對應而變更的多層神經網路。該多層神經網路具備具有與影像的各畫素對應的節點的輸入層、以及具有與該影像內的各位置對應的節點的輸出層,當SIM和SEM影像的各畫素的亮度值被輸入到輸入層時,從輸出層輸出示出該影像中的位置的值的組。Here, the mechanical learning performed by the learning unit 302 refers to deep learning such as a convolutional neural network (CNN). In this case, the mechanical learning model M refers to a multi-layer neural network in which the weights between nodes change in accordance with the correspondence between the learning image and the position of the object in the learning image. The multi-layer neural network has an input layer having nodes corresponding to each pixel of the image and an output layer having nodes corresponding to each position in the image. When the brightness value of each pixel of the SIM and SEM images is input to the input layer, a set of values showing the position in the image is output from the output layer.

判定影像取得部303取得判定影像。判定影像是從控制用電腦22輸出的SIM影像和SEM影像。判定影像包含上述的對象物的影像。判定影像的對象物包含試料片Q和使用後的針18等與帶電粒子束的照射相關的物體。The judgment image acquisition unit 303 acquires a judgment image. The judgment image is a SIM image and a SEM image output from the control computer 22. The judgment image includes the image of the above-mentioned object. The object of the judgment image includes objects related to the irradiation of the charged particle beam, such as the sample piece Q and the used needle 18.

判定影像是從相對於試料台12的鉛直方向傾斜規定角度後的傾斜方向觀察對象物時的SIM影像、和從試料台12的鉛直方向觀察對象物時的SEM影像雙方。即,判定影像包含從第1方向觀察對象物時的影像、和從第2方向觀察該對象物時的影像。這裡,第1方向是指以試料台12為基準的方向,第2方向是指與以試料台12為基準的第1方向不同的方向。The judgment image is both a SIM image when the object is observed from an inclined direction tilted by a predetermined angle relative to the vertical direction of the sample stage 12, and a SEM image when the object is observed from the vertical direction of the sample stage 12. That is, the judgment image includes an image when the object is observed from a first direction, and an image when the object is observed from a second direction. Here, the first direction refers to a direction based on the sample stage 12, and the second direction refers to a direction different from the first direction based on the sample stage 12.

判定部304基於由學習部302執行學習而得到的機械學習模型M來判定判定影像取得部303取得的判定影像中包含的對象物的位置。這裡,判定影像中包含的對象物的位置例如包含SIM影像和SEM影像內的試料片的拾取位置、SIM影像和SEM影像內的針的前端的位置、以及SIM影像和SEM影像內的柱狀部44的位置。作為一例,判定部304判定判定影像內的對象物的座標作為判定影像中包含的對象物的位置。The determination unit 304 determines the position of the object included in the determination image acquired by the determination image acquisition unit 303 based on the mechanical learning model M obtained by the learning performed by the learning unit 302. Here, the position of the object included in the determination image includes, for example, the pickup position of the sample piece in the SIM image and the SEM image, the position of the tip of the needle in the SIM image and the SEM image, and the position of the columnar portion 44 in the SIM image and the SEM image. As an example, the determination unit 304 determines the coordinates of the object in the determination image as the position of the object included in the determination image.

另外,影像處理用電腦30也可以例如從外部的資料庫取得學習完畢的機械學習模型。該情況下,控制部300也可以不具備學習資料取得部301和學習部302。In addition, the image processing computer 30 may acquire a learned machine learning model from an external database, for example. In this case, the control unit 300 may not include the learning data acquisition unit 301 and the learning unit 302.

以下,關於控制用電腦22執行的自動微採樣(MS:Micro-sampling)的動作,即,將藉由帶電粒子束(集束離子束)對試料S進行加工而形成的試料片Q自動地移設到試料片保持器P上的動作,大致分為初始設定工程、試料片拾取工程、試料片安裝工程來依次進行說明。 (初始設定工程) 圖7是示出本實施形態的初始設定工程的一例的圖。 步驟S10:控制用電腦22進行模式以及加工條件的設定。模式的設定是指在自動序列開始時,因應操作者的輸入進行的後述的姿勢控制模式的有無等的設定。加工條件的設定是加工位置、尺寸、試料片Q的數量等的設定。The following is a description of the automatic micro-sampling (MS: Micro-sampling) operation performed by the control computer 22, that is, the operation of automatically moving the sample piece Q formed by processing the sample S with a charged particle beam (beamed ion beam) to the sample piece holder P, which is roughly divided into the initial setting process, the sample piece picking process, and the sample piece installation process. (Initial setting process) Figure 7 is a diagram showing an example of the initial setting process of the present embodiment. Step S10: The control computer 22 sets the mode and processing conditions. The mode setting refers to the setting of the presence or absence of the posture control mode described later in response to the operator's input when the automatic sequence starts. The processing condition setting is the setting of the processing position, size, number of sample pieces Q, etc.

步驟S20:控制用電腦22登錄柱狀部44的位置。這裡,控制用電腦22將包含柱狀部44作為對象物的SIM影像和SEM影像發送給影像處理用電腦30。Step S20: The control computer 22 registers the position of the columnar portion 44. Here, the control computer 22 sends the SIM image and the SEM image including the columnar portion 44 as the object to the image processing computer 30.

在本實施形態中,包含對象物的吸收電流影像資料是對象物的SIM影像、和對象物的SEM影像的組。即,包含對象物的SIM影像和SEM影像是從相對於試料台12的鉛直方向傾斜規定角度後的傾斜方向觀察對象物時的SIM影像、和從試料台12的鉛直方向觀察對象物時的SEM影像的組。In the present embodiment, the absorption current image data of the object is a combination of a SIM image of the object and a SEM image of the object. That is, the SIM image and the SEM image of the object are a combination of a SIM image when the object is observed from an inclined direction tilted by a predetermined angle relative to the vertical direction of the sample stage 12, and a SEM image when the object is observed from the vertical direction of the sample stage 12.

判定影像取得部303從影像處理用電腦30取得SIM影像或SEM影像作為判定影像。判定部304基於機械學習模型M來判定判定影像取得部303取得的判定影像中包含的柱狀部44的位置。判定部304將示出所判定的柱狀部44的位置的位置資訊輸出至控制用電腦22。The determination image acquisition unit 303 acquires a SIM image or a SEM image as a determination image from the image processing computer 30. The determination unit 304 determines the position of the columnar portion 44 included in the determination image acquired by the determination image acquisition unit 303 based on the mechanical learning model M. The determination unit 304 outputs position information indicating the determined position of the columnar portion 44 to the control computer 22.

這裡,判定部304從相對於試料台12的鉛直方向傾斜規定角度後的傾斜方向觀察對象物時的SIM影像來判定對象物的位置的試料台12上的二維座標。另一方面,判定部304從相對於試料台12的鉛直方向傾斜規定角度後的傾斜方向觀察對象物時的SEM影像來判定對象物的位置在與該傾斜方向垂直的平面上的二維座標。判定部304基於所判定的試料台12上的二維座標、和與傾斜方向垂直的平面上的二維座標來判定對象物的位置作為三維座標的值。Here, the determination unit 304 determines the two-dimensional coordinates on the sample stage 12 of the position of the object from the SIM image when the object is observed in the tilted direction after being tilted at a predetermined angle relative to the vertical direction of the sample stage 12. On the other hand, the determination unit 304 determines the two-dimensional coordinates of the position of the object on the plane perpendicular to the tilted direction from the SEM image when the object is observed in the tilted direction after being tilted at a predetermined angle relative to the vertical direction of the sample stage 12. The determination unit 304 determines the position of the object as a three-dimensional coordinate value based on the determined two-dimensional coordinates on the sample stage 12 and the two-dimensional coordinates on the plane perpendicular to the tilted direction.

另外,判定部304將在帶電粒子束裝置10中電子束照射光學系統15和集束離子束照射光學系統14所配置的方向和作為兩者間的角度資訊的方向資訊用於三維座標值的計算。判定部304將方向資訊預先記憶在記憶部305中將其讀出、或者從控制用電腦22中取得該方向資訊。 這裡,在步驟S20中,對象物是指柱狀部44。在以下的工程中,判定部304判定對象物的位置的處理也是同樣的。In addition, the determination unit 304 uses the direction in which the electron beam irradiation optical system 15 and the focused ion beam irradiation optical system 14 are arranged in the charged particle beam device 10 and the direction information as the angle information between the two for calculation of the three-dimensional coordinate value. The determination unit 304 pre-stores the direction information in the storage unit 305 and reads it out, or obtains the direction information from the control computer 22. Here, in step S20, the object refers to the columnar portion 44. In the following process, the determination unit 304 determines the position of the object in the same way.

這裡,參照圖8至圖12,對柱狀部44、和用於機械學習模型M的生成的柱狀部44的學習影像進行說明。 圖8及圖9是示出本實施形態的柱狀部44的一例的圖。圖8及圖9所示的柱狀部A0是柱狀部44的設計上的結構的一例。這裡,圖8是柱狀部A0的俯視圖,圖9是柱狀部A0的側視圖。柱狀部A0具有在基部A02黏接臺階結構的支柱A01而成的結構。Here, referring to FIG. 8 to FIG. 12, the columnar portion 44 and the learning image of the columnar portion 44 used for generating the mechanical learning model M are explained. FIG. 8 and FIG. 9 are diagrams showing an example of the columnar portion 44 of the present embodiment. The columnar portion A0 shown in FIG. 8 and FIG. 9 is an example of the design structure of the columnar portion 44. Here, FIG. 8 is a top view of the columnar portion A0, and FIG. 9 is a side view of the columnar portion A0. The columnar portion A0 has a structure in which a support A01 of a step structure is bonded to a base A02.

圖10是示出本實施形態的柱狀部44的學習影像的一例的圖。學習影像X11、學習影像X12、學習影像X13用於柱狀部44的位置的學習。在學習影像X11、學習影像X12、學習影像X13中,示出柱狀部的位置的資訊作為圓而示出。 在學習影像X11、學習影像X12、學習影像X13中,支柱A11、支柱A21、支柱31的形狀互不相同。另一方面,在學習影像X11、學習影像X12、學習影像X13中,基部A12、基部A22、基部A32的形狀相同。FIG. 10 is a diagram showing an example of a learning image of the columnar portion 44 of the present embodiment. Learning images X11, X12, and X13 are used to learn the position of the columnar portion 44. In the learning images X11, X12, and X13, information showing the position of the columnar portion is shown as a circle. In the learning images X11, X12, and X13, the shapes of the pillars A11, A21, and 31 are different from each other. On the other hand, in the learning images X11, X12, and X13, the shapes of the bases A12, A22, and A32 are the same.

另外,作為一例,學習影像X11、學習影像X12、學習影像X13是用於判定從試料台12的水平方向觀察柱狀部44時的SIM影像和SEM影像中包含的柱狀部44的位置的學習影像。在圖2中,集束離子束照射光學系統14和電子束照射光學系統15雖然不從試料台12的水平方向面對試料台12,但也可以是集束離子束照射光學系統14和電子束照射光學系統15中的任一者從水平方向面對試料台12,學習影像X11、學習影像X12、學習影像X13是用於判定該情況下的柱狀部44的位置的學習影像。In addition, as an example, the learning image X11, the learning image X12, and the learning image X13 are learning images used to determine the position of the columnar portion 44 included in the SIM image and the SEM image when the columnar portion 44 is observed from the horizontal direction of the sample stage 12. In FIG. 2, although the focused ion beam irradiation optical system 14 and the electron beam irradiation optical system 15 do not face the sample stage 12 from the horizontal direction of the sample stage 12, either the focused ion beam irradiation optical system 14 or the electron beam irradiation optical system 15 may face the sample stage 12 from the horizontal direction, and the learning image X11, the learning image X12, and the learning image X13 are learning images used to determine the position of the columnar portion 44 in this case.

圖11是示出本實施形態的支柱未成為臺階結構的柱狀部44的一例的圖。圖11所示的柱狀部A4是支柱未成為臺階結構的柱狀部44的設計上的結構的一例的側視圖。Fig. 11 is a diagram showing an example of a columnar portion 44 of the present embodiment in which the support does not form a stepped structure. The columnar portion A4 shown in Fig. 11 is a side view showing an example of a design structure of the columnar portion 44 in which the support does not form a stepped structure.

圖12是示出本實施形態的支柱未成為臺階結構的柱狀部44的學習影像的一例的圖。作為一例,學習影像X21、學習影像X22、學習影像X23是用於判定從試料台12的鉛直方向觀察柱狀部44時的SEM影像中包含的柱狀部44的位置的學習影像。 在學習影像X21、學習影像X22、學習影像X23中,支柱A51、支柱A61、支柱71的形狀互不相同。另一方面,在學習影像X21、學習影像X22、學習影像X23中,基部A52、基部A62、基部A72的形狀相同。FIG. 12 is a diagram showing an example of a learning image of a columnar portion 44 in which the support of the present embodiment does not form a step structure. As an example, learning images X21, X22, and X23 are learning images for determining the position of the columnar portion 44 included in the SEM image when the columnar portion 44 is observed from the vertical direction of the sample stage 12. In learning images X21, X22, and X23, the shapes of support A51, support A61, and support 71 are different from each other. On the other hand, in learning images X21, X22, and X23, the shapes of base A52, base A62, and base A72 are the same.

在從前的範本匹配中,在支柱的形狀不同的情況下,有時無法判定柱狀部的位置。另一方面,由於機械學習模型M是基於使用包含柱狀部44的基部的學習影像的機械學習而生成的,因此,在機械學習模型M中,例如,基部的形狀被作為特徵量來學習。因此,在帶電粒子束裝置10中,即使在支柱的形狀不同的情況下,柱狀部的判定精度也提高。 較佳為學習影像的對象物體在複數學習影像的對象物體相互間包含相同形狀的部位。In the previous template matching, when the shape of the pillars is different, the position of the columnar portion may not be determined. On the other hand, since the mechanical learning model M is generated based on mechanical learning using a learning image of the base including the columnar portion 44, in the mechanical learning model M, for example, the shape of the base is learned as a feature quantity. Therefore, in the charged particle beam device 10, even when the shape of the pillars is different, the determination accuracy of the columnar portion is improved. It is preferable that the object of the learning image includes a portion of the same shape between the object objects of the multiple learning images.

返回圖7繼續進行初始設定工程的說明。 控制用電腦22基於示出由影像處理用電腦30判定的柱狀部44的位置的位置資訊來登錄柱狀部44的位置。 另外,在柱狀部44的學習影像中,較佳為包含柱狀部44之中位於試料台43的兩端的柱狀部的影像。影像處理用電腦30基於使用包含該學習影像的學習資料而生成的機械學習模型M,將柱狀部44之中的試料台43的兩端的柱狀部與兩端以外的柱狀部區分開來進行檢測。控制用電腦22也可以從檢測出的兩端的柱狀部的位置計算出試料片保持器P的傾斜度。控制用電腦22也可以基於計算出的傾斜度對對象物的位置的座標值進行補正。Return to FIG. 7 to continue the description of the initial setting process. The control computer 22 registers the position of the columnar portion 44 based on the position information indicating the position of the columnar portion 44 determined by the image processing computer 30. In addition, in the learning image of the columnar portion 44, it is preferable to include an image of the columnar portions located at both ends of the sample table 43 in the columnar portion 44. The image processing computer 30 distinguishes the columnar portions at both ends of the sample table 43 in the columnar portion 44 from the columnar portions other than the two ends for detection based on the mechanical learning model M generated using the learning data including the learning image. The control computer 22 can also calculate the inclination of the sample sheet holder P from the detected positions of the columnar portions at both ends. The control computer 22 may also correct the coordinate value of the position of the object based on the calculated inclination.

步驟S30:控制用電腦22控制集束離子束照射光學系統14來加工試料S。Step S30: The computer 22 controls the focused ion beam irradiation optical system 14 to process the sample S.

(試料片拾取工程) 圖13是示出本實施形態的試料片拾取工程的一例的圖。這裡,拾取是指利用集束離子束進行加工、或者利用針將試料片Q從試料S分離並摘出。(Sample piece picking process) Figure 13 is a diagram showing an example of a sample piece picking process of the present embodiment. Here, picking refers to processing using a clustered ion beam or separating and removing the sample piece Q from the sample S using a needle.

步驟S40:控制用電腦22將試料的位置進行調整。這裡,控制用電腦22為了使作為對象的試料片Q進入帶電粒子束的視點中而利用台驅動機構13使試料台12移動。這裡,控制用電腦22使用參考標記Ref與試料片Q之間的相對位置關係。控制用電腦22在移動試料台12後,進行試料片Q的位置對準。Step S40: The control computer 22 adjusts the position of the sample. Here, the control computer 22 uses the stage drive mechanism 13 to move the sample stage 12 so that the sample piece Q as the target enters the viewpoint of the charged particle beam. Here, the control computer 22 uses the relative position relationship between the reference mark Ref and the sample piece Q. After moving the sample stage 12, the control computer 22 performs position alignment of the sample piece Q.

步驟S50:控制用電腦22執行針18的移動。 這裡,參照圖14,對控制用電腦22執行的用於移動針18的處理進行說明。圖14是示出本實施形態的針18的移動處理的一例的圖。圖14的步驟S510至步驟540與圖13的步驟S50對應。Step S50: The control computer 22 executes the movement of the needle 18. Here, referring to FIG. 14 , the processing for moving the needle 18 executed by the control computer 22 is described. FIG. 14 is a diagram showing an example of the movement processing of the needle 18 of the present embodiment. Steps S510 to 540 of FIG. 14 correspond to step S50 of FIG. 13 .

步驟S510:控制用電腦22執行利用針驅動機構19使針18移動的針移動(粗調)。 步驟S520:控制用電腦22檢測針18的前端。這裡,控制用電腦22將作為對象物而包含針18的吸收電流影像資料發送給影像處理用電腦30。Step S510: The control computer 22 executes needle movement (coarse adjustment) to move the needle 18 using the needle driving mechanism 19. Step S520: The control computer 22 detects the tip of the needle 18. Here, the control computer 22 sends the absorption current image data including the needle 18 as the object to the image processing computer 30.

判定影像取得部303從影像處理用電腦30取得SIM影像和SEM影像作為判定影像。判定部304基於機械學習模型M,將判定影像取得部303取得的判定影像中包含的針18的位置作為對象物的位置進行判定。判定部304將示出所判定的針18的位置的位置資訊輸出至控制用電腦22。The determination image acquisition unit 303 acquires the SIM image and the SEM image as determination images from the image processing computer 30. The determination unit 304 determines the position of the needle 18 included in the determination image acquired by the determination image acquisition unit 303 as the position of the object based on the mechanical learning model M. The determination unit 304 outputs position information indicating the determined position of the needle 18 to the control computer 22.

接下來,控制用電腦22基於示出由影像處理用電腦30判定的針18的位置的位置資訊來執行利用針驅動機構19使針18移動的針移動(微調)。Next, the control computer 22 executes needle movement (fine adjustment) of moving the needle 18 by the needle driving mechanism 19 based on the position information indicating the position of the needle 18 determined by the image processing computer 30 .

這裡,參照圖15至圖18,對針18、和用於機械學習模型M的生成的針18的學習影像進行說明。 圖15是示出包含本實施形態的針18的前端的SEM影像資料的一例的圖。圖16是示出包含本實施形態的針18的前端的SIM影像資料的一例的圖。Here, referring to FIGS. 15 to 18 , the needle 18 and the learning image of the needle 18 used for generating the mechanical learning model M are described. FIG. 15 is a diagram showing an example of SEM image data of the tip of the needle 18 of the present embodiment. FIG. 16 is a diagram showing an example of SIM image data of the tip of the needle 18 of the present embodiment.

圖17是示出本實施形態的針18的前端的一例的圖。在圖17中,作為針18的一例,示出了從相對於試料台12的鉛直方向傾斜了規定角度的傾斜方向觀察時的針B1。Fig. 17 is a diagram showing an example of the tip of the needle 18 of the present embodiment. In Fig. 17, as an example of the needle 18, a needle B1 is shown when viewed from an inclined direction inclined at a predetermined angle with respect to the vertical direction of the sample stage 12.

圖18是示出本實施形態涉及的針18的學習影像的一例的圖。學習影像Y31、學習影像Y32、學習影像Y33用於針18的前端的位置的學習。在學習影像Y31、學習影像Y32、學習影像Y33中,將示出針18的前端的位置的資訊作為圓示出。在學習影像Y31、學習影像Y32、學習影像Y33中,針的前端的粗細互不相同。另一方面,在學習影像Y31、學習影像Y32、學習影像Y33中,針的前端的形狀相同。FIG18 is a diagram showing an example of a learning image of the needle 18 involved in the present embodiment. Learning images Y31, Y32, and Y33 are used to learn the position of the tip of the needle 18. In the learning images Y31, Y32, and Y33, information showing the position of the tip of the needle 18 is shown as a circle. In the learning images Y31, Y32, and Y33, the thickness of the tip of the needle is different from each other. On the other hand, in the learning images Y31, Y32, and Y33, the shape of the tip of the needle is the same.

關於實際的針18的前端的粗細,粗細會由於清潔而變化。在從前的範本匹配中,在針的前端的粗細不同的情況下,有時無法判定針的前端的位置。另一方面,由於機械學習模型M是基於使用包含針18的前端的學習影像的機械學習而生成的,因此,在機械學習模型M中,例如,針18的前端的形狀被作為特徵量來學習。因此,在帶電粒子束裝置10中,即使在針的前端的粗細不同的情況下,針的前端的判定精度也提高。Regarding the actual thickness of the tip of the needle 18, the thickness varies due to cleaning. In the previous template matching, when the thickness of the tip of the needle is different, the position of the tip of the needle may not be determined. On the other hand, since the mechanical learning model M is generated based on mechanical learning using a learning image including the tip of the needle 18, in the mechanical learning model M, for example, the shape of the tip of the needle 18 is learned as a feature quantity. Therefore, in the charged particle beam device 10, even when the thickness of the tip of the needle is different, the determination accuracy of the tip of the needle is improved.

返回圖14,繼續進行針18的移動處理的說明。 步驟S530:控制用電腦22檢測試料片Q的拾取位置。這裡,控制用電腦22將作為對象物包含試料片Q對象物的SIM影像和SEM影像發送給影像處理用電腦30。Returning to FIG. 14 , the description of the movement process of the needle 18 is continued. Step S530: The control computer 22 detects the pick-up position of the sample sheet Q. Here, the control computer 22 sends the SIM image and the SEM image of the sample sheet Q as the object to the image processing computer 30.

這裡,參照圖19和圖20,對試料片Q和用於機械學習模型M的生成的試料片Q的學習影像進行說明。 圖19是示出包含本實施形態的試料片Q的SIM影像資料的一例的圖。在圖19中,作為試料片Q的一例,一併示出了試料片Q71和示出拾取位置的圓。Here, with reference to FIG. 19 and FIG. 20, the sample piece Q and the learning image of the sample piece Q used for generating the mechanical learning model M are described. FIG. 19 is a diagram showing an example of SIM image data of the sample piece Q including the present embodiment. In FIG. 19, as an example of the sample piece Q, a sample piece Q71 and a circle showing a pick-up position are shown together.

圖20是示出本實施形態的試料片Q的學習影像的一例的圖。學習影像Z11、學習影像Z12、學習影像Z13用於試料片Q的前端的位置的學習。在學習影像Z11、學習影像Z12、學習影像Z13中,示出試料片Q的拾取位置的資訊作為圓而示出。在學習影像Z11、學習影像Z12、學習影像Z13中,試料片的尺寸和表面形狀互不相同。另一方面,在學習影像Z11、學習影像Z12、學習影像Z13中,試料片在拾取位置處的形狀相同。FIG. 20 is a diagram showing an example of a learning image of a sample piece Q of the present embodiment. Learning images Z11, Z12, and Z13 are used to learn the position of the front end of the sample piece Q. In learning images Z11, Z12, and Z13, information showing the pickup position of the sample piece Q is shown as a circle. In learning images Z11, Z12, and Z13, the size and surface shape of the sample piece are different from each other. On the other hand, in learning images Z11, Z12, and Z13, the shape of the sample piece at the pickup position is the same.

實際的試料片的表面形狀針對每個個體而不同。在從前的範本匹配中,在試料片的表面形狀不同的情況下,有時無法判定試料片的拾取位置。此外,在從前的範本匹配中,在試料片的影像與範本之間對比度和焦點不同的情況下,有時範本匹配會失敗而無法判定試料片的拾取位置。 另一方面,由於機械學習模型M是基於使用包含試料片Q的拾取位置的學習影像的機械學習而生成的,因此,在機械學習模型M中,例如,試料片Q的拾取位置的形狀被作為特徵量來學習。因此,在帶電粒子束裝置10中,即使在試料片的表面形狀不同的情況下,試料片Q的拾取位置的判定精度也提高。The surface shape of an actual sample sheet is different for each individual. In the previous template matching, when the surface shape of the sample sheet is different, the pick-up position of the sample sheet may not be determined. In addition, in the previous template matching, when the contrast and focus between the image of the sample sheet and the template are different, the template matching may fail and the pick-up position of the sample sheet may not be determined. On the other hand, since the mechanical learning model M is generated based on mechanical learning using a learning image including the pick-up position of the sample sheet Q, in the mechanical learning model M, for example, the shape of the pick-up position of the sample sheet Q is learned as a feature quantity. Therefore, in the charged particle beam device 10, even when the surface shape of the sample sheet is different, the determination accuracy of the pick-up position of the sample sheet Q is improved.

返回圖14,繼續進行針18的移動處理的說明。 步驟S540:控制用電腦22使針18移動到檢測出的拾取位置。 以上,控制用電腦22結束針18的移動處理。Returning to FIG. 14 , the description of the movement process of the needle 18 is continued. Step S540: The control computer 22 moves the needle 18 to the detected pickup position. The control computer 22 terminates the movement process of the needle 18 as above.

返回圖13,繼續進行試料片拾取工程的說明。 步驟S60:控制用電腦22將針18與試料片Q連接。這裡,控制用電腦22使用沉積膜來進行連接。 步驟S70:控制用電腦22對試料S和試料片Q進行加工分離。這裡,圖21示出了加工分離的情況,是示出本發明的實施形態的SIM影像資料中的試料S以及試料片Q的支承部Qa的切斷加工位置T1的圖。Returning to FIG. 13 , the description of the sample sheet picking process is continued. Step S60: The control computer 22 connects the needle 18 to the sample sheet Q. Here, the control computer 22 uses a deposited film for connection. Step S70: The control computer 22 processes and separates the sample S and the sample sheet Q. Here, FIG. 21 shows the processing and separation, and is a diagram showing the cutting processing position T1 of the sample S and the support portion Qa of the sample sheet Q in the SIM image data of the embodiment of the present invention.

另外,在本實施形態中,也對於另外預先製作加工完畢的試料片Q0,進行試料片拾取工程及試料片安裝工程也可以。該情況下,也可以藉由將試料片Q0的拾取位置指定輸入到控制用電腦22,從而在進行試料片移設單元(針18)及試料片Q0的位置調整之後,藉由機械學習來決定圖21的切斷加工位置T1。在該情況下的機械學習中,作為第1影像,使用示出了在摘出試料片的試料摘出工程中使試料片移設單元朝試料片接近的位置(切斷加工位置)的影像。 該情況下,即使不將示出試料片Q0的加工尺寸和形狀的加工尺寸形狀資訊輸入到控制用電腦22,也能夠進行試料片Q0的摘出及分離。此外,也可以在摘出試料片Q0後,同樣地進行之後的試料片安裝工程。In addition, in this embodiment, the sample picking process and the sample mounting process can also be performed for the sample Q0 that has been processed in advance. In this case, the sample picking position designation of Q0 can be input into the control computer 22, and after the position adjustment of the sample transfer unit (needle 18) and the sample Q0, the cutting process position T1 of Figure 21 can be determined by mechanical learning. In the mechanical learning in this case, as the first image, an image showing the position (cutting process position) where the sample transfer unit approaches the sample in the sample extraction process of extracting the sample is used. In this case, the sample piece Q0 can be removed and separated even if the processing size and shape information showing the processing size and shape of the sample piece Q0 is not input to the control computer 22. In addition, after removing the sample piece Q0, the subsequent sample piece mounting process can also be performed in the same manner.

步驟S80:控制用電腦22使針18退避。這裡,控制用電腦22以與步驟S50的針18的移動處理同樣的方式來檢測針18的前端的位置,使針18移動而進行退避。Step S80: The control computer 22 retracts the needle 18. Here, the control computer 22 detects the position of the tip of the needle 18 in the same manner as the movement process of the needle 18 in step S50, and moves the needle 18 to retract.

步驟S90:控制用電腦22使試料台12移動。這裡,控制用電腦22利用台驅動機構13使試料台12移動,使得在上述步驟S20中所登錄的特定的柱狀部44進入帶電粒子束的觀察視野區域內。Step S90: The control computer 22 moves the sample stage 12. Here, the control computer 22 uses the stage drive mechanism 13 to move the sample stage 12 so that the specific columnar portion 44 registered in the above step S20 enters the observation field area of the charged particle beam.

(試料片安裝工程) 圖22是示出本實施形態的試料片安裝工程的一例的圖。這裡,試料片安裝工程是指將摘出的試料片Q移設到試料片保持器P上的工程。步驟S100:控制用電腦22判定試料片Q的移設位置。這裡,控制用電腦22將在上述步驟S20中所登錄的特定的柱狀部44判定為移設位置。(Sample sheet installation process) Figure 22 is a diagram showing an example of a sample sheet installation process of the present embodiment. Here, the sample sheet installation process refers to a process of transferring the removed sample sheet Q to the sample sheet holder P. Step S100: The control computer 22 determines the transfer position of the sample sheet Q. Here, the control computer 22 determines the specific columnar portion 44 registered in the above step S20 as the transfer position.

步驟S110:控制用電腦22檢測針18的位置。這裡,控制用電腦22以與上述步驟S520同樣的方式來檢測針18的前端的位置。 步驟S120:控制用電腦22使針18移動。這裡,控制用電腦22利用針驅動機構19使針18移動到在步驟S100中判定出的試料片Q的移設位置。控制用電腦22在柱狀部44與試料片Q之間空出預定的空隙而使針18停止。Step S110: The control computer 22 detects the position of the needle 18. Here, the control computer 22 detects the position of the front end of the needle 18 in the same manner as in the above-mentioned step S520. Step S120: The control computer 22 moves the needle 18. Here, the control computer 22 uses the needle drive mechanism 19 to move the needle 18 to the transfer position of the sample sheet Q determined in step S100. The control computer 22 leaves a predetermined gap between the columnar portion 44 and the sample sheet Q and stops the needle 18.

步驟S130:控制用電腦22將與針18連接的試料片Q與柱狀部44連接。 步驟S140:控制用電腦22將針18與試料片Q分離。這裡,控制用電腦22藉由切斷連接針18和試料片Q的沉積膜DM2來進行分離。 步驟S150:控制用電腦22使針18退避。這裡,控制用電腦22利用針驅動機構19使針18從試料片Q離開規定距離。Step S130: The control computer 22 connects the sample sheet Q connected to the needle 18 to the columnar portion 44. Step S140: The control computer 22 separates the needle 18 from the sample sheet Q. Here, the control computer 22 separates by cutting the deposited film DM2 connecting the needle 18 and the sample sheet Q. Step S150: The control computer 22 causes the needle 18 to retreat. Here, the control computer 22 uses the needle driving mechanism 19 to cause the needle 18 to move away from the sample sheet Q by a predetermined distance.

步驟S160:控制用電腦22判定是否執行下一個採樣。這裡,執行下一個採樣是指接著從相同的試料S的不同位置繼續採樣。由於待採樣的數量的設定在步驟S10中事先進行了登錄,因此控制用電腦22對該資料進行確認後,判定是否執行下一個採樣。在判定為執行下一個採樣的情況下,控制用電腦22返回步驟S50,如上所述繼續後續的步驟,執行採樣作業。另一方面,在控制用電腦22判定為不執行下一個採樣的情況下,結束自動MS的一系列流程。Step S160: The control computer 22 determines whether to execute the next sampling. Here, executing the next sampling means continuing sampling from a different position of the same sample S. Since the setting of the number to be sampled is registered in advance in step S10, the control computer 22 confirms the data and then determines whether to execute the next sampling. When it is determined to execute the next sampling, the control computer 22 returns to step S50 and continues the subsequent steps as described above to execute the sampling operation. On the other hand, when the control computer 22 determines not to execute the next sampling, a series of processes of the automatic MS are terminated.

另外,在本實施形態中,對學習資料是學習影像和示出該學習影像內的對象物的位置的資訊的組的情況的一例進行了說明,但不限於此。學習資料除了包含學習影像以外,還可以包含試料的種類、掃描參數(集束離子束照射光學系統14、以及電子束照射光學系統15的加速電壓等)、示出執行針18的清潔之後的使用次數、異物是否附著於針18的前端等的資訊即參數資訊。In addition, in the present embodiment, an example is described in which the learning data is a combination of a learning image and information indicating the position of an object in the learning image, but the present invention is not limited to this. In addition to the learning image, the learning data may also include parameter information such as the type of sample, scanning parameters (accelerating voltage of the focused ion beam irradiation optical system 14 and the electron beam irradiation optical system 15), the number of times the needle 18 has been used after cleaning, and whether foreign matter is attached to the tip of the needle 18.

該情況下,機械學習模型M1是基於學習影像和參數資訊來執行機械學習而生成的。此外,判定部304除了從控制用電腦22取得SIM影像和SEM影像的影像資料以外,還取得參數資訊,基於影像資料、參數資訊、和機械學習模型M1來判定對象物在影像內的位置。In this case, the mechanical learning model M1 is generated by executing mechanical learning based on the learning image and parameter information. In addition, the determination unit 304 obtains parameter information in addition to the image data of the SIM image and the SEM image from the control computer 22, and determines the position of the object in the image based on the image data, the parameter information, and the mechanical learning model M1.

此外,參數資訊還可以包含上述的方向資訊。在學習資料中包含有方向資訊的情況下,學習對象物與觀察該對象物的方向(以試料台12為基準的方向)之間的關係而生成機械學習模型M1,因此,判定部304在對象物的位置的判定中不需要使用方向資訊。In addition, the parameter information may also include the above-mentioned direction information. When the learning data includes the direction information, the relationship between the object and the direction of observing the object (the direction based on the sample stage 12) is learned to generate the mechanical learning model M1, so the determination unit 304 does not need to use the direction information in determining the position of the object.

另外,如上所述,電腦(在本實施形態中為控制用電腦22)根據影像處理用電腦30基於機械學習的模型(在本實施形態中為機械學習模型M1)、和包含第2影像(在本實施形態中為柱狀部44、針18、以及試料片Q的SIM影像和SEM影像)的第2資訊來判定與第2對象物(在本實施形態中為柱狀部44、針18、以及試料片Q)相關的位置的結果,來進行與第2對象物(在本實施形態中為柱狀部44、針18、以及試料片Q)相關的位置的控制。另外,影像處理用電腦30、和控制用電腦22也可以一體地設置在帶電粒子束裝置10中。In addition, as described above, the computer (the control computer 22 in the present embodiment) controls the position related to the second object (the columnar portion 44, the needle 18, and the sample piece Q in the present embodiment) by determining the result of the position related to the second object (the columnar portion 44, the needle 18, and the sample piece Q in the present embodiment) based on the model (the mechanical learning model M1 in the present embodiment) and the second information including the second image (the SIM image and the SEM image of the columnar portion 44, the needle 18, and the sample piece Q in the present embodiment) of the image processing computer 30. In addition, the image processing computer 30 and the control computer 22 can also be integrally provided in the charged particle beam device 10.

(第2實施形態) 以下,參照附圖對本發明的第2實施形態詳細地進行說明。 在本實施形態中,作為學習影像,對使用因應對象物的種類生成的模擬影像、或者因應對象物的種類來選擇要使用的機械學習模型的情況進行說明。 將本實施形態的帶電粒子束裝置10稱為帶電粒子束裝置10a,將影像處理用電腦30稱為影像處理用電腦30a。(Second embodiment) The second embodiment of the present invention is described in detail below with reference to the attached drawings. In this embodiment, a simulation image generated in accordance with the type of object is used as a learning image, or a mechanical learning model to be used is selected in accordance with the type of object. The charged particle beam device 10 of this embodiment is referred to as a charged particle beam device 10a, and the image processing computer 30 is referred to as an image processing computer 30a.

圖23是示出本實施形態的影像處理用電腦30a的結構的一例的圖。比較本實施形態的影像處理用電腦30a(圖23)和第1實施形態的影像處理用電腦30(圖6)後,學習影像生成部306a、分類部307a、機械學習模型M1a、以及分類用學習模型M2a有所不同。這裡,其他構成要素所具有的功能與第1實施形態相同。省略與第1實施形態相同功能的說明,在第2實施形態中,以與第1實施形態不同的部分為中心進行說明。 控制部300a除了具備學習資料取得部301、學習部302、判定影像取得部303、判定部304外,還具備學習影像生成部306a和分類部307a。FIG23 is a diagram showing an example of the structure of the image processing computer 30a of the present embodiment. Comparing the image processing computer 30a of the present embodiment (FIG23) with the image processing computer 30 of the first embodiment (FIG6), the learning image generation unit 306a, the classification unit 307a, the mechanical learning model M1a, and the classification learning model M2a are different. Here, the functions of other components are the same as those of the first embodiment. The description of the same functions as the first embodiment is omitted, and in the second embodiment, the description is centered on the parts that are different from the first embodiment. The control unit 300a includes a learning data acquisition unit 301, a learning unit 302, a determination image acquisition unit 303, and a determination unit 304, as well as a learning image generation unit 306a and a classification unit 307a.

學習影像生成部306a生成模擬影像PI作為學習影像。在本實施形態中,模擬影像PI是指基於藉由向對象物照射帶電粒子束而預先得到的SIM影像和SEM影像而生成的影像。作為一例,學習影像生成部306a基於裸件BW、和圖案影像PT生成模擬影像PI。The learning image generation unit 306a generates a simulation image PI as a learning image. In this embodiment, the simulation image PI is an image generated based on a SIM image and a SEM image previously obtained by irradiating a charged particle beam to an object. As an example, the learning image generation unit 306a generates the simulation image PI based on a bare object BW and a pattern image PT.

裸件BW是指從對象物去除表面的圖案而示出對象物的形狀的影像。裸件BW較佳為示出尺寸、對比度、焦點等不同的複數對象物的形狀的複數影像。裸件BW與SIM影像和SEM影像不同,是使用影像軟體描繪的影像。 圖案影像PT是指示出與對象物的內部結構對應的圖案的影像。圖案影像PT可以是藉由帶電粒子束的照射得到的SIM影像和SEM影像,也可以是使用影像軟體描繪的影像。Bare BW refers to an image showing the shape of an object by removing the surface pattern from the object. Bare BW is preferably a plurality of images showing the shapes of a plurality of objects with different sizes, contrasts, focuses, etc. Bare BW is an image drawn using imaging software, unlike SIM images and SEM images. Pattern image PT refers to an image showing a pattern corresponding to the internal structure of the object. Pattern image PT can be a SIM image or SEM image obtained by irradiation with a charged particle beam, or an image drawn using imaging software.

學習影像生成部306a使用模擬影像生成演算法,對與圖案影像PT所示的對象物的內部結構對應的圖案施加隨機雜訊,並重疊在裸件BW上而生成模擬影像PI。The learning image generation unit 306a generates a simulation image PI by applying random noise to a pattern corresponding to the internal structure of the object shown in the pattern image PT using a simulation image generation algorithm and superimposing the pattern on the bare object BW.

在本實施形態中,作為一例,對學習影像生成部306a生成模擬影像PI作為試料片Q的學習影像的情況的一例進行說明,但不限於此。學習影像生成部306a也可以生成模擬影像PI作為針18和柱狀部44的學習影像。In the present embodiment, the case where the learning image generating unit 306a generates the simulation image PI as the learning image of the sample piece Q is described as an example, but the present invention is not limited to this. The learning image generating unit 306a may generate the simulation image PI as the learning image of the needle 18 and the columnar portion 44.

另外,學習影像生成部306a也可以在學習影像中包含藉由向上述的第1實施形態的對象物照射帶電粒子束而預先得到的SIM影像和SEM影像。即,學習影像生成部306a可以僅使用模擬影像PI作為學習影像,也可以組合使用模擬影像PI和SIM影像或SEM影像。In addition, the learning image generation unit 306a may include in the learning image a SIM image and a SEM image obtained in advance by irradiating the object of the first embodiment with a charged particle beam. That is, the learning image generation unit 306a may use only the simulation image PI as the learning image, or may use the simulation image PI in combination with the SIM image or the SEM image.

在機械學習中,學習部302從學習影像生成部306a生成的學習影像中抽出對象物的表面形狀和內部結構的圖案作為特徵量,生成機械學習模型M1a。In the machine learning, the learning unit 302 extracts the surface shape and internal structure pattern of the object as feature quantities from the learning image generated by the learning image generating unit 306a, and generates a machine learning model M1a.

這裡,參照圖24至圖26,對模擬影像PI的生成方法進行說明。 圖24是示出本實施形態的裸件BW的一例的圖。在圖24中,作為試料片Q的裸件BW,示出了裸件BW1、裸件BW2、裸件BW3。裸件BW1、裸件BW2、裸件BW3是模擬複數尺寸的試料片Q的形狀的影像。另外,裸件BW1、裸件BW2、裸件BW3中分別包含有與針18對應的影像作為示出拾取位置的資訊。Here, referring to FIG. 24 to FIG. 26, the method for generating the simulation image PI is described. FIG. 24 is a diagram showing an example of a bare part BW of the present embodiment. In FIG. 24, bare parts BW1, bare parts BW2, and bare parts BW3 are shown as bare parts BW of the sample piece Q. Bare parts BW1, bare parts BW2, and bare parts BW3 are images simulating the shapes of the sample pieces Q of multiple sizes. In addition, bare parts BW1, bare parts BW2, and bare parts BW3 each include an image corresponding to the needle 18 as information showing the pickup position.

圖25是示出本實施形態的圖案影像PT的一例的圖。在圖25中,作為圖案影像PT,示出了使用者樣本U1。使用者樣本U1是因應帶電粒子束裝置10a的使用者要加工的試料片Q的種類而預先準備的影像。在使用者樣本U1中,對於由複數層構成的試料片,描繪了與構成這些複數層的物質的種類對應的圖案。FIG. 25 is a diagram showing an example of a pattern image PT of the present embodiment. FIG. 25 shows a user sample U1 as a pattern image PT. The user sample U1 is an image prepared in advance in accordance with the type of sample piece Q to be processed by the user of the charged particle beam device 10a. In the user sample U1, for a sample piece composed of a plurality of layers, a pattern corresponding to the type of material constituting these plurality of layers is depicted.

圖26是示出本實施形態的模擬影像PI的一例的圖。在圖26中,作為模擬影像PI,示出了基於圖24的裸件BW1、裸件BW2、裸件BW3以及圖25的使用者樣本U1生成的模擬影像PI1、模擬影像PI2、模擬影像PI3。模擬影像PI1、模擬影像PI2、模擬影像PI3在複數尺寸的試料片Q的形狀上重疊使用者樣本U1所示的內部結構的圖案。Fig. 26 is a diagram showing an example of a simulation image PI of the present embodiment. Fig. 26 shows, as simulation images PI, simulation images PI1, PI2, and PI3 generated based on the bare parts BW1, BW2, and BW3 of Fig. 24 and the user sample U1 of Fig. 25. The simulation images PI1, PI2, and PI3 overlap the pattern of the internal structure shown in the user sample U1 on the shape of the sample piece Q of multiple sizes.

返回圖23,繼續進行影像處理用電腦30a的結構的說明。 分類部307a基於分類用學習模型M2a,將判定影像取得部303取得的判定影像進行分類。這裡,分類部307a也可以不一定對判定影像進行分類。分類部307a是否對判定影像進行分類例如因應輸入到控制用電腦22的設定而在影像處理用電腦30中進行設定。 分類用學習模型M2a是用於因應對象物的種類從包含在機械學習模型M1a中的複數模型之中選擇判定部304用於判定的模型的模型。這裡,包含在機械學習模型M1a中的複數模型不僅根據用於模型的生成的學習資料集來區分,而且還根據機械學習的演算法來區分。Returning to FIG. 23, the structure of the image processing computer 30a is further described. The classification unit 307a classifies the judgment image acquired by the judgment image acquisition unit 303 based on the classification learning model M2a. Here, the classification unit 307a may not necessarily classify the judgment image. Whether the classification unit 307a classifies the judgment image is set in the image processing computer 30, for example, in response to the setting input to the control computer 22. The classification learning model M2a is a model for selecting a model for the judgment unit 304 to use for judgment from the plurality of models included in the mechanical learning model M1a in response to the type of the object. Here, the plurality of models included in the machine learning model M1a are differentiated not only according to the learning data set used for generating the model, but also according to the machine learning algorithm.

例如,分類用學習模型M2a例如將每個使用者進行加工的試料片Q的種類、與包含在機械學習模型M1a中的模型建立對應。分類用學習模型M2a基於機械學習而預先生成並記憶在記憶部305中。For example, the classification learning model M2a associates the type of sample Q processed by each user with the model included in the machine learning model M1a. The classification learning model M2a is generated in advance based on machine learning and stored in the storage unit 305.

接下來,參照圖27,作為使用分類用學習模型M2a的帶電粒子束裝置10a的自動MS的動作,對檢測試料片Q的拾取位置的處理進行說明。 圖27是示出本實施形態的拾取位置的檢測處理的一例的圖。 步驟S310:分類部307a基於分類用學習模型M2a,將判定影像取得部303取得的判定影像進行分類。 步驟S320:分類部307a因應分類的結果,從包含在機械學習模型M1a中的複數模型之中選擇判定部304在判定中使用的機械學習模型。 步驟S330:判定部304因應分類部307a選擇的機械學習模型來判定判定影像取得部303取得的判定影像中包含的對象物的位置。Next, referring to FIG. 27 , the process of detecting the pickup position of the sample piece Q as the action of the automatic MS of the charged particle beam device 10a using the classification learning model M2a is described. FIG. 27 is a diagram showing an example of the detection process of the pickup position of the present embodiment. Step S310: The classifier 307a classifies the determination image acquired by the determination image acquisition unit 303 based on the classification learning model M2a. Step S320: The classifier 307a selects the mechanical learning model used by the determination unit 304 in the determination from the plurality of models included in the mechanical learning model M1a according to the classification result. Step S330: The determination unit 304 determines the position of the object included in the determination image acquired by the determination image acquisition unit 303 according to the machine learning model selected by the classification unit 307a.

另外,在上述的實施形態中,對帶電粒子束裝置10、10a具備集束離子束照射光學系統14、和電子束照射光學系統15這兩個帶電粒子束照射光學系統的情況的一例進行了說明,但不限於此。帶電粒子束裝置也可以具備一個帶電粒子束照射光學系統。該情況下,較佳為在通過帶電粒子束照射光學系統的帶電粒子束照射而得到的判定影像中,例如,除了映出對象物外,還映出該對象物的影子。此外,該情況下,對象物是針18。In addition, in the above-mentioned embodiment, an example is described in which the charged particle beam device 10, 10a has two charged particle beam irradiation optical systems, namely the focused ion beam irradiation optical system 14 and the electron beam irradiation optical system 15, but it is not limited to this. The charged particle beam device may also have a charged particle beam irradiation optical system. In this case, it is preferable that in the judgment image obtained by the charged particle beam irradiation through the charged particle beam irradiation optical system, for example, in addition to reflecting the object, the shadow of the object is also reflected. In addition, in this case, the object is a needle 18.

針18的影子是指在從相對於試料台12的鉛直方向傾斜了規定角度的傾斜方向觀察時,當針18接近試料片Q的表面時,由於遮蔽了從針18附近的試料片Q的表面產生的二次電子(或二次離子)到達檢測器16而發生的一種現象,針18與試料片Q的表面之間的距離越近,則這種現象越明顯。因此,針18與試料片Q的表面的距離越近,則判定影像中的影子的亮度值越高。The shadow of the needle 18 refers to a phenomenon that occurs when the needle 18 approaches the surface of the sample piece Q and blocks the secondary electrons (or secondary ions) generated from the surface of the sample piece Q near the needle 18 from reaching the detector 16 when observed from an inclined direction inclined at a predetermined angle relative to the vertical direction of the sample stage 12. The closer the distance between the needle 18 and the surface of the sample piece Q is, the more obvious this phenomenon is. Therefore, the closer the distance between the needle 18 and the surface of the sample piece Q is, the higher the brightness value of the shadow in the judgment image is.

影像處理用電腦30除了從判定影像將針18的前端的位置設為判定影像中的二維座標來進行判定之外,還從針18的影子的亮度值計算出針18的前端與試料片Q的表面之間的距離。由此,影像處理用電腦30從判定影像,將針18的前端的位置設為三維座標值來進行判定。The image processing computer 30 not only performs determination by setting the position of the tip of the needle 18 as a two-dimensional coordinate in the determination image, but also calculates the distance between the tip of the needle 18 and the surface of the sample sheet Q from the brightness value of the shadow of the needle 18. Thus, the image processing computer 30 performs determination by setting the position of the tip of the needle 18 as a three-dimensional coordinate value from the determination image.

另外,在上述的實施形態中,也可以是,控制用電腦22將掃描速度設為比第1速度慢的第2速度而生成吸收電流影像資料,影像處理用電腦30將把掃描速度設為第2速度而生成的吸收電流影像資料中包含的影像的解析度設為比第1解析度高的第2解析度,然後基於機械學習模型M來判定對象物的位置。 這裡,掃描速度是指在控制用電腦22生成吸收電流影像資料的過程中掃描帶電粒子束的照射位置的速度。第1速度是指例如從前的帶電粒子束裝置掃描帶電粒子束的照射位置的速度。第2速度是比第1速度慢的任意的速度。第2速度例如是在從前的帶電粒子束裝置中為了取得用於提高範本匹配的成功率的高精細的影像而選擇的掃描速度。 解析度是指構成影像的畫素的密度。第1解析度是指例如在從前的帶電粒子束裝置中生成的吸收電流影像資料中包含的SIM影像、以及SEM影像的解析度。第2解析度是指具有比第1解析度高的空間頻率的任意的解析度。 在以下的說明中,「將掃描速度設為第2速度」例如也被稱為「將掃描速度設為低速」。此外,「將影像的解析度從第1解析度轉換為第2解析度」例如也被稱為「將影像進行超解析度化」。In addition, in the above-mentioned embodiment, the control computer 22 may generate absorption current image data by setting the scanning speed to a second speed slower than the first speed, and the image processing computer 30 may set the resolution of the image contained in the absorption current image data generated by setting the scanning speed to the second speed to a second resolution higher than the first resolution, and then determine the position of the object based on the mechanical learning model M. Here, the scanning speed refers to the speed of scanning the irradiation position of the charged particle beam in the process of generating the absorption current image data by the control computer 22. The first speed refers to, for example, the speed at which the irradiation position of the charged particle beam is scanned by a previous charged particle beam device. The second speed is an arbitrary speed slower than the first speed. The second speed is, for example, a scanning speed selected in a previous charged particle beam device in order to obtain a high-precision image for improving the success rate of template matching. Resolution refers to the density of pixels constituting an image. The first resolution refers to, for example, the resolution of a SIM image and a SEM image included in absorption current image data generated in a previous charged particle beam device. The second resolution refers to any resolution having a higher spatial frequency than the first resolution. In the following description, "setting the scanning speed to the second speed" is also referred to as "setting the scanning speed to a low speed". In addition, "converting the resolution of an image from the first resolution to the second resolution" is also referred to as "super-resolutioning the image".

這裡,說明關於控制用電腦22將掃描速度設為低速而生成吸收電流影像資料,對影像處理用電腦30將掃描速度設為低速而生成的吸收電流影像資料中包含的SIM影像以及SEM影像的解析度進行超解析度化,然後基於機械學習模型M來判定對象物的位置時的影像處理用電腦30的處理。該處理在上述的圖7所示的步驟S20、圖14所示的步驟S520、圖22所示的步驟S110等中執行。Here, the control computer 22 sets the scanning speed to a low speed to generate absorption current image data, the image processing computer 30 sets the scanning speed to a low speed to generate the absorption current image data, performs super-resolution on the resolution of the SIM image and the SEM image included in the absorption current image data, and then determines the position of the object based on the mechanical learning model M. This processing is performed in the above-mentioned step S20 shown in FIG. 7, step S520 shown in FIG. 14, step S110 shown in FIG. 22, etc.

判定影像取得部303從影像處理用電腦30取得SIM影像和SEM影像作為判定影像。這些SIM影像和SEM影像是包含在控制用電腦22將掃描速度設為低速而生成的吸收電流影像資料中的影像。判定部304進行對判定影像取得部303所取得的判定影像進行超解析度化的處理。對於判定部304在超解析度化中使用的超解析度技術,可以使用任意的超解析度技術,沒有限定。判定部304例如將SIM影像和SEM影像的解析度從第1解析度轉換為第2解析度。這裡,判定部304不僅對SIM影像和SEM影像的解析度進行轉換,而且還進行使SIM影像和SEM影像中包含的對象物的影像的空間頻率高於轉換前的影像的空間頻率的處理。 判定部304基於機械學習模型M來判定超解析度化後的判定影像中包含的對象物的位置。判定部304將示出所判定的對象物的位置的位置資訊輸出至控制用電腦22。The judgment image acquisition unit 303 acquires SIM images and SEM images from the image processing computer 30 as judgment images. These SIM images and SEM images are images included in the absorption current image data generated by the control computer 22 setting the scanning speed to a low speed. The judgment unit 304 performs super-resolution processing on the judgment image acquired by the judgment image acquisition unit 303. For the super-resolution technology used by the judgment unit 304 in super-resolution, any super-resolution technology can be used without limitation. The judgment unit 304, for example, converts the resolution of the SIM image and the SEM image from the first resolution to the second resolution. Here, the judgment unit 304 not only converts the resolution of the SIM image and the SEM image, but also performs processing to make the spatial frequency of the image of the object contained in the SIM image and the SEM image higher than the spatial frequency of the image before conversion. The determination unit 304 determines the position of the object included in the super-resolution determination image based on the machine learning model M. The determination unit 304 outputs position information indicating the determined position of the object to the control computer 22 .

如上所述,在控制用電腦22將掃描速度設為比第1速度慢的第2速度而生成吸收電流影像資料,影像處理用電腦30把將掃描速度設為第2速度而生成的吸收電流影像資料中包含的影像的解析度設為比第1解析度高的第2解析度,然後基於機械學習模型M來判定對象物的位置的時候,在將掃描速度設為第2速度的情況下,與不將影像的解析度設為第2解析度的情況相比,能夠縮短判定對象物的位置的處理的處理時間,並且能夠提高判定精度。As described above, when the control computer 22 sets the scanning speed to the second speed which is slower than the first speed to generate absorption current image data, and the image processing computer 30 sets the resolution of the image contained in the absorption current image data generated by setting the scanning speed to the second speed to the second resolution which is higher than the first resolution, and then when the position of the object is determined based on the mechanical learning model M, when the scanning speed is set to the second speed, the processing time for determining the position of the object can be shortened and the determination accuracy can be improved compared to the case where the resolution of the image is not set to the second resolution.

另外,控制用電腦22也可以對將掃描速度設為第2速度而取得的吸收電流影像資料進行超解析度化之後,基於機械學習模型M進行對象物的位置的判定,其結果,在無法判定對象物的位置的情況下,將掃描速度設為第1速度而取得吸收電流影像資料,從而在不進行超解析度化的情況下,基於機械學習模型M來進行對象物的位置的判定。如果無法判定對象物的位置的原因是超解析度化不充分的情況,則藉由使用將掃描速度設為第1速度而取得的吸收電流影像資料進行重試處理,有能夠正確地檢測出對象物的位置的可能性。In addition, the control computer 22 may perform super-resolution on the absorption current image data obtained by setting the scanning speed to the second speed, and then determine the position of the object based on the mechanical learning model M. As a result, if the position of the object cannot be determined, the scanning speed is set to the first speed and the absorption current image data is obtained, and the position of the object is determined based on the mechanical learning model M without super-resolution. If the reason why the position of the object cannot be determined is that the super-resolution is insufficient, there is a possibility that the position of the object can be correctly detected by performing a retry process using the absorption current image data obtained by setting the scanning speed to the first speed.

另外,也可以藉由電腦來實現上述實施形態中的控制用電腦22、影像處理用電腦30、30a的一部分,例如學習資料取得部301、學習部302、判定影像取得部303、判定部304、學習影像生成部306a、以及分類部307a。該情況下,也可以藉由將用於實現該控制功能的程式記錄在電腦能夠讀取的記錄媒體中,使電腦系統讀取記錄在該記錄媒體中的程式並執行來實現。另外,這裡所說的「電腦系統」是內置於控制用電腦22、影像處理用電腦30、30a的電腦系統,包含OS和周邊設備等硬體。另外,「電腦能夠讀取的記錄媒體」是指,軟碟、光磁片、ROM、CD-ROM等可移動媒體、以及內置於電腦系統中的硬碟等記憶裝置。進而,「電腦能夠讀取的記錄媒體」也可以包含如通過網際網路等網路或電話線路等通信線路發送程式的情況下的通信線路那樣在短時間內動態保持程式的結構、如該情況下的作為伺服器或使用者端的電腦系統內部的揮發性記憶體那樣在一定時間內保持程式的結構。此外,上述程式可以是用於實現上述的功能的一部分的程式,還可以是能夠通過與已經記錄在電腦系統中的程式的組合來實現上述的功能的程式。 此外,也可以將上述的實施形態中的控制用電腦22、影像處理用電腦30、30a的一部分或全部作為LSI(Large Scale Integration:大規模積體)等積體電路來實現。控制用電腦22、影像處理用電腦30、30a的各功能塊可以單獨地處理器化,也可以將一部分或全部集成而處理器化。此外,積體電路化的方法不限於LSI,也可以利用專用電路或通用處理器來實現。此外,在由於半導體技術的進步而出現了代替LSI的積體電路化的技術的情況下,也可以使用基於該技術的積體電路。In addition, a part of the control computer 22 and the image processing computers 30 and 30a in the above-mentioned embodiment, such as the learning data acquisition unit 301, the learning unit 302, the judgment image acquisition unit 303, the judgment unit 304, the learning image generation unit 306a, and the classification unit 307a, can also be realized by a computer. In this case, it is also possible to realize the control function by recording the program for realizing the control function in a recording medium that can be read by a computer, and making the computer system read the program recorded in the recording medium and execute it. In addition, the "computer system" mentioned here is a computer system built into the control computer 22 and the image processing computer 30 and 30a, including hardware such as OS and peripheral devices. In addition, "computer-readable recording media" refers to removable media such as floppy disks, optical disks, ROMs, CD-ROMs, and storage devices such as hard disks built into computer systems. Furthermore, "computer-readable recording media" may also include a structure that dynamically retains programs for a short period of time, such as a communication line when sending programs through a network such as the Internet or a communication line such as a telephone line, or a structure that retains programs for a certain period of time, such as a volatile memory inside a computer system that serves as a server or user end in this case. In addition, the above program may be a program for realizing a part of the above functions, or a program that can realize the above functions by combining with a program already recorded in the computer system. In addition, part or all of the control computer 22 and the image processing computer 30, 30a in the above-mentioned embodiment may be implemented as an integrated circuit such as LSI (Large Scale Integration). Each functional block of the control computer 22 and the image processing computer 30, 30a may be individually processed, or part or all of them may be integrated and processed. In addition, the method of integrated circuitization is not limited to LSI, and it may be implemented using a dedicated circuit or a general-purpose processor. In addition, in the case where an integrated circuitization technology that replaces LSI appears due to the progress of semiconductor technology, an integrated circuit based on the technology may also be used.

以上,參照圖式對本發明的一個實施形態詳細地進行了說明,但具體的結構並不限於上述的實施形態,可以在不脫離本發明的主旨的範圍內進行各種設計變更等。An embodiment of the present invention has been described in detail above with reference to the drawings, but the specific structure is not limited to the above-mentioned embodiment, and various design changes can be made within the scope of the gist of the present invention.

10,10a:帶電粒子束裝置 S:試料 Q:試料片 14:集束離子束照射光學系統(帶電粒子束照射光學系統) 15:電子束照射光學系統(帶電粒子束照射光學系統) 12:試料台 18:針(試料片移設單元) 19:針驅動機構(試料片移設單元) P:試料片保持器 12a:保持器固定台 22:控制用電腦(電腦)10,10a: Charged particle beam device S: Sample Q: Sample sheet 14: Focused ion beam irradiation optical system (charged particle beam irradiation optical system) 15: Electron beam irradiation optical system (charged particle beam irradiation optical system) 12: Sample stage 18: Needle (sample sheet transfer unit) 19: Needle drive mechanism (sample sheet transfer unit) P: Sample sheet holder 12a: Holder fixing table 22: Control computer (computer)

[圖1]是示出本發明的第1實施形態的帶電粒子束裝置和影像處理用電腦的結構的一例的圖。 [圖2]是示出本發明的第1實施形態的帶電粒子束裝置的結構的一例的圖。 [圖3]是示出本發明的第1實施形態的試料片的俯視圖。 [圖4]是本發明的第1實施形態的試料片保持器的俯視圖。 [圖5]是本發明的第1實施形態的試料片保持器的側視圖。 [圖6]是示出本發明的第1實施形態的影像處理用電腦的結構的一例的圖。 [圖7]是示出本發明的第1實施形態的初始設定工程的一例的圖。 [圖8]是本發明的第1實施形態的柱狀部的俯視圖。 [圖9]是本發明的第1實施形態的柱狀部的側視圖。 [圖10]是示出本發明的第1實施形態的柱狀部的學習影像的一例的圖。 [圖11]是示出本發明的第1實施形態的支柱未成為臺階結構的柱狀部的一例的圖。 [圖12]是示出本發明的第1實施形態的支柱未成為臺階狀結構的柱狀部的學習影像的一例的圖。 [圖13]是示出本發明的第1實施形態的試料片拾取工程的一例的圖。 [圖14]是示出本發明的第1實施形態的針的移動處理的一例的圖。 [圖15]是示出本發明的第1實施形態的包含針的前端的SEM影像資料的一例的圖。 [圖16]是示出本發明的第1實施形態的包含針的前端的SIM影像資料的一例的圖。 [圖17]是示出本發明的第1實施形態的針的前端的一例的圖。 [圖18]是示出本發明的第1實施形態的針的學習影像的一例的圖。 [圖19]是示出本發明的第1實施形態的包含試料片的SIM影像資料的一例的圖。 [圖20]是示出本發明的第1實施形態的試料片的學習影像的一例的圖。 [圖21]是示出本發明的第1實施形態的SIM影像資料中的試料以及試料片的支承部的切斷加工位置的圖。 [圖22]是示出本發明的第1實施形態的試料片安裝工程的一例的圖。 [圖23]是示出本發明的第2實施形態的影像處理用電腦的結構的一例的圖。 [圖24]是示出本發明的第2實施形態的裸件的一例的圖。 [圖25]是示出本發明的第2實施形態的圖案影像的一例的圖。 [圖26]是示出本發明的第2實施形態的模擬影像的一例的圖。 [圖27]是示出本發明的第2實施形態的拾取位置的檢測處理的一例的圖。[FIG. 1] is a diagram showing an example of the structure of a charged particle beam device and an image processing computer according to the first embodiment of the present invention. [FIG. 2] is a diagram showing an example of the structure of a charged particle beam device according to the first embodiment of the present invention. [FIG. 3] is a top view of a sample sheet according to the first embodiment of the present invention. [FIG. 4] is a top view of a sample sheet holder according to the first embodiment of the present invention. [FIG. 5] is a side view of a sample sheet holder according to the first embodiment of the present invention. [FIG. 6] is a diagram showing an example of the structure of an image processing computer according to the first embodiment of the present invention. [FIG. 7] is a diagram showing an example of the initial setting process of the first embodiment of the present invention. [FIG. 8] is a top view of a columnar portion according to the first embodiment of the present invention. [Fig. 9] is a side view of the columnar portion of the first embodiment of the present invention. [Fig. 10] is a diagram showing an example of a learning image of the columnar portion of the first embodiment of the present invention. [Fig. 11] is a diagram showing an example of a columnar portion of the first embodiment of the present invention where the pillars do not form a stepped structure. [Fig. 12] is a diagram showing an example of a learning image of the columnar portion of the first embodiment of the present invention where the pillars do not form a stepped structure. [Fig. 13] is a diagram showing an example of a sample sheet picking process of the first embodiment of the present invention. [Fig. 14] is a diagram showing an example of a needle moving process of the first embodiment of the present invention. [Fig. 15] is a diagram showing an example of SEM image data including the tip of the needle of the first embodiment of the present invention. [FIG. 16] is a diagram showing an example of SIM image data including the tip of the needle of the first embodiment of the present invention. [FIG. 17] is a diagram showing an example of the tip of the needle of the first embodiment of the present invention. [FIG. 18] is a diagram showing an example of a learning image of the needle of the first embodiment of the present invention. [FIG. 19] is a diagram showing an example of SIM image data including a sample sheet of the first embodiment of the present invention. [FIG. 20] is a diagram showing an example of a learning image of a sample sheet of the first embodiment of the present invention. [FIG. 21] is a diagram showing the cutting processing position of the sample and the support portion of the sample sheet in the SIM image data of the first embodiment of the present invention. [FIG. 22] is a diagram showing an example of a sample sheet mounting process of the first embodiment of the present invention. [Figure 23] is a diagram showing an example of the structure of an image processing computer of the second embodiment of the present invention. [Figure 24] is a diagram showing an example of a bare part of the second embodiment of the present invention. [Figure 25] is a diagram showing an example of a pattern image of the second embodiment of the present invention. [Figure 26] is a diagram showing an example of a simulation image of the second embodiment of the present invention. [Figure 27] is a diagram showing an example of a detection process of a pickup position of the second embodiment of the present invention.

10:帶電粒子束裝置 10: Charged particle beam device

22:控制用電腦(電腦) 22: Control computer (computer)

30:影像處理用電腦 30: Computer for image processing

M:機械學習模型 M: Machine learning model

Claims (7)

一種帶電粒子束裝置,其從試料自動地製作試料片,前述帶電粒子束裝置具備:照射帶電粒子束的帶電粒子束照射光學系統;載置著前述試料並移動的試料台;保持並搬送從前述試料分離及摘出的前述試料片的試料片移設單元;保持移設前述試料片的試料片保持器的保持器固定台;以及基於學習包含第1對象物的第1影像的第1資訊的機械學習的模型、及包含藉由前述帶電粒子束的照射而取得的第2影像的第2資訊,進行與第2對象物相關的位置的控制的電腦;前述第2對象物包含前述試料片;前述第1影像包含示出分離及摘出前述試料片前的前述試料的形狀的影像。 A charged particle beam device that automatically produces a sample sheet from a sample, the charged particle beam device comprising: a charged particle beam irradiation optical system that irradiates a charged particle beam; a sample stage that carries and moves the sample; a sample sheet transfer unit that holds and transports the sample sheet separated and removed from the sample; a holder fixing table that holds and transfers the sample sheet; and a computer that controls the position related to a second object based on a mechanical learning model that learns first information including a first image of a first object and second information including a second image obtained by irradiation with the charged particle beam; the second object includes the sample sheet; and the first image includes an image showing the shape of the sample before separation and removal of the sample sheet. 根據請求項1所述的帶電粒子束裝置,其中,前述第2對象物包含前述試料片保持器所具備的試料台的部分。 According to the charged particle beam device described in claim 1, the second object includes a portion of a sample table provided in the sample holder. 根據請求項1或2所述的帶電粒子束裝置,其中,前述第2對象物包含用於前述試料片移設單元的針。 The charged particle beam device according to claim 1 or 2, wherein the second object includes a needle used for the sample sheet transfer unit. 根據請求項1或2所述的帶電粒子束裝 置,其中,前述第1影像是示出了在摘出前述試料片的試料摘出工程中使前述試料片移設單元朝向前述試料片而接近的位置的影像。 According to the charged particle beam device described in claim 1 or 2, the first image is an image showing a position where the sample piece transfer unit is brought close to the sample piece in a sample removal process for removing the sample piece. 根據請求項1或2所述的帶電粒子束裝置,其中,前述第1影像是示出了從前述試料分離及摘出前述試料片的位置的影像。 The charged particle beam device according to claim 1 or 2, wherein the first image is an image showing the position where the sample piece is separated and removed from the sample. 根據請求項1或2所述的帶電粒子束裝置,其中,前述第1影像是因應前述第2對象物的種類而生成的模擬影像。 The charged particle beam device according to claim 1 or 2, wherein the first image is a simulated image generated in response to the type of the second object. 根據請求項1或2所述的帶電粒子束裝置,其中,前述第1對象物的種類與前述第2對象物的種類相同。 The charged particle beam device according to claim 1 or 2, wherein the type of the first object is the same as the type of the second object.
TW109131792A 2019-09-25 2020-09-16 Charged particle beam device TWI874449B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019173888 2019-09-25
JP2019-173888 2019-09-25
JP2020047650A JP7413105B2 (en) 2019-09-25 2020-03-18 Charged particle beam device
JP2020-047650 2020-03-18

Publications (2)

Publication Number Publication Date
TW202129244A TW202129244A (en) 2021-08-01
TWI874449B true TWI874449B (en) 2025-03-01

Family

ID=75271097

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109131792A TWI874449B (en) 2019-09-25 2020-09-16 Charged particle beam device

Country Status (3)

Country Link
JP (1) JP7413105B2 (en)
KR (1) KR102821526B1 (en)
TW (1) TWI874449B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2025062546A1 (en) * 2023-09-21 2025-03-27 株式会社日立ハイテク Scanning electron microscope with inspection and measurement model, and method for correcting inspection and measurement model

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005505899A (en) * 2001-10-10 2005-02-24 アプライド マテリアルズ イスラエル リミテッド Alignment method and apparatus for charged particle beam column
CN1696652A (en) * 2004-02-23 2005-11-16 塞威公司 Particle beam device probe operation
TW201734439A (en) * 2015-12-31 2017-10-01 克萊譚克公司 Hybrid checker
JP2018116860A (en) * 2017-01-19 2018-07-26 株式会社日立ハイテクサイエンス Charged particle beam equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI290430B (en) * 2005-02-02 2007-11-21 Shimadzu Corp Scanning electron beam device
JP6542608B2 (en) * 2014-08-29 2019-07-10 株式会社日立ハイテクサイエンス Charged particle beam device
JP6951174B2 (en) * 2016-09-28 2021-10-20 株式会社ニューフレアテクノロジー Electron beam device and electron beam misalignment correction method
JP6951922B2 (en) * 2016-09-28 2021-10-20 株式会社ニューフレアテクノロジー Charged particle beam device and method for correcting misalignment of charged particle beam
US10733744B2 (en) * 2017-05-11 2020-08-04 Kla-Tencor Corp. Learning based approach for aligning images acquired with different modalities
JP7043057B2 (en) 2017-11-28 2022-03-29 株式会社日立ハイテクサイエンス Cross-section processing observation method, charged particle beam device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005505899A (en) * 2001-10-10 2005-02-24 アプライド マテリアルズ イスラエル リミテッド Alignment method and apparatus for charged particle beam column
CN1696652A (en) * 2004-02-23 2005-11-16 塞威公司 Particle beam device probe operation
TW201734439A (en) * 2015-12-31 2017-10-01 克萊譚克公司 Hybrid checker
JP2018116860A (en) * 2017-01-19 2018-07-26 株式会社日立ハイテクサイエンス Charged particle beam equipment

Also Published As

Publication number Publication date
JP7413105B2 (en) 2024-01-15
KR20210036256A (en) 2021-04-02
TW202129244A (en) 2021-08-01
JP2021057332A (en) 2021-04-08
KR102821526B1 (en) 2025-06-18

Similar Documents

Publication Publication Date Title
TWI869444B (en) Charged particle beam device
CN109817502B (en) Charged particle beam device
US11004651B2 (en) Tomography-assisted TEM prep with requested intervention automation workflow
CN112563103B (en) Charged particle beam device
TW202220077A (en) Structure Estimation System and Structure Estimation Program
KR102657389B1 (en) Charged particle beam apparatus
JP6885576B2 (en) Charged particle beam device
JP2016139467A (en) Sample observation method and sample observation device
JP6013380B2 (en) Apparatus and method for real-time three-dimensional SEM imaging and viewing of semiconductor wafers
EP2764349A1 (en) Methods and apparatus for classification of defects using surface height attributes
JP2024012432A (en) Testing systems and non-transitory computer-readable media
TW202127017A (en) Method for Image Adjustment and Charged Particle Beam System
TWI874449B (en) Charged particle beam device
JP5371928B2 (en) Defect inspection method and apparatus
CN112563101B (en) Charged particle beam device
TWI849080B (en) Charged particle beam device and control method
WO2024157440A1 (en) Charged particle beam device
TW202311719A (en) charged particle beam device