TWI874003B - Forming parameter decision-making model construction method and forming system with forming parameter decision-making model - Google Patents
Forming parameter decision-making model construction method and forming system with forming parameter decision-making model Download PDFInfo
- Publication number
- TWI874003B TWI874003B TW112145751A TW112145751A TWI874003B TW I874003 B TWI874003 B TW I874003B TW 112145751 A TW112145751 A TW 112145751A TW 112145751 A TW112145751 A TW 112145751A TW I874003 B TWI874003 B TW I874003B
- Authority
- TW
- Taiwan
- Prior art keywords
- forming
- model
- parameter decision
- parameters
- decision model
- Prior art date
Links
Landscapes
- Forging (AREA)
- Feedback Control In General (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
Description
本發明是有關於一種成形技術,特別是有關於一種可協助預測成形參數的決策模型的建置方法和具有成形參數決策模型的成形系統。 The present invention relates to a forming technology, in particular to a method for constructing a decision model that can assist in predicting forming parameters and a forming system having a forming parameter decision model.
自動化生產技術已廣泛地在製造業應用,近年來因機器學習技術的蓬勃發展,生產機具智慧化後能進一步降低生產作業的技術門檻和增加產品良率,許多工具機或成形機具的業者已投入資源,期望能將人工智慧的技術導入機具或設備中,以強化產品的競爭力。 Automated production technology has been widely used in the manufacturing industry. In recent years, with the vigorous development of machine learning technology, the intelligentization of production tools can further reduce the technical threshold of production operations and increase product yield. Many machine tool or forming machine manufacturers have invested resources in the hope of introducing artificial intelligence technology into machines or equipment to enhance the competitiveness of their products.
中國專利編號CN 114741964 A公開了一種針對薄板沖壓成形材料參數反求的方法,該方法基於降維分析,依據現有的FLD成形圖像,運用PCA降維生成的訊息構建一個結構簡化的、適合分析的特徵模型,進而在設計參數與特徵空間之間建立替代模型,構建近似貝葉斯所需要的正向響應模型。同時降維特徵可作為近似貝葉斯的概括統計量,從而利用近似貝葉斯計算和自適應嵌套布點方法,獲得 的設計參數後驗區間分佈,實現完成材料參數的反求,從而更全面地反應零件成形品質。 Chinese patent number CN 114741964 A discloses a method for inverse analysis of material parameters for sheet metal stamping. The method is based on dimensionality reduction analysis. According to the existing FLD forming images, the information generated by PCA dimensionality reduction is used to construct a simplified feature model suitable for analysis, and then a substitution model is established between the design parameters and the feature space to construct the positive response model required by the approximate Bayesian method. At the same time, the dimensionality reduction feature can be used as a summary statistic of the approximate Bayesian method, so that the posterior interval distribution of the design parameters is obtained by using the approximate Bayesian calculation and the adaptive nested point distribution method, so as to achieve the inverse analysis of the material parameters, thereby more comprehensively reflecting the forming quality of the parts.
中國專利編號CN 116243667A1揭示了一種數位化生產線產品質量監控方法及系統,包括集設備數據和生產過程數據,並構建數據庫;基於數據採集結果,獲取關鍵工序的關鍵品質特性歷史數據,對關鍵工序的關鍵品質特性進行試驗設計,並建立傳遞函數;實時監控傳遞函數的反饋結果,判斷傳遞函數分析結果是否滿足品質管理要求,若是,則轉入基於傳遞函數的反向控制,若否,則對產品進行隔離,若存在風險,則進行風險預警;基於判斷結果,展示產品品質的預測結果。此發明通過關鍵工序與的關鍵品質特性,可實現提前預判品質問題產生的源頭,提高產品品質量監控效果;通過實時監控傳遞函數的反饋結果,提高了產品品質監控準確度。 Chinese patent number CN 116243667A1 discloses a digital production line product quality monitoring method and system, including collecting equipment data and production process data, and building a database; based on the data collection results, obtaining the historical data of key quality characteristics of key processes, conducting experimental design for the key quality characteristics of key processes, and establishing a transfer function; real-time monitoring of the feedback results of the transfer function, judging whether the analysis results of the transfer function meet the quality management requirements, if so, switching to reverse control based on the transfer function, if not, isolating the product, and if there is a risk, issuing a risk warning; based on the judgment results, displaying the prediction results of product quality. This invention can predict the source of quality problems in advance and improve the product quality monitoring effect through key processes and key quality characteristics; and improve the accuracy of product quality monitoring through real-time monitoring of the feedback results of the transfer function.
WIPO專利編號WO 2022/051794 A1揭示了一種最佳化製造產品的方法,該產品由兩個或更多輸入組成,每個輸入有相對於其他輸入的成本,並且該產品具有一個或多個具有最佳值範圍的特徵。該方法涉及製造產品樣本,使用兩個或更多輸入的相應輸入值。如果產品的特徵之一的值不在其最佳範圍內,則執行考慮輸入成本的貝葉斯最佳化過程,以計算調整後的輸入值,考慮輸入的相對成本。然後迭代該過程,使得輸入的相對成本對計算的影響在每次迭代中降低,直到一個或多個特徵的值在其最佳範圍內。 WIPO patent number WO 2022/051794 A1 discloses a method for optimizing the manufacture of a product consisting of two or more inputs, each input having a cost relative to the other inputs, and the product having one or more characteristics having an optimal value range. The method involves manufacturing a sample of the product, using corresponding input values of the two or more inputs. If the value of one of the characteristics of the product is not within its optimal range, a Bayesian optimization process that takes into account the input costs is performed to calculate an adjusted input value, taking into account the relative cost of the input. The process is then iterated so that the impact of the relative cost of the input on the calculation decreases in each iteration until the value of one or more characteristics is within its optimal range.
前揭先前技術已對產品製造過程中的品質判別提出解決方案,能使產品品質進一步提升。然而,前揭先前技術在對製程參數進行預測或推估時,所採的方法相對複雜。對多數沖鍛成形而言,通常一個道次便會完成胚料成形,如何以簡單的方式建置一參數預測 模型和成形系統,在入料初始階段(即胚料成形前)即能最適地預測或推估成形參數,已為本技術領域人士極待解決的課題的一。 The above-mentioned prior art has proposed a solution for quality judgment in the product manufacturing process, which can further improve product quality. However, the method adopted by the above-mentioned prior art when predicting or estimating process parameters is relatively complex. For most punching and forging processes, the blank is usually formed in one pass. How to build a parameter prediction model and forming system in a simple way to best predict or estimate the forming parameters at the initial stage of feeding (i.e. before the blank is formed) has become one of the issues that people in this technical field are eager to solve.
本發明的目的在提供一種成形參數決策模型建置方法和一種具成形參數決策模型的成形系統,其建置方法相對簡單,且能於胚料成形前快速取得最適成形參數,降低成形的技術門檻。 The purpose of the present invention is to provide a forming parameter decision model construction method and a forming system with a forming parameter decision model. The construction method is relatively simple and can quickly obtain the optimal forming parameters before the blank is formed, thereby reducing the technical threshold of forming.
依據上述之目的,本發明提供一種成形參數決策模型建置方法,其步驟包括:提供複數筆數據集,其每一筆數據集包括一成形結果和複數成形參數之數據;根據該複數筆數據集建立一迴歸模型和一目標函數,該目標函數為迴歸模型對一成形目標之預測方程式;求得該迴歸模型的複數模型參數估計量的抽樣分配;以及以該等抽樣分配作為該等模型參數的事前機率分配,該成形目標服從常態分佈,期望值為該目標函數,該等模型參數之貝氏估計為該等模型參數事後機率分配之期望值,進而獲得一成形參數決策模型。 According to the above-mentioned purpose, the present invention provides a method for building a forming parameter decision model, the steps of which include: providing a plurality of data sets, each of which includes a forming result and a plurality of forming parameter data; establishing a regression model and a target function based on the plurality of data sets, the target function being the prediction equation of the regression model for a forming target; obtaining the sampling distribution of the estimated quantities of the plurality of model parameters of the regression model; and using the sampling distribution as the prior probability distribution of the model parameters, the forming target obeys the normal distribution, the expected value is the target function, the Bayesian estimation of the model parameters is the expected value of the post-probability distribution of the model parameters, and thus obtaining a forming parameter decision model.
依據上述之目的,本發明提供一種具成形參數決策模型的成形系統,包括:一監測模組,用以監測一胚料成形前的一特徵;一成形機,透過至少一成形參數來成形該胚料;以及一控制平台,電性連接該成形機和該監測模組,其包括:一如請求項1的方法所建置的成形參數決策模型;以及一運算模組,依一預期成形結果和該特徵的數據,透過該成形參數決策模型估算出一最適成形參數,將該最適成形參數傳送至該成形機。 According to the above-mentioned purpose, the present invention provides a forming system with a forming parameter decision model, comprising: a monitoring module for monitoring a feature of a blank before forming; a forming machine for forming the blank through at least one forming parameter; and a control platform electrically connecting the forming machine and the monitoring module, which comprises: a forming parameter decision model established by the method of claim 1; and a calculation module, according to an expected forming result and the data of the feature, estimating an optimal forming parameter through the forming parameter decision model, and transmitting the optimal forming parameter to the forming machine.
本發明之成形參數決策模型建置方法所提供的數據集筆數相對較少,減少建立成形參數決策模型前期所花費的時間與成本。本發明之具成形參數決策模型的成形系統在給定一預期成形結 果,透過成形參數決策模型便能回推一最適成形參數,有助於在試作階段快速取得合適的成形參數,可大幅縮短試作的時間和成本,降低試作程序和生產的技術門檻。 The forming parameter decision model establishment method of the present invention provides a relatively small number of data sets, reducing the time and cost spent in the early stage of establishing the forming parameter decision model. The forming system with the forming parameter decision model of the present invention can back-calculate an optimal forming parameter through the forming parameter decision model when an expected forming result is given, which helps to quickly obtain appropriate forming parameters in the trial stage, which can greatly shorten the trial time and cost, and reduce the technical threshold of the trial process and production.
1:具成形參數決策模型的成形系統 1: Forming system with forming parameter decision model
11:成形機 11: Forming machine
12:監測模組 12: Monitoring module
13:控制平台 13: Control platform
131:成形參數決策模型 131: Forming parameter decision model
132:運算模組 132: Computation module
133:人機界面 133: Human-machine interface
2:胚料 2: Blank material
S1~S4:步驟 S1~S4: Steps
圖1 為成形參數決策模型建置方法一實施例的步驟流程圖。 Figure 1 is a flow chart of the steps of an embodiment of a forming parameter decision model construction method.
圖2 為具成形參數決策模型的成形系統一實施例的方塊示意圖。 FIG2 is a block diagram of an embodiment of a forming system with a forming parameter decision model.
為讓本發明之上述或其他目的、特徵以及特點能更明顯易懂,茲配合圖式將本發明相關實施例詳細說明如下,圖式主要為簡化之示意圖,僅以示意方式說明本發明之基本結構,因此在圖式中僅標示與本發明有關之元件,且所繪示之元件並非以實施時之數目、尺寸比例等加以繪製,且其元件佈局形態有可能更為複雜。 In order to make the above or other purposes, features and characteristics of the present invention more clearly understandable, the relevant embodiments of the present invention are described in detail with the help of drawings. The drawings are mainly simplified schematic diagrams, which only illustrate the basic structure of the present invention in a schematic manner. Therefore, only the components related to the present invention are marked in the drawings, and the components shown are not drawn in the number, size ratio, etc. during implementation, and the layout of the components may be more complicated.
圖1為成形參數決策模型建置方法一實施例的步驟流程圖。請參閱圖1,本發明第一實施例揭示一種成形參數決策模型建置方法,其步驟包括:提供複數筆數據集(S1);根據該複數筆數據集建立一迴歸模型和一目標函數(S2);求得該迴歸模型的模型參數估計量的抽樣分配(S3);以及求出該模型參數的貝氏估計(S4)。 FIG1 is a flow chart of the steps of an embodiment of a forming parameter decision model construction method. Referring to FIG1, the first embodiment of the present invention discloses a forming parameter decision model construction method, the steps of which include: providing a plurality of data sets (S1); establishing a regression model and a target function based on the plurality of data sets (S2); obtaining a sampling distribution of the model parameter estimation quantity of the regression model (S3); and obtaining the Bayesian estimation of the model parameter (S4).
於提供複數筆數據集步驟(S1)中,提供複數筆與成形相關的數據集,每一筆數據集包括一成形結果y和複數成形參數x i 的數據。於成形實務上,與成形相關的參數眾多,成形參數x i 的選擇以會對胚料的成形結果y造成影響或具有貢獻者為佳,換言之,宜選擇與成形結果y有較高成形相關性的成形參數x i 。成形結果y與複數成 形參數x i 的數據是由複數試片進行成形試驗而取得,在實驗前,每一試片具有一特徵F,該複數試片的特徵F具有相同的值。於一實例中,特徵F為試片的一厚度,而該複數試片的厚度的大小相同於使用者欲成形的胚料的厚度尺寸。於一種實施方式中,與成形相關的數據集的筆數為30筆。 In the step of providing a plurality of data sets (S1), a plurality of data sets related to forming are provided, each of which includes a forming result y and data of a plurality of forming parameters xi . In forming practice, there are many parameters related to forming, and the selection of forming parameters xi is preferably one that will affect or contribute to the forming result y of the blank. In other words, it is advisable to select forming parameters xi that have a higher forming correlation with the forming result y . The data of the forming result y and the plurality of forming parameters xi are obtained by performing forming tests on a plurality of test pieces. Before the experiment, each test piece has a feature F, and the feature F of the plurality of test pieces has the same value. In one example, the feature F is a thickness of the test piece, and the thickness of the plurality of test pieces is the same as the thickness of the blank that the user wants to form. In one implementation, the number of data sets related to forming is 30.
以金屬材質的胚料2進行鍛壓成形為例,成形結果y可為胚料2成形後的一平面度,複數成形參數x i 可選擇為成形胚料2的鍛壓量、鍛壓速度以及持壓時間。經由實驗或經驗判斷,前述鍛壓量、鍛壓速度以及持壓時間確實有可能對胚料2成形後的平面度造成影響。成形結果y與複數成形參數x i 的數據是由複數金屬試片進行成形試驗而取得,於此例中,金屬試片的特徵F為其未成形前的板厚,複數金屬試片的板厚皆為1.8mm,成形試驗而取得的部分數據如表1所示。 Taking the forging forming of a metal blank 2 as an example, the forming result y can be a flatness of the blank 2 after forming, and the multiple forming parameters xi can be selected as the forging pressure, forging speed and holding time of the forming blank 2. Through experiments or empirical judgment, the forging pressure, forging speed and holding time may indeed affect the flatness of the blank 2 after forming. The data of the forming result y and the multiple forming parameters xi are obtained by forming tests on multiple metal specimens. In this example, the feature F of the metal specimen is the plate thickness before forming. The plate thickness of the multiple metal specimens is 1.8 mm. Some data obtained from the forming test are shown in Table 1.
在根據該複數筆數據集建立一迴歸模型和一目標函數步驟(S2)中,是將該複數筆數據集的成形結果y對複數成形參數x i 建立一迴歸模型MR和一目標函數E(Y|X),目標函數E(Y|X)是迴歸模型MR對於一成形目標Y之預測方程式,其中,X代表所有自變數的總集合。目標函數E(Y|X)包括至少一自變數X i 和至少一對應的係數。自變數X i 是選自複數成形參數x i ,惟自變數X i 的項數不一定要等於成形參數x i 的數目,在具有合理的解釋力下,自變數X i 的項數可以少於成形參數x i 的數目,以兼顧運算成本。以前述的鍛壓成形為例,一目標函數E(Y|X)的自變數X i 可選擇為鍛壓量和鍛壓速度二項,但不以此為限。 In the step of establishing a regression model and a target function according to the plurality of data sets (S2), a regression model MR and a target function E ( Y | X ) are established for the forming results y of the plurality of data sets against the plurality of forming parameters xi . The target function E ( Y | X ) is a prediction equation of the regression model MR for a forming target Y. , where X represents the total set of all independent variables. The objective function E ( Y | X ) includes at least one independent variable Xi and at least one corresponding coefficient . The independent variable Xi is selected from the multiple forming parameters Xi , but the number of independent variables Xi is not necessarily equal to the number of forming parameters Xi . Under reasonable explanatory power, the number of independent variables Xi can be less than the number of forming parameters Xi to take into account the computational cost. Taking the forging forming as an example, the independent variable Xi of a target function E ( Y | X ) can be selected as the forging pressure and the forging speed, but it is not limited to this.
於求得該迴歸模型的模型參數估計量的抽樣分配步驟(S3)中,利用迴歸模型的統計原理,可經由上述複數筆數據集來獲得模型參數中,係數及變異數估計量的抽樣分配,並以此分配做為後續貝氏分析中模型參數β i 與σ2之事前機率分配,分別給定為π i (.)和πσ(.)。 In the sampling allocation step (S3) of obtaining the estimated amount of model parameters of the regression model, the statistical principle of the regression model can be used to obtain the model parameters through the above-mentioned multiple data sets, and the coefficients and variance The sampling distribution of the estimated quantity is used as the ex ante probability distribution of the model parameters β i and σ 2 in the subsequent Bayesian analysis, which are given as π i (.) and π σ (.).
於求出該模型參數的貝氏估計步驟(S4)中,經由步驟(S3)的統計方法,可得所有模型參數之事前機率分配為π i (.)和πσ(.),假設成形目標Y服從常態分佈,具期望值為目標函數E(Y|X),變異數為σ2時,即給定Y~N(E(Y|X),σ2),根據貝氏定理,模型參數之事後機率分配將為π(θ| y ,x ),且滿足π(θ| y ,x )=L(θ| y ,x )π(θ)/[ʃL(θ| y ,x )π(θ)d θ],其中L(θ| y ,x )為模型參數之聯合概似函數,而π(θ)為模型參數之聯合事前機率分配。也就是說,模型參數之事後機率分配π(θ| y ,x )模型參數之聯合概似函數L(θ| y,x )×模型參數之聯合事前機率分配π(θ)。在π(θ)具共軛性的假設下,模型參數之事後機率分配π(θ| y ,x )會具有明確的統計分配,故模型參數之貝氏估計將為事後機率分配之期望值E(π(θ| y ,x )),進而獲得一成形參數決策模型。 In the Bayesian estimation step (S4) of the model parameters, the prior probability distribution of all model parameters is obtained as π i (.) and π σ (.) through the statistical method of step (S3). Assuming that the shaping target Y follows a normal distribution with an expected value as the target function E ( Y | X ) and a variance of σ 2 , that is, Y ~ N ( E ( Y | X ) , σ 2 ), according to the Bayesian theorem, the subsequent probability distribution of the model parameters will be π( θ | y , x ) and satisfy π( θ | y , x )= L ( θ | y , x )π( θ )/[ʃ L ( θ | y , x )π( θ ) d θ ], where L ( θ | y , x ) is the probability distribution of the model parameters after the fact. ) is the joint likelihood function of the model parameters, and π( θ ) is the joint ex ante probability distribution of the model parameters. In other words, the ex post probability distribution of the model parameters π( θ | y , x ) The joint likelihood function of model parameters L ( θ | y , x )×the joint ex ante probability distribution of model parameters π( θ ). Under the assumption that π( θ ) is conjugated, the ex post probability distribution of model parameters π( θ | y , x ) will have a clear statistical distribution, so the Bayesian estimate of the model parameters will be the expected value of the ex post probability distribution E (π( θ | y , x )), thus obtaining a shaped parameter decision model.
根據前述步驟(S1)~(S4)便可取得對應特徵F之值為f1(如厚度為1.8mm)的胚料的成形參數決策模型,相同地,亦可根據前述步驟再取得對應特徵F之值為f2(如厚度為2.0mm)的胚料其成形參數決策模型。 According to the aforementioned steps (S1) to (S4), the forming parameter decision model of the blank corresponding to the feature F value f1 (such as the thickness of 1.8mm) can be obtained. Similarly, the forming parameter decision model of the blank corresponding to the feature F value f2 (such as the thickness of 2.0mm) can also be obtained according to the aforementioned steps.
透過前述成形參數決策模型,在給定一預期成形結果y *,便能回推一最適成形參數。這將有助於在試作階段快速取得合適的成形參數,可大幅縮短試作的時間和成本、降低試作程序和生產的技術門檻。 Through the aforementioned forming parameter decision model, given an expected forming result y * , the optimal forming parameter can be deduced. This will help to quickly obtain appropriate forming parameters during the trial stage, which can significantly shorten the trial time and cost, and lower the technical threshold of the trial process and production.
圖2為具成形參數決策模型的成形系統一實施例的方塊示意圖。請參閱圖2,本發明第二實施例揭示一種具成形參數決策模型的成形系統1,其包括一成形機11、一監測模組12以及一控制平台13。 FIG2 is a block diagram of an embodiment of a forming system with a forming parameter decision model. Referring to FIG2, the second embodiment of the present invention discloses a forming system 1 with a forming parameter decision model, which includes a forming machine 11, a monitoring module 12 and a control platform 13.
成形機11可以是沖床或鍛造機。進行一胚料2成形之前,需先對成形機11設定至少一成形參數x i ,成形機11以成形參數x i 來成形胚料2。成形參數x i 例如是單位時間之衝程數、鍛壓量、持壓時間、成形速度、成形溫度。 The forming machine 11 may be a punching machine or a forging machine. Before forming a blank 2, at least one forming parameter xi must be set for the forming machine 11. The forming machine 11 forms the blank 2 with the forming parameter xi . The forming parameter xi is, for example, the number of strokes per unit time, forging pressure, holding time, forming speed, and forming temperature.
監測模組12可線上監測或量測胚料2成形前的至少一特徵F,例如線上量測胚料2的厚度、直徑、重量和/或溫度。 The monitoring module 12 can monitor or measure online at least one characteristic F of the blank 2 before forming, such as online measurement of the thickness, diameter, weight and/or temperature of the blank 2.
控制平台13電性連接監測模組12和成形機11以接收和傳送資料。控制平台13包括一成形參數決策模型131、一運算模組132以及一人機界面133。成形參數決策模型131是一成形參數的機率模型,藉此模型可估算出滿足一成形結果y的最適成形參數。成形參數決策模型131的建置方法已於第一實施例說明,於此不再重複。人機界面133用以輸入和輸出資料,並輔助使用者操作具成形參數決策模型的成形系統1。運算模組132接收來自監測模組12所測得的特徵 F的數據,和使用者經由人機界面133設定一預期成形結果y *後,透過成形參數決策模型131以估算出一最適成形參數,再將最適成形參數傳送至成形機11以成形胚料2。 The control platform 13 is electrically connected to the monitoring module 12 and the forming machine 11 to receive and transmit data. The control platform 13 includes a forming parameter decision model 131, a calculation module 132 and a human-machine interface 133. The forming parameter decision model 131 is a probability model of forming parameters, by which the optimal forming parameters that meet a forming result y can be estimated. The method for constructing the forming parameter decision model 131 has been described in the first embodiment and will not be repeated here. The human-machine interface 133 is used to input and output data and assist the user in operating the forming system 1 with the forming parameter decision model. The calculation module 132 receives the data of the feature F measured by the monitoring module 12, and after the user sets an expected forming result y * through the human-machine interface 133, the forming parameter decision model 131 is used to estimate an optimal forming parameter. , and then the optimal forming parameters The blank 2 is then transferred to the forming machine 11 to be formed.
使用具成形參數決策模型的成形系統1時,使用者可先經由人機界面133設定一預期成形結果y *,監測模組12在入料前量測胚料2的至少一特徵F。運算模組132接收胚料2的特徵F的數據後,首先判斷胚料2的特徵F是否合格,若不合格,可對胚料2進行修補、調整再回到前一步驟,或者將胚料2剔除;若合格,運算模組132接收到特徵F的數據和預期成形結果y *後,透過成形參數決策模型131便能估算出一最適成形參數,再將最適成形參數傳送至成形機11對胚料2成形,即可成形出滿足預期成形結果y *的成品。 When using the forming system 1 with the forming parameter decision model, the user can first set an expected forming result y * through the human-machine interface 133, and the monitoring module 12 measures at least one feature F of the blank 2 before feeding. After the calculation module 132 receives the data of the feature F of the blank 2, it first determines whether the feature F of the blank 2 is qualified. If it is unqualified, the blank 2 can be repaired and adjusted and then return to the previous step, or the blank 2 can be discarded; if it is qualified, after the calculation module 132 receives the data of the feature F and the expected forming result y * , an optimal forming parameter can be estimated through the forming parameter decision model 131. , and then the optimal forming parameters The blank 2 is sent to the forming machine 11 to be formed into a finished product that meets the expected forming result y * .
本發明之成形參數決策模型建置方法所提供的數據集筆數相對較少,減少了建立成形參數決策模型前期所花費的時間與成本。本發明之具成形參數決策模型的成形系統透過成形參數決策模型,在給定一預期成形結果,便能回推最適成形參數,有助於在試作階段快速取得合適的成形參數,可大幅縮短試作的時間和成本,降低試作程序的技術門檻。 The forming parameter decision model establishment method of the present invention provides a relatively small number of data sets, which reduces the time and cost spent in the early stage of establishing the forming parameter decision model. The forming system with a forming parameter decision model of the present invention can back-calculate the optimal forming parameters given an expected forming result through the forming parameter decision model, which helps to quickly obtain appropriate forming parameters in the trial stage, which can greatly shorten the trial time and cost and reduce the technical threshold of the trial process.
以上僅記載本發明為呈現解決問題所採用的技術手段之較佳實施方式或實施例而已,並非用以限定本發明專利實施之範圍。即凡與本發明專利申請範圍文義相符,或依本發明專利範圍所做的均等變化與修飾,皆為本發明專利範圍所涵蓋。 The above only records the preferred implementation methods or examples of the technical means adopted by the present invention to solve the problem, and is not intended to limit the scope of implementation of the present invention. That is, all equivalent changes and modifications that are consistent with the scope of the present invention's patent application or made in accordance with the scope of the present invention's patent are covered by the scope of the present invention's patent.
S1~S4:步驟 S1~S4: Steps
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW112145751A TWI874003B (en) | 2023-11-27 | 2023-11-27 | Forming parameter decision-making model construction method and forming system with forming parameter decision-making model |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW112145751A TWI874003B (en) | 2023-11-27 | 2023-11-27 | Forming parameter decision-making model construction method and forming system with forming parameter decision-making model |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TWI874003B true TWI874003B (en) | 2025-02-21 |
| TW202522143A TW202522143A (en) | 2025-06-01 |
Family
ID=95557409
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW112145751A TWI874003B (en) | 2023-11-27 | 2023-11-27 | Forming parameter decision-making model construction method and forming system with forming parameter decision-making model |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI874003B (en) |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20210173359A1 (en) * | 2019-12-05 | 2021-06-10 | Zhe Yu | Bayesian Estimation Based Parameter Estimation for Composite Load Model |
| CN115755606A (en) * | 2022-11-16 | 2023-03-07 | 上海友道智途科技有限公司 | Carrier controller automatic optimization method, medium and equipment based on Bayesian optimization |
| TW202338635A (en) * | 2022-03-22 | 2023-10-01 | 國立成功大學 | Multiple-variable predictive maintenance method for component of production tool and computer program product thereof |
-
2023
- 2023-11-27 TW TW112145751A patent/TWI874003B/en active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20210173359A1 (en) * | 2019-12-05 | 2021-06-10 | Zhe Yu | Bayesian Estimation Based Parameter Estimation for Composite Load Model |
| TW202338635A (en) * | 2022-03-22 | 2023-10-01 | 國立成功大學 | Multiple-variable predictive maintenance method for component of production tool and computer program product thereof |
| CN115755606A (en) * | 2022-11-16 | 2023-03-07 | 上海友道智途科技有限公司 | Carrier controller automatic optimization method, medium and equipment based on Bayesian optimization |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202522143A (en) | 2025-06-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN113486457B (en) | Die casting defect prediction and diagnosis system | |
| CN111475921A (en) | A Tool Remaining Life Prediction Method Based on Edge Computing and LSTM Network | |
| CN109308063B (en) | Fermentation process stage division method based on score matrix | |
| CN106845681A (en) | A kind of stock trend forecasting method of application depth learning technology | |
| CN116372665A (en) | A tool health monitoring method for aviation CNC machine tools based on OPC UA | |
| CN109918704B (en) | Die forging die life prediction method based on finite element simulation | |
| CN118095000B (en) | Machine learning model-based stamped part rebound compensation method and device | |
| CN115906557B (en) | An intelligent detection method for determining forming defects by contour deviation of stamping blank | |
| CN115983684B (en) | Copper pipe production defect management method and system for refrigeration | |
| CN118898187B (en) | A finite element simulation method and system for predicting the compacting performance of metal welding powder | |
| CN118663999B (en) | Method for predicting abrasion trend of gear hobbing cutter based on DRSN and APF | |
| CN110348954B (en) | A Mass Customization-Oriented Partitioning Method for Complex Process Modules | |
| CN115169453A (en) | Hot continuous rolling width prediction method based on density clustering and depth residual error network | |
| WO2025185197A1 (en) | Forging process optimization system and optimization method based on digital twin | |
| CN117086117A (en) | A temperature control method and system for titanium strip hot rolling process | |
| CN118567240A (en) | Aluminum smelting process parameter self-adaptive control method and system based on big data modeling | |
| TWI874003B (en) | Forming parameter decision-making model construction method and forming system with forming parameter decision-making model | |
| CN114462317A (en) | Prediction method of tool life for intelligent tool holder-assisted milling based on GRU neural network | |
| CN114936755B (en) | A root cause analysis method for stud welding defects based on knowledge graph | |
| CN116738602A (en) | A control method and system for complex curved surface stamping processing based on process energy | |
| CN109543921B (en) | Production scheduling method of special petroleum pipe flow shop based on improved genetic algorithm | |
| CN115860263A (en) | Power grid infrastructure planning project construction period prediction method and prediction system | |
| WO2023205924A1 (en) | Intelligent manufacturing method based on centralized service platform industrial internet of things, and system | |
| CN114004116B (en) | Quantitative evaluation method for multi-station progressive die layout scheme | |
| CN118798044A (en) | Online prediction method of forging temperature based on machine learning |