[go: up one dir, main page]

TWI873008B - Silicon-oxide-nitride-oxide-silicon based multi-level non-volatile memory device and methods of operation thereof - Google Patents

Silicon-oxide-nitride-oxide-silicon based multi-level non-volatile memory device and methods of operation thereof Download PDF

Info

Publication number
TWI873008B
TWI873008B TW113112548A TW113112548A TWI873008B TW I873008 B TWI873008 B TW I873008B TW 113112548 A TW113112548 A TW 113112548A TW 113112548 A TW113112548 A TW 113112548A TW I873008 B TWI873008 B TW I873008B
Authority
TW
Taiwan
Prior art keywords
nvm
level
digital
analog
mac
Prior art date
Application number
TW113112548A
Other languages
Chinese (zh)
Other versions
TW202430000A (en
Inventor
文卡特拉曼 普拉巴卡
克里希納斯瓦米 拉姆庫馬爾
范尼特 艾格羅瓦
隆 邢
斯瓦提利卡 薩哈
聖塔努 沙曼達
麥克 阿蒙森
拉文德拉 卡普雷
Original Assignee
美商英飛淩科技有限責任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商英飛淩科技有限責任公司 filed Critical 美商英飛淩科技有限責任公司
Priority to TW113112548A priority Critical patent/TWI873008B/en
Publication of TW202430000A publication Critical patent/TW202430000A/en
Application granted granted Critical
Publication of TWI873008B publication Critical patent/TWI873008B/en

Links

Images

Landscapes

  • Non-Volatile Memory (AREA)
  • Read Only Memory (AREA)

Abstract

A semiconductor device that has a semiconductor-oxide-nitride-oxide-semiconductor (SONOS) based non-volatile memory (NVM) array including NVM cells arranged in rows and columns, in which NVM transistors of the NVM cells are configured to store N x analog values corresponding to the N x levels of their drain current (I D) or threshold voltage (V T) levels, digital-to-analog (DAC) function that receives and converts digital signals from external devices, column multiplexor (mux) function that is configured to select and combine the analog value read from the NVM cells, and analog-to-digital (ADC) function that is configured to convert analog results of the column mux function to digital values and output the digital values.

Description

基於矽-氧化物-氮化物-氧化物-矽的多階非揮發性記憶體裝置及操作其之方法Silicon-oxide-nitride-oxide-silicon based multi-level non-volatile memory device and method of operating the same

本發明關於非揮發性記憶體裝置,並且特別是關於使用基於多階矽(半導體)-氧化物-氮化物-氧化物-矽(半導體)(SONOS)的電荷捕獲非揮發性記憶體(NVM)裝置以用於包含在人工智慧(AI)應用中的神經型態計算的類比操作。 The present invention relates to non-volatile memory devices, and more particularly to the use of multi-level silicon-oxide-nitride-oxide-silicon (SONOS) based charge trapping non-volatile memory (NVM) devices for analog operations including neuromorphic computing in artificial intelligence (AI) applications.

相關申請案之交叉參考 Cross-references to related applications

本申請案主張依據35 U.S.C.§119(e),2019年11月26日申請的美國臨時申請案第62/940,547號之優先權及利益,其整體藉由引用併入本文。 This application claims priority to and the benefit of U.S. Provisional Application No. 62/940,547, filed on November 26, 2019, pursuant to 35 U.S.C. §119(e), which is incorporated herein by reference in its entirety.

非揮發性記憶體被廣泛用於在電腦系統中儲存數據,並且通常包括具有以行和列配置的大量記憶體單元的記憶體陣列。在某些實施例中,所述記憶體單元中的每一個可至少包含非揮發性元件(像是電荷捕獲場效電晶體(FET)、浮接閘極電晶體),所述非揮發性元件是藉由在控制/記憶體閘極和基板或汲極/源極區域之間施加適當極性、大小和持續時間的電壓而進行程式化或抹除。舉例來說,在n通道電荷捕獲FET中,閘極對基板的正電壓偏壓造成電子藉由富爾諾罕(Fowler Nordheim,FN)穿隧機制從所述通道穿隧並且被捕獲在電荷捕獲介電層中,提高所述電晶體的臨界電壓(VT)。閘極對基板的負電壓造成電洞從所述通道 穿隧並且被捕獲在電荷捕獲介電層中,將低所述SONOS電晶體的所述VTNon-volatile memory is widely used to store data in computer systems and typically includes a memory array having a large number of memory cells arranged in rows and columns. In some embodiments, each of the memory cells may include at least a non-volatile element (such as a charge trapping field effect transistor (FET), a floating gate transistor) that is programmed or erased by applying a voltage of appropriate polarity, magnitude, and duration between a control/memory gate and a substrate or drain/source region. For example, in an n-channel charge-trapping FET, a positive bias of the gate to the substrate causes electrons to tunnel from the channel via the Fowler Nordheim (FN) tunneling mechanism and be trapped in the charge-trapping dielectric layer, raising the critical voltage (V T ) of the transistor. A negative bias of the gate to the substrate causes holes to tunnel from the channel and be trapped in the charge-trapping dielectric layer, lowering the V T of the SONOS transistor.

在某些實施例中,基於SONOS的記憶體陣列被使用並且操作為數位資料儲存裝置,其中有二進位(0和1)資料被儲存,所述二進位資料是根據所述SONOS單元的兩個各別的VT或汲極電流(ID)位準或數值。 In certain embodiments, a SONOS-based memory array is used and operates as a digital data storage device in which binary (0 and 1) data is stored based on two respective VT or drain current ( ID ) levels or values of the SONOS cells.

對於使用NVM技術,像是SONOS,以用於類比記憶體和處理始有需求的,是由於它們具有可配置的可達到高精確度的多個VT及ID(兩個以上)位準。SONOS記憶體單元可提供低延遲時間、低功率以及低雜訊的操作,其適合用於類比處理,其包括邊緣推論計算,例如人工智慧(AI)應用中的神經型態計算。 There is a demand for using NVM technologies, such as SONOS, for analog memory and processing because they have multiple VT and ID (more than two) levels that can be configured to achieve high accuracy. SONOS memory cells offer low latency, low power, and low noise operation, which is suitable for analog processing, including edge inference computing, such as neuromorphic computing in artificial intelligence (AI) applications.

因此,本發明的目的是提供優化的偏壓條件、操作(抹除、程式化、抑制...等等)程序以及基於SONOS的類比NVM裝置和系統以達到調整多個具有緊密以及分開分布的細微的VT/ID位準(低分布標準差“σ”)。 Therefore, the object of the present invention is to provide optimized bias conditions, operation (erase, programming, inhibit, etc.) procedures, and SONOS-based analog NVM devices and systems to achieve tuning of multiple fine VT / ID levels with tight and widely distributed (low distribution standard deviation "σ").

根據本發明實施例的一種操作半導體裝置的方法,所述方法的步驟可能包括獲得所述半導體裝置,所述半導體裝置包括以行和列配置的多階記憶電晶體,其中所述多階記憶電晶體包括基於矽-氧化物-氮化物-氧化物-矽(SONOS)的電荷捕捉電晶體,其設置以用於儲存N個類比值中的一個值,所述N個類比值對應於汲極電流(ID)以及臨界電壓(VT)的N個位準,並且其中N是大於2的自然數;選擇所述多階記憶電晶體中的至少一個以執行目標值的寫入程序,其中所述目標值是所述N個類比值中的一個值並且對應於目標ID範圍,所述目標ID範圍從目標ID下限(LL)延伸到目標上限(UL);執行部分程式化操作於所述多階記憶電晶體中的所述至少一個以降低ID位準,其中在所述部分程式化操作之後執行第一驗證讀取以判定如何將降低的ID位準與目標ID平均值進行比較;執行部分抹除操作於所述多階記憶電晶體中的所述至少一個以提高ID位準,其中在所述部分 抹除操作之後執行第二驗證讀取以判定如何將提高的ID位準與目標ID平均值進行比較;以及當所述多階記憶電晶體中的所述至少一個的所述ID位準落在所述目標ID範圍之中時,判定所述目標值的所述寫入程序完成。 According to an embodiment of the present invention, a method for operating a semiconductor device may include obtaining the semiconductor device, the semiconductor device including multi-stage memory transistors arranged in rows and columns, wherein the multi-stage memory transistors include charge trapping transistors based on silicon-oxide-nitride-oxide-silicon (SONOS), which are configured to store one of N analog values, the N analog values corresponding to N levels of drain current ( ID ) and critical voltage ( VT ), and wherein N is a natural number greater than 2; selecting at least one of the multi-stage memory transistors to perform a write procedure of a target value, wherein the target value is one of the N analog values and corresponds to a target ID range, the target ID range ranging from a target ID to a target ID. The invention relates to a method for controlling the memory transistors of the present invention to extend a target ID lower limit (LL) to a target upper limit (UL); performing a partial programming operation on at least one of the multi-level memory transistors to reduce an ID level, wherein a first verification read is performed after the partial programming operation to determine how the reduced ID level is compared with a target ID average value; performing a partial erasure operation on at least one of the multi-level memory transistors to increase the ID level, wherein a second verification read is performed after the partial erasure operation to determine how the increased ID level is compared with the target ID average value; and determining that the writing process of the target value is completed when the ID level of the at least one of the multi-level memory transistors falls within the target ID range.

在一個實施例中,所述方法也可能包括在所述目標值的所述寫入程序完成之後,由進一步的程式化和抹除操作來抑制所述多階記憶電晶體中的所述至少一個的步驟,其中所述抑制包括減少所述多階記憶電晶體中的所述至少一個的閘極對汲極電壓或閘極對基板電壓的量值。 In one embodiment, the method may also include a step of inhibiting at least one of the multi-level memory transistors by further programming and erasing operations after the writing process of the target value is completed, wherein the inhibition includes reducing the magnitude of the gate-to-drain voltage or the gate-to-substrate voltage of the at least one of the multi-level memory transistors.

在一個實施例中,所述部分程式化操作可能包括軟式程式化操作和再填充程式化操作中的至少一個,其中所述部分程式化操作被配置以降低所述多階記憶電晶體中的所述至少一個的所述ID位準並且提高所述多階記憶電晶體中的所述至少一個的VT位準,並且其中沒有被選擇以執行所述部分程式化操作的多階記憶電晶體是被抑制。 In one embodiment, the partial programming operation may include at least one of a soft programming operation and a refill programming operation, wherein the partial programming operation is configured to lower the ID level of the at least one of the multi-stage memory transistors and increase the VT level of the at least one of the multi-stage memory transistors, and wherein the multi-stage memory transistors that are not selected to perform the partial programming operation are inhibited.

在一個實施例中,所述部分程式化操作相較於程式化操作而被執行相當短的持續時間,其中不管所述多階記憶電晶體的起始ID位準,所述程式化操作被配置以降低所述多階記憶電晶體的ID位準到完全程式化的ID位準。 In one embodiment, the partial programming operation is performed for a relatively short duration compared to the programming operation, wherein the programming operation is configured to reduce the ID level of the multi-level memory transistor to a fully programmed ID level regardless of the starting ID level of the multi-level memory transistor.

在一個實施例中,所述部分抹除操作可能包括軟式抹除操作、選擇性軟式抹除操作和退火抹除操作,其中所述部分抹除操作被配置以提高所述多階記憶電晶體中的所述至少一個的所述ID位準並且降低所述多階記憶電晶體中的所述至少一個的VT位準,並且其中沒有被選擇以執行所述選擇性軟式抹除操作的多階記憶電晶體是被抑制。 In one embodiment, the partial erase operation may include a soft erase operation, a selective soft erase operation, and an anneal erase operation, wherein the partial erase operation is configured to increase the ID level of the at least one of the multi-level memory transistors and decrease the VT level of the at least one of the multi-level memory transistors, and wherein the multi-level memory transistors that are not selected to perform the selective soft erase operation are inhibited.

在一個實施例中,所述軟式抹除操作和所述選擇性軟式抹除操作相較於抹除操作而可能被執行相當短的持續時間,其中不管所述多階記憶電晶體的起始ID位準,所述抹除操作被配置以提高所述多階記憶電晶體的ID位準到完全抹除的ID位準。 In one embodiment, the soft erase operation and the selective soft erase operation may be performed for a relatively short duration compared to an erase operation, wherein the erase operation is configured to increase the ID level of the multi-level memory transistor to a fully erased ID level regardless of the starting ID level of the multi-level memory transistor.

在一個實施例中,所述退火抹除操作相較於抹除操作而可能被執行相當長的持續時間,並且其中在所述抹除操作期間,所述多階記憶電晶體中的所述至少一個的閘極對汲極電壓偏壓的量值是大於所述退火抹除操作。 In one embodiment, the annealing erase operation may be performed for a relatively long duration compared to the erase operation, and wherein during the erase operation, the magnitude of the gate-to-drain voltage bias of at least one of the multi-stage memory transistors is greater than that of the annealing erase operation.

在一個實施例中,所述方法可能進一步包括再填充和退火演算法,包含:在所述目標值的所述寫入程序完成之後,執行所述軟式抹除操作於所述多階記憶電晶體中的所述至少一個上;驗證是否所述ID位準到達至少目標ID+X%的位準,其中X是在20-50的範圍中;執行所述再填充程式化操作於所述多階記憶電晶體中的所述至少一個上;驗證是否所述ID位準到達至少目標ID-Y%的位準,其中Y是在10-20的範圍中;執行所述退火抹除操作於所述多階記憶電晶體中的所述至少一個上;驗證所述多階記憶電晶體中的所述至少一個的每一個的所述ID位準;只有選擇和執行所述選擇性軟式抹除操作於所述多階記憶電晶體中的所述至少一個上,其具有小於目標ID下限的ID位準並且抑制未被選擇的多階記憶電晶體;並且驗證是否所述多階記憶電晶體中的所述至少一個的所述ID位準是回復到所述目標ID位準範圍中。 In one embodiment, the method may further include a refill and anneal algorithm, including: after the write process of the target value is completed, performing the soft erase operation on the at least one of the multi-level memory transistors; verifying whether the ID level reaches at least a target ID +X% level, where X is in the range of 20-50; performing the refill programming operation on the at least one of the multi-level memory transistors; verifying whether the ID level reaches at least a target ID -Y% level, where Y is in the range of 10-20; performing the anneal erase operation on the at least one of the multi-level memory transistors; verifying the ID level of each of the at least one of the multi-level memory transistors. D level; only selecting and executing the selective soft erase operation on the at least one of the multi-level memory transistors having an ID level less than a target ID lower limit and inhibiting unselected multi-level memory transistors; and verifying whether the ID level of the at least one of the multi-level memory transistors is restored to the target ID level range.

在一個實施例中,所述再填充和退火演算法可能被配置以將所述多階記憶電晶體中的所述至少一個的所述ID位準維持在所述目標ID位準範圍中,同時以所述多階記憶電晶體中的所述至少一個的電荷捕捉層的深陷阱中的電荷取代在淺陷阱中的電荷,其中對於所述多階記憶電晶體中的所述至少一個施加高閘極對汲極電壓偏壓以及短程式化脈衝,所述再填充程式化操作促進了深陷阱電荷,並且其中所述退火抹除操作被配置以藉由對所述多階記憶電晶體中的所述至少一個施加低閘極對汲極電壓偏壓和長抹除脈衝而經由富爾諾罕穿隧來清空淺陷阱電荷。 In one embodiment, the refill and annealing algorithm may be configured to maintain the ID level of the at least one of the multi-stage memory transistors at the target ID level. In the D level range, charges in shallow traps are replaced by charges in deep traps of the charge trapping layer of at least one of the multi-level memory transistors, wherein a high gate-to-drain voltage bias and a short programming pulse are applied to the at least one of the multi-level memory transistors, the refill programming operation promotes the deep trap charges, and wherein the annealing erase operation is configured to clear the shallow trap charges via Furnohan tunneling by applying a low gate-to-drain voltage bias and a long erase pulse to the at least one of the multi-level memory transistors.

在一個實施例中,所述多階記憶電晶體中的所述至少一個可能被設置在相同的列或相同的行中。 In one embodiment, at least one of the multi-stage memory transistors may be arranged in the same column or the same row.

根據一種半導體裝置的操作方法的一個實施例,所述方法的步驟可能包括選擇基於SONOS的NVM陣列的第一非揮發性記憶體(NVM)單元以用於執行選擇性軟式抹除操作,其中所述基於SONOS的NVM陣列包括以行和列配置的NVM單元,並且其中相鄰的第一行和第二行的NVM單元耦接到第一共享源極線;產生並且耦接第一負電壓於在所述基於SONOS的NVM陣列的第一列中的第一SONOS字元線以及正電壓於所述第一行中的第一位元線以施加閘極對汲極電壓偏壓於在所述第一NVM單元中的第一NVM電晶體以藉由富爾諾罕穿隧部分抹除所述第一NVM單元,其中所述第一NVM電晶體的汲極電流(ID)位準和臨界電壓(VT)位準是分別地被提高和降低;並且將抑制電壓耦接於在所述第二行中的第二位元線以減少施加所述閘極對汲極電壓偏壓到所述第一列中的第二NVM單元中的第二NVM電晶體,所述第二電晶體未被選擇以進行選擇性軟式抹除操作,其中所述抑制電壓具有相同的極性和小於所述第一負電壓的量值,並且其中所述第二NVM電晶體在所述選擇性軟式抹除操作之前和之後具有大約相同的ID和VT位準。 According to an embodiment of an operating method of a semiconductor device, the steps of the method may include selecting a first non-volatile memory (NVM) cell of a SONOS-based NVM array for performing a selective soft erase operation, wherein the SONOS-based NVM array includes NVM cells arranged in rows and columns, and wherein adjacent first and second rows of NVM cells are coupled to a first shared source line; generating and coupling a first negative voltage to a first SONOS word line in a first column of the SONOS-based NVM array and a positive voltage to a first bit line in the first row to apply a gate-to-drain voltage bias to a first NVM transistor in the first NVM cell to partially erase the first NVM cell by Furnohan tunneling, wherein a drain current (I The selective soft erase operation is performed by applying an inhibit voltage to a second bit line in the second row to reduce the gate-to-drain voltage bias applied to a second NVM transistor in a second NVM cell in the first column, the second transistor being not selected for the selective soft erase operation, wherein the inhibit voltage has the same polarity and a magnitude less than the first negative voltage, and wherein the second NVM transistor has approximately the same ID and VT levels before and after the selective soft erase operation.

在一個實施例中,所述方法的步驟可能包括將接地電壓耦接到在所述基於SONOS的NVM陣列的第二列中的第二SONOS字元線以不選擇在所述第二列中的所有NVM單元進行選擇性軟式抹除操作。 In one embodiment, the method may include coupling a ground voltage to a second SONOS word line in a second column of the SONOS-based NVM array to deselect all NVM cells in the second column for a selective soft erase operation.

在一個實施例中,所述方法的步驟可能包括產生並且耦接所述抑制電壓於所述第一列中的第一字元線和所述基於SONOS的NVM陣列的淺正井區(SPW)節點以關閉在所述第一NVM單元中的第一場效電晶體(FET)以及在所述第二NVM單元中的第二FET;並且耦接所述正電壓到深負井區(DNW)節點。 In one embodiment, the method may include generating and coupling the inhibit voltage to a first word line in the first column and a shallow positive well (SPW) node of the SONOS-based NVM array to turn off a first field effect transistor (FET) in the first NVM cell and a second FET in the second NVM cell; and coupling the positive voltage to a deep negative well (DNW) node.

在一個實施例中,每個所述NVM單元可能包括NVM電晶體,所述NVM電晶體被配置以儲存N個類比值中的一個值,所述N個類比值對應於N個ID及VT位準,其中N是大於2的自然數,並且其中所述選擇性軟式抹除操作被配 置以提高所述第一NVM電晶體的的所述ID位準和降低所述第一NVM電晶體的所述VT位準,使得所述第一NVM電晶體所儲存的數值從第一數值變成第二數值,並且其中所述第二數值是大於所述第一數值。 In one embodiment, each of the NVM cells may include an NVM transistor configured to store one of N analog values, the N analog values corresponding to N ID and VT levels, where N is a natural number greater than 2, and wherein the selective soft erase operation is configured to increase the ID level of the first NVM transistor and decrease the VT level of the first NVM transistor so that the value stored in the first NVM transistor changes from a first value to a second value, and wherein the second value is greater than the first value.

在一個實施例中,所述N個ID及VT位準中的每一個可能包括一分布,其中想個相鄰的ID或VT分布具有小於3%的重疊頻率,並且其中所述N個ID及VT位準分別是線性遞增和線性遞減。 In one embodiment, each of the N ID and VT levels may include a distribution in which two adjacent ID or VT distributions have an overlap frequency of less than 3%, and wherein the N ID and VT levels are linearly increasing and linearly decreasing, respectively.

根據一種半導體裝置的一個實施例,所述裝置可包括基於SONOS的NVM陣列,其包括以行和列配置的NVM單元,其中每個NVM單元包括NVM電晶體和場效電晶體(FET),並且其中每個NVM電晶體被配置以儲存N個類比值,所述N個類比值對應於所述每個NVM電晶體的N個汲極電流(ID)或臨界電壓(VT)位準;數位-類比轉換器(DAC)功能部件,其從外部裝置將數位信號接收並且轉換,其中被轉換的所述數位信號被配置以將類比值儲存在至少一個行中的至少一個NVM單元中以被讀取;行多工器(mux)功能部件,其被配置以選擇並且結合從所述至少一個NVM單元讀取的所述類比值;並且類比-數位轉換器(ADC)功能部件,其被配置以將所述行多工器功能部件的類比結果轉換為數位值並且將所述數位值輸出。 According to one embodiment of a semiconductor device, the device may include a SONOS-based NVM array including NVM cells arranged in rows and columns, wherein each NVM cell includes a NVM transistor and a field effect transistor (FET), and wherein each NVM transistor is configured to store N analog values corresponding to N drain currents ( ID ) or critical voltages (V T) of each NVM transistor. ) level; a digital-to-analog converter (DAC) functional component that receives and converts a digital signal from an external device, wherein the converted digital signal is configured to store an analog value in at least one NVM cell in at least one row to be read; a row multiplexer (mux) functional component that is configured to select and combine the analog values read from the at least one NVM cell; and an analog-to-digital converter (ADC) functional component that is configured to convert the analog result of the row multiplexer functional component into a digital value and output the digital value.

在一個實施例中,所述N個類比值可能藉由一連串部分程式化操作和選擇性部分抹除操作而被寫入到所述NVM電晶體,其中所述選擇性部分抹除操作被配置以提高相同列的選擇的NVM電晶體的ID位準並且降低相同列的選擇的NVM電晶體的VT位準並且同時抑制在所述相同列中的未選擇的NVM電晶體。 In one embodiment, the N analog values may be written to the NVM transistors by a series of partial programming operations and selective partial erase operations, wherein the selective partial erase operation is configured to increase the ID level of selected NVM transistors in the same row and decrease the VT level of selected NVM transistors in the same row and simultaneously inhibit unselected NVM transistors in the same row.

在一個實施例中,所述部分程式化操作和所述選擇性部分抹除操作中的每一個之後可能進行讀取操作以驗證所述選擇的NVM電晶體的ID位準或VT位準是否達到目標ID位準和VT位準。 In one embodiment, each of the partial programming operation and the selective partial erase operation may be followed by a read operation to verify whether the ID level or VT level of the selected NVM transistor reaches the target ID level and VT level.

在一個實施例中,多個所述半導體裝置可能被放置在相同的半導體晶粒上並且交流地彼此耦接,所述多個所述半導體裝置中的每一個被配置以基於儲存在所述NVM單元中的類比值以及從所述多個所述半導體裝置中的至少一個其他半導體裝置的數位輸入來執行乘積累加(MAC)操作。 In one embodiment, a plurality of the semiconductor devices may be placed on the same semiconductor die and AC-coupled to each other, each of the plurality of the semiconductor devices being configured to perform a multiply-accumulate (MAC) operation based on an analog value stored in the NVM cell and a digital input from at least one other semiconductor device of the plurality of the semiconductor devices.

在一個實施例中,所述多個所述半導體裝置的第一子集輸出所述MAC操作的數位結果,並且其中所述第一子集的數位結果被耦接到所述多個所述半導體裝置的第二子集作為所述數位輸入。 In one embodiment, a first subset of the plurality of semiconductor devices outputs a digital result of the MAC operation, and wherein the digital result of the first subset is coupled to a second subset of the plurality of semiconductor devices as the digital input.

在一個實施例中,所述多個所述半導體裝置可能被配置以作為在深度神經網路(DNN)中的人工神經元以執行在人工智慧(AI)應用中的神經型態計算。 In one embodiment, the plurality of semiconductor devices may be configured to function as artificial neurons in a deep neural network (DNN) to perform neural-type computations in artificial intelligence (AI) applications.

86:源極/源極區域 86: Source/Source region

88:汲極/汲極區域 88: Drain/Drain area

90:NVM單元 90:NVM unit

91:通道區域 91: Channel area

92:電荷捕獲層/氮化物層 92: Charge trapping layer/nitride layer

93:淺正井區(SPW)/基板/p井區/井區 93: Shallow positive well area (SPW)/substrate/p well area/well area

94:NV電晶體 94:NV transistor

95:通道 95: Channel

96:FET 96: FET

97:源極區域/內部節點 97: Source region/internal node

98:基板 98: Substrate

99:深負井區(DNW) 99: Deep Negative Well (DNW)

100:NVM陣列 100:NVM array

200:NVM單元對 200: NVM unit pair

300:2×2陣列 300: 2×2 array

502:重疊區域 502: Overlapping region

710:重疊部分 710: Overlapping part

800:2×2陣列 800: 2×2 array

900A:寫入操作/方法/寫入方法 900A:Writing operation/method/writing method

900B:寫入操作/方法/寫入方法 900B:Writing operation/method/writing method

902-916:步驟 902-916: Steps

918-930:步驟 918-930: Steps

1100:寫入演算法/方法 1100: Write algorithm/method

1102-1120:步驟 1102-1120: Steps

1200:再填充和退火演算法/再填充和退火程序/方法 1200: Refilling and annealing algorithm/refilling and annealing procedure/method

1202-1210:步驟 1202-1210: Steps

1300:多階NVM裝置/類比NVM裝置 1300: Multi-level NVM device/analog NVM device

1302:多階NVM陣列/類比NVM陣列 1302: Multi-level NVM array/analog NVM array

1304:行多工器功能部件/行多工器 1304: Multiplexer functional components/multiplexer

1306:類比-數位轉換器(ADC)/比較器 1306: Analog-to-digital converter (ADC)/comparator

1310:多階NVM單元 1310: Multi-level NVM unit

1320-1326:數位-類比轉換器(DAC) 1320-1326: Digital-to-Analog Converter (DAC)

1402:系統/MAC系統 1402: System/MAC System

1504:人工神經元 1504: Artificial Neuron

1600:神經網路加速系統/NN加速系統 1600: Neural network acceleration system/NN acceleration system

1602a:加速器/多階NVM裝置 1602a: Accelerator/multi-level NVM device

1602b:多階NVM裝置 1602b: Multi-level NVM device

1602c:多階NVM裝置 1602c: Multi-level NVM device

1604:高電壓行驅動器 1604: High voltage drive

1606:行多工器/行多工器功能部件 1606: Row multiplexer/row multiplexer functional components

1608:ADC 1608:ADC

1610:數位數據流控制區塊 1610: Digital data flow control block

1612:DAC 1612:DAC

1614:低電壓驅動器 1614: Low voltage driver

1616:高電壓驅動器 1616: High voltage driver

1712~1710:步驟 1712~1710: Steps

透過配合所附圖式的詳細說明以及後附的申請專利範圍內容,將得到對於本發明的更全盤的理解,其中:[圖1A]圖示基於SONOS的非揮發性記憶電晶體或裝置的橫截面側視圖的方塊圖;[圖1B]圖示對應於圖1A中所描繪的基於SONOS的非揮發性記憶電晶體或裝置的電路簡圖;[圖2]圖示根據本發明實施例的基於SONOS的非揮發性記憶體陣列的電路簡圖;[圖3A]為根據本發明所揭示的基於SONOS的非揮發性記憶體陣列的一區段的電路簡圖,其圖示抹除操作的實施例;[圖3B]為根據本發明所揭示的基於SONOS的非揮發性記憶體陣列的一區段的電路簡圖,其圖示程式化/抑制操作的實施例; [圖4]為根據本發明之實施例的代表圖形,其圖示說明在基於SONOS的非揮發性記憶體陣列中的被程式化(Vtp和Idp)以及抹除(Vte和Ide)的記憶電晶體的臨界電壓和汲極電流的分布情形;[圖5]根據本發明之實施例的代表圖形,其圖示說明在基於SONOS的多階非揮發性記憶體單元中的汲極電流(ID)位準的分布情形;[圖6]為圖示說明,在根據本發明實施例的非揮發性記憶體陣列中的基於SONOS的記憶電晶體的各別ID位準的分布之圖形;[圖7A]為圖示說明,在根據本發明實施例的非揮發性記憶體陣列中的基於SONOS的記憶電晶體的所述電荷捕捉層中的捕獲電荷的分布之圖形;[圖7B]為圖示說明,在根據本發明實施例的非揮發性記憶體陣列中的基於SONOS的記憶電晶體的ID分布之圖形,其顯示ID標準差及保存力(保留期間)劣化;[圖8A]是基於SONOS的非揮發性記憶體陣列的區段的示意圖,其說明根據本發明之實施例的選擇性軟式抹除(soft erase)操作;;[圖8B]是基於SONOS的非揮發性記憶體陣列的區段的示意圖,其說明根據本發明之實施例的再填充程式化(refill program)/抑制操作;[圖9A]和[圖9B]是示意性的流程圖,其說明根據本發明的基於多階SONOS的NVM陣列的寫入操作的實施例;[圖10]是示意圖,其說明在根據本發明的實施例的非揮發性記憶體陣列中的基於SONOS的記憶電晶體的寫入操作期間的分別的ID位準的位準降低/升高;[圖11]是示意性的流程圖,其說明根據本發明的實施例的基於多階SONOS的NVM陣列的寫入操作的實施例;[圖12]是示意性的流程圖,其說明根據本發明的實施例的基於多 階SONOS的NVM陣列的再填充/退火操作的實施例;[圖13]是根據本發明之基於SONOS的多階NVM裝置的代表性方塊圖;[圖14]是圖示說明常規數位乘積累加(MAC)系統的實施例的代表性方塊圖;[圖15]是圖示說明深度神經網路(DNN)系統中的人工神經元的實施例的代表性圖示;[圖16]是根據本發明之類比式神經網路(NN)加速器裝置的實施例的示意圖;以及[圖17]是根據本發明之簡化流程圖,其圖示說明在圖16中的所述NN加速器裝置的操作方法。 A more comprehensive understanding of the present invention will be obtained by referring to the detailed description of the attached drawings and the attached patent scope, wherein: [FIG. 1A] illustrates a block diagram of a cross-sectional side view of a SONOS-based non-volatile memory transistor or device; [FIG. 1B] illustrates a circuit diagram corresponding to the SONOS-based non-volatile memory transistor or device depicted in FIG. 1A; [FIG. 2] illustrates a circuit diagram according to the present invention. FIG. 3A is a schematic circuit diagram of a section of a SONOS-based non-volatile memory array according to the present invention, which illustrates an embodiment of an erase operation; FIG. 3B is a schematic circuit diagram of a section of a SONOS-based non-volatile memory array according to the present invention, which illustrates an embodiment of a program/inhibit operation; [FIG. 4] is a representative diagram according to an embodiment of the present invention, which illustrates the distribution of critical voltage and drain current of programmed (Vtp and Idp) and erased (Vte and Ide) memory transistors in a SONOS-based non-volatile memory array; [FIG. 5] is a representative diagram according to an embodiment of the present invention, which illustrates the distribution of drain current (ID) level in a multi-stage SONOS-based non-volatile memory cell; [FIG. 6] is a diagram illustrating the distribution of the ID level of each SONOS-based memory transistor in a non-volatile memory array according to an embodiment of the present invention. FIG. 7A is a diagram illustrating the distribution of captured charge in the charge trapping layer of a SONOS-based memory transistor in a non-volatile memory array according to an embodiment of the present invention; FIG. 7B is a diagram illustrating the distribution of ID of a SONOS-based memory transistor in a non-volatile memory array according to an embodiment of the present invention, showing ID standard deviation and retention (retention period) degradation; FIG. 8A is a schematic diagram of a section of a SONOS-based non-volatile memory array, illustrating the selective soft erase (soft erase) according to an embodiment of the present invention. [FIG. 8B] is a schematic diagram of a segment of a SONOS-based non-volatile memory array, illustrating a refill program/inhibit operation according to an embodiment of the present invention; [FIG. 9A] and [FIG. 9B] are schematic flow charts illustrating an embodiment of a write operation of a multi-stage SONOS-based NVM array according to the present invention; [FIG. 10] is a schematic diagram illustrating respective I/Os during a write operation of a SONOS-based memory transistor in a non-volatile memory array according to an embodiment of the present invention. [FIG. 11] is a schematic flow chart illustrating an embodiment of a write operation of a multi-level SONOS-based NVM array according to an embodiment of the present invention; [FIG. 12] is a schematic flow chart illustrating an embodiment of a refill/anneal operation of a multi-level SONOS-based NVM array according to an embodiment of the present invention; [FIG. 13] is a representative block diagram of a multi-level SONOS-based NVM device according to the present invention; [FIG. 1 [Figure 4] is a representative block diagram illustrating an embodiment of a conventional digital multiply-accumulate (MAC) system; [Figure 15] is a representative diagram illustrating an embodiment of an artificial neuron in a deep neural network (DNN) system; [Figure 16] is a schematic diagram of an embodiment of an analog neural network (NN) accelerator device according to the present invention; and [Figure 17] is a simplified flow chart according to the present invention, which illustrates the operation method of the NN accelerator device in Figure 16.

在以下的說明之中,闡述許多特定之細節,諸如特定之系統、構建、方法等等,以提供對於本發明標的之多個實施例的良好的理解。然而,對於本領域技術人員將顯而易見的是,可以在沒有這些具體細節的情況下實踐至少一些實施例。在其他實例之中,習知構件或方法並未被特別詳細地描述或以方塊圖表呈現,以避免不必要地混淆本發明之重點。因此,本說明書所記載的特定細節只是範例性的。具體實施方式可以與這些範例性細節不同,並且仍然可以預期在本發明標的精神和範圍內。 In the following description, many specific details are described, such as specific systems, structures, methods, etc., to provide a good understanding of multiple embodiments of the subject matter of the present invention. However, it will be apparent to those skilled in the art that at least some embodiments can be practiced without these specific details. In other examples, known components or methods are not described in particular detail or presented in block diagrams to avoid unnecessary confusion of the main points of the present invention. Therefore, the specific details recorded in this specification are merely exemplary. Specific implementations may differ from these exemplary details and are still expected to be within the spirit and scope of the subject matter of the present invention.

除非本文中另有明確說明,否則從以下討論中可以明顯看出,在整個說明書中,利用諸如“處理”、“電腦計算”、“計算”、“確定”等術語的術語是指計算機、計算系統或是類似的電子計算設備的操作及/或過程,其將計算系統內的暫存器及/或記憶體表示為物理量(例如電子量)的數據操縱和/或轉換為類 似表示為在其他數據計算系統的記憶體、暫存器或其他此類似訊息儲存、傳輸或顯示裝置中的物理量的數據。 Unless otherwise expressly stated herein, it will be apparent from the following discussion that throughout this specification, terms such as "processing", "computer computing", "calculating", "determining", etc., refer to the operation and/or process of a computer, computing system, or similar electronic computing device that manipulates and/or converts data represented as physical quantities (such as electronic quantities) in registers and/or memories within the computing system into data similarly represented as physical quantities in memories, registers, or other such similar information storage, transmission, or display devices of other data computing systems.

圖1A是方塊圖,其圖示說明非揮發性記憶體單元的橫截面側視圖,並且其之相對應的電路檢圖顯示於圖1B中。非揮發性記憶體(NVM)陣列或裝置可包含NVM單元,所述NVM單元具有使用矽(半導體)-氧化物-氮化物-氧化物-矽(半導體)(SONOS)或是浮接閘極技術以及一般的場效電晶體(FET)彼此相鄰或耦接而實施的非揮發性記憶電晶體或是裝置。 FIG. 1A is a block diagram illustrating a cross-sectional side view of a non-volatile memory cell, and its corresponding circuit diagram is shown in FIG. 1B. A non-volatile memory (NVM) array or device may include NVM cells having non-volatile memory transistors or devices implemented using silicon-oxide-nitride-oxide-silicon (SONOS) or floating gate technology and conventional field effect transistors (FETs) adjacent to or coupled to each other.

在圖示於圖1A的一個實施例中,所述非揮發性記憶電晶體是SONOS式的電荷捕捉非揮發性記憶電晶體。參照圖1A,NVM單元90包括控制閘極(CG)或記憶體閘極(MG)堆疊的NV電晶體94,其形成在基板98上。NVM單元90進一步包括形成在NV電晶體94的兩側上的基板98之中或者是選擇性的在基板98中的淺正井區(shallow positive well,SPW)93中的源極區域97/汲極區域88。SPW 93可以至少部分被囊封在深負井區(deep negative well,DNW)99中。在一個實施例中,藉由在NV電晶體94下方的通道區域91而連接源極區域97/汲極區域88。NV電晶體94包括氧化物穿隧介電層、氮化物或氮氧化物電荷捕獲層92、氧化物頂部或阻擋層而形成ONO堆疊。在一個實施例中,電荷捕獲層92可以是多層層疊並且捕獲藉由FN穿隧機制而從基板93注入的電荷。至少部分是由於所述被捕獲的電荷的數量,則NV電晶體94的VT和ID值可能改變。在一個實施例中,高K值的介電層可形成所述阻擋層的至少一部分。覆蓋所述ONO層的多晶矽(poly-silicon,poly)或是金屬閘極層可提供做為控制閘極(CG)或記憶體閘極(MG)。最佳的如圖1A中所示,NVM單元90進一步包括設置相鄰於NV電晶體94的FET 96。在一個實施例中,FET 96包括設置為覆蓋氧化物或高K值介電閘極介電層的金屬或多晶矽選擇閘極(SG)。FET 96進一步包括形成在基板98中或是選擇性地在基板98的井區93中的源極區域86和汲極區域97。最佳的如圖1A中所示, FET 96和NV電晶體94共享設置於兩者之間的源極/汲極區域97,或者是被稱為內部節點97。SG被適當的偏壓VSG以開啟或關閉在FET96下方的所述通道95。如圖1A中所圖示的NVM單元90被認為是雙電晶體(2T)架構,其中NV電晶體94和FET 96在本發明通篇說明書中可分別被認為是記憶電晶體以及選擇或通過電晶體。 In one embodiment illustrated in FIG1A , the non-volatile memory transistor is a SONOS-style charge trapping non-volatile memory transistor. Referring to FIG1A , the NVM cell 90 includes a control gate (CG) or memory gate (MG) stacked NV transistor 94 formed on a substrate 98. The NVM cell 90 further includes a source region 97/drain region 88 formed in the substrate 98 on both sides of the NV transistor 94 or selectively in a shallow positive well (SPW) 93 in the substrate 98. The SPW 93 may be at least partially encapsulated in a deep negative well (DNW) 99. In one embodiment, the source region 97/drain region 88 is connected by a channel region 91 below the NV transistor 94. The NV transistor 94 includes an oxide tunneling dielectric layer, a nitride or oxynitride charge trapping layer 92, and an oxide top or blocking layer to form an ONO stack. In one embodiment, the charge trapping layer 92 can be a multi-layer stack and captures charges injected from the substrate 93 by the FN tunneling mechanism. Due at least in part to the amount of the trapped charge, the VT and ID values of the NV transistor 94 may change. In one embodiment, a high-K dielectric layer may form at least a portion of the blocking layer. A polysilicon (poly) or metal gate layer covering the ONO layer may be provided as a control gate (CG) or a memory gate (MG). As best shown in FIG. 1A , the NVM cell 90 further includes a FET 96 disposed adjacent to the NV transistor 94. In one embodiment, the FET 96 includes a metal or polysilicon select gate (SG) disposed overlying an oxide or high-K dielectric gate dielectric layer. The FET 96 further includes a source region 86 and a drain region 97 formed in a substrate 98 or selectively in a well region 93 of the substrate 98. As best shown in FIG1A , FET 96 and NV transistor 94 share a source/drain region 97 disposed therebetween, or referred to as internal node 97. SG is appropriately biased at VSG to open or close the channel 95 beneath FET 96. The NVM cell 90 illustrated in FIG1A is considered a two-transistor (2T) architecture, wherein NV transistor 94 and FET 96 may be considered throughout this disclosure as a memory transistor and a select or pass transistor, respectively.

在一個實施例中,圖1B描繪具有與FET 96串連的非揮發性(NV)電晶體的雙電晶體(2T)SONOS NVM單元90。當CG被施加以VCG偏壓時或是當施加相對於基板98或井區93為正脈衝到CG而使得電子藉由FN穿隧機制從反轉層被注入到電荷捕獲層92時,NVM單元90被程式化(位元值“1”)。電荷被捕獲在電荷捕獲層92之中造成汲極區域88和源極區域97之間的電子空乏,提高了必需用來開啟基於SONOS的NV電晶體94的臨界電壓(VT),使得所述裝置處於“程式化”狀態。藉由施加相反的偏壓VCG到CG或是對於基板98或井區93為負脈衝到CG造成電洞的FN穿隧機制而從積累的通道區域91進入所述ONO堆疊,則NVM單元90被抹除。程式化和抹除的臨界電壓被分別稱為“Vtp”和“Vte”。在一個實施例中,NV電晶體94也可以在抑制狀態(位元值“0”),其中藉由施加正電壓到NVM單元90的源極和汲極,同時控制閘極(CG)相對於基板98或井區93被施加正的脈衝(為程式化條件),則先前被抹除的單元(位元值“0”)被抑制而免於被程式化(位元值“1”)。NV電晶體94的所述臨界電壓(稱為“Vtpi”)由於擾動垂直場(disturbing vertical field)而變成稍微更正的(more positive),但是依然是抹除的(或抑制的)。在一個實施例中,Vtpi也是藉由所述ONO堆疊的電荷捕獲層92將捕獲的電荷保持在電荷捕獲層92中的能力而確定。如果所述電荷捕獲是淺層的,所述被捕獲的電荷趨向於消耗並且NV電晶體94的Vtpi變成更正的(more positive)。在一個實施例中,NV電晶體94的Vtpi藉由進一步的抑制操作而趨向於減弱或爬升。將可以理解的是,在此所提到的位元值或二進位值“1”和“0”的分配對應於NVM單元90的各別“程式化”狀態或“抹除”狀態僅適用於範例性說明的目的,而非意欲用來做 為限制。所述分配在其他實施例中可以是相反的或是具有其他安排。在其他的實施例中,如將於下文中所討論的,NVM單元90可被配置以藉由操縱其之臨界電壓位階或汲極電流位階來儲存多階類比值(不是“0”和“1”)。 In one embodiment, FIG. 1B depicts a two-transistor (2T) SONOS NVM cell 90 having a non-volatile (NV) transistor in series with a FET 96. The NVM cell 90 is programmed (bit value “1”) when the CG is biased with VCG or when a positive pulse is applied to the CG relative to the substrate 98 or the well 93 so that electrons are injected from the inversion layer into the charge trapping layer 92 via a FN tunneling mechanism. The charge trapped in the charge trapping layer 92 creates electron depletion between the drain region 88 and the source region 97, raising the critical voltage (V T ) required to turn on the SONOS-based NV transistor 94, placing the device in a “programmed” state. The NVM cell 90 is erased by applying an opposite bias VCG to CG or by applying a negative pulse to CG with respect to the substrate 98 or the well 93 to cause holes to tunnel from the accumulated channel region 91 into the ONO stack via a FN tunneling mechanism. The critical voltages for programming and erasing are referred to as "Vtp" and "Vte", respectively. In one embodiment, the NV transistor 94 can also be in an inhibited state (bit value "0"), where by applying a positive voltage to the source and drain of the NVM cell 90 while the control gate (CG) is positively pulsed with respect to the substrate 98 or the well 93 (a programming condition), the previously erased cell (bit value "0") is inhibited from being programmed (bit value "1"). The critical voltage (referred to as "Vtpi") of the NV transistor 94 becomes slightly more positive due to disturbing vertical fields, but is still erased (or inhibited). In one embodiment, Vtpi is also determined by the ability of the charge trapping layer 92 of the ONO stack to retain trapped charge in the charge trapping layer 92. If the charge trapping is shallow, the trapped charge tends to be consumed and the Vtpi of the NV transistor 94 becomes more positive. In one embodiment, the Vtpi of the NV transistor 94 tends to weaken or climb with further inhibiting operations. It will be appreciated that the assignment of bit values or binary values "1" and "0" referred to herein to correspond to respective "programmed" or "erased" states of NVM cell 90 is for exemplary purposes only and is not intended to be limiting. The assignments may be reversed or have other arrangements in other embodiments. In other embodiments, as will be discussed below, NVM cell 90 may be configured to store multiple levels of analog values (other than "0" and "1") by manipulating its critical voltage levels or drain current levels.

在其他實施例中,NV電晶體94可以是浮接閘極MOS場效電晶體(FGMOS)或是裝置。一般來說,FGMOS與前文中所提到的基於SONOS的NV電晶體94在結構上是相似的,主要不同之處在於FGMOS包括可電容耦接到所述裝置的輸出的多晶矽(poly)浮接閘極,而不是氮化物或氮氧化物的電荷捕獲層92。因此,所述FGMOS裝置可參照圖1A和圖1B而描述,並且以相似的方式被操作。 In other embodiments, the NV transistor 94 may be a floating gate MOS field effect transistor (FGMOS) or a device. Generally speaking, the FGMOS is structurally similar to the SONOS-based NV transistor 94 mentioned above, with the main difference being that the FGMOS includes a polysilicon (poly) floating gate that can be capacitively coupled to the output of the device, rather than a nitride or oxynitride charge trapping layer 92. Therefore, the FGMOS device may be described with reference to FIGS. 1A and 1B and operated in a similar manner.

相似於所述基於SONOS的NV電晶體94,所述FGMOS裝置可藉由在所述控制閘極以及所述源極和汲極區域之間施加適當的偏壓VCG而被程式化,提高了必需用來開啟所述FGMOS裝置的臨界電壓(VT)。所述FGMOS裝置可藉由在所述控制閘極上施加相反的偏壓VCG而被抹除。 Similar to the SONOS-based NV transistor 94, the FGMOS device can be programmed by applying an appropriate bias V CG between the control gate and the source and drain regions, raising the critical voltage (V T ) necessary to turn on the FGMOS device. The FGMOS device can be erased by applying an opposite bias V CG on the control gate.

在一個實施例中,源極/汲極區域86可被認定為是NVM單元90的“源極”並且被耦接到VSL,而源極/汲極區域88可被認定是“汲極”並且被耦接到VBL。可選擇地,SPW 93被耦接到VSPW並且DNW 99被耦接到VDNWIn one embodiment, source/drain region 86 may be considered the "source" of NVM cell 90 and is coupled to VSL, while source/drain region 88 may be considered the "drain" and is coupled to VBL. Optionally, SPW 93 is coupled to V SPW and DNW 99 is coupled to V DNW .

FET 96可避免在程式化操作或抹除操作期間的熱載子電子注入以及接面崩潰。FET 96亦可避免大電流流經源極86和汲極88之間,大電流流經源極86和汲極88之間可能會造成在記憶體陣列中的高能量消耗和寄生電壓降。較佳的如圖1A所示,FET 96和NV電晶體94皆可以是n-型或是n-通道電晶體,其中源極區域/汲極區域86、88、97以及DNW 99被摻雜有n型材料,而SPW 93及/或基板98被摻雜有p型材料。將可以理解的是,NVM單元90也可以額外地、或是包含P型或p-通道電晶體,其中根據所屬技術領域中具有通常知識者的實施,則所述源極區域/汲極區域和井區可被相反或是不同地摻雜。 FET 96 can avoid hot carrier electron injection and junction collapse during programming or erase operations. FET 96 can also avoid large currents flowing between source 86 and drain 88, which may cause high energy consumption and parasitic voltage drops in the memory array. Preferably, as shown in Figure 1A, FET 96 and NV transistor 94 can both be n-type or n-channel transistors, where source/drain regions 86, 88, 97 and DNW 99 are doped with n-type material, and SPW 93 and/or substrate 98 are doped with p-type material. It will be appreciated that the NVM cell 90 may also additionally or alternatively include a P-type or p-channel transistor, wherein the source/drain regions and the well region may be doped oppositely or differently, depending on implementation by one of ordinary skill in the art.

藉由製造以行和列配置的記憶體單元(例如像是NVM單元90)的 網格來組成記憶體陣列,並且藉由多個水平和垂直的控制線來將記憶體陣列連接到周邊電路(例如像是位址解碼器)以及比較器(像是類比-數位轉換器(ADC)和數位-類比轉換器(DAC)功能部件)。每個記憶體單元包括至少一個非揮發性半導體裝置(像是如上文中所提到的)並且可具有一個電晶體(1T)或兩個電晶體(2T)架構,如圖1A中所示。 The memory array is formed by fabricating a grid of memory cells (such as NVM cells 90) arranged in rows and columns, and connecting the memory array to peripheral circuits (such as address decoders) and comparators (such as analog-to-digital converter (ADC) and digital-to-analog converter (DAC) functional components) via a plurality of horizontal and vertical control lines. Each memory cell includes at least one non-volatile semiconductor device (such as mentioned above) and may have a one transistor (1T) or two transistor (2T) architecture, as shown in FIG. 1A .

圖2是根據本發明的一個實施例的NVM陣列的示意圖。在如圖2中所示的實施例中,記憶體單元90具有2T架構並且除了非揮發性記憶電晶體之外還包括通過電晶體或選擇電晶體,舉例來說,習知的MOSFET與記憶電晶體共享共用基板連接或內部節點。在一個實施例中,NVM陣列100包括配置成N列或頁(水平)以及M行(垂直)的NVM單元90。在相同列中的NVM單元90可被認為是在相同的頁中。在某些實施例中,好幾個列或頁可被群組在一起以形成記憶區(memory sector)。應該意識到的是,記憶體陣列中的用語“列”和“行”是用來作為說明的目的,而不是限制。在一個實施例中,列被配置為水平的並且行被配置為垂直的。在另外的實施例中,記憶體陣列中的用語“列”和“行”可被顛倒或是以相反的方式使用,或是可被配置成任何方向。 FIG. 2 is a schematic diagram of an NVM array according to one embodiment of the present invention. In the embodiment shown in FIG. 2 , the memory cell 90 has a 2T architecture and includes a pass transistor or a select transistor in addition to a non-volatile memory transistor, for example, a known MOSFET that shares a common substrate connection or internal node with the memory transistor. In one embodiment, the NVM array 100 includes NVM cells 90 configured into N columns or pages (horizontally) and M rows (vertically). NVM cells 90 in the same column can be considered to be in the same page. In some embodiments, several columns or pages can be grouped together to form a memory sector. It should be appreciated that the terms "columns" and "rows" in the memory array are used for illustrative purposes and not limiting. In one embodiment, the columns are configured horizontally and the rows are configured vertically. In other embodiments, the terms "columns" and "rows" in the memory array may be reversed or used in an opposite manner, or may be configured in any direction.

在一個實施例中,SONOS字元線(WLS)被耦合到相同列的NVM單元90的所有CG,字元線(WL)被耦合到相同列的NVM單元90的所有SG。在一個實施例中,位元線(BL)被耦接到相同行的NVM單元90的所有汲極區域88,而共用源極線(CSL)或區域86被耦接或共享於所述陣列中的所有NVM單元。在另外一個實施例中,CSL可在同列中的兩個成對的NVM單元(例如像是較佳的為圖3A中所示的C1和C2)之間共享。CSL亦耦接到在相同的兩個行中的所有NVM對的共享源極區域。 In one embodiment, the SONOS word line (WLS) is coupled to all CGs of the NVM cells 90 in the same column, and the word line (WL) is coupled to all SGs of the NVM cells 90 in the same column. In one embodiment, the bit line (BL) is coupled to all drain regions 88 of the NVM cells 90 in the same row, and the common source line (CSL) or region 86 is coupled or shared to all NVM cells in the array. In another embodiment, the CSL can be shared between two pairs of NVM cells in the same column (such as C1 and C2 as shown in Figure 3A). The CSL is also coupled to the shared source region of all NVM pairs in the same two rows.

在快閃模式(flash mode)中,可以由在選擇的列(頁)上執行大塊抹除(bulk erase)操作接著在相同列中的個別單元上執行程式化或是抑制操作來組 成寫入操作。可以被一次抹除的NVM單元的最小區塊是單一頁(列)。可以被一次程式化/抑制的單元的最小區塊也可以是單一頁。 In flash mode, a write operation can consist of performing a bulk erase operation on selected rows (pages) followed by programming or inhibiting operations on individual cells in the same row. The smallest block of NVM cells that can be erased at one time is a single page (row). The smallest block of cells that can be programmed/inhibited at one time can also be a single page.

參照圖2,NVM單元90可被配置成對,像是NVM單元對200。如圖3A、3B、8A和8B中所示的較佳實施例中,NVM單元對200包括具有鏡像定向的兩個NVM單元90,使得每個NVM單元的選擇電晶體(像是C1和C2)被彼此相鄰的放置。相同的NVM單元對200的NVM單元90也可以共享共用源極區域,接收電壓信號VCSL。 2, NVM cells 90 may be configured in pairs, such as NVM cell pair 200. In a preferred embodiment as shown in FIGS. 3A, 3B, 8A, and 8B, NVM cell pair 200 includes two NVM cells 90 having a mirror image orientation such that the select transistors (such as C1 and C2) of each NVM cell are placed adjacent to each other. NVM cells 90 of the same NVM cell pair 200 may also share a common source region to receive a voltage signal VCSL.

圖3A顯示NVM陣列100的2×2陣列300以示範根據本發明的抹除或硬式抹除(硬式抹除)操作的實施例。如前文所說明的,NVM陣列100可採用共用源極線(CSL)配置。在一個實施例中,一個單一CSL(例如CSL0)是共享於在所述NVM陣列中的所有NVM單元或是至少相鄰行的NVM單元(例如C1和C2)之間。在一個實施例中,CSL可被設置並且共享於相鄰行的NVM單元的選擇電晶體之間。在下文的描述中,為了清楚並且容易說明,假設在NVM陣列100的2×2陣列300中的所有電晶體都是N型電晶體。應理解的是,不失一般性,可以藉由反轉施加電壓的即興來描述P型配置,並且這樣的配置是在本公開的預期實施例的範圍內。此外,在下文中使用的所述電壓和脈衝持續時間是被選擇用以方便說明並且僅是代表本發明的其中一個範例性實施例。在不同的實施例可以施加不同的電壓。 FIG. 3A shows a 2×2 array 300 of the NVM array 100 to demonstrate an embodiment of an erase or hard erase (hard erase) operation according to the present invention. As previously described, the NVM array 100 may adopt a common source line (CSL) configuration. In one embodiment, a single CSL (e.g., CSL0) is shared among all NVM cells in the NVM array or at least between adjacent rows of NVM cells (e.g., C1 and C2). In one embodiment, the CSL may be set and shared between select transistors of adjacent rows of NVM cells. In the following description, for clarity and ease of explanation, it is assumed that all transistors in the 2×2 array 300 of the NVM array 100 are N-type transistors. It should be understood that, without loss of generality, a P-type configuration may be described by reversing the improvisation of the applied voltage, and such a configuration is within the scope of the intended embodiments of the present disclosure. In addition, the voltages and pulse durations used below are selected for ease of illustration and represent only one exemplary embodiment of the present invention. Different voltages may be applied in different embodiments.

圖3A說明NVM陣列100的一區段的範例性實施例,其可以是記憶體單元的大型記憶體陣列的部分。在圖3A中,2×2記憶體陣列300包括至少四個記憶體單元C1、C2、C3和C4被配置在兩個行和兩個列中。同時NVM單元C1-C4可被設置在兩個相鄰的行中(共用源極線CSL0),它們可被設置在兩個相鄰的列或兩個部相鄰的列中。所述NVM單元C1-C4中的每一個在結構上可相似於前文中所記載的NVM單元90。 FIG. 3A illustrates an exemplary embodiment of a section of an NVM array 100, which may be part of a larger memory array of memory cells. In FIG. 3A, a 2×2 memory array 300 includes at least four memory cells C1, C2, C3, and C4 arranged in two rows and two columns. While the NVM cells C1-C4 may be arranged in two adjacent rows (sharing a common source line CSL0), they may be arranged in two adjacent columns or two partially adjacent columns. Each of the NVM cells C1-C4 may be structurally similar to the NVM cell 90 described above.

所述NVM單元C1-C4中的每一個可包括基於SONOS的記憶電晶體和選擇電晶體。所述記憶電晶體中的每一個包括耦接到位元線(例如BL0和BL1)的汲極、耦接到所述選擇電晶體的汲極的源極,並且透過選擇電晶體耦接到單一的共用源極線(CSL0)。每個記憶電晶體進一步包括耦接到SONOS字元線(例如WLS0)的控制閘極。所述選擇電晶體中的每一個包括耦接到共用源極線(例如CSL0)的源極以及耦接到字元線(例如WL0)的選擇閘極。 Each of the NVM cells C1-C4 may include a SONOS-based memory transistor and a select transistor. Each of the memory transistors includes a drain coupled to a bit line (e.g., BL0 and BL1), a source coupled to the drain of the select transistor, and coupled to a single common source line (CSL0) through the select transistor. Each memory transistor further includes a control gate coupled to a SONOS word line (e.g., WLS0). Each of the select transistors includes a source coupled to the common source line (e.g., CSL0) and a select gate coupled to a word line (e.g., WL0).

參照圖3A,舉例來說,對於抹除操作來說,選擇頁0以被抹除並且頁1(未被選擇的)沒有。如前文中所說明的,單一頁可能是一次操作中被抹除的NVM單元90的最小區塊。因此,包含在選擇的列(頁0)中的C1和C2的所有NVM單元藉由施加適當的電壓到在中被所有NVM單元所共享的SONOS字元線(WLS0)、基板連接和在NVM陣列100中的所有位元線而被一次性的抹除。在一個實施例中,負電壓VNEG被施加到WLS0,並且正電壓VPOS經由在頁0中的SPW和深n井區DNW而被施加到基板或是p井區、施加到包含BL0和BL1的所有位元線和包含CSL的共用源極線。因此,全抹除電壓(VNEG-VPOS)被施加到在C1和C2中的記憶電晶體的CG和基板/P井區之間持續一脈衝期間(Te~10ms)來抹除其中任何先前被捕獲電荷(如果有的話)。在一個實施例中,包含WL0和WL1的所有字元線被耦接到供應電壓VPWR3A, for example, for an erase operation, page 0 is selected to be erased and page 1 (unselected) is not. As previously described, a single page may be the smallest block of NVM cells 90 that may be erased in one operation. Therefore, all NVM cells including C1 and C2 in the selected row (page 0) are erased at once by applying appropriate voltages to the SONOS word line (WLS0) shared by all NVM cells, the substrate connection, and all bit lines in the NVM array 100. In one embodiment, a negative voltage VNEG is applied to WLS0, and a positive voltage VPOS is applied to the substrate or p-well region via the SPW and deep n-well region DNW in page 0, to all bit lines including BL0 and BL1, and a common source line including CSL. Therefore, a full erase voltage (V NEG -V POS ) is applied between the CG and substrate/P-well regions of the memory transistors in C1 and C2 for a pulse duration (Te ~ 10ms) to erase any previously trapped charge (if any) therein. In one embodiment, all word lines including WL0 and WL1 are coupled to the supply voltage V PWR .

依舊參照圖3A,當頁(列)沒有被選擇(例如頁1)以用於抹除操作時,正電壓VPOS被施加到WLS1,使得在頁1中包含C3和C4的記憶電晶體的CG對基板/P井區是大約0V(VPOS-VPOS)。因此,頁1的NVM單元的狀態依然沒有改變(沒有被抹除)。 Still referring to FIG. 3A , when a page (row) is not selected (e.g., page 1) for the erase operation, a positive voltage V POS is applied to WLS1, so that the CG of the memory transistors including C3 and C4 in page 1 is approximately 0V (V POS -V POS ) to the substrate/P-well region. Therefore, the state of the NVM cells of page 1 remains unchanged (not erased).

表I描述範例性偏壓,其可被用於非揮發性記憶體的頁/列0的大塊抹除操作,所述非揮發性記憶體具有2T架構並且包含具有N型SONOS電晶體和CSL的記憶體單元,相似於2×2陣列300。 Table I describes exemplary bias voltages that may be used for a bulk erase operation of page/row 0 of a non-volatile memory having a 2T architecture and including memory cells having N-type SONOS transistors and CSLs, similar to the 2×2 array 300.

Figure 113112548-A0305-12-0016-1
Figure 113112548-A0305-12-0016-1

圖3B顯示在程式化操作或硬式程式化操作期間,NVM陣列100的區段2×2陣列300的範例性實施例。參照圖3B,舉例來說,NVM單元C1是要被程式化或寫入為邏輯“1”狀態(即被程式化為“關(OFF)”狀態)的目標單元,而可能已經藉由先前的抹除操作而被抹除成邏輯"0"狀態的如圖3A所示的NVM單元C2維持在邏輯"0"或“開(ON)”狀態。將可以理解的是,為了說明目的而被表示為兩個相鄰單元的C1和C2也可以是在相同列(像是列0)上的兩個分開的NVM單元。這兩個目標(程式化C1和抑制C2)是藉由施加第一或正高電壓(VPOS)到NVM陣列100的頁或列0中的WLS0來實現,在對所選擇的記憶體單元進行程式化時,第二或負高電壓(VNEG)被施加到BL0以偏壓C1中的記憶電晶體,而在抑制所述未被選擇的記憶體單元的程式化時,抑制電壓(VINHIB)被施加到BL1和DNW以偏壓C2的記憶電晶體,並且共同電壓被施加到所有NVM單元的共享的基板或是P井區SPW,以 及耦接到第二或負高電壓(VNEG)的所述字元線(WL1和WL2)。在一個實施例中,在C1和C2之間或是在所有NVM單元90之間的所述共用源極線CSL0可能處於第三高電壓或是CSL電壓(VCSL),或是被允許為浮接。在一個實施例中,第三高電壓VCSL可能具有小於VPOS或VNEG的電壓位準或是絕對量值。在一個實施例中,VCSL可以由自己的專屬電路所產生,所述專屬電路在所述記憶體裝置中包括DAC。VCSL可具有與容限電壓VMARG大約相同的電壓位準或絕對量值,將在下文中進一步的詳細討論。當VPOS經由WLS0被施加到C2的所述記憶電晶體時,在BL1的所述正VINHIB被傳遞到其之通道。此電壓減少在C2的所述記憶電晶體上的閘極到汲極/通道電壓偏壓,減小所述程式化場域,使得來自Vte的臨界電壓的偏移是小的。仍然會發生的電荷穿隧被稱為抑制干擾並且被量化為(Vte-Vtpi)。在一個實施例中,如程式化操作的結果,包含C1和C2的頁0的所有NVM單元根據所述NVM單元接收的位元線電壓而可達到二進位狀態中的“1”(程式化-Vtp)或“0”(抑制-Vtpi)。在未被選擇的頁(像是頁1)中的NVM單元可保持為“0”(抹除-Vte)的二進位狀態。 FIG3B shows an exemplary embodiment of a segment 2×2 array 300 of the NVM array 100 during a programming operation or hard programming operation. Referring to FIG3B , for example, NVM cell C1 is the target cell to be programmed or written to a logical “1” state (i.e., programmed to an “OFF” state), while NVM cell C2 shown in FIG3A , which may have been erased to a logical “0” state by a previous erase operation, remains in a logical “0” or “ON” state. It will be appreciated that C1 and C2, which are shown as two adjacent cells for illustration purposes, may also be two separate NVM cells on the same row (e.g., row 0). These two goals (programming C1 and inhibiting C2) are achieved by applying a first or positive high voltage (V POS ) to WLS0 in page or column 0 of the NVM array 100, a second or negative high voltage (V NEG ) is applied to BL0 to bias the memory transistors in C1 when programming the selected memory cell, and an inhibit voltage (V INHIB ) is applied to BL1 and DNW to bias the memory transistors of C2 when inhibiting programming of the unselected memory cells, and a common voltage is applied to the shared substrate or P-well region SPW of all NVM cells and the word lines (WL1 and WL2) coupled to the second or negative high voltage (V NEG ). In one embodiment, the common source line CSL0 between C1 and C2 or between all NVM cells 90 may be at a third high voltage or CSL voltage ( VCSL ) or allowed to float. In one embodiment, the third high voltage VCSL may have a voltage level or absolute value less than VPOS or VNEG . In one embodiment, VCSL may be generated by its own dedicated circuit, which includes a DAC in the memory device. VCSL may have a voltage level or absolute value approximately the same as the tolerance voltage VMARG , which will be discussed in further detail below. When VPOS is applied to the memory transistor of C2 via WLS0, the positive VINHIB at BL1 is passed to its channel. This voltage reduces the gate to drain/channel voltage bias on the memory transistors of C2, reducing the programming field so that the shift from the critical voltage of Vte is small. The charge tunneling that still occurs is called suppression interference and is quantized as (Vte-Vtpi). In one embodiment, as a result of the programming operation, all NVM cells of page 0, which includes C1 and C2, can achieve a binary state of "1" (programmed-Vtp) or "0" (suppressed-Vtpi) depending on the bit line voltage received by the NVM cells. NVM cells in unselected pages (such as page 1) can remain in a binary state of "0" (erase-Vte).

此外,如下文中所詳細描述的,具有小於VNEG的電壓位準或絕對量值的被選擇的容限電壓(VMARG)被施加到在未被選擇的列或頁(例如頁1)中的WLS1以減少或實質上消除在所述未被選擇的NVM單元C4中由於所述被選擇的C1的程式化所造成的程式化狀態的位元線干擾。在一個實施例中,所述絕對電壓位準或是VMARG的量值可以與VCSL相同。 Additionally, as described in detail below, a selected margin voltage (V MARG ) having a voltage level or absolute magnitude less than V NEG is applied to WLS1 in an unselected row or page (e.g., page 1) to reduce or substantially eliminate bit line disturbances of the programmed state in the unselected NVM cell C4 due to programming of the selected C1. In one embodiment, the absolute voltage level or magnitude of V MARG may be the same as V CSL .

表II顯示範例性偏壓,所述偏壓可被用於程式化具有2T架構並且包含具有N型SONOS電晶體和CSL的記憶體單元的非揮發性記憶體。 Table II shows exemplary bias voltages that may be used to program a non-volatile memory having a 2T architecture and including memory cells having N-type SONOS transistors and CSLs.

Figure 113112548-A0305-12-0018-2
Figure 113112548-A0305-12-0018-2

一般而言,所述容限電壓(VMARG)具有與第二高電壓或是VENG相同的極性,但是較高於或是較正於VNEG一電壓,所述電壓至少等於所述記憶電晶的所述臨界電壓(VT),對於所述臨界電壓,程式化狀態位元線干擾是被減少的。 Generally, the tolerance voltage (VMARG) has the same polarity as the second highest voltage or VENG, but is higher or more positive than VNEG by a voltage at least equal to the critical voltage (VT) of the memory transistor for which programming state bit line interference is reduced.

圖4顯示在範例性基於SONOS的NVM陣列(像是NVM陣列100)中的所述Vtp和Vte以及程式化汲極電流(IDP)和抹除汲極電流(IDE)分布。典型的寫入操作包括如圖3A中所示的抹除或硬式抹除操作並且接著如圖3B中所述的硬式程式化/抑制操作。在一個實施例中,在可靠的讀取操作之後,NVM單元可被判定為在所述兩個不同的二進位狀態(“0”或“1”)中的一個狀態中。如圖3A中的所述抹除操作也可能被認為是硬式抹除,因為其導致所述被抹除的NVM單元(例如圖3A中的C1和C2)的VT/ID移動至所述抹除VT/ID位準(完全抹除),而與這些單元的 起始VT/ID位準無關。相似地,如圖3B中的所述程式化操作可能被認為是硬式程式化操作。在一個實施例中,在所述硬式抹除和硬式程式化/抑制操作之間可能沒有驗證或讀取操作。 FIG4 shows the Vtp and Vte and the program drain current ( IDP ) and erase drain current ( IDE ) distributions in an exemplary SONOS-based NVM array, such as NVM array 100. A typical write operation includes an erase or hard erase operation as shown in FIG3A and followed by a hard program/inhibit operation as described in FIG3B. In one embodiment, after a reliable read operation, the NVM cell can be determined to be in one of the two different binary states ("0" or "1"). The erase operation as in FIG. 3A may also be considered a hard erase because it causes the VT / ID of the erased NVM cells (e.g., C1 and C2 in FIG. 3A) to move to the erase VT / ID level (fully erased), regardless of the starting VT / ID levels of these cells. Similarly, the program operation as in FIG. 3B may be considered a hard program operation. In one embodiment, there may be no verify or read operations between the hard erase and hard program/inhibit operations.

圖5是示意圖,其顯示根據本發明的實施例之基於SONOS的NVM類比裝置中的NVM記憶體單元的多個分別的汲極電流(ID)位準。在一個實施例中,NVM單元的ID可藉由透過WLS來施加預判定電壓到SONOS電晶體的CG而被判定或驗證。在其他的實施例中,可藉由其他在所屬技術領域中已知並且已熟習的方法來判定ID。與VT相似的,ID可被用來判定在實施例中的NVM單元90的二進位狀態,在所述實施例中,NVM陣列100可被使用作為數位記憶體裝置,像是NOR快閃記憶體、EEPROM...等等。在其他的實施例中,NVM陣列100可藉由儲存多個(超過兩個)類比值中的一個而被使用作為類比裝置。參考圖4和圖5,取代使用如圖3A和圖3B中所描述的硬程式化和抹除操作來寫入所述兩個二進位值(“0”和“1”)中的一個值到NVM陣列100中的NVM單元90中,而是利用一系列的部分程式化和部分抹除操作而將多個(超過兩個)ID或VT位準(對應於在電荷捕捉層92中的補獲電荷)寫入NVM單元90中。在實施例中,藉由操縱施加在CG和汲極或基板上的電壓差或偏壓以及脈衝持續時間,部分程式化和部分抹除操作可導致(或是引導)目標NVM單元的VT/ID移動朝向分別為被程式化的VT/ID位準和被抹除的VT/ID位準。部分程式化和部分抹除操作可包括但不限定為軟式程式化(soft program)操作、再填充(refill)程式化操作、軟式抹除(列)操作、選擇性軟式抹除(單元)操作以及退火抹除(anneal erase)(列)操作,這些操作將於下文做進一步的說明。 FIG. 5 is a schematic diagram showing a plurality of respective drain current ( ID ) levels of NVM memory cells in a SONOS-based NVM analog device according to an embodiment of the present invention. In one embodiment, the ID of the NVM cell may be determined or verified by applying a predetermined voltage to the CG of the SONOS transistor via WLS. In other embodiments, the ID may be determined by other methods known and familiar in the art. Similar to VT , the ID may be used to determine the binary state of the NVM cell 90 in an embodiment in which the NVM array 100 may be used as a digital memory device, such as NOR flash memory, EEPROM, etc. In other embodiments, the NVM array 100 can be used as an analog device by storing one of a plurality of (more than two) analog values. Referring to Figures 4 and 5, instead of using hard programming and erase operations as described in Figures 3A and 3B to write one of the two binary values ("0" and "1") into the NVM cells 90 in the NVM array 100, a series of partial programming and partial erase operations are used to write multiple (more than two) ID or VT levels (corresponding to the replenished charges in the charge trapping layer 92) into the NVM cells 90. In an embodiment, by manipulating the voltage difference or bias applied to the CG and the drain or substrate and the pulse duration, the partial program and partial erase operations may cause (or guide) the VT / ID of the target NVM cell to move toward a programmed VT / ID level and an erased VT / ID level, respectively. The partial program and partial erase operations may include but are not limited to a soft program operation, a refill programming operation, a soft erase (row) operation, a selective soft erase (cell) operation, and an anneal erase (row) operation, which will be further described below.

在一個實施例中,較佳實施例為圖5所示,在類比組態/模態中,NVM單元90可被設置以根據其之ID位準而呈現或儲存2n(4、8、16...128等等)的數值中的一個,其中n是大於1的自然數。在另一個實施例中,NVM單元90可被 設置以呈現大於兩個的任何個數的數值中的一個。在一個實施例中,ID1到ID2n分別是第1個ID分布的平均ID值到第2n個ID分布的平均ID值。在每個ID分布中,有最低ID限制和最高ID限制(見ID1)。第1個ID分布可能相似於圖4中程式化的單元分布σ3並且第2n個ID分布可能相似於圖4中單元分布σ4(見圖4)。在實施例中,平均ID位準或平均VT位準以及它們的最高限制和最低限制可根據系統設計及需求而被預判定。在一個實施例中,NVM陣列100的可操作ID範圍可大約為(ID2n-ID1),並且例如為(1.60μA-50nA=1,550nA)。應可以理解的是,所述可操作ID範圍為1,550nA只是範例並且根據所述NVM單元、操作電壓和脈衝持續時間以及系統需求/設計而所述可操作ID範圍可以是任何其他值。在一個實施例中,藉由將所述可操作ID範圍中的特定ID位準寫入NVM單元90,例如1.60μA到50nA,則NVM陣列100可被使用作為類比記憶體裝置。在一個實施例中,所屬技術領域中具有通常知識者將可以理解,相同的概念也可以被應用在將多個(超過兩個)VT位準寫入NVM單元90。 In one embodiment, the preferred embodiment is shown in FIG. 5 , in the analog configuration/mode, the NVM cell 90 can be configured to present or store one of 2 n (4, 8, 16 ... 128, etc.) values according to its ID level, where n is a natural number greater than 1. In another embodiment, the NVM cell 90 can be configured to present one of any number of values greater than two. In one embodiment, ID 1 to ID 2 n are the average ID value of the 1st ID distribution to the average ID value of the 2nth ID distribution, respectively. In each ID distribution, there is a minimum ID limit and a maximum ID limit (see ID 1). The 1st ID distribution may be similar to the stylized unit distribution σ3 in FIG. 4 and the 2nth ID distribution may be similar to the unit distribution σ4 in FIG. 4 (see FIG. 4 ). In an embodiment, the average ID level or average VT level and their upper and lower limits may be predetermined according to system design and requirements. In one embodiment, the operable ID range of the NVM array 100 may be approximately ( ID2n - ID1 ), and for example, (1.60μA-50nA=1,550nA). It should be understood that the operable ID range of 1,550nA is only an example and may be any other value according to the NVM cell, operating voltage and pulse duration, and system requirements/design. In one embodiment, by writing a specific ID level in the operable ID range into the NVM cell 90, such as 1.60μA to 50nA, the NVM array 100 may be used as an analog memory device. In one embodiment, one skilled in the art will appreciate that the same concept can also be applied to writing multiple (more than two) VT levels into NVM cell 90.

在一個實施例中,為了達到在微小的可操作ID範圍中有多個分開的ID位準,則每個ID分布可能被要求具有緊密的分布(低標準差(sigma)σ),使得相鄰的ID分布是清楚地分隔開,特別是當n是高數值時。為了精確且有效的讀取/驗證操作,不同位準的ID也可以是線性的遞增,使得△ID大約是常數,如圖5所示。基於SONOS的單元,例如NVM單元90,是適合用於具有多個位準的類比記憶體的候選者,由於其本質上低的ID/VT標準差以及低功率消耗(VCC=0.81V-1.21V)。此外,由於在基於SONOS的單元中的程式化操作和抹除操作(硬式的以及軟式的)兩者都使用FN穿隧機制來達成,因此具有非常低的標準差的常微小的ID/VT位準的穿隧是可能可以實現的。再者,在-40℃到125℃的溫度範圍內經過100K次的循環之後,基於SONOS的單元具有高耐用性並且具有極小的劣化,這可以滿足大多數的消費者、工業上以及自動車應用的需求。在一個實施例中,在相鄰的ID 分布之間可能有ID數值的重疊區域502。為了要可靠的並且準確的讀取NVM單元90的ID位準,ID分布標準差σ可能被減少到大約低於8nA或是其它電流值,使得重疊區域502保持在低於所述分布的1%至3%。根據所述ID位準之間的間隔,則標準差可能較高或較低。在某些情況下,50nA的標準差足以將重疊區域保持在低於分布的1%至3%。 In one embodiment, to achieve multiple separated ID levels within a small operable ID range, each ID distribution may be required to have a tight distribution (low standard deviation (sigma) σ) so that adjacent ID distributions are clearly separated, especially when n is high. For accurate and efficient read/verify operations, the different levels of ID may also be linearly increasing so that ΔID is approximately constant, as shown in FIG5. SONOS-based cells, such as NVM cell 90, are suitable candidates for analog memory with multiple levels due to their intrinsically low ID / VT standard deviation and low power consumption ( VCC = 0.81V-1.21V). Furthermore, since both programming and erase operations (both hard and soft) in SONOS-based cells are achieved using FN tunneling mechanisms, tunneling of very small ID / VT levels with very low standard deviations is possible. Furthermore, SONOS-based cells have high endurance with minimal degradation over a temperature range of -40°C to 125°C, which can meet the requirements of most consumer, industrial, and automotive applications. In one embodiment, there may be an overlap region 502 of ID values between adjacent ID distributions. In order to reliably and accurately read the ID level of NVM cell 90, the ID distribution standard deviation σ may be reduced to less than about 8 nA or other current value so that the overlap area 502 is kept below 1% to 3% of the distribution. Depending on the spacing between the ID levels, the standard deviation may be higher or lower. In some cases, a standard deviation of 50 nA is sufficient to keep the overlap area below 1% to 3% of the distribution.

圖6是說明根據本發明的一個實施例的NVM單元的16(24)個ID位準的圖表。較佳的如圖6所示,ID位準是分隔開的、良好的分離(低標準差)以及線性遞增,以便維持作為類比裝置的多階NVM單元的高功能性。 FIG6 is a graph illustrating 16 (2 4 ) ID levels of an NVM cell according to one embodiment of the present invention. Preferably, as shown in FIG6 , the ID levels are separated, well separated (low standard deviation), and increase linearly to maintain high functionality of the multi-stage NVM cell as an analog device.

如前文所說明的,習知的寫入程序(像是硬式抹除和硬式程式化程序)可能不夠精確,不足以將多個(超過兩個)位準中的一個特定的ID/VT位準寫入NVM單元。在一個實施例中,可能需要使用一連串的硬式程式化操作、硬式抹除操作、部分程式化操作和部分抹除操作以將精確的ID/VT位準寫入NVM單元(像是NVM單元90)中。 As previously described, known writing processes (such as hard erase and hard program processes) may not be accurate enough to write a specific ID / VT level among multiple (more than two) levels into an NVM cell. In one embodiment, a series of hard program operations, hard erase operations, partial program operations, and partial erase operations may be required to write the exact ID / VT level into an NVM cell (such as NVM cell 90).

圖7A是根據本發明的SONOS電晶體的電荷捕獲氮化物層中從共價帶到傳導帶的陷阱密度(trap density)分布的示意圖。圖7B是說明由於ID和保留期間劣化而在多階NVM單元中的ID分布的潛在效應的圖表。當SONOS電晶體94的壽命起始(Beginning-of-Life,BOL)標準差可能非常低時,在保留期間可能會出現嚴重的劣化,特別是在高溫的狀況下。因此,如圖7B中所示,ID分布(例如ID1和ID2)可能變成較寬的分布(標準差增加)並且相鄰的ID分布可能具有多的重疊部分710(例如,大於3%),這可能導致位準或是數值的不正確/錯誤的讀取。在一個實施例中,所述標準差劣化可能是由於在氮化物層92中的「淺」陷阱中被捕獲的電荷在保留期間失去了,而在「深」陷阱中被捕獲的電荷依然被捕獲。在保留期間失去所述被捕獲的電荷也可能造成ID位準向上偏移,例如圖7B中的ID8和ID8’。當SONOS電晶體94的壽命起始(Beginning-of-Life,BOL)標準差可能非常低時, 在保留期間可能會出現嚴重的劣化,特別是在高溫的狀況下。參照圖7A,根據僅使用硬式抹除操作和硬式程式化操作的習知寫入演算法(像是在NOR快閃記憶體或EEPROM中),電荷趨於被捕獲在淺陷阱和深陷阱兩者中。在一個實施例中,當使用一連串的部分抹除/程式化操作(像是軟式抹除、軟式程式化、選擇性軟式抹除、退火抹除和再填充程式化操作)的寫入演算法時,有較多的電荷會被捕獲在深陷阱中以引導NVM單元的ID/VT到各自的目標值,如圖9A、圖9B、圖11和圖12中所示,並且可能有助於從淺陷阱重新分佈電荷到深陷阱。在一個實施例中,所述部分抹除操作和部分程式化操作可能從淺陷阱將電荷清空並且將所述電荷填入深陷阱。結果,當目標ID/VT被維持在相同位準時,NVM單元的ID/VT兩者的標準差劣化以及NVM單元的保留期間可被改善。 FIG7A is a diagram illustrating the distribution of trap density from the covalent band to the conduction band in the charge-trapping nitride layer of a SONOS transistor according to the present invention. FIG7B is a diagram illustrating the potential effects of ID distribution in a multi-level NVM cell due to ID and retention period degradation. While the Beginning-of-Life (BOL) standard deviation of a SONOS transistor 94 may be very low, severe degradation may occur during retention, especially under high temperature conditions. Thus, as shown in FIG. 7B , the ID distributions (e.g., ID 1 and ID 2) may become wider (with increased standard deviation) and adjacent ID distributions may have more overlap 710 (e.g., greater than 3%), which may result in incorrect/wrong readings of levels or values. In one embodiment, the standard deviation degradation may be due to the fact that the charges trapped in the “shallow” traps in the nitride layer 92 are lost during retention, while the charges trapped in the “deep” traps remain trapped. The loss of the trapped charges during retention may also cause the ID levels to shift upward, such as ID 8 and ID 8′ in FIG. 7B . While the Beginning-of-Life (BOL) standard deviation of the SONOS transistor 94 may be very low, severe degradation may occur during retention, especially under high temperature conditions. Referring to FIG. 7A , according to a learned write algorithm that uses only hard erase operations and hard program operations (such as in NOR flash memory or EEPROM), the charge tends to be trapped in both shallow traps and deep traps. In one embodiment, when a write algorithm using a series of partial erase/program operations (such as soft erase, soft program, selective soft erase, anneal erase, and refill program operations) is used, more charge is trapped in the deep traps to guide the ID / VT of the NVM cell to the respective target values, as shown in FIGS. 9A, 9B, 11, and 12, and may help to redistribute the charge from the shallow traps to the deep traps. In one embodiment, the partial erase operation and the partial program operation may empty the charge from the shallow traps and fill the charge into the deep traps. As a result, when the target ID / VT is maintained at the same level, the standard deviation degradation of both the ID / VT of the NVM cell and the retention period of the NVM cell may be improved.

保留期間和ID/VT標準差劣化也可能藉由製造製程的改變而獲得改善,使得在所述電荷捕捉層中的淺陷阱的密度減少。在一個實施例中,製造製程改善可包括將在SONOS電晶體中的淺溝槽隔離(STI)拐角的平滑化、將在通道中的摻雜輪廓優化、改善氧化物層...等等。 The retention period and ID / VT standard deviation degradation may also be improved by changes in the manufacturing process, so that the density of shallow traps in the charge trapping layer is reduced. In one embodiment, the manufacturing process improvement may include smoothing the shallow trench isolation (STI) corners in the SONOS transistor, optimizing the doping profile in the channel, improving the oxide layer, etc.

軟式抹除操作: Soft erase operation:

在一個實施例中,用於軟式抹除的耦接到各個節點的操作電壓類似於前述圖3A中的硬式抹除操作。因此,完全抹除電壓偏壓8V(VNEG-VPOS)依然加壓在CG和基板/汲極之間。與所述硬式抹除操作不同的,軟式抹除脈衝的WLS脈衝(例如WLS0、WLS1)持續時間是明顯較短的(Tes~20μs),相較於硬式抹除操作的Te~10ms。儘管CG到汲極的電壓偏壓相同(例如-8V),所述軟式軟式抹除脈衝可能只會增加(如圖10中,從L4到L2)但是不會將所選擇的列0(例如C1、C2)中的NVM單元的ID移動至抹除ID位準。在一個實施例中,軟式抹除操作可能只會被執行在整個所選擇的列上。 In one embodiment, the operating voltages coupled to the nodes for soft erase are similar to those in the hard erase operation described above in FIG. 3A. Therefore, the full erase voltage bias of 8V (V NEG -V POS ) is still applied between the CG and the substrate/drain. Unlike the hard erase operation, the duration of the WLS pulses (e.g., WLS0, WLS1) of the soft erase pulses is significantly shorter (Tes~20μs), compared to Te~10ms of the hard erase operation. Although the CG to drain voltage bias is the same (e.g., -8V), the soft erase pulse may only increase (e.g., from L4 to L2 in FIG. 10 ) but will not move the ID of the NVM cells in the selected row 0 (e.g., C1, C2) to the erase ID level. In one embodiment, the soft erase operation may only be performed on the entire selected row.

退火抹除操作: Annealing erase operation:

退火抹除操作的一般用途是解除在淺陷阱中捕獲的電荷以改善後保留期間(post-保留期間)效能。表III記載範例性偏壓電壓,其可用於非揮發性記憶體的頁/列0的退火抹除操作,所述非揮發性記憶體具有2T-架構並且包含具有N型SONOS電晶體和CSL(像是如圖3A中所示的2×2陣列300)的記憶體單元。 A general purpose of an anneal erase operation is to release the charge trapped in shallow traps to improve post-retention performance. Table III records exemplary bias voltages that may be used for an anneal erase operation of page/row 0 of a non-volatile memory having a 2T-architecture and including memory cells having N-type SONOS transistors and CSLs (such as the 2×2 array 300 shown in FIG. 3A ).

Figure 113112548-A0305-12-0023-3
Figure 113112548-A0305-12-0023-3

在一個實施例中,不同於抹除操作和軟式抹除操作,軟式抹除電壓偏壓(VNEG-VAEPOS)被加壓在CG和基板/汲極之間作為VAEPOS,其相較於VPOS可具有較小的數值。然而,所述較軟式的或較低的抹除電壓(例如6V相對於8V)被施加到CG維持較長的脈衝持續時間,Tae~50ms。在一個實施例中,較長脈衝持續時間的所述軟式抹除脈衝可有助於移除在淺陷阱中的電荷,所述電荷較接近傳導帶。在一個實施例中,退火抹除操作可僅被執行在整個所選擇的列上。 In one embodiment, unlike the erase operation and the soft erase operation, a soft erase voltage bias (V NEG -V AEPOS ) is applied between the CG and the substrate/drain as V AEPOS , which may have a smaller value compared to V POS . However, the soft or lower erase voltage (e.g., 6V versus 8V) is applied to the CG for a longer pulse duration, Tae ~ 50ms. In one embodiment, the soft erase pulse with a longer pulse duration may help remove charges in shallow traps, which are closer to the conduction band. In one embodiment, the anneal erase operation may be performed only on the entire selected row.

選擇性軟式抹除: Selective Soft Erase:

圖8A圖示NVM陣列100的2×2陣列800以演示根據本發明的選擇性軟式抹除操作的實施例。在一個實施例中,2×2陣列800相似於如圖3A和圖3B中的2×2陣列300。在下文中,為了清楚並且易於說明,假設在2×2陣列800中的所有電晶體是N型電晶體。應該理解的是,在不失一般性的前提下,可透過反轉施加電壓的極性來描述P型的配置,並且這樣的配置是在本發明所記載的預期實施例的範圍內。此外,為了便於說明,選擇了以下描述中使用的電壓,並且這些電壓僅表示本發明標的一個範例性實施例。在不同的實施例中可以採用其他電壓。 FIG. 8A illustrates a 2×2 array 800 of the NVM array 100 to demonstrate an embodiment of a selective soft erase operation according to the present invention. In one embodiment, the 2×2 array 800 is similar to the 2×2 array 300 as shown in FIGS. 3A and 3B . Hereinafter, for clarity and ease of description, it is assumed that all transistors in the 2×2 array 800 are N-type transistors. It should be understood that, without loss of generality, a P-type configuration may be described by reversing the polarity of the applied voltage, and such a configuration is within the scope of the intended embodiments described herein. Furthermore, the voltages used in the following description are selected for ease of description and represent only one exemplary embodiment of the subject matter of the present invention. Other voltages may be used in different embodiments.

參照圖8A,2×2記憶體陣列800包括至少四個被配置為兩個行和兩個列的記憶體單元C1、C2、C3和C4。儘管NVM單元C1-C4可能被放置在兩個鄰近的行(共用源極線CSL0)中,但是它們可以被放置在兩個相鄰的列中或者是兩個不相鄰的列中。NVM單元C1-C4中的每一個在結構上可能相似於如上文中所述的NVM單元90。參照圖3A、圖3B和圖5,如圖3A中所記載的硬式抹除操作可能將已抹除的NVM單元的ID提高到如圖5中所示的抹除ID準位,並且硬式程式化操作相似地到如圖5中所示的程式化ID準位。在一個實施例中,抹除ID位準和程式化ID位準可被分布至超出NVM陣列100的ID1到ID2n的操作範圍。在其他的實施例中,抹除ID位準和程式化ID位準中的一個可落在所述操作範圍之內。 8A, a 2×2 memory array 800 includes at least four memory cells C1, C2, C3, and C4 arranged in two rows and two columns. Although the NVM cells C1-C4 may be placed in two adjacent rows (common source line CSL0), they may be placed in two adjacent columns or in two non-adjacent columns. Each of the NVM cells C1-C4 may be similar in structure to the NVM cell 90 described above. Referring to FIGS. 3A, 3B, and 5, a hard erase operation as depicted in FIG. 3A may raise the ID of the erased NVM cell to an erase ID level as shown in FIG. 5, and a hard program operation similarly to a program ID level as shown in FIG. 5. In one embodiment, the erase ID level and the program ID level may be distributed beyond the operating range of ID 1 to ID 2n of the NVM array 100. In other embodiments, one of the erase ID level and the program ID level may fall within the operating range.

參照圖8A,舉例來說,選擇頁0以部分抹除/抑制並且頁1沒有(未被選擇)進行選擇性軟式抹除(SSE)/抑制操作。不同於前文所說明的所述硬式、軟式和退火抹除操作的實施例,其中單一頁或是列是NVM單元90的最小抹除區塊,在相同列(例如,頁0)中的單一個NVM單元/位元或多個NVM單元/位元可被選擇以進行選擇性軟式抹除操作。替代性的,所述未選擇的NVM單元(例如C2)可被抑制。因此,藉由施加適當的電壓到與在列0中所有NVM共享的SONOS字元線(WLS0)、基板連接件以及施加至在NVM陣列100中的所有位元線,只有在選擇 的列(頁0)中包含C1的被選擇的(多個)NVM單元具有之ID位準增加(部分的抹除)。在一個實施例中,選擇性軟式抹除(SSE)負電壓VSSENEG被施加到WLS0,且SSE正電壓VSSEPOS被施加到在頁0中的所有NVM單元的BL0以及DNW。在一個實施例中,相較於使用於圖3A中的硬式抹除操作的VNEG,VSSENEG具有較小的絕對量值;並且相較於圖3A中的VPOS,VSSEPOS具有較大的絕對量值。VEINHIB被施加到WL0、SPW、BL1和WL1以抑制未被選擇的NVM單元(像是C2)的軟式抹除操作,以避免其之ID被增加。CLS0和WLS1耦接到接地或0V。在一個實施例中,所有NVM單元C1到C4的SG被至少部分地關閉(WL=-1.4V),通常用於硬式抹除操作是被開啟的。 8A, for example, page 0 is selected for partial erase/inhibit and page 1 is not (not selected) for a selective soft erase (SSE)/inhibit operation. Different from the previously described embodiments of the hard, soft, and anneal erase operations, where a single page or row is the minimum erase block of NVM cells 90, a single NVM cell/bit or multiple NVM cells/bits in the same row (e.g., page 0) may be selected for a selective soft erase operation. Alternatively, the unselected NVM cells (e.g., C2) may be inhibited. Thus, by applying appropriate voltages to the SONOS word line (WLS0) shared with all NVMs in row 0, the substrate connections, and to all bit lines in the NVM array 100, only the selected NVM cell(s) including C1 in the selected row (page 0) have their ID levels increased (partially erased). In one embodiment, a selective soft erase (SSE) negative voltage VSSENEG is applied to WLS0, and a SSE positive voltage VSSEPOS is applied to BL0 and DNW of all NVM cells in page 0. In one embodiment, VSSENEG has a smaller absolute magnitude than VNEG used in the hard erase operation in FIG. 3A, and VSSEPOS has a larger absolute magnitude than VPOS in FIG. 3A. VEINHIB is applied to WL0, SPW, BL1, and WL1 to inhibit soft erase operations of unselected NVM cells (such as C2) to prevent their ID from being increased. CLS0 and WLS1 are coupled to ground or 0V. In one embodiment, the SG of all NVM cells C1 to C4 are at least partially turned off (WL=-1.4V), which are normally turned on for hard erase operations.

在一個實施例中,儘管VSSENEG的絕對量值較小,但僅在C1中的記憶電晶體的CG和BL0之間仍會施加相對完全抹除的電壓偏壓(VSSENEG-VSSEPOS=-7.2V)。在未被選擇的C2中的CG和BL1之間的電壓差僅為(VSSENEG-VEINHIB=-0.9V)。因此,只有被選擇的C1的ID可能會增加,但是在相同被選擇的列0中的未被選擇的C2的ID則不會增加。在一個實施例中,耦接到WLS0的被選擇的抹除操作的脈衝持續時間(Tsse~20μs)是更短於硬式抹除操作中的持續時間(Te~10ms)。所述較短的SSE脈衝可能不會具有足夠的時間來抹除先前被捕獲在NVM單元C1中的所有電荷(如果有的話)。在一個實施例中,包含WL0和WL1的所有字元線和SPW被耦接到VEINHIB,使得未被選擇的NVM單元C2、C3和C4可能不會像NVM單元C1那樣被部分抹除。在一個實施例中,被選擇的抹除操作的一般概念是施加相對高的抹除電壓偏壓(例如7.2V)持續較短的時間週期(20μs)以減少只有在相同列的被選擇的NVM單元中的捕獲電荷。在一個實施例中,Tae>Te>Tsse及Tse。在一個實施例中,在相同列(相鄰或不相鄰)中的超過一個的NVM單元可被選擇以執行SSE操作,而在相同列中的超過一個的NVM單元可被抑制,使得它們的ID位準保持相對不變。 In one embodiment, despite the smaller absolute magnitude of V SSENEG , a relatively fully erased voltage bias is applied only between the CG and BL0 of the memory transistor in C1 (V SSENEG -V SSEPOS = -7.2V). The voltage difference between the CG and BL1 in the unselected C2 is only (V SSENEG -V EINHIB = -0.9V). Therefore, only the ID of the selected C1 may increase, but the ID of the unselected C2 in the same selected column 0 will not increase. In one embodiment, the pulse duration of the selected erase operation coupled to WLS0 (Tsse ~ 20μs) is shorter than the duration in the hard erase operation (Te ~ 10ms). The shorter SSE pulse may not have enough time to erase all the charge previously trapped in NVM cell C1 (if any). In one embodiment, all word lines including WL0 and WL1 and SPW are coupled to VEINHIB so that the unselected NVM cells C2, C3, and C4 may not be partially erased like NVM cell C1. In one embodiment, the general concept of the selected erase operation is to apply a relatively high erase voltage bias (e.g., 7.2V) for a short time period (20μs) to reduce the trapped charge only in the selected NVM cells of the same column. In one embodiment, Tae>Te>Tsse and Tse. In one embodiment, more than one NVM cell in the same row (adjacent or non-adjacent) may be selected to perform SSE operations, while more than one NVM cell in the same row may be inhibited so that their ID levels remain relatively unchanged.

表IV記載範例性偏壓電壓,其可用於非揮發性記憶體的頁/列0和行0(只有C1)的選擇性軟式抹除操作,所述非揮發性記憶體具有2T-架構並且包含具有N型SONOS電晶體和CSL的記憶體單元,相似於2×2陣列800。 Table IV records exemplary bias voltages that may be used for a selective soft erase operation of page/column 0 and row 0 (only C1) of a non-volatile memory having a 2T-architecture and including memory cells having N-type SONOS transistors and CSLs, similar to the 2×2 array 800.

Figure 113112548-A0305-12-0026-6
Figure 113112548-A0305-12-0026-6

軟式程式化操作: Soft programmed operation:

在一個實施例中,耦接到各個節點的操作電壓以用於軟式程式化(SP)/抑制操作是相似於如前文圖3B中所述的硬式程式化/抑制操作,除了耦接到被選擇的WLS的電壓(例如WLS0)之外。在一個實施例中,VSPPOS相較於在硬式程式化操作中的VPOS而具有較小的數值,使得施加到被選擇的C1的CG上的程式化電壓可被減少。因此,軟式程式化電壓偏壓6V(VNEG-VSPPOS)被施加到CG和BL/基板/P井區之間。不同於所述硬式程式化操作,軟式程式化脈衝的WLS脈衝(例如WLS0、WLS1)持續時間(Tsp~10μs)是明顯地短於硬式程式化操作的持續時 間Tp~5ms。藉由較小的CG對汲極的電壓差(例如6V相對於8V)以及較短的軟式程式化脈衝時間(10μs相對於5ms),所述軟式程式化操作可能只是減少但是沒有將被選擇的NVM單元C1的ID移到所述被程式化ID位準(例如圖10中,從L3到L2)。在一個實施例中,未被選擇的NVM單元,例如在相同列以及未被選擇的列上的C2,例如C3和C4可被抑制。 In one embodiment, the operating voltages coupled to the various nodes for soft programming (SP)/inhibit operation are similar to the hard programming/inhibit operation as described above in FIG. 3B, except that the voltage coupled to the selected WLS (e.g., WLS0) is reduced. In one embodiment, V SPPOS has a smaller value than V POS in the hard programming operation so that the programming voltage applied to the CG of the selected C1 can be reduced. Therefore, a soft programming voltage bias of 6V (V NEG -V SPPOS ) is applied between the CG and the BL/substrate/P-well region. Unlike the hard programming operation, the WLS pulse duration (Tsp~10μs) of the soft programming pulse is significantly shorter than the duration Tp~5ms of the hard programming operation. With a smaller CG to drain voltage difference (e.g., 6V vs. 8V) and a shorter soft programming pulse time (10μs vs. 5ms), the soft programming operation may only reduce but not move the ID of the selected NVM cell C1 to the programmed ID level (e.g., from L3 to L2 in FIG. 10 ). In one embodiment, unselected NVM cells, such as C2 on the same column and unselected columns, such as C3 and C4, may be inhibited.

再填充程式化操作: Refilling programmed operation:

圖8B圖示在再填充程式化(RP)/抑制操作期間的NVM陣列100的區段2×2陣列800的範例性實施例。參照圖8B,舉例來說,NVM單元C1是要被部分程式化(將ID位準減少或移動朝向圖5中所示的被程式化的ID)的目標單元,而NVM單元C2是被抑制的。將可以理解的是,當C1和C2被圖示為兩個相鄰的單元以用於說明之目的時,C1和C2也可以是在相同列(例如列0)上的兩個分開的單元。通常再填充程式化操作的目的是用來填充電荷於深陷阱(見圖7A)中,使用高程式化電壓偏壓來提升所述後保留期間效能。表V記載範例性偏壓電壓,其可用於非揮發性記憶體的頁/列0的再填充程式化操作,所述非揮發性記憶體具有2T-架構並且包含具有N型SONOS電晶體和CSL的記憶體單元,相似於圖8B中所示的2×2陣列800。 FIG8B illustrates an exemplary embodiment of a segment 2×2 array 800 of the NVM array 100 during a refill programming (RP)/inhibit operation. Referring to FIG8B , for example, NVM cell C1 is the target cell to be partially programmed (to reduce or move the ID level toward the programmed ID shown in FIG5 ), while NVM cell C2 is inhibited. It will be appreciated that while C1 and C2 are illustrated as two adjacent cells for purposes of illustration, C1 and C2 may also be two separate cells on the same row (e.g., row 0). Typically the purpose of a refill programming operation is to fill charge in deep traps (see FIG7A ), using a high programming voltage bias to improve the post retention performance. Table V records exemplary bias voltages that may be used for a refill programming operation of page/row 0 of a non-volatile memory having a 2T-architecture and including memory cells having N-type SONOS transistors and CSLs, similar to the 2×2 array 800 shown in FIG. 8B .

在一個實施例中,不同於所述軟式程式化操作,較硬式的程式化電壓偏壓(VRPPOS-VRPNEG)被施加在CG和基板/汲極之間作為VRPPOS,其可能具有與VPOS相當或更高的數值,且VRPNEG可能具有與VNEG相當或更高的數值。因此,被施加在被選擇的C1的CG上的所得的程式化電壓偏壓是相當於但是略高於如圖3B中所述之硬式程式化操作中的電壓偏壓(例如,9V相對於8V)。然而,所述較硬式的程式化脈衝僅被施加到被選擇的CG(s)而持續非常短暫的持續時間Trp~5μs。所述短暫的再填充程式化脈衝可能會減少C1的ID但是不會完全地將其程式化。在一個實施例中,Tp>Tsp>Trp。所述再填充程式化操作的硬式程式化 脈衝可能有助於將電荷填充到深陷阱中,其具有的能階在如圖7A中所示的共價帶和傳導帶之間。在一個實施例中,相似於硬式程式化和軟式程式化操作,未被選擇的NVM單元C2、C3、C4...等等可被抑制。在一個實施例中,所述再填充程式化操作可在所述退火抹除操作之前或之後被執行。所述再填充程式化操作可藉由重新填充電荷於深陷阱中來恢復被選擇的NVM單元的ID,在先前的退火抹除操作中可以將電荷從淺陷阱中清空。 In one embodiment, unlike the soft programming operation, a harder programming voltage bias (V RPPOS -V RPNEG ) is applied between the CG and substrate/drain as V RPPOS , which may have a value equal to or higher than V POS , and V RPNEG may have a value equal to or higher than V NEG . Thus, the resulting programming voltage bias applied to the CG of the selected C1 is equal to but slightly higher than the voltage bias in the hard programming operation as described in FIG. 3B (e.g., 9V versus 8V). However, the harder programming pulse is only applied to the selected CG(s) for a very short duration of Trp ~ 5μs. The brief refill programming pulse may reduce the ID of C1 but not fully program it. In one embodiment, Tp>Tsp>Trp. The hard programming pulse of the refill programming operation may help fill the charge into deep traps, which have energy levels between the covalent band and the conduction band as shown in FIG. 7A. In one embodiment, similar to the hard programming and soft programming operations, the unselected NVM cells C2, C3, C4, ..., etc. may be suppressed. In one embodiment, the refill programming operation may be performed before or after the anneal erase operation. The refill programming operation may restore the ID of the selected NVM cell by refilling the charge in the deep traps after the charge was emptied from the shallow traps during the previous anneal erase operation.

表V記載範例性偏壓電壓,其可被使用於再填充程式化在非揮發性記憶體中的NVM單元C1,所述非揮發性記憶體具有2T-架構並且包括具有N型SONOS電晶體和CSL的記憶體單元。 Table V describes exemplary bias voltages that may be used to refill an NVM cell C1 programmed in a non-volatile memory having a 2T-architecture and including a memory cell having an N-type SONOS transistor and a CSL.

Figure 113112548-A0305-12-0028-5
Figure 113112548-A0305-12-0028-5

應可以理解的是,使用於上文中的硬式抹除、硬式程式化、部分抹除和部分程式化操作的所述電壓和電壓範圍是被選擇以用於抹除的範例,並 且其僅代表本發明的範例性實施例,不應被認為是限制性的。在不失本發明的一般性的情況下,其它電壓也可能被使用於不同的實施例中。 It should be understood that the voltages and voltage ranges used in the hard erase, hard program, partial erase and partial program operations described above are examples selected for erase and represent only exemplary embodiments of the present invention and should not be considered limiting. Other voltages may also be used in different embodiments without losing the generality of the present invention.

圖9A和圖9B是代表性的流程圖,其說明根據本發明所揭露的一個實施例的多階NVM單元的寫入操作900A和900B的方法。圖10是代表圖,其說明根據本發明所揭露的一個實施例的類比NVM陣列中的NVM單元的多個ID或VT位準。如上文中所說明的,所述寫入方法900A和900B可被應用以調整NVM單元的多個VT和ID位準。應可以理解的是,僅是為了清楚及簡化的目的,方法900A和900B以下僅從ID的角度進行說明。參照圖9A和圖9B,所述寫入操作900A和900B的主要目的是藉由一連串的部分程式化操作、部分抹除操作和驗證操作來精確地寫入期望的或是預定的ID或VT位準(或目標值)到一個或多個選擇的單元或位元,像是在NVM陣列100中的基於SONOS的NVM單元90或是在圖13中的類比NVM陣列1302。在一個實施例中,所述被寫入的ID可能必須落在相對窄的ID分布範圍(低標準差)中以維維持類比記憶體具有多個ID位準的功能性。參照圖9A和圖13,所述方法900A開始於喚醒階段(wake-up phase)。在一個實施例中,於步驟902中,相似於圖3B中所描述的實施例的硬式程式化操作可被執行於整個類比NVM陣列1302中以減少在未被選擇的NVM單元中的漏電流。應可以理解的是,NVM單元的單一個或是多個行和列可被選擇以執行寫入操作900A和900B。舉例而言,在圖13中的多階NVM陣列1302中的列A、行X以及列A、行Y中的NVM單元被選擇以進行寫入操作以達到目標ID2位準,如圖10中所示。隨後,一連串的硬式抹除操作(圖3A)和硬式程式化操作(圖3B)可分別在步驟904和步驟906中於選擇的列A中執行。在一個實施例中,在列A中的NVM單元的ID可首先被移動到所述抹除的ID位準並且接著到所述程式化的ID位準,如圖10中所示。步驟904和步驟906可被重複X次,例如5次(在步驟908中),並且所述喚醒階段可以使得所述選擇的列A準備好來進行即將來臨的操作。在所述喚醒階段之後,在所述選擇的 列A中的NVM單元可能是在完全程式化的ID位準(L1)。在一個實施例中,在所述喚醒階段期間,可能沒有任何驗證或讀取操作。 9A and 9B are representative flow charts illustrating methods of writing operations 900A and 900B of a multi-level NVM cell according to an embodiment of the present invention. FIG. 10 is a representative diagram illustrating multiple ID or VT levels of NVM cells in an analog NVM array according to an embodiment of the present invention. As described above, the writing methods 900A and 900B can be applied to adjust multiple VT and ID levels of NVM cells. It should be understood that for the purpose of clarity and simplicity, the methods 900A and 900B are described below only from the perspective of ID . 9A and 9B , the main purpose of the write operations 900A and 900B is to accurately write the desired or predetermined ID or VT level (or target value) to one or more selected cells or bits, such as the SONOS-based NVM cell 90 in the NVM array 100 or the analog NVM array 1302 in FIG. 13 , through a series of partial programming operations, partial erase operations, and verification operations. In one embodiment, the written ID may have to fall within a relatively narrow ID distribution range (low standard deviation) to maintain the functionality of the analog memory with multiple ID levels. Referring to FIG. 9A and FIG. 13 , the method 900A begins at a wake-up phase. In one embodiment, in step 902, a hard programming operation similar to the embodiment described in FIG. 3B may be performed throughout the analog NVM array 1302 to reduce leakage current in unselected NVM cells. It should be appreciated that a single or multiple rows and columns of NVM cells may be selected to perform write operations 900A and 900B. For example, NVM cells in row A, row X and row A, row Y in the multi-level NVM array 1302 of FIG. 13 are selected for write operations to achieve a target ID2 level, as shown in FIG. 10. Subsequently, a series of hard erase operations (FIG. 3A) and hard program operations (FIG. 3B) may be performed in the selected row A in steps 904 and 906, respectively. In one embodiment, the IDs of the NVM cells in row A may be first moved to the erased ID level and then to the programmed ID level, as shown in FIG. 10. Steps 904 and 906 may be repeated X times, for example 5 times (in step 908), and the wake-up phase may prepare the selected row A for the upcoming operation. After the wake-up phase, the NVM cells in the selected row A may be at the fully programmed ID level (L1). In one embodiment, there may not be any authentication or read operations during the wake-up phase.

參照圖9A和圖10,在步驟910中,軟式抹除操作被執行在列A上的選擇的位元上,使得這些NVM單元的ID從位準L1被提高到所述抹除的ID位準。隨後,不同於二進位NVM單元的寫入操作方式,相似於常規讀取操作的驗證操作可在每次部分程式化操作或部分抹除操作之後被執行以檢查所述選擇的位元的ID位準。在步驟912,驗證步驟被執行到行X和行Y中的選擇的位元上以檢查在步驟910中的所述軟式抹除操作將這些位元的ID位準分別提高多少。如果在行X和行Y兩者中的位元的ID大於所述目標ID的下限(即ID2LL),則所述方法可能進行微調階段,其在圖9B中詳細的描述。在步驟914中,如果兩者中的位元的ID被判定為小於ID2LL,則方法900A可以回到步驟910進行另外的軟式抹除操作以進一步促進或提高所述行X和行Y兩者中的位元的ID。在步驟916中,如果在行X和行Y兩者中的選擇的位元的ID中只有一個被判定為低於ID2LL,則軟式程式化操作可被執行在高於ID2LL的所述位元上(降低其之ID),而低於ID2LL的所述位元則被抑制,使得兩個被選擇的位元是在相同的ID位準。接著,方法900A可回到步驟910進行其他軟式抹除操作以進一步促進行X和行Y兩者中的位元的ID朝向目標ID位準。在一個實施例中,步驟912、步驟914、步驟916可被重複執行很多次直到所有選擇的位元(例如在列A、行X處的位元以及列A行Y處的位元)的ID位準藉由在步驟910中的軟式抹除操作以及隨後在步驟912中的驗證而被提升到大於所述目標ID位準的下限,例如圖10中的L2位準或L3位準。在一個實施例中,可以對於選擇的列A上的所有位元進行上述的步驟。 9A and 10, in step 910, a soft erase operation is performed on selected bits on row A, so that the ID of these NVM cells is raised from level L1 to the erased ID level. Subsequently, unlike the write operation of binary NVM cells, a verification operation similar to a conventional read operation can be performed after each partial programming operation or partial erase operation to check the ID level of the selected bits. In step 912, a verification step is performed on selected bits in row X and row Y to check how much the soft erase operation in step 910 raises the ID level of these bits respectively. If the ID of the bits in both row X and row Y is greater than the lower limit of the target ID (i.e., ID 2LL), the method may proceed to a fine tuning phase, which is described in detail in FIG. 9B. In step 914, if the ID of the bits in both is determined to be less than ID 2LL, the method 900A may return to step 910 to perform additional soft erase operations to further boost or increase the ID of the bits in both row X and row Y. In step 916, if only one of the IDs of the selected bits in both row X and row Y is determined to be below ID 2LL, a soft programming operation may be performed on the bit above ID 2LL (lowering its ID ), while the bit below ID 2LL is inhibited so that the two selected bits are at the same ID level. The method 900A may then return to step 910 to perform other soft erase operations to further advance the IDs of the bits in both row X and row Y toward the target ID level. In one embodiment, step 912, step 914, and step 916 may be repeatedly performed many times until the ID levels of all selected bits (e.g., bits at row A, row X, and bits at row A, row Y) are raised to a lower limit greater than the target ID level, such as the L2 level or the L3 level in FIG. 10 , by the soft erase operation in step 910 and the subsequent verification in step 912. In one embodiment, the above steps may be performed for all bits on the selected row A.

參照圖9B,所述寫入方法900B進行所述微調階段,其中在每次驗證操作之後執行一系列的軟式程式化操作和選擇性軟式抹除操作於一個或多個選擇的位元以引導每個這些位元的ID朝向目標ID位準(例如ID2)。在一個實施例 中,驗證操作或讀取操作可被執行在所有的位元上來判定是否有任何位元的ID超過所述目標ID上限(例如,圖10中的ID2UL)。如果所選擇的位元(例如行X和行Y)兩者被判定為低於ID2UL,則所述微調階段將至步驟922進行。在步驟920中,如果任何被選擇的位元的ID被判定為大於ID2UL(例如,L3位準),則軟式程式化操作(圖8B)將會被執行到這些位元上以稍微降低這些位元的ID回到ID2分布限制範圍內。而其他選擇的位元可能被抑制。在一個實施例中,步驟918和步驟920可重複進行很多次直到所有被選擇的位元被判定為具有低於ID2UL的ID位準。 9B , the write method 900B performs the fine tuning phase, wherein a series of soft programming operations and selective soft erase operations are performed on one or more selected bits after each verification operation to guide the ID of each of these bits toward a target ID level (e.g., ID 2). In one embodiment, a verification operation or a read operation may be performed on all bits to determine whether the ID of any bit exceeds the target ID upper limit (e.g., ID 2UL in FIG. 10 ). If both of the selected bits (e.g., row X and row Y) are determined to be below ID 2UL, the fine tuning phase proceeds to step 922. In step 920, if the ID of any selected bits is determined to be greater than ID 2UL (e.g., L3 level), a soft programming operation (FIG. 8B) will be performed on these bits to slightly reduce the ID of these bits back to within the ID 2 distribution limit. Other selected bits may be suppressed. In one embodiment, steps 918 and 920 may be repeated multiple times until all selected bits are determined to have an ID level below ID 2UL.

在驗證步驟922中,所有被選擇的位元(例如,行X和行Y)將被讀取以判定是否有任何位元的ID由於先前在步驟920中的軟式程式化操作/抑制操作而被偏移到低於ID2LL(例如,L4位準)。如果所有被選擇的位元被判定為大於ID2LL,則所述微調階段可以到步驟926執行。如果有任何選擇的位元被判定為以偏移低於ID2LL,則選擇性軟式抹除操作(圖8A)可以僅被執行於這些位元以引導這些位元的ID朝向所述ID2分布。如上文中所討論的,不同於可能被執行於列中的所有位元的硬式或軟式抹除操作,選擇性軟式抹除操作可以僅被執行於選擇的列中的單一個位元或多個位元。在一個實施例中,沒有被執行所述選擇性抹除操作的被選擇的位元可能被抑制(ID實質上沒有改變)。步驟922和步驟924可被重複很多次直到所有被選擇的位元的ID被引導超過ID2LL。 In a verification step 922, all selected bits (e.g., row X and row Y) are read to determine if any of the bits have their ID shifted below ID 2LL (e.g., L4 level) due to the previous soft programming/inhibit operation in step 920. If all selected bits are determined to be greater than ID 2LL, the trimming phase may proceed to step 926. If any selected bits are determined to be shifted below ID 2LL, a selective soft erase operation ( FIG. 8A ) may be performed only on those bits to steer the ID of those bits toward the ID 2 distribution. As discussed above, unlike a hard or soft erase operation that may be performed on all bits in a column, a selective soft erase operation may be performed only on a single bit or multiple bits in a selected column. In one embodiment, the selected bits that are not subjected to the selective erase operation may be suppressed (the ID is not substantially changed). Steps 922 and 924 may be repeated a number of times until the IDs of all selected bits are directed to exceed ID 2LL.

在驗證步驟926中,所有被選擇的位元(例如,行X和行Y)將被讀取以判定是否有任何位元的ID由於先前在步驟924中的選擇性軟式抹除/抑制操作而造成偏移超過ID2UL(過度校準)。如果有任何被選擇的位元被判定為偏移超過ID2UL,則軟式程式化操作(圖8B)可僅被執行於這些位元上以引導這些位元的ID回到ID2分布範圍內。在一個實施例中,沒有被執行所述軟式程式化操作的被選擇的位元可能被抑制。 In a verification step 926, all selected bits (e.g., row X and row Y) are read to determine if any bit's ID has shifted by more than ID 2UL (overcalibrated) due to the selective soft erase/inhibit operation previously performed in step 924. If any selected bits are determined to have shifted by more than ID 2UL, a soft programming operation (FIG. 8B) may be performed only on those bits to guide the ID of those bits back into the ID 2 distribution range. In one embodiment, the selected bits that were not subjected to the soft programming operation may be inhibited.

在一個實施例中,在驗證步驟926中,如果所有被選擇的位元被 判定為低於ID2UL,則所述微調階段可以在步驟930終止。所有被選擇的位元(例如列A、行X以及列A、行Y)被判定為具有所述目標ID,也就是高於ID2LL並且低於ID2UL。所述寫入方法900A和900B可於其他的列中,例如像是列B,進行相同或是不同的目標ID位準。在一個實施例中,所述寫入操作可被重複直到所述整個類比NVM陣列1302被程式化到所述目標ID位準。 In one embodiment, in the verification step 926, if all selected bits are determined to be below ID 2UL, the fine tuning phase can terminate at step 930. All selected bits (e.g., row A, row X and row A, row Y) are determined to have the target ID , which is above ID 2LL and below ID 2UL. The write methods 900A and 900B can be performed on other rows, such as row B, with the same or different target ID levels. In one embodiment, the write operation can be repeated until the entire analog NVM array 1302 is programmed to the target ID level.

在另外的實施例中,所述微調階段可循環回到步驟922以檢查是否有任何選擇的位元在步驟928中的所述軟式程式化操作被過度校正。根據系統需求,在所述微調階段進行寫入結束步驟930之前,步驟922(驗證)、步驟924(SE)以及步驟926(驗證)、步驟928(SP)可被配置為重複很多次。所述重複的驗證在某些實施例中可以有優點,特別是在具有高數量的ID位準的多階NVM陣列中(相鄰目標ID位準緊密分布)。 In other embodiments, the fine tuning phase may loop back to step 922 to check if any selected bits were overcorrected by the soft programming operation in step 928. Depending on system requirements, steps 922 (verify), 924 (SE), and 926 (verify), 928 (SP) may be configured to be repeated a number of times before the fine tuning phase proceeds to write end step 930. The repeated verification may be advantageous in certain embodiments, particularly in multi-level NVM arrays with a high number of ID levels (closely spaced adjacent target ID levels).

圖11是示意性的流程圖,其說明根據本發明的寫入演算法的另一個實施例。在一個實施例中,寫入演算法1100可適用於寫入相同列中的兩個位元(例如,圖13中的列A、行X以及列A、行Y)以達到兩個不同的目標ID(例如,行X-I2,行Y-I0)。參照圖11,在步驟1104(喚醒階段)中,方法1100開始並且可以將硬式程式化和抹除操作或強硬式程式化(strong program)和抹除操作(圖3A和圖3B)的多個循環執行於行X、行Y的位元上。隨後,在步驟1106中,硬式抹除操作可被執行於行X、行Y的位元,使得它們的ID位準到達I1。在另一個實施例中,所述硬式抹除操作可能推動行X、行Y的位元超過I1而到達抹除ID位準。然後,藉由比較行X的位元和I2平均值,可重複執行像是軟式程式化操作(在步驟1108中)和驗證或讀取(在步驟1109中)的部分程式化操作很多次,直到所述至少所述行X的位元達到I2。隨後,在步驟1110中,行X的位元可被抑制進行程式化或抹除操作,因為行X的位元已經達到其之目標I2。然後,在步驟1112中,選擇性抹除操作可被執行到未被抑制的未元(即,行Y的位元)上以推動其之ID到達I3。在一個實施例中, 行Y可能需要進行多個選擇性抹除操作以達到I3。然後,像是軟式程式化操作(在步驟1114中)和驗證或讀取(在步驟1116中)的部分程式化操作可被重複多次直到行Y的位元達到其之目標位準I0。在步驟1118中,藉由比較行Y的位元和I0平均值,一旦所述行Y的位元被判定為到達其之目標I0,則所述行Y的位元類似於行X的位元可被抑制進行額外的程式化操作/抹除操作。在一個實施例中,如本實施例所示,I2<I0<I3<I1。為了判定是否位元達到其之目標ID位準,可以將所述位元與所述目標ID的平均值位準比較。在另一個實施例中,可採用圖9A含圖9B中詳細描述的下限和上限演算法,例如步驟920、步驟924和步驟926。在另一個實施例中,所述寫入演算法可使用相同的步驟在選擇的列或其他列中的其它位元進行寫入。 FIG. 11 is a schematic flow chart illustrating another embodiment of a write algorithm according to the present invention. In one embodiment, the write algorithm 1100 may be applied to write two bits in the same row (e.g., row A, row X and row A, row Y in FIG. 13 ) to achieve two different target IDs (e.g., row X1 2 , row Y1 0 ). Referring to FIG. 11 , in step 1104 (wake-up phase), the method 1100 begins and multiple cycles of hard program and erase operations or strong program and erase operations ( FIGS. 3A and 3B ) may be performed on the bits in row X, row Y. Then, in step 1106, a hard erase operation may be performed on the bits of row X and row Y so that their ID level reaches I 1. In another embodiment, the hard erase operation may push the bits of row X and row Y beyond I 1 to reach the erased ID level. Then, by comparing the bits of row X to the I 2 average, partial programming operations such as soft programming (in step 1108) and verification or reading (in step 1109) may be repeated many times until at least the bits of row X reach I 2. Then, in step 1110, the bits of row X may be inhibited from undergoing programming or erase operations because the bits of row X have reached their target I 2 . Then, in step 1112, a selective erase operation may be performed on the uninhibited bits (i.e., the bits of row Y) to push their ID to I 3 . In one embodiment, row Y may require multiple selective erase operations to reach I 3 . Then, partial programming operations such as soft programming (in step 1114) and verification or reading (in step 1116) may be repeated multiple times until the bits of row Y reach their target level I 0 . In step 1118, once the bits of row Y are determined to have reached their target I 0 , the bits of row Y, similar to the bits of row X, may be inhibited from additional programming/erase operations by comparing the bits of row Y to the I 0 average. In one embodiment, as shown in the present embodiment, I 2 <I 0 <I 3 <I 1 . To determine whether a bit has reached its target ID level, the bit can be compared to the average level of the target ID . In another embodiment, the lower and upper bound algorithm described in detail in FIG. 9A including FIG. 9B can be used, such as step 920, step 924 and step 926. In another embodiment, the write algorithm can use the same steps to write other bits in the selected row or other rows.

圖11中的所述寫入演算法說明將類比值寫入於NVM陣列(像是多階NVM陣列1302)的基本概念。在又另外的實施例中,超過一個的位元可被寫入所述目標I2和I0,因為軟式程式化操作和選擇性軟式抹除操作可被選擇性的執行到在相同列中的一個或多個位元。在又另外的實施例中,取代使用軟式程式化操作(步驟1106和步驟1114中)將位元引導或微調至位元的個別目標ID,可以額外地或替代性地採用選擇性軟式抹除操作。在圖11中的範例開始於抹除ID位準(在步驟1106之後),當在步驟1106中改成執行硬式程式化操作時,也可以開始於所述程式化ID位準(將所有位元推動至I2或是至所述程式化ID位準)。 The write algorithm in FIG. 11 illustrates the basic concept of writing analog values to an NVM array, such as the multi-level NVM array 1302. In yet another embodiment, more than one bit may be written to the targets I 2 and I 0 because a soft program operation and a selective soft erase operation may be selectively performed on one or more bits in the same row. In yet another embodiment, instead of using a soft program operation (in steps 1106 and 1114) to steer or trim bits to individual target IDs of bits, a selective soft erase operation may be employed in addition or in lieu thereof. The example in Figure 11 starts with the erase ID level (after step 1106), but can also start with the programmed ID level (pushing all bits to I 2 or to the programmed ID level) when a hard programming operation is performed instead in step 1106.

如前文中所說明的,像是NVM單元90的基於SONOS的單元適合用於多階類比記憶體裝置,由於其之1K周期的高耐久性和低功率消耗。基於SONOS的NVM陣列也可能具有低於3nA的低隨機電報雜訊(random telegraph noise,RTN)的優點。在一個實施例中,多階NVM裝置的保留期間規格可能比二進位NVM裝置(像是NOR快閃記憶體、EEPROM...等等)的保留期間規格更嚴格,因為代表超過兩個類比值的超過兩個的相鄰VT/ID位準的間距緊密。很重要的是, 可能需要改善數據保留期間效能和VT/ID標準差劣化以避免對多階NVM單元中的多個位準的讀取錯誤或讀取失敗。對於保留期間和VT/ID標準差產生不利影響的主要貢獻因素之一是在保留期間從SONOS電晶體94(較佳的如圖1、圖7A和圖7B所示)的電荷捕捉層92中的淺陷阱處損失電荷(像是電子和電洞)。 As described above, SONOS-based cells such as NVM cell 90 are suitable for use in multi-level analog memory devices due to their high endurance of 1K cycles and low power consumption. SONOS-based NVM arrays may also have the advantage of low random telegraph noise (RTN) of less than 3nA. In one embodiment, the retention period specification of multi-level NVM devices may be more stringent than the retention period specification of binary NVM devices (such as NOR flash memory, EEPROM, etc.) because the spacing of more than two adjacent VT / ID levels representing more than two analog values is close. Importantly, data retention performance and VT / ID standard deviation degradation may need to be improved to avoid read errors or read failures for multiple levels in multi-level NVM cells. One of the major contributing factors that adversely affect retention and VT / ID standard deviation is the loss of charge (such as electrons and holes) from shallow traps in the charge trapping layer 92 of the SONOS transistor 94 (preferably shown in Figures 1, 7A, and 7B) during retention.

圖12是代表性的流程圖,其說明根據本發明的實施例的再填充和退火演算法的方法。參照圖9B,將類比值寫入到目標多階NVM單元可被認為完成於步驟930。在實施例中,再填充和退火演算法1200可被執行到一個或超過一個的位元或是整列的已程式化的位元。使用如圖9A和圖9B所示的相同範例,在步驟930中,在列A、行X的位元以及在列A、行Y的位元可被寫入並且儲存所述目標ID2數值。在一個實施例中,為了改善所述保留期間效能和最小化所述VT/ID標準差劣化,用深陷阱的電荷(電洞或電子)取代淺陷阱的電荷可能是有益處的。在一個實施例中,再填充和退火程序1200可被執行於已經被程式化到其之目標ID位準的位元上。在步驟1202中,所述方法1200開始於執行軟式抹除操作於選擇的位元(例如列A、行X以及列A行Y)上以提高它們的ID數值到目標ID的平均值+X%位準(例如ID2+20%到50%)。接著是驗證步驟以確保選擇的位元位於或超過所述目標ID的平均值+20%~50%的位準。在一個實施例中,所述軟式抹除操作可能將主要在淺陷阱中的電荷清空以提高所述ID數值。隨後,在步驟1206中,如前文所述並且較佳的如圖8B中所顯示的再填充程式化操作可被執行於所選擇的位元以降低所述位元的ID數值到目標ID平均值-Y%的位準(ID2-10%到20%)。接著是驗證步驟以確保所選擇的位元位於或低於所述目標ID的平均值-10%~20%的位準。在一個實施例中,所述短而強的再填充程式化脈衝(例如,9V CG對汲極)可能利用主要儲存在深陷阱中的電荷來再填滿在步驟1202中先前軟式抹除操作中所被移除的一些電荷。步驟1202和步驟1206可被重複多次以加強將淺陷阱中的電荷由深陷阱中的電荷來取代。將可以理解的是,ID2-10%到20%以及ID2+20%到50% 是用於說明目的的範例。其它偏移的百分比可能可以適用,只要它們將所述被選擇的位元的所述ID數值從其之目標ID平均值的數值的一側擺動到另一側即可。 FIG. 12 is a representative flow chart illustrating a method of a refill and anneal algorithm according to an embodiment of the present invention. Referring to FIG. 9B , writing the analog value to the target multi-level NVM cell may be considered completed at step 930. In an embodiment, the refill and anneal algorithm 1200 may be performed on one or more than one bit or an entire column of programmed bits. Using the same example as shown in FIG. 9A and FIG. 9B , in step 930, the bit in column A, row X and the bit in column A, row Y may be written and stored with the target ID2 value. In one embodiment, in order to improve the retention period performance and minimize the V T / ID standard deviation degradation, it may be beneficial to replace the shallow trapped charge with the deep trapped charge (holes or electrons). In one embodiment, the refill and anneal process 1200 may be performed on bits that have been programmed to their target ID level. In step 1202, the method 1200 begins by performing a soft erase operation on selected bits (e.g., row A, row X, and row A row Y) to increase their ID values to an average + X% level of the target ID (e.g., ID 2 + 20% to 50%). This is followed by a verification step to ensure that the selected bits are at or above an average + 20% to 50% level of the target ID . In one embodiment, the soft erase operation may empty charges primarily in shallow traps to increase the ID value. Subsequently, in step 1206, a refill programming operation as described above and preferably shown in FIG. 8B may be performed on the selected bits to reduce the ID value of the bits to a level of -Y% of the target ID average value ( ID 2-10% to 20%). This is followed by a verification step to ensure that the selected bits are at or below the target ID average value -10% to 20%. In one embodiment, the short and strong refill programming pulse (e.g., 9V CG to drain) may utilize charge stored primarily in deep traps to refill some of the charge removed in the previous soft erase operation in step 1202. Step 1202 and step 1206 may be repeated multiple times to enhance the replacement of charge in the shallow traps with charge in the deep traps. It will be appreciated that ID 2-10% to 20% and ID 2+20% to 50% are examples for illustrative purposes. Other offset percentages may be applicable as long as they swing the ID value of the selected bit from one side of its target ID average value to the other.

所述方法1200可接著進行在步驟1208中的如前文中所描述的退火抹除操作而執行在選擇的位元上。在一個實施例中,所述退火抹除操作可將主要在淺陷阱中的電荷清空以將所述ID數值從ID2-10%位準提高,步驟1206的結果。如前文中所說明的,所述軟式(6V CG到汲極)並且長時間的(~50ms)退火抹除脈衝可進一步允許足夠時間將淺陷阱中的主要電荷清空。接著是驗證步驟以確保至少一個或多個所選擇的位元位於或是低於所述目標ID下限位準(例如ID2LL)。然後,在步驟1210中,所述方法1200可能會繼續執行選擇性軟式抹除操作於低於ID2LL的位元。具有ID數值高於ID2LL的位元由於先前的退火抹除操作(於步驟1208)可能會被抑制。驗證操作可被執行以確保所有位元被部分抹除以達到大於ID2LL的ID位準。在步驟1210結束時,所有被選擇的位元(例如,列A、行X以及列A、行Y)可能會恢復到所述目標ID位準(例如,ID2)且大部分的電荷位在深陷阱中,由於所述一連串的再填充程式化和退火抹除操作。 The method 1200 may then proceed to perform an anneal erase operation as described above on the selected bits in step 1208. In one embodiment, the anneal erase operation may empty the charge mainly in the shallow traps to increase the ID value from the ID 2-10% level as a result of step 1206. As described above, the soft (6V CG to drain) and long (~50ms) anneal erase pulse may further allow sufficient time to empty the main charge in the shallow traps. A verification step may then follow to ensure that at least one or more of the selected bits are at or below the target ID floor level (e.g., ID 2LL). Then, in step 1210, the method 1200 may continue to perform a selective soft erase operation on bits below ID 2LL. Bits having ID values greater than ID 2LL may be suppressed due to the previous anneal erase operation (in step 1208). A verification operation may be performed to ensure that all bits are partially erased to achieve an ID level greater than ID 2LL. At the end of step 1210, all selected bits (e.g., column A, row X and column A, row Y) may be restored to the target ID level (e.g., ID 2) with most of the charge in deep traps due to the series of refill programming and anneal erase operations.

在又另外一個實施例中,所述再填充和退火程序1200中的步驟1202(軟式抹除操作)和步驟1206(再填充程式化操作)可在圖9B中的寫入演算法900B中的步驟918之後被額外地或替代性地執行。 In yet another embodiment, step 1202 (soft erase operation) and step 1206 (refill programming operation) in the refill and annealing process 1200 may be performed additionally or alternatively after step 918 in the write algorithm 900B in FIG. 9B .

圖13是簡略方塊圖,其圖示根據本發明標的之多階或類比NVM裝置1300的實施例。在一個實施例中,類比NVM陣列1302可能相似於圖2中的NVM陣列100,其中多階NVM單元1310被配置成N列和M行。每個多階NVM單元1310可能具有2T架構(SONOS電晶體和FET電晶體)並且與相同列中的鄰近單元共享CSL。在一個實施例中,其他的連接件,像是WLS、WL、BL、SPW、DNW...等等也可類似於圖1A、圖1B和圖2中的NVM陣列100中的配置。多階NVM單元1310也可被配置以具有超過兩個的不同的ID/VT位準(見圖10),例如24=16或是0 到15位準。在一個實施例中,每個類比NVM單元1310可儲存類比值0-15,當讀取時對應於其之ID/VT位準。在一個實施例中,所述多個不同的ID/VT位準以及它們所對應的類比值可被預先決定。所述類比值可使用如圖9A到圖12中所說明且記載的一個或多個寫入方法/演算法、使用一系列的部分程式化/抑制操作、部分抹除/抑制操作以及驗證步驟...等等而被寫入到類比NVM單元1310。舉例來說,列A、行X(Row A,Col.X)的位元被寫入數值10(ID/VT位階=10);列A、行Y的位元為數值5;列B、行X的位元為數值8;以及列C、行Z的位元為數值2。在實施例中,多階NVM單元1310可被寫入任何類比值在預定義的ID/VT位準範圍內(例如為0到15的16個ID/VT位準)。前述儲存的數值可以在本發明說明書下文中所記載的範例性操作方法中使用,其用於說明目的並且不應被認為是限制性的。 FIG. 13 is a simplified block diagram illustrating an embodiment of a multi-level or analog NVM device 1300 according to the subject matter of the present invention. In one embodiment, the analog NVM array 1302 may be similar to the NVM array 100 of FIG. 2 , where the multi-level NVM cells 1310 are arranged in N columns and M rows. Each multi-level NVM cell 1310 may have a 2T architecture (SONOS transistors and FET transistors) and share CSLs with neighboring cells in the same column. In one embodiment, other connections, such as WLS, WL, BL, SPW, DNW, etc., may also be arranged similarly to the NVM array 100 of FIG. 1A , FIG. 1B , and FIG. 2 . The multi-level NVM cells 1310 may also be configured to have more than two different ID / VT levels (see FIG. 10), such as 2 4 =16 or 0 to 15 levels. In one embodiment, each analog NVM cell 1310 may store analog values 0-15, which correspond to its ID / VT level when read. In one embodiment, the multiple different ID / VT levels and their corresponding analog values may be predetermined. The analog values may be written to the analog NVM cells 1310 using one or more write methods/algorithms as described and described in FIGS. 9A to 12, using a series of partial programming/inhibition operations, partial erase/inhibition operations, and verification steps, etc. For example, the bit of Row A, Col. X is written with the value 10 ( ID / VT level = 10); the bit of Row A, Row Y is written with the value 5; the bit of Row B, Row X is written with the value 8; and the bit of Row C, Row Z is written with the value 2. In an embodiment, the multi-level NVM cell 1310 can be written with any analog value within a predefined ID / VT level range (e.g., 16 ID / VT levels from 0 to 15). The aforementioned stored values can be used in the exemplary operating methods described below in the present specification, which are used for illustrative purposes and should not be considered limiting.

在一個實施例中,多個階NVM單元1310所儲存的數值可被結合以儲存一個類比值。舉例來說,兩個多階NVM單元1310可被配置以具有8個位準,一個單元儲存數值0到7並且另一個單元儲存數值-8到-1。當所述兩個單元在一個操作中被讀取時,則結合的兩個單元可被認為具有16個位準(從-8到7),其代表16個類比值而不是只有8個。在其他的實施例中,可以結合超過兩個的多階NVM單元1310以達到更多的位準數目,而不需要額外的劃分多階NVM單元1310的操作ID/VT範圍。在實施例中,根據一些預判定演算法,結合的單元可能被設置在相同列中的鄰近行上或是分散在類比NVM陣列1302中。 In one embodiment, the values stored by the multi-level NVM cells 1310 may be combined to store one analog value. For example, two multi-level NVM cells 1310 may be configured to have 8 levels, with one cell storing values 0 to 7 and the other cell storing values -8 to -1. When the two cells are read in one operation, the combined two cells may be considered to have 16 levels (from -8 to 7), which represent 16 analog values instead of only 8. In other embodiments, more than two multi-level NVM cells 1310 may be combined to achieve a greater number of levels without the need for additional partitioning of the operating ID / VT range of the multi-level NVM cells 1310. In an embodiment, the combined cells may be placed on adjacent rows in the same column or dispersed in the analog NVM array 1302 according to some predetermined algorithms.

參照圖13,類比NVM陣列1302可透過其之位元線(例如BL.X、BL.Y)耦接到行多工器功能部件1304。在一個實施例中,行多工器功能部件1304可能具有多工器、電容器、電晶體以及其他半導體裝置。在讀取操作期間,列A、行X的位元的數值10可經由BL.X被讀取至行多工器功能部件1304,相似於數位NVM陣列的讀取操作。在一個實施例中,在相同行上的多個位元,像是列A、行X以及列B、行X可被選擇在一個讀取操作中,使得讀取出來的數值是兩個所選 擇的位元的總和(10+8=18)。在其他的實施例中,在相同列中的多個位元,像是列A、行X和列A、行Y,可被選擇以進行相同的讀取操作。行多工器功能部件1304可被配置以同時選擇行X和行Y以用於讀取並且將兩個數值相加或相減(10+5=15或是10-5=5)。在其他的實施例中,NVM裝置1300可被配置以執行乘法函數。舉例來說,列A、行X的位元可被讀取7次來計算(7×10=70)。執行乘法(M×儲存的數值)可藉由使用M×多個脈衝在WL(耦接到SG)上或是延長(M次)一個WL脈衝的脈衝持續時間。在一個實施例中,作為範例,類比值“7”可透過數位-類比轉換器(DAC)1320而從外部裝置被輸入,所述外部裝置可被耦接到WL而到SG的列。較佳的如圖13中所示,每個DAC1320-1326可被耦接到一個WL或多個WL。DAC1320-1326的功能部件中的一個被配置為用於讀取操作的所述被選擇的列。將可以瞭解的是,如圖13中所示的DAC的數目、配置方式以及耦接到NVM陣列1302的方式只是用於說明目的的範例之一。根據系統需求及設計,在不改變本發明實施例的一般教示情況之下,也可能會有其他的配置方式。在各式各樣的實施中,DAC1320-1326、類比NVM陣列1302和行多工器功能部件1304可被配置具備或不具備CPU或GPU以執行簡單的運算函數,像是如前文中所述的範例中的加法、乘法...等等。在一個實施例中,類比NVM裝置1300可執行數據儲存裝置和推論裝置兩者的功能。 13, an analog NVM array 1302 may be coupled to a row multiplexer function 1304 via its bit lines (e.g., BL.X, BL.Y). In one embodiment, the row multiplexer function 1304 may have multiplexers, capacitors, transistors, and other semiconductor devices. During a read operation, the value 10 of the bit in column A, row X may be read to the row multiplexer function 1304 via BL.X, similar to the read operation of the digital NVM array. In one embodiment, multiple bits on the same row, such as column A, row X and column B, row X, may be selected in a read operation such that the value read out is the sum of the two selected bits (10+8=18). In other embodiments, multiple bits in the same column, such as column A, row X and column A, row Y, may be selected for the same read operation. The row multiplexer function 1304 may be configured to simultaneously select row X and row Y for reading and add or subtract the two values (10+5=15 or 10-5=5). In other embodiments, the NVM device 1300 may be configured to perform a multiplication function. For example, the bits of column A, row X may be read 7 times for calculation (7×10=70). The multiplication (M×stored value) may be performed by using M×multiple pulses on the WL (coupled to the SG) or by extending (M times) the pulse duration of a WL pulse. In one embodiment, as an example, an analog value of "7" may be input from an external device via a digital-to-analog converter (DAC) 1320, which may be coupled to the WL and to the columns of the SG. Preferably, each DAC 1320-1326 may be coupled to one WL or multiple WLs as shown in FIG. 13. One of the functional components of the DAC 1320-1326 is configured to be used for the selected column of the read operation. It will be appreciated that the number, configuration, and coupling to the NVM array 1302 of the DACs shown in FIG. 13 is only one example for illustrative purposes. Other configurations are possible without changing the general teachings of the embodiments of the present invention, depending on system requirements and design. In various implementations, the DACs 1320-1326, the analog NVM array 1302, and the row multiplexer functional unit 1304 may be configured with or without a CPU or GPU to perform simple arithmetic functions, such as addition, multiplication, etc., as described in the examples above. In one embodiment, the analog NVM device 1300 may perform the functions of both a data storage device and an inference device.

從行多工器功能部件1304得到的類比結果可接著被輸入至類比-數位轉換器(ADC)或是比較器1306,其中類比讀取結果可被轉換為數位數據並且被輸出。在一個實施例中,全部或部分的類比NVM陣列1302可被定期的刷新或使得其之類比值被定期的重新寫入,例如每24小時或每48小時或是其他持續時間。所述刷新操作可以最小化由於保留期間所造成的程式化的多階NVM單元的ID/VT位準偏移或衰減、ID/VT劣化(如圖7B中所示)或者是其他原因的潛在影響。在其他的實施例中,類比NVM陣列1302可包括參考單元(未顯示),其中可以從多 階NVM單元1310中減去潛在的ID/VT位準偏移的共同影響。 The analog results from the row multiplexer function 1304 may then be input to an analog-to-digital converter (ADC) or comparator 1306, where the analog read results may be converted to digital data and output. In one embodiment, all or part of the analog NVM array 1302 may be refreshed or have its analog values rewritten periodically, such as every 24 hours or every 48 hours or other duration. The refresh operation may minimize the potential effects of ID / VT level shift or attenuation of the programmed multi-stage NVM cells due to retention period, ID / VT degradation (as shown in FIG. 7B ), or other causes. In other embodiments, the analog NVM array 1302 may include a reference cell (not shown) where the common effects of potential ID / VT level offsets may be subtracted from the multi-level NVM cells 1310.

圖14和圖15為代表性的方塊圖,其分別說明根據本發明所揭露的實施例的乘積累加(MAC)系統的馮‧諾伊曼(Von-Neumann)架構以及人工神經元。人工智慧(AI)可以定義為機器執行人腦所執行的認知功能,例如推論、感知和學習的能力。機器學習可以使用演算法在數據中尋找模式,並使用識別這些模式的模型對任何新數據或模式進行預測。在AI應用或機器學習的核心處,存在MAC或點積運算,其中可能取兩個數字(輸入值和權重值),將它們相乘,然後將結果加到累加器上。圖15中的人工神經元1504可能是深度神經網路(DNN)的一部分,而所述深度神經網路代表MAC操作的範例。DNN藉由執行將低功率計算元素(神經元)和自適性記憶體元素(突觸)連接在一起的大規模平行計算(仿生運算)架構來模仿人腦的功能。機器學習快速成長的原因之一是圖形處理單元(GPU)的可利用性。在MAC應用中,像是系統1402中,GPU相較於習知的CPU可更快速的執行必要的運算。使用GPU以用於MAC操作的缺點之一是GPU傾向於使用浮點演算法(floating-point arithmetic),其可能遠遠超出了相對簡單的機器學習運算法的需求,像是MAC操作。此外,AI應用,特別是在邊緣運算的應用,可能需要MAC以高功率效率運算以減少功率需求和熱量產生。現有的基於數位馮‧諾伊曼架構的所有系統,像是MAC系統1402,也可能由於頻繁的存取記憶體而在GPU和記憶體之間產生主要瓶頸效應事件(bottleneck issue),所述GPU執行計算並且所述記憶體僅儲存數據(權重值、輸入值、輸出值...等等)。因此,需要考慮使用低消耗功率記憶體元件,其可以被配置以執行作為推論裝置以及同時為數據儲存裝置。 Figures 14 and 15 are representative block diagrams illustrating the Von-Neumann architecture and artificial neurons of a multiply-accumulate (MAC) system according to an embodiment disclosed herein, respectively. Artificial intelligence (AI) can be defined as the ability of a machine to perform cognitive functions performed by the human brain, such as reasoning, perception, and learning. Machine learning can use algorithms to find patterns in data and use models that recognize these patterns to make predictions about any new data or patterns. At the core of AI applications or machine learning, there is a MAC or dot product operation, where two numbers (an input value and a weight value) may be taken, multiplied, and the result added to an accumulator. The artificial neuron 1504 in FIG. 15 may be part of a deep neural network (DNN), which represents an example of a MAC operation. DNNs mimic the function of the human brain by implementing a massively parallel computing (biomimetic computing) architecture that connects low-power computing elements (neurons) and adaptive memory elements (synapses) together. One of the reasons for the rapid growth of machine learning is the availability of graphics processing units (GPUs). In MAC applications, such as in system 1402, GPUs can perform the necessary operations more quickly than conventional CPUs. One of the disadvantages of using GPUs for MAC operations is that GPUs tend to use floating-point arithmetic, which may far exceed the requirements of relatively simple machine learning algorithms, such as MAC operations. Furthermore, AI applications, especially those computing at the edge, may require the MAC to operate with high power efficiency to reduce power requirements and heat generation. Existing systems based on the digital von Neumann architecture, such as the MAC system 1402, may also cause major bottleneck issues between the GPU and the memory due to frequent access to the memory, where the GPU performs calculations and the memory only stores data (weight values, input values, output values, etc.). Therefore, it is necessary to consider the use of low-power memory devices that can be configured to perform as inference devices and data storage devices at the same time.

圖16為代表方塊圖,其說明根據本發明的一個實施例的神經網路加速系統。在一個實施例中,基於SONOS的類比裝置可能具有獨特的能力以區域性地儲存權重的類比值並且平行地處理每個非揮發性記憶體元件,其可能可 以大量地消除如圖14中所說明的大量數據移動的能量消耗。每個NVM單元去帶二進位位準(1位元)而可具有多個位準(例如4位元-8位元),並且每個ID/VT位準可代表多個位元權重值(如圖15中的Wi)以進行推論。在一個實施例中,位準的數目越多,則訓練精確度越高且推論錯誤率越低。用於仿生運算的典型類比記憶體的關鍵性能及穩定度是在於單元ID/VT的標準差、保留期間以及在所有位準的雜訊。如前文中所說明的,基於SONOS的NVM裝置,像是如圖13中的類比NVM裝置1300,可能是作為在DNN系統的人工神經元中同時執行儲存和推論功能的良好候選裝置。 FIG. 16 is a representative block diagram illustrating a neural network acceleration system according to an embodiment of the present invention. In one embodiment, a SONOS-based analog device may have a unique ability to store analog values of weights locally and process each non-volatile memory element in parallel, which may largely eliminate the energy consumption of large data movement as illustrated in FIG. 14. Each NVM unit strips a binary level (1 bit) and may have multiple levels (e.g., 4-bit-8-bit), and each ID / VT level may represent a multiple-bit weight value (such as Wi in FIG. 15) for inference. In one embodiment, the greater the number of levels, the higher the training accuracy and the lower the inference error rate. The key performance and stability of typical analog memories for bio-inspired computing are the standard deviation of the cell ID / VT , retention period, and noise at all levels. As described above, SONOS-based NVM devices, such as the analog NVM device 1300 in FIG. 13 , may be good candidates for performing both storage and inference functions in artificial neurons of DNN systems.

參照圖16,神經網路加速系統1600可包含被設置在單一基板或封裝件或晶粒中的多個類比NVM裝置或是加速器1602,且經由匯流排系統而彼此耦接。每個加速器1602可類似於圖13中的類比NVM裝置1300並且可相似地操作。在一個實施例中,NVM裝置1602可被配置以執行MAC操作。每個類比NVM裝置1602可能作為在DNN系統中如圖15中所示的人工神經元1504。在一個實施例中,SONOS陣列1602可具有以行和列配置的多個基於SONOS的NVM單元(未顯示於圖16中)。在其他的實施例中,SONOS陣列1602可包含多個SONOS的NVM區塊或陣列。每個NVM單元可被配置以儲存0到2n-1的權重值或是其它數值,所述數值是使用如圖9A到圖12中所描繪及顯示的寫入演算法或是其之組合而被寫入。在其他的實施例中,每個NVM單元的類比值可藉由其它寫入演算法而被寫入。 16 , a neural network acceleration system 1600 may include a plurality of analog NVM devices or accelerators 1602 disposed in a single substrate or package or die and coupled to each other via a bus system. Each accelerator 1602 may be similar to the analog NVM device 1300 in FIG. 13 and may operate similarly. In one embodiment, the NVM device 1602 may be configured to perform MAC operations. Each analog NVM device 1602 may function as an artificial neuron 1504 as shown in FIG. 15 in a DNN system. In one embodiment, a SONOS array 1602 may have a plurality of SONOS-based NVM cells (not shown in FIG. 16 ) configured in rows and columns. In other embodiments, the SONOS array 1602 may include a plurality of SONOS NVM blocks or arrays. Each NVM cell may be configured to store a weight value from 0 to 2n -1 or other values written using the writing algorithms or combinations thereof as depicted and shown in Figures 9A to 12. In other embodiments, the analog value of each NVM cell may be written by other writing algorithms.

作為仿生運算演算法的部分,每個多階NVM裝置1602(像是加速器1602a)可以執行下面的MAC方程式,其中xi是來自其它多階NVM裝置1602或外部裝置的輸入,wi是所儲存的權重值,b是常數並且f是激活函數(activation function):f(Σ i xiwi+b).................(1) As part of the bio-inspired computing algorithm, each multi-stage NVM device 1602 (such as accelerator 1602a) can execute the following MAC equation, where xi is the input from other multi-stage NVM devices 1602 or external devices, wi is the stored weight value, b is a constant and f is the activation function: f(Σ i xiwi + b ) .................(1)

較佳的如圖16中所示,xi可以是來其它類比NVM裝置,像是 1602b和1602c或是其它類比NVM裝置的數位輸入。數位輸入xi可接著藉由DAC 1612而轉換成類比信號,之後可被耦接到低電壓驅動器1614及/或高電壓驅動器1616。在一個實施例中,低電壓驅動器可透過NVM單元的WL(來控制SG)產生與來自DAC1612的類比信號相對應的控制信號。高電壓行驅動器1604可產生控制信號到BLs以及高電壓驅動到WLS以控制NVM單元的CG。 Preferably, as shown in FIG. 16 , xi can be a digital input from other analog NVM devices, such as 1602b and 1602c or other analog NVM devices. The digital input xi can then be converted into an analog signal by DAC 1612, and then can be coupled to a low voltage driver 1614 and/or a high voltage driver 1616. In one embodiment, the low voltage driver can generate a control signal corresponding to the analog signal from DAC 1612 through the WL of the NVM cell (to control the SG). The high voltage driver 1604 can generate a control signal to the BLs and a high voltage driver to the WLS to control the CG of the NVM cell.

在類比NVM裝置1602a中的MAC操作的一個實施例可使用圖13中的範例來做為說明,其中i可被設定為3。參照圖13,數位輸入xi可被耦接到DAC 1320-1326並且x1=3、x2=5、x3=1。所選擇的權重值被分別儲存在列A、行X(w1=10)的位元,列B、行X的位元(w2=8)以及列C、行Z的位元(w3=2)中。所述權重值選擇可能是根據從其他類比NVM裝置1602或從外部裝置(例如處理器、CPU、GPU...等等)所接收到的位址。常數b可被選擇為儲存在列A、行Y(b=5)的類比值。為了計算x1×w1,列A和行X(儲存數值=10)可被選擇以用於讀取。所述讀取可被重複x1=3次以計算x1×w1。相似地,列B、行X(權重值=8)可被選擇以用於x2=5次讀取以計算x2×w2並且選擇列C、行Z(權重值=2)以用於x3=1次讀取以計算x3×w3。或者是,列A、行X以及列B、行X可被同時選取以讀取3次(以累加組合的權重值),並且只有列A、行X可被選擇用於額外的2次讀取。位於列A、行Y(b=5)的位元可被選擇以用於讀取。如前文中所說明的,行多工器1304或1606可被配置以將這些結果相加在一起,以便計算MAC結果為3×10+5×8+1×2+2=74。應可以理解的是,上述的演算法只是使用基於SONOS的NVM裝置(像是推論NVM裝置1300和1602)的一個範例以計算MAC結果,其用於說明的目的並且不應被認為是限制性的。根據系統設計及需求,MAC權重值(wi)可以用多種方式被儲存、組織並且讀取以計算MAC結果。在一個實施例中,激活函數(f)可以是一種演算法,可以從整個神經網路的角度指示或優先處理類比NVM裝置1602的MAC輸出。舉例來說,先前範例的MAC結果(結果=74)被認為不重要並且被指派為低優先順 序。在某些實施例中,所述輸出信號可根據其之優先順序而被減少或增加並且所述執行可在行多工器功能部件1606或ADC 1608中被執行。 An embodiment of MAC operation in analog NVM device 1602a can be illustrated using the example of FIG. 13 , where i can be set to 3. Referring to FIG. 13 , digital input xi can be coupled to DACs 1320-1326 with x1=3, x2=5, x3=1. The selected weight values are stored in the bits of column A, row X (w1=10), column B, row X (w2=8), and column C, row Z (w3=2), respectively. The weight value selection may be based on the address received from other analog NVM devices 1602 or from an external device (e.g., a processor, CPU, GPU, etc.). The constant b can be selected as the analog value stored in column A, row Y (b=5). To calculate x1×w1, column A and row X (stored value=10) may be selected for reading. The reading may be repeated x1=3 times to calculate x1×w1. Similarly, column B, row X (weight value=8) may be selected for x2=5 readings to calculate x2×w2 and column C, row Z (weight value=2) may be selected for x3=1 reading to calculate x3×w3. Alternatively, column A, row X and column B, row X may be selected simultaneously for reading 3 times (to accumulate the combined weight values), and only column A, row X may be selected for an additional 2 readings. The bit located at column A, row Y (b=5) may be selected for reading. As previously described, the row multiplexer 1304 or 1606 can be configured to add these results together to calculate the MAC result of 3×10+5×8+1×2+2=74. It should be understood that the above algorithm is only an example of using a SONOS-based NVM device (such as the inference NVM device 1300 and 1602) to calculate the MAC result, which is used for illustrative purposes and should not be considered limiting. Depending on the system design and requirements, the MAC weight values (wi) can be stored, organized and read in a variety of ways to calculate the MAC result. In one embodiment, the activation function (f) can be an algorithm that can indicate or prioritize the MAC output of the analog NVM device 1602 from the perspective of the entire neural network. For example, the MAC result of the previous example (result = 74) is considered unimportant and is assigned a low priority. In some embodiments, the output signal may be reduced or increased according to its priority and the execution may be performed in the row multiplexer function 1606 or the ADC 1608.

隨後,在一個實施例中,類比信號形式的所述MAC結果可藉由ADC 1306或1608被轉換成數位信號。所述數位信號可接著被輸出到另一個或是其它的類比NVM裝置1602作為xi以用於它們自己的MAC操作。在一個實施例中,相似於DNN,藉由所有類比NVM裝置1602而執行的仿生運算可被並行地執行。每個類比NVM裝置1602的數位MAC輸出可被傳輸至其它類比NVM裝置而作為數位輸入。在某些實施例中,所述多個類比NVM裝置1602可被分成多個子集。類比NVM裝置1602中的一個子集的數位輸入可被傳播到下一個子集而不需要重複。最後一個子集的數位輸出可作為所述仿生運算或機器學習結果被輸出到外部裝置。 Subsequently, in one embodiment, the MAC result in the form of an analog signal may be converted into a digital signal by ADC 1306 or 1608. The digital signal may then be output to another or other analog NVM devices 1602 as xi for their own MAC operations. In one embodiment, similar to a DNN, the bionic operations performed by all analog NVM devices 1602 may be performed in parallel. The digital MAC output of each analog NVM device 1602 may be transmitted to other analog NVM devices as digital input. In some embodiments, the multiple analog NVM devices 1602 may be divided into multiple subsets. The digital input of one subset of analog NVM devices 1602 may be propagated to the next subset without repetition. The digital output of the last subset can be output to an external device as the bionic computing or machine learning result.

在一個實施例中,包含數位數據流控制區塊1610的指令和控制電路(未顯示於圖16中)是可以程式化的並且被配置以引導在類比NVM裝置1602之中的數據流流量。所述指令和控制電路也可能提供對於高電壓和低電壓控制器1614和1616的控制以經由SONOS字元線、字元線、位元線、CSL...等等來提供各種操作電壓信號到SONOS陣列1602,包括但不限制為至少如圖3A、圖3B、圖8A、圖8B中所描繪的VPOS、VSEPOS、VRPPOS、VNEG、VSENEG、VCSL、VMARG、VINHIB...等等。 In one embodiment, command and control circuitry (not shown in FIG. 16 ) including digital data flow control block 1610 is programmable and configured to direct data flow in analog NVM device 1602. The command and control circuitry may also provide control of high voltage and low voltage controllers 1614 and 1616 to provide various operating voltage signals to SONOS array 1602 via SONOS word lines, word lines, bit lines, CSL, etc., including but not limited to V POS , V SEPOS , V RPPOS , V NEG , V SENEG , V CSL , V MARG , V INHIB , etc. as depicted in at least FIG. 3A , FIG. 3B , FIG. 8A , FIG . 8B .

所屬技術領域中具有通常知識者應可以理解的是,圖16中的神經網路加速系統1600和類比NVM裝置1602為了說明的目的而被簡化而非完整的描述。特別是,類比NVM裝置1602可能包括處理功能部件、列解碼器、行解碼器、感測放大器或是其它構件,並且在本文中未顯示或詳細描述指令和控制電路。 It should be understood by those skilled in the art that the neural network acceleration system 1600 and the analog NVM device 1602 in FIG. 16 are simplified rather than fully described for the purpose of illustration. In particular, the analog NVM device 1602 may include processing functional components, column decoders, row decoders, sense amplifiers, or other components, and the instruction and control circuits are not shown or described in detail herein.

圖17是代表性流程圖,其顯示根據本發明的特徵在於基於SONOS的NVM陣列/單元的NN加速系統1600的操作方法的實施例。在一個實施 例中,於步驟1702中,類比權重值(wi)和其它常數數值(例如b)使用如先前所描述的方法而被寫入到在NN加速器中的基於SONOS的NVM陣列中。在某些實施例中,在可選擇的步驟1712中,所述NVM陣列可被定期的刷新以得到較佳的保留期間以及較窄的ID/VT標準差。隨後,在步驟1704中,一個加速器的NVM陣列可被配置以基於至少從其它加速器以及其所儲存的權重值來執行MAC操作。在步驟1706中,在MAC操作完成之後,一個加速器可輸出其之結果並且傳播到一個或多個連接的加速器以作為他們自己的MAC操作的數位輸入。在一個實施例中,步驟1704和步驟1706可以在並列的模式中被重複很多次。在步驟1710中,輸出可被傳輸到外部裝置,例如CPU、GPU,以作為AI應用的機器學習中的神經型態計算結果。 17 is a representative flow chart showing an embodiment of a method of operation of a NN acceleration system 1600 featuring a SONOS-based NVM array/unit according to the present invention. In one embodiment, in step 1702, analog weight values (wi) and other constant values (e.g., b) are written to a SONOS-based NVM array in a NN accelerator using methods as previously described. In some embodiments, in optional step 1712, the NVM array may be periodically refreshed to obtain better retention period and narrower ID / VT standard deviation. Subsequently, in step 1704, the NVM array of one accelerator may be configured to perform MAC operations based on at least the weight values stored from other accelerators. In step 1706, after the MAC operation is completed, an accelerator may output its results and propagate them to one or more connected accelerators as digital inputs for their own MAC operations. In one embodiment, steps 1704 and 1706 may be repeated many times in parallel mode. In step 1710, the output may be transmitted to an external device, such as a CPU, GPU, as a result of the neural model calculation in machine learning for AI applications.

因此,本文已描述基於SONOS的多階非揮發性記憶體的實施例以及操作其之方法,所述操作方法相同於在仿生運算系統(像是DNN)中的類比記憶體裝置和MAC裝置的操作方法。雖然本揭示之說明係參照特定之示範性實施例進行,但其顯然可以在未脫離本揭示的更廣泛精神及範疇之下,針對此等實施例做出各種修改及變更。因此,說明書及圖式內容僅應視為例示性質,而非限定。 Thus, embodiments of SONOS-based multi-level non-volatile memory and methods of operating the same have been described herein, which are similar to the methods of operating analog memory devices and MAC devices in biomimetic computing systems (such as DNNs). Although the disclosure is described with reference to specific exemplary embodiments, it is apparent that various modifications and changes may be made to such embodiments without departing from the broader spirit and scope of the disclosure. Therefore, the contents of the specification and drawings should be regarded as illustrative only and not limiting.

本揭示之"發明摘要"係提供以符合37 C.FR.§1.72(b),其規定需要一"發明摘要"使得閱讀者能夠迅速地弄清技術性揭示的一或多個實施例之性質。其應理解,發明摘要不應被用以解釋或限制申請專利範圍之範疇或涵義。此外,在前述的"實施方式"之中,其可以看出,為了揭示精簡之目的,各種不同之特徵被集結在一起於單一實施例之中。本揭示之方法不應被解讀為反映出將列為專利請求之實施例需要比每一申請專利範圍請求項之中明確引述者具有更多特徵之意圖。反之,如同以下申請專利範圍所顯示,發明標的亦存在於單一揭示實施例全部特徵的一部分之中。因此,以下申請專利範圍特此納入"實施方式",其中每一申請專利範圍請求項本身即是一獨立之實施例。 The "Abstract of the Invention" of this disclosure is provided to comply with 37 C.FR.§1.72(b), which requires an "Abstract of the Invention" to enable the reader to quickly ascertain the nature of one or more embodiments of the technical disclosure. It should be understood that the Abstract of the Invention should not be used to interpret or limit the scope or meaning of the claims. In addition, in the aforementioned "embodiments," it can be seen that various different features are grouped together in a single embodiment for the purpose of disclosure simplicity. The method of this disclosure should not be interpreted as reflecting an intention that the embodiments to be listed as patent claims need to have more features than those expressly cited in each claim of the claims. On the contrary, as shown in the claims below, the subject matter of the invention also exists in a portion of all the features of a single disclosed embodiment. Therefore, the following claims are hereby incorporated into the "implementations", wherein each claim in the claims is itself a separate embodiment.

對於一實施例說明之參照意味配合該實施例描述之一特別特徵、結構、或特性被納入電路或方法的至少一實施例之中。出現於說明書之中各處的"一個實施例"一詞並未必然均表示同一實施例。 Reference to an embodiment description means that a particular feature, structure, or characteristic described in conjunction with that embodiment is incorporated into at least one embodiment of the circuit or method. The term "an embodiment" appearing in various places in the specification does not necessarily refer to the same embodiment.

90:NVM單元 90:NVM unit

100:NVM陣列 100:NVM array

200:NVM單元對 200: NVM unit pair

300:2×2陣列 300: 2×2 array

Claims (21)

一種半導體裝置,其包括:非揮發性記憶體(NVM)陣列,其包含基於電荷捕捉而以行和列配置的多階電晶體,其中所述多階電晶體設置以用於儲存N個類比值中的一個值,所述N個類比值對應於汲極電流(ID)以及臨界電壓(VT)的N個位準,其中N是大於2的自然數,且其中所述多階記憶電晶體中的至少一個多階記憶電晶體被選擇以用於目標值的寫入程序,其中所述目標值是所述N個類比值中的一個值並且對應於目標ID範圍,所述目標ID範圍從目標ID下限(LL)延伸到目標上限(UL);寫入電路,其配置以執行所述寫入程序,所述寫入程序包括將部分程式化操作於所述多階記憶電晶體中的所述至少一者以用於ID位準降低以及將部分抹除操作於所述多階記憶電晶體中的所述至少一者以用於ID位準升高;以及讀取電路,其配置以在所述部分程式化操作之後執行第一驗證讀取以判定如何將降低的ID位準與目標ID平均值進行比較,所述讀取電路還配置以在所述部分抹除操作之後執行第二驗證讀取以判定如何將提高的ID位準與目標ID平均值進行比較,並且其中當所述多階記憶電晶體中的所述至少一者的所述ID位準落在所述目標ID範圍之中時,則判定所述目標值的所述寫入程序完成。 A semiconductor device, comprising: a non-volatile memory (NVM) array including multi-stage transistors arranged in rows and columns based on charge capture, wherein the multi-stage transistors are configured to store one of N analog values, the N analog values corresponding to N levels of drain current ( ID ) and critical voltage ( VT ), wherein N is a natural number greater than 2, and wherein at least one of the multi-stage memory transistors is selected for a target value writing procedure, wherein the target value is one of the N analog values and corresponds to a target ID range, the target ID range ranging from a target I D to a target I D. a write circuit configured to perform the write procedure, the write procedure including performing a partial programming operation on at least one of the multi-level memory transistors for reducing the ID level and performing a partial erasing operation on at least one of the multi-level memory transistors for increasing the ID level; and a read circuit configured to perform a first verification read after the partial programming operation to determine how the reduced ID level is compared with a target ID average value, the read circuit further configured to perform a second verification read after the partial erasing operation to determine how the increased ID level is compared with the target ID average value, and wherein when the ID level of the at least one of the multi-level memory transistors falls within the target ID level, the read circuit performs a verification read after the partial erasing operation to determine how the increased ID level is compared with the target ID average value. D , it is determined that the writing process of the target value is completed. 如請求項1的半導體裝置,其中每個所述多階電晶體包括氮化物或氮氧化物的電荷捕獲層,並且所述N個類比值對應於被捕獲於其中的電荷的數量。 A semiconductor device as claimed in claim 1, wherein each of the multi-stage transistors includes a charge trapping layer of nitride or oxynitride, and the N analog values correspond to the amount of charge trapped therein. 如請求項1的半導體裝置,其中每個所述多階電晶體包括金屬閘極層,所述金屬閘極層設置在高K值介電閘極介電層上方。 A semiconductor device as claimed in claim 1, wherein each of the multi-stage transistors includes a metal gate layer, and the metal gate layer is disposed above a high-K dielectric gate dielectric layer. 如請求項1的半導體裝置,其中所述寫入電路進一步配置以在所述部分程式化操作及所述部分抹除操作期間施加預定電壓到字元線、位元線以及源極線中之至少一者,且其中所述字元線、所述位元線以及所述源極線耦接到 所述多階電晶體。 A semiconductor device as claimed in claim 1, wherein the write circuit is further configured to apply a predetermined voltage to at least one of a word line, a bit line and a source line during the partial programming operation and the partial erasing operation, and wherein the word line, the bit line and the source line are coupled to the multi-stage transistor. 如請求項2的半導體裝置,其中所述寫入電路進一步配置以在所述目標值的所述寫入程序完成之後,藉由減少所述多階記憶電晶體中的所述至少一者的所述氮化物或氮氧化物的電荷捕獲層兩端的電壓差的量值來抑制所述多階記憶電晶體中的所述至少一者進行改變所述ID位準的進一步操作。 A semiconductor device as claimed in claim 2, wherein the write circuit is further configured to inhibit at least one of the multi-level memory transistors from performing further operations of changing the ID level by reducing the magnitude of the voltage difference across the charge trapping layer of the nitride or nitride oxide of at least one of the multi-level memory transistors after the write process of the target value is completed. 如請求項1的半導體裝置,其中所述部分程式化操作包括軟式程式化操作和再填充程式化操作中的至少一者,其中所述部分程式化操作被配置以降低所述多階記憶電晶體中的所述至少一者的所述ID位準並且提高所述多階記憶電晶體中的所述至少一者的VT位準,並且其中所述部分抹除操作包括軟式抹除操作、選擇性軟式抹除操作和退火抹除操作中的至少一者,其中所述部分抹除操作被配置以提高所述多階記憶電晶體中的所述至少一者的所述ID位準並且降低所述多階記憶電晶體中的所述至少一者的VT位準。 A semiconductor device as claimed in claim 1, wherein the partial programming operation includes at least one of a soft programming operation and a refill programming operation, wherein the partial programming operation is configured to reduce the ID level of at least one of the multi-level memory transistors and increase the VT level of at least one of the multi-level memory transistors, and wherein the partial erase operation includes at least one of a soft erase operation, a selective soft erase operation and an annealing erase operation, wherein the partial erase operation is configured to increase the ID level of at least one of the multi-level memory transistors and reduce the VT level of at least one of the multi-level memory transistors. 如請求項1的半導體裝置,其中所述部分程式化操作相較於程式化操作而被執行相當短的持續時間,其中不管所述多階記憶電晶體的起始ID位準,所述程式化操作被配置以降低所述多階記憶電晶體的ID位準到完全程式化的ID位準。 A semiconductor device as claimed in claim 1, wherein the partial programming operation is performed for a relatively short duration compared to the programming operation, wherein regardless of the starting ID level of the multi-level memory transistor, the programming operation is configured to reduce the ID level of the multi-level memory transistor to a fully programmed ID level. 如請求項6的半導體裝置,其中所述軟式抹除操作和所述選擇性軟式抹除操作相較於抹除操作而被執行相當短的持續時間,其中不管所述多階記憶電晶體的起始ID位準,所述抹除操作被配置以提高所述多階記憶電晶體的ID位準到完全抹除的ID位準。 A semiconductor device as claimed in claim 6, wherein the soft erase operation and the selective soft erase operation are performed for a relatively short duration compared to the erase operation, wherein regardless of the starting ID level of the multi-level memory transistor, the erase operation is configured to increase the ID level of the multi-level memory transistor to a fully erased ID level. 如請求項8的半導體裝置,其中所述退火抹除操作相較於抹除操作而被執行相當長的持續時間,並且其中在所述抹除操作期間,所述多階記憶電晶體中的所述至少一者的所述氮化物或氮氧化物的電荷捕獲層兩端的電壓差的量值是大於所述退火抹除操作。 A semiconductor device as claimed in claim 8, wherein the annealing erase operation is performed for a relatively long duration compared to the erase operation, and wherein during the erase operation, the magnitude of the voltage difference across the charge trapping layer of the nitride or nitride oxide of at least one of the multi-level memory transistors is greater than that of the annealing erase operation. 如請求項1的半導體裝置,其中所述寫入電路進一步配置以在所述目標值的所述寫入程序完成之後,執行再填充和退火演算法以將所述多階記憶電晶體中的所述至少一者的所述ID位準維持在所述目標ID位準範圍中,同時以所述多階記憶電晶體中的所述至少一者的所述氮化物或氮氧化物的電荷捕獲層的深陷阱中的電荷取代在淺陷阱中的電荷,其中所述再填充和退火演算法的再填充程式化操作藉由對於所述氮化物或氮氧化物的電荷捕獲層兩端施加高電壓差以及對於所述多階記憶電晶體中的所述至少一者施加短程式化脈衝促進了深陷阱電荷,並且其中所述再填充和退火演算法的退火抹除操作被配置以藉由對所述氮化物或氮氧化物的電荷捕獲層兩端施加低電壓偏壓以及對所述多階記憶電晶體中的所述至少一者施加長抹除脈衝而經由富爾諾罕穿隧來清空淺陷阱電荷。 The semiconductor device of claim 1, wherein the write circuit is further configured to execute a refill and annealing algorithm to maintain the ID level of the at least one of the multi-stage memory transistors at the target ID level after the write process of the target value is completed. In the D level range, charges in shallow traps are replaced with charges in deep traps of the charge trapping layer of the nitride or oxynitride of at least one of the multi-level memory transistors, wherein the refill programming operation of the refill and anneal algorithm promotes deep trapped charges by applying a high voltage difference across the charge trapping layer of the nitride or oxynitride and applying a short programming pulse to the at least one of the multi-level memory transistors, and wherein the anneal erase operation of the refill and anneal algorithm is configured to clear shallow trapped charges through Furnohan tunneling by applying a low voltage bias across the charge trapping layer of the nitride or oxynitride and applying a long erase pulse to the at least one of the multi-level memory transistors. 一種半導體推論裝置,其包括:非揮發性記憶體(NVM)陣列,其包括以行和列配置的NVM單元,其中每個所述NVM單元包括電荷捕獲電晶體,且其中每個所述電荷捕獲電晶體被配置以儲存N個類比值中的一個,所述N個類比值對應於汲極電流(ID)以及臨界電壓(VT)的N個位準,其中儲存的所述N個類比值代表用於乘積累加(MAC)操作的N個權重值,其中N是大於2的自然數;數位-類比轉換器(DAC)功能部件,其被配置以接收且轉換來自外部裝置的數位輸入,其中每個所述數位輸入被配置以使得權重值儲存在至少一個被選擇而被讀取的NVM單元中;多工器(mux)功能部件,其被配置以基於所述數位輸入的轉換結果以及所述權重值的讀取結果來產生類比MAC結果;以及類比-數位轉換器(ADC)功能部件,其被配置以將所述多工器(mux)功能部件的所述類比MAC結果轉換為數位值並且將所述數位值輸出。 A semiconductor inference device, comprising: a non-volatile memory (NVM) array, comprising NVM cells arranged in rows and columns, wherein each of the NVM cells comprises a charge trap transistor, and wherein each of the charge trap transistors is configured to store one of N analog values, the N analog values corresponding to a drain current ( ID ) and a critical voltage ( V ), wherein the N analog values stored represent N weight values for a multiply-accumulate (MAC) operation, wherein N is a natural number greater than 2; a digital-to-analog converter (DAC) functional component configured to receive and convert digital inputs from an external device, wherein each of the digital inputs is configured so that a weight value is stored in at least one NVM unit selected and read; a multiplexer (mux) functional component configured to generate an analog MAC result based on a conversion result of the digital input and a read result of the weight value; and an analog-to-digital converter (ADC) functional component configured to convert the analog MAC result of the multiplexer (mux) functional component into a digital value and output the digital value. 如請求項11的半導體推論裝置,其中兩個鄰的NVM單元被配置以儲存單一權重值,其中所述單一權重值是基於分別儲存在所述兩個相鄰NVM單元中的類比值,且其中所述單一權重值的範圍為2×N。 A semiconductor inference device as claimed in claim 11, wherein two adjacent NVM cells are configured to store a single weight value, wherein the single weight value is based on analog values respectively stored in the two adjacent NVM cells, and wherein the range of the single weight value is 2×N. 如請求項11的半導體推論裝置,其中所述數位輸入包括被選擇的所述至少一個NVM單元的位址資訊。 A semiconductor inference device as claimed in claim 11, wherein the digital input includes address information of the at least one NVM cell selected. 如請求項11的半導體推論裝置,其中多個所述半導體推論裝置被設置在相同的半導體晶粒上並且彼此通訊耦合,多個所述半導體推論裝置中的每一個半導體推論裝置被設置以基於儲存在所述NVM單元中的所述權重值以及來自多個所述半導體推論裝置中的至少一個其他半導體推論裝置的數位輸入來執行所述MAC操作。 A semiconductor inference device as claimed in claim 11, wherein a plurality of the semiconductor inference devices are arranged on the same semiconductor die and are communicatively coupled to each other, and each of the plurality of the semiconductor inference devices is arranged to perform the MAC operation based on the weight value stored in the NVM unit and the digital input from at least one other semiconductor inference device among the plurality of the semiconductor inference devices. 如請求項14的半導體推論裝置,其中多個所述半導體推論裝置中的第一子集輸出MAC操作的數位結果,並且其中所述第一子集的所述數位結果耦合到多個所述半導體推論裝置中的第二子集作為其數位輸入。 A semiconductor inference device as claimed in claim 14, wherein a first subset of the plurality of semiconductor inference devices outputs a digital result of a MAC operation, and wherein the digital result of the first subset is coupled to a second subset of the plurality of semiconductor inference devices as its digital input. 如請求項14的半導體推論裝置,其中多個所述半導體推論裝置被設置為當作深度神經網路(DNN)系統中的人工神經元以執行人工智慧(AI)應用中的神經型態計算。 A semiconductor inference device as claimed in claim 14, wherein a plurality of the semiconductor inference devices are configured to function as artificial neurons in a deep neural network (DNN) system to perform neural-type computations in artificial intelligence (AI) applications. 一種操作乘積累加(MAC)裝置的方法,其包括:將所述MAC裝置的多個非揮發性記憶體(NVM)裝置與匯流排系統耦接,其中每個所述多個NVM裝置包括以行和列配置的NVM單元,且其中每個所述NVM單元包括電荷捕獲電晶體,所述電荷捕獲電晶體被配置以儲存N個類比值中的一個,所述N個類比值對應於汲極電流(ID)以及臨界電壓(VT)的N個位準,其中儲存的所述N個類比值代表N個乘積累加(MAC)權重值,其中N是大於2的自然數;將所述N個權重值中的一權重值寫入所述多個NVM裝置中的每個NVM單元 中;在所述多個NVM裝置中的第一NVM裝置處經由所述匯流排系統接收一組數位輸入(x1、x2...到xi),其中i是自然數;使用數位-類比轉換器(DAC)功能部件將所述組數位輸入轉換為一組類比值;基於所述組數位輸入來輸出儲存在對應NVM單元中的一組權重值(w1、w2...到wi)至所述第一NVM裝置的多工器功能部件;產生所述組類比值以及所述組MAC權重值的類比MAC結果(x1w1+x2w2+...+xiwi);將所述類比MAC結果轉換成數位MAC值;以及將基於所述數位MAC值的數位MAC結果傳輸至第二NVM裝置,其中所述數位MAC結果是所述第二NVM裝置的一組數位輸入中的一個數位輸入。 A method of operating a multiply-accumulate (MAC) device, comprising: coupling a plurality of non-volatile memory (NVM) devices of the MAC device to a bus system, wherein each of the plurality of NVM devices comprises NVM cells arranged in rows and columns, and wherein each of the NVM cells comprises a charge trap transistor, the charge trap transistor being configured to store one of N analog values, the N analog values corresponding to a drain current ( ID ) and a critical voltage ( V ), wherein the stored N analog values represent N multiply-accumulate (MAC) weight values, wherein N is a natural number greater than 2; writing one of the N weight values into each NVM unit in the plurality of NVM devices; receiving a set of digital inputs (x1, x2 . . . to xi) at a first NVM device in the plurality of NVM devices through the bus system, wherein i is a natural number; converting the set of digital inputs into a set of analog values using a digital-to-analog converter (DAC) functional component; based on the set of digital inputs Outputting a set of weight values (w1, w2... to wi) stored in the corresponding NVM unit to the multiplexer function component of the first NVM device; generating an analog MAC result (x1w1+x2w2+...+xiwi) of the set of analog values and the set of MAC weight values; converting the analog MAC result into a digital MAC value; and transmitting a digital MAC result based on the digital MAC value to a second NVM device, wherein the digital MAC result is one of a set of digital inputs of the second NVM device. 如請求項17的方法,其還包括:在所述多個NVM裝置中的至少一個NVM裝置中的NVM原件上定期執行刷新操作以驗證其中儲存的MAC權重值保持不變。 The method of claim 17 further comprises: periodically performing a refresh operation on the NVM element in at least one of the plurality of NVM devices to verify that the MAC weight value stored therein remains unchanged. 如請求項17的方法,其中所述第一NVM裝置是第一組NVM裝置中的一者,並且所述第二NVM裝置是第二組NVM裝置中的一者,並且其中從所述第二組NVM裝置輸出的數位MAC結果不會被傳輸到所述第一組NVM裝置。 The method of claim 17, wherein the first NVM device is one of a first set of NVM devices, and the second NVM device is one of a second set of NVM devices, and wherein the digital MAC result output from the second set of NVM devices is not transmitted to the first set of NVM devices. 如請求項17的方法,其中前述寫入所述N個權重值中的所述權重值包括:執行一系列的操作,其包含程式化、抹除、部分程式化、部分抹除、軟式抹除、選擇性軟式抹除、退火抹除、再填充程式化以及驗證讀取中之至少一者。 The method of claim 17, wherein the aforementioned writing of the weight value in the N weight values comprises: performing a series of operations, which includes at least one of programming, erasing, partial programming, partial erasing, soft erasing, selective soft erasing, annealing erasing, refill programming, and verification reading. 如請求項17的方法,其還包括: 基於所述數位MAC數值來產生所述數位MAC結果,其包括:將常數數值加到所述數位MAC數值;並且對常數數值和所述數位MAC數值之和執行激活函數演算法。 The method of claim 17, further comprising: Generating the digital MAC result based on the digital MAC value, comprising: adding a constant value to the digital MAC value; and performing an activation function algorithm on the sum of the constant value and the digital MAC value.
TW113112548A 2020-11-25 2020-11-25 Silicon-oxide-nitride-oxide-silicon based multi-level non-volatile memory device and methods of operation thereof TWI873008B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW113112548A TWI873008B (en) 2020-11-25 2020-11-25 Silicon-oxide-nitride-oxide-silicon based multi-level non-volatile memory device and methods of operation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW113112548A TWI873008B (en) 2020-11-25 2020-11-25 Silicon-oxide-nitride-oxide-silicon based multi-level non-volatile memory device and methods of operation thereof

Publications (2)

Publication Number Publication Date
TW202430000A TW202430000A (en) 2024-07-16
TWI873008B true TWI873008B (en) 2025-02-11

Family

ID=92928758

Family Applications (1)

Application Number Title Priority Date Filing Date
TW113112548A TWI873008B (en) 2020-11-25 2020-11-25 Silicon-oxide-nitride-oxide-silicon based multi-level non-volatile memory device and methods of operation thereof

Country Status (1)

Country Link
TW (1) TWI873008B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150138891A1 (en) * 2013-11-20 2015-05-21 International Business Machiness Corporation Embedded charge trap multi-time-programmable-read-only-memory for high performance logic technology
US20180068735A1 (en) * 2013-03-12 2018-03-08 Cypress Semiconductor Corporation Method to Reduce Program Disturbs in Non-Volatile Memory Cells
US20190147960A1 (en) * 2017-11-14 2019-05-16 Cypress Semiconductor Corporation Bias scheme for word programming in non-volatile memory and inhibit disturb reduction

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180068735A1 (en) * 2013-03-12 2018-03-08 Cypress Semiconductor Corporation Method to Reduce Program Disturbs in Non-Volatile Memory Cells
US20150138891A1 (en) * 2013-11-20 2015-05-21 International Business Machiness Corporation Embedded charge trap multi-time-programmable-read-only-memory for high performance logic technology
US20190147960A1 (en) * 2017-11-14 2019-05-16 Cypress Semiconductor Corporation Bias scheme for word programming in non-volatile memory and inhibit disturb reduction

Also Published As

Publication number Publication date
TW202430000A (en) 2024-07-16

Similar Documents

Publication Publication Date Title
US12183395B2 (en) Silicon-oxide-nitride-oxide-silicon based multi-level non-volatile memory device and methods of operation thereof
JP4751039B2 (en) Nonvolatile semiconductor memory device
US8045392B2 (en) Multiple level programming in a non-volatile memory device
US8711635B2 (en) Nonvolatile semiconductor memory device
US7286408B1 (en) Boosting methods for NAND flash memory
US7436709B2 (en) NAND flash memory with boosting
KR20110008556A (en) 3D memory device and its programming method
CN110689913A (en) nonvolatile memory device
TWI839588B (en) Silicon-oxide-nitride-oxide-silicon based multi-level non-volatile memory device and methods of operation thereof
US11468950B1 (en) Memory programming with selectively skipped bitscans and fewer verify pulses for performance improvement
JP3547245B2 (en) Multi-value writing method for nonvolatile memory
JP7014364B2 (en) How to operate the memory device
TWI873008B (en) Silicon-oxide-nitride-oxide-silicon based multi-level non-volatile memory device and methods of operation thereof
US11410739B1 (en) Programming techniques with fewer verify pulses to improve performance
TWI845792B (en) Silicon-oxide-nitride-oxide-silicon multi-level non-volatile memory device and methods of fabrication thereof
JP2007102848A (en) Semiconductor integrated circuit device
US12524338B2 (en) Apparatus and methods for programming data states of memory cells
TWI869286B (en) Silicon-oxide-nitride-oxide-silicon multi-level non-volatile memory device and methods of fabrication thereof