[go: up one dir, main page]

TWI870195B - Image processing system and method thereof for early detection of ischemic core of ischemic stroke patient - Google Patents

Image processing system and method thereof for early detection of ischemic core of ischemic stroke patient Download PDF

Info

Publication number
TWI870195B
TWI870195B TW113100624A TW113100624A TWI870195B TW I870195 B TWI870195 B TW I870195B TW 113100624 A TW113100624 A TW 113100624A TW 113100624 A TW113100624 A TW 113100624A TW I870195 B TWI870195 B TW I870195B
Authority
TW
Taiwan
Prior art keywords
training
model
image
image processing
early detection
Prior art date
Application number
TW113100624A
Other languages
Chinese (zh)
Other versions
TW202527891A (en
Inventor
彥廷 陳
Original Assignee
臺北醫學大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 臺北醫學大學 filed Critical 臺北醫學大學
Priority to TW113100624A priority Critical patent/TWI870195B/en
Application granted granted Critical
Publication of TWI870195B publication Critical patent/TWI870195B/en
Publication of TW202527891A publication Critical patent/TW202527891A/en

Links

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

An image processing method thereof for early detection of ischemic core of ischemic stroke patient includes a model training phase and a model inference phase. In the model training phase, it first generates a first pseudo diffusion-weighted MR imaging (DWI) and a generator loss according to a non-contrast enhanced CT (NCCT) image for training; then, it generates a discriminator loss and a discriminator result according to a DWI for training and the first pseudo DWI; then, it judges whether to end the model training phase according to the generator loss and the discriminator loss, and if so, ends the model training phase and obtains a set of parameters for inference phase, and if not, updates the parameters used in the model training phase. In the model inference phase, it generates a pseudo DWI according to a NCCT image and the set of parameters for inference phase.

Description

用於早期偵測缺血性腦中風病人的腦梗塞核心之影像處理系統及其方法Image processing system and method for early detection of cerebral infarction core in patients with ischemic cerebral stroke

本發明是有關於一種醫療影像的處理系統及其方法,特別是指一種用於早期偵測缺血性腦中風病人的腦梗塞核心之影像處理系統及其方法。The present invention relates to a medical image processing system and method, and more particularly to an image processing system and method for early detection of cerebral infarction core of ischemic stroke patients.

在急性缺血性腦中風的處置中,早期偵測梗塞核心非常重要,越快診斷治療病人癒後越佳。In the treatment of acute ischemic stroke, early detection of the infarct core is very important. The sooner the diagnosis and treatment, the better the patient's recovery.

無顯影腦部斷層掃描(Non-Contrast Enhanced CT,簡稱NCCT)是急性腦中風的第一線檢查,廣泛地使用於排除腦出血,雖然亦可用於評估急性缺血性腦中風梗塞核心,但有醫師判讀主觀性高、準確度低、判讀差異度大等問題。Non-Contrast Enhanced CT (NCCT) is the first-line examination for acute stroke and is widely used to rule out cerebral hemorrhage. Although it can also be used to evaluate the infarction core of acute ischemic stroke, it has problems such as high subjectivity of physicians' interpretation, low accuracy, and large variability in interpretation.

臨床上用於偵測梗塞核心的影像工具有二種,分別是磁振造影擴散加權成像(Diffusion-Weighted MR Imaging,簡稱DWI)及斷層掃描腦血流灌注(CT Perfusion,簡稱CTP)影像,然,該等影像工具各有其缺點。磁振造影擴散加權成像準確度高,雖為梗塞核心的診斷黃金標準,但其設備昂貴、可及性低且掃描時間較長,僅有極少醫院有能力用於急性腦中風的病人;而斷層掃描腦血流灌注影像的缺點在於腦梗塞核心定量的不穩定性、須注射顯影劑、高輻射劑量、須使用昂貴的商用軟體(例如,RAPID.ai)進行後處理運算,而且其對於診斷腦梗塞核心的準確度並不如磁振造影擴散加權成像。There are two types of imaging tools used clinically to detect the infarct core, namely diffusion-weighted MR imaging (DWI) and CT perfusion (CTP) imaging. However, each of these imaging tools has its own shortcomings. Magnetic resonance imaging diffusion-weighted imaging is highly accurate. Although it is the gold standard for diagnosing the infarct core, its equipment is expensive, its accessibility is low, and its scanning time is long. Only very few hospitals have the ability to use it for patients with acute cerebral stroke. The disadvantages of tomographic cerebral blood perfusion imaging are the instability of quantification of cerebral infarction core, the need to inject contrast agent, high radiation dose, and the need to use expensive commercial software (e.g., RAPID.ai) for post-processing operations. In addition, its accuracy in diagnosing cerebral infarction core is not as good as that of magnetic resonance imaging diffusion-weighted imaging.

習知的技術,例如,中華民國專利第I542328號、第I725813號專利,皆是基於成本較高且掃描時間較長的磁振造影擴散加權成像進行處理及判斷;故,目前臨床亟需一種成本較低、可廣泛被各醫院所使用,且能加速急性缺血性腦中風之診斷的影像處理技術。Known technologies, such as Patent No. I542328 and Patent No. I725813 of the Republic of China, are all based on the processing and judgment of diffusion-weighted magnetic resonance imaging, which has a high cost and a long scanning time. Therefore, there is an urgent need for an image processing technology with a low cost, which can be widely used by various hospitals and can accelerate the diagnosis of acute ischemic stroke.

因此,本發明之目的,即在提供一種用於早期偵測缺血性腦中風病人的腦梗塞核心之影像處理系統,其包含儲存有至少一指令之一記憶體、一資料庫,及通訊耦接於該記憶體及該資料庫之一處理器。Therefore, the purpose of the present invention is to provide an image processing system for early detection of cerebral infarction core of ischemic stroke patients, which includes a memory storing at least one instruction, a database, and a processor communicatively coupled to the memory and the database.

該資料庫包括至少一訓練資料組,其中,該訓練資料組包括一訓練用之無顯影腦部斷層掃描影像,及對應於該訓練用之無顯影腦部斷層掃描影像的一訓練用之磁振造影擴散加權影像。The database includes at least one training data set, wherein the training data set includes a training non-revelation brain tomography image and a training MRI diffusion-weighted image corresponding to the training non-revelation brain tomography image.

該處理器用以存取並執行該指令,以運作於一模型訓練階段及一模型推論階段。The processor is used to access and execute the instruction to operate in a model training phase and a model inference phase.

該模型訓練階段包括一生成模型運算、一鑑別模型運算、一判斷步驟,及一參數更新步驟。該生成模型運算用以根據該訓練用之無顯影腦部斷層掃描影像,使用複數參數進行生成模型學習運算,以產生一第一虛擬磁振造影擴散加權影像及一生成誤差;該鑑別模型運算用以根據該訓練用之磁振造影擴散加權影像及該第一虛擬磁振造影擴散加權影像,使用複數參數進行鑑別模型學習運算,以產生一鑑別誤差及一鑑別結果;該判斷步驟用以根據該生成誤差及該鑑別誤差判斷是否結束該模型訓練階段,若該判斷步驟的結果為是,則結束該模型訓練階段,並以該生成模型運算目前使用之該等參數,作為一推論階段參數組;該參數更新步驟用以更新該生成模型運算及該鑑別模型運算所使用之參數,其中,若該判斷步驟的結果為否,才進行該參數更新步驟。The model training phase includes a generative model operation, an identification model operation, a judgment step, and a parameter updating step. The generative model operation is used to perform a generative model learning operation using complex parameters based on the training non-imaging brain sectional scan image to generate a first virtual MRI diffusion weighted image and a generation error; the identification model operation is used to perform an identification model learning operation using complex parameters based on the training MRI diffusion weighted image and the first virtual MRI diffusion weighted image to generate an identification error and an identification result; The judgment step is used to judge whether to terminate the model training phase according to the generation error and the identification error. If the result of the judgment step is yes, the model training phase is terminated, and the parameters currently used in the generation model operation are used as an inference phase parameter set; the parameter update step is used to update the parameters used in the generation model operation and the identification model operation, wherein the parameter update step is performed only if the result of the judgment step is no.

在該模型推論階段中,該處理器係根據一無顯影腦部斷層掃描影像,並使用該推論階段參數組,以產生一虛擬磁振造影擴散加權影像。In the model inference phase, the processor generates a virtual MRI diffusion-weighted image based on a non-contrast brain CT scan image and using the inference phase parameter set.

本發明之另一目的,即在提供一種用於早期偵測缺血性腦中風病人的腦梗塞核心之影像處理方法,其包含一模型訓練階段及一模型推論階段。Another object of the present invention is to provide an image processing method for early detection of cerebral infarction core in ischemic stroke patients, which includes a model training stage and a model inference stage.

該模型訓練階段包括一生成模型運算、一鑑別模型運算、一判斷步驟,及一參數更新步驟。該生成模型運算用以根據一訓練用之無顯影腦部斷層掃描影像,使用複數參數進行生成模型學習運算,以產生一第一虛擬磁振造影擴散加權影像及一生成誤差;該鑑別模型運算用以根據一訓練用之磁振造影擴散加權影像及該第一虛擬磁振造影擴散加權影像,使用複數參數進行鑑別模型學習運算,以產生一鑑別誤差及一鑑別結果;該判斷步驟用以根據該生成誤差及該鑑別誤差判斷是否結束該模型訓練階段,若該判斷步驟的結果為是,則結束該模型訓練階段,並以該生成模型運算目前使用之參數,作為一推論階段參數組;該參數更新步驟用以更新該生成模型運算及該鑑別模型運算所使用之參數,其中,若該判斷步驟的結果為否,才進行該參數更新步驟。The model training phase includes a generative model operation, an identification model operation, a judgment step, and a parameter updating step. The generative model operation is used to perform a generative model learning operation based on a training non-imaging brain sectional scan image using complex parameters to generate a first virtual MRI diffusion-weighted image and a generation error; the identification model operation is used to perform an identification model learning operation based on a training MRI diffusion-weighted image and the first virtual MRI diffusion-weighted image using complex parameters to generate an identification error and an identification result. ; The judging step is used to judge whether to terminate the model training phase according to the generation error and the identification error. If the result of the judging step is yes, the model training phase is terminated, and the parameters currently used in the generation model operation are used as an inference phase parameter set; The parameter updating step is used to update the parameters used in the generation model operation and the identification model operation. If the result of the judging step is no, the parameter updating step is performed.

在該模型推論階段中,係根據一無顯影腦部斷層掃描影像,並使用該推論階段參數組,以產生一虛擬磁振造影擴散加權影像。In the model inference stage, a virtual MRI diffusion-weighted image is generated based on a non-contrast brain CT image and using the inference stage parameter set.

本發明之功效在於:該無顯影腦部斷層掃描影像經過該用於早期偵測缺血性腦中風病人的腦梗塞核心之影像處理系統及方法之後,即可產生該虛擬磁振造影擴散加權影像,病人不須進行昂貴費時的磁振造影擴散加權成像,亦無須注射顯影劑、承受高輻射劑量之風險來進行斷層掃描腦血流灌注成像,僅需在第一線檢查(取得該無顯影腦部斷層掃描影像)後,即可快速得到該虛擬磁振造影擴散加權影像。The utility of the present invention is that after the non-development brain sectional scan image passes through the core image processing system and method for early detection of cerebral infarction in ischemic stroke patients, the virtual MRI diffusion-weighted image can be generated. The patient does not need to undergo expensive and time-consuming MRI diffusion-weighted imaging, nor does he need to inject contrast agent and bear the risk of high radiation dose to undergo sectional cerebral blood flow perfusion imaging. The virtual MRI diffusion-weighted image can be quickly obtained only after the first-line examination (obtaining the non-development brain sectional scan image).

有關本發明之前述及其他技術內容、特點與功效,在以下配合參考圖式之二個較佳實施例之詳細說明中,將可清楚的呈現。The above-mentioned other technical contents, features and effects of the present invention will be clearly presented in the following detailed description of two preferred embodiments with reference to the drawings.

請參閱圖1,本發明用於早期偵測缺血性腦中風病人的腦梗塞核心之影像處理系統1的一第一較佳實施例包括儲存有至少一指令的一記憶體11、一資料庫12,及通訊耦接於該記憶體11及該資料庫12的一處理器13。該影像處理系統1係配合一輸入裝置2及一輸出裝置3來運作,該輸入裝置2可以為一無顯影腦部斷層掃描裝置,用以提供一無顯影腦部斷層掃描影像給該影像處理系統1進行處理,該輸出裝置3可以為一螢幕(但不以此為限),用以提供該影像處理系統1的結果給一使用者。Please refer to FIG. 1 , a first preferred embodiment of the image processing system 1 for early detection of cerebral infarction core of ischemic stroke patients of the present invention comprises a memory 11 storing at least one instruction, a database 12, and a processor 13 communicatively coupled to the memory 11 and the database 12. The image processing system 1 is operated in conjunction with an input device 2 and an output device 3. The input device 2 can be a non-development brain tomography scanning device to provide a non-development brain tomography scanning image to the image processing system 1 for processing, and the output device 3 can be a screen (but not limited thereto) to provide the result of the image processing system 1 to a user.

其中,該資料庫12包括預先建立之至少一訓練資料組,其中,該訓練資料組包括一訓練用之無顯影腦部斷層掃描影像,及對應於該訓練用之無顯影腦部斷層掃描影像的一訓練用之磁振造影擴散加權影像。更進一步來說,每一訓練資料組內之該訓練用之無顯影腦部斷層掃描影像及該訓練用之磁振造影擴散加權影像,係同一病人在兩小時內實際檢測所取得之成對影像;在本第一較佳實施例中,該病人係先進行常規使用的無顯影腦部斷層掃描以得到該訓練用之無顯影腦部斷層掃描影像後,立即使用擴散加權成像以得到該訓練用之磁振造影擴散加權影像,以此成對的影像來建立該資料庫12,該訓練用之磁振造影擴散加權影像可視為一真實標準(Ground Truth)。The database 12 includes at least one pre-established training data set, wherein the training data set includes a training non-revelation brain tomography image and a training MRI diffusion-weighted image corresponding to the training non-revelation brain tomography image. Furthermore, the training non-imaging brain tomography image and the training MRI diffusion-weighted image in each training data set are paired images obtained from actual examinations of the same patient within two hours. In the first preferred embodiment, the patient first undergoes a conventional non-imaging brain tomography to obtain the training non-imaging brain tomography image, and then immediately undergoes diffusion-weighted imaging to obtain the training MRI diffusion-weighted image. The database 12 is established using this paired image, and the training MRI diffusion-weighted image can be regarded as a ground truth.

其中,該處理器13用以存取並執行該記憶體11內之指令,以進行本發明用於早期偵測缺血性腦中風病人的腦梗塞核心之影像處理方法,更進一步來說,該用於早期偵測缺血性腦中風病人的腦梗塞核心之影像處理方法包括一模型訓練(Model Training)階段,及一模型推論(Model Inference)階段。Among them, the processor 13 is used to access and execute the instructions in the memory 11 to perform the image processing method of the present invention for early detection of the core of cerebral infarction in patients with ischemic cerebral stroke. Furthermore, the image processing method for early detection of the core of cerebral infarction in patients with ischemic cerebral stroke includes a model training stage and a model inference stage.

請參閱圖1及圖2,以下將對於該模型訓練階段所進行之運算及步驟進一步說明。Please refer to Figures 1 and 2. The following will further explain the operations and steps performed during the model training phase.

在一生成模型(Generative Model)運算41中,該處理器13根據該資料庫12內預先建立之該訓練用之無顯影腦部斷層掃描影像,進行生成模型學習運算,以產生一第一虛擬磁振造影擴散加權影像(Psuedo-DWI),及一生成誤差(G-Loss),該生成誤差為該第一虛擬磁振造影擴散加權影像與該訓練用之磁振造影擴散加權影像之誤差。其中,所述之生成模型學習運算可採用現有的自編碼器(Autoencoder,簡稱AE)架構,亦可採用現有之變分自編碼器(Variational Autoencoder,簡稱VAE)架構。在本第一較佳實施例中,係採用自編碼器架構,其包括至少一編碼層(Encoder Layer)之運算、至少一瓶頸層(Bottleneck Layer,或稱隱藏層)之運算,及至少一解碼層(Decoder Layer)之運算,每一層對應複數節點,每一節點對應一參數;換言之,該處理器13係根據該訓練用之無顯影腦部斷層掃描影像,並使用該等參數進行該生成模型運算。In a generative model operation 41, the processor 13 performs a generative model learning operation based on the training non-imaged brain sectional scan image pre-established in the database 12 to generate a first pseudo-DWI diffusion-weighted image and a generative error (G-Loss), wherein the generative error is the error between the first pseudo-DWI diffusion-weighted image and the training DWI diffusion-weighted image. The generative model learning operation may adopt an existing autoencoder (AE) architecture or an existing variational autoencoder (VAE) architecture. In this first preferred embodiment, a self-encoder architecture is used, which includes at least one encoder layer (Encoder Layer) operation, at least one bottleneck layer (Bottleneck Layer, or hidden layer) operation, and at least one decoder layer (Decoder Layer) operation, each layer corresponds to a plurality of nodes, and each node corresponds to a parameter; in other words, the processor 13 is based on the non-developmental brain tomography scan image used for training, and uses the parameters to perform the generative model operation.

在一鑑別模型(Discriminative Model)運算42中,該處理器13根據該第一虛擬磁振造影擴散加權影像,及該資料庫12內預先建立之該訓練用之磁振造影擴散加權影像進行鑑別模型學習運算,以產生一鑑別誤差(D-Loss)及一鑑別結果;在本第一較佳實施例中,該鑑別誤差為其在判斷該第一虛擬磁振造影擴散加權影像是否為虛擬影像與其在判斷該訓練用之磁振造影擴散加權影像是否為真實影像之誤差,該鑑別結果用以指示該第一虛擬磁振造影擴散加權影像與該訓練用之磁振造影擴散加權影像是否相似;其中,該鑑別模型運算42可採用現有的一區塊生成對抗網路(Patch Generative Adversarial Network,簡稱Patch-GAN)的鑑別模型架構,其包括至少一卷積(convolution)層,每一層對應複數節點,每一節點對應一參數;進一步來說,該處理器13係將該第一虛擬磁振造影擴散加權影像與該訓練用之磁振造影擴散加權影像分別劃分為m×n個區塊,並根據該等區塊使用該等參數進行運算,而該鑑別結果是一個m×n的矩陣,其內容為1(True)或0(False),當該第一虛擬磁振造影擴散加權影像內的某一區塊,與該訓練用之磁振造影擴散加權影像內的對應區塊相似時,在該矩陣內對應的評價值即為1。In a discriminative model operation 42, the processor 13 performs a discriminative model learning operation based on the first virtual MRI diffusion weighted image and the training MRI diffusion weighted image pre-established in the database 12 to generate a discriminative error (D-Loss) and a discriminative result; in the first preferred embodiment, the discriminative error is the error in determining the first virtual MRI diffusion weighted image. The identification model operation 42 can use an existing Patch Generative Adversarial Network (Patch Generative Adversarial Network) to determine whether the first virtual MRI diffusion weighted image is a virtual image and whether the training MRI diffusion weighted image is a real image. The identification result is used to indicate whether the first virtual MRI diffusion weighted image is similar to the training MRI diffusion weighted image. The identification model architecture of the Patch-GAN includes at least one convolution layer, each layer corresponds to a plurality of nodes, and each node corresponds to a parameter; further, the processor 13 divides the first virtual MRI diffusion-weighted image and the training MRI diffusion-weighted image into m× n blocks, and the parameters are used to perform calculations based on the blocks, and the identification result is an m×n matrix whose content is 1 (True) or 0 (False). When a block in the first virtual MRI diffusion-weighted image is similar to a corresponding block in the training MRI diffusion-weighted image, the corresponding evaluation value in the matrix is 1.

在一判斷步驟43中,該處理器13根據該生成誤差及該鑑別誤差判斷是否結束該模型訓練階段;若是,則以該生成模型運算41目前所使用之參數作為一推論階段參數組,並結束;否則,進行一參數更新步驟44,以更新該生成模型運算41及該鑑別模型運算42所使用之參數,並回到該生成模型運算41進行下一輪的訓練。在本第一較佳實施例中,該處理器13的判斷依據是當該生成誤差為最小及該鑑別誤差為最大,亦即該生成誤差與該鑑別誤差之差為最小時,結束該模型訓練階段。In a judgment step 43, the processor 13 judges whether to terminate the model training phase according to the generation error and the identification error; if so, the parameters currently used by the generation model operation 41 are used as an inference phase parameter set and the phase is terminated; otherwise, a parameter update step 44 is performed to update the parameters used by the generation model operation 41 and the identification model operation 42, and return to the generation model operation 41 for the next round of training. In the first preferred embodiment, the judgment of the processor 13 is based on the termination of the model training phase when the generation error is the minimum and the identification error is the maximum, that is, when the difference between the generation error and the identification error is the minimum.

值得一提的是,本發明的特點是同時對該生成模型運算41及該鑑別模型運算42進行訓練,兩者所使用之參數在訓練過程中持續更新,兩者不斷地對抗,藉此,使得該生成模型運算41產生之該第一虛擬磁振造影擴散加權影像,逼近其真實標準(即,該訓練用之磁振造影擴散加權影像),同時提升該鑑別模型運算42的鑑別力。It is worth mentioning that the feature of the present invention is to train the generative model operation 41 and the identification model operation 42 at the same time, and the parameters used by the two are continuously updated during the training process. The two are constantly in conflict with each other, thereby making the first virtual MRI diffusion-weighted image generated by the generative model operation 41 close to its true standard (i.e., the MRI diffusion-weighted image used for training), while improving the discrimination power of the identification model operation 42.

請參閱圖1及圖3,在該模型推論階段,於一接收步驟51中,該影像處理系統1接收來自該輸入裝置2的一病人之無顯影腦部斷層掃描影像;該處理器13根據該病人之無顯影腦部斷層掃描影像,並使用該推論階段參數組,進行一生成模型運算52,以產生與該病人相關之一虛擬磁振造影擴散加權影像;於一輸出步驟53中,該輸出裝置3將與該病人相關之虛擬磁振造影擴散加權影像提供給使用者(例如,醫師)。Please refer to Figures 1 and 3. In the model inference stage, in a receiving step 51, the image processing system 1 receives a non-imaging brain tomography scan image of a patient from the input device 2; the processor 13 performs a generative model operation 52 based on the non-imaging brain tomography scan image of the patient and uses the inference stage parameter set to generate a virtual MRI diffusion-weighted image related to the patient; in an output step 53, the output device 3 provides the virtual MRI diffusion-weighted image related to the patient to the user (e.g., a doctor).

請參閱圖1、圖2,及圖4,本發明用於早期偵測缺血性腦中風病人的腦梗塞核心之影像處理系統1的一第二較佳實施例,其所使用之硬體及其影像處理方法類似於該第一較佳實施例,在接下來的說明中,與該第一較佳實施例相同或相似的元件,以相同的標號來表示。Please refer to Figures 1, 2, and 4, which are a second preferred embodiment of the image processing system 1 of the present invention for early detection of cerebral infarction core of ischemic stroke patients. The hardware and image processing method used are similar to those of the first preferred embodiment. In the following description, the same or similar components as those of the first preferred embodiment are represented by the same reference numerals.

該影像處理系統1的該處理器13用以進行本發明用於早期偵測缺血性腦中風病人的腦梗塞核心之影像處理方法的一第二較佳實施例,該影像處理方法包括一模型訓練階段及一模型推論階段,以下不再贅述與該第一較佳實施例類似之處的實施細節,僅就差異之處進行描述。The processor 13 of the image processing system 1 is used to perform a second preferred embodiment of the image processing method of the present invention for early detection of cerebral infarction core of ischemic stroke patients. The image processing method includes a model training phase and a model inference phase. The implementation details similar to the first preferred embodiment will not be elaborated below, and only the differences will be described.

在本第二較佳實施例中,該資料庫12之每一訓練資料組除了包括同一病人之該訓練用之無顯影腦部斷層掃描影像,及該訓練用之磁振造影擴散加權影像之外,還包括該病人的一訓練用之臨床資料。更進一步來說,該訓練用之臨床資料包括一人口學(Demographic)特徵,及一時間特徵;該人口學特徵包括一年齡、一性別、一腦中風量表(NIH Stroke Scale,簡稱NIHSS),及一腦側性(Laterality)其中至少一者;該時間特徵包括一第一時間差,及一第二時間差其中至少一者,該第一時間差係指該病人腦中風發作至進行無顯影腦部斷層掃描之間隔時間,該第二時間差係指該病人進行無顯影腦部斷層掃描至進行磁振造影擴散加權成像之間隔時間。前述訓練用之臨床資料,例如,該腦中風量表、該腦側性等,皆為本案所屬醫學領域之習知用語,故不在此作詳細描述。In the second preferred embodiment, each training data set of the database 12 includes not only the non-imaging brain CT scan image and the MRI diffusion-weighted image for training of the same patient, but also the clinical data for training of the patient. Specifically, the clinical data used for training includes a demographic feature and a time feature; the demographic feature includes at least one of age, gender, NIH Stroke Scale (NIHSS), and laterality; the time feature includes at least one of a first time difference and a second time difference, the first time difference refers to the interval from the onset of the patient's stroke to the performance of a brain tomography scan without imaging, and the second time difference refers to the interval from the performance of a brain tomography scan without imaging to the performance of magnetic resonance imaging diffusion-weighted imaging. The clinical data used in the aforementioned training, such as the stroke scale and cerebral laterality, are all commonly known terms in the medical field to which this case belongs, and therefore will not be described in detail here.

在本第二較佳實施例中,在該模型訓練階段中,該生成模型運算41係採用自編碼器架構,其包括至少一編碼層61之運算、至少一瓶頸層62之運算,及至少一解碼層63之運算,其中,該編碼層61與解碼層63之運算類似於該第一較佳實施例,主要差別在該瓶頸層62之運算。該瓶頸層62除了接收該編碼層61的輸出,進行如同該第一較佳實施例中的瓶頸層運算之外,還用以接收該訓練用之臨床資料,並以該訓練用之臨床資料進行一通道關注(Channel-wise Attention)621的運算及一空間關注(Spatial Attention)622的運算。In this second preferred embodiment, in the model training phase, the generative model operation 41 adopts a self-encoder architecture, which includes the operation of at least one coding layer 61, the operation of at least one bottleneck layer 62, and the operation of at least one decoding layer 63, wherein the operations of the coding layer 61 and the decoding layer 63 are similar to those of the first preferred embodiment, and the main difference lies in the operation of the bottleneck layer 62. In addition to receiving the output of the coding layer 61 and performing the bottleneck layer operation as in the first preferred embodiment, the bottleneck layer 62 is also used to receive the clinical data for training and perform a channel-wise attention (Channel-wise Attention) 621 operation and a spatial attention (Spatial Attention) 622 operation using the clinical data for training.

在本第二較佳實施例中,該臨床資料包括6個數值,在運算的過程中,每一數值會先轉成一p×p的矩陣,該矩陣填滿該數值,然後,以填滿該數值的該矩陣進行該通道關注621及該空間關注622的運算。舉例來說,一病人的年齡會轉成一個p×p的矩陣,該矩陣內每一元素填上該病人的年齡;又,若該性別以1代表男性,以2代表女性,則該病人若是男性,其p×p的矩陣內每一元素即填上1,依此類推;接著,利用所述6個填滿數值的矩陣進行該通道關注621及該空間關注622的運算。該通道關注621及該空間關注622的運算皆為本案所屬技術領域中具有通常知識者能明確理解之運算,故不在此作詳細描述。In the second preferred embodiment, the clinical data includes 6 values. During the calculation process, each value is first converted into a p×p matrix, which is filled with the value. Then, the matrix filled with the value is used to perform the calculation of the channel focus 621 and the spatial focus 622. For example, the age of a patient is converted into a p×p matrix, and each element in the matrix is filled with the age of the patient. If the gender is represented by 1 for male and 2 for female, then if the patient is male, each element in the p×p matrix is filled with 1, and so on. Then, the channel focus 621 and the spatial focus 622 are calculated using the 6 matrices filled with values. The operations of the channel focus 621 and the space focus 622 are operations that can be clearly understood by those with ordinary knowledge in the technical field to which this case belongs, so they are not described in detail here.

值得一提的是,雖然在該第二較佳實施例中,該生成模型運算41係採用自編碼器架構,但,該生成模型運算41亦可採用變分自編碼器架構,並不以此為限。當採用變分自編碼器架構時,可以將該資料庫12之某些訓練資料組中的訓練用之臨床資料以亂數取代,以進行該通道關注621及該空間關注622的運算。It is worth mentioning that, although in the second preferred embodiment, the generative model operation 41 adopts the autoencoder architecture, the generative model operation 41 may also adopt the variational autoencoder architecture, but is not limited thereto. When the variational autoencoder architecture is adopted, the clinical data used for training in some training data sets of the database 12 may be replaced with random numbers to perform the channel attention 621 and the spatial attention 622 operations.

請參閱圖1及圖5,在該第二較佳實施例的一模型推論階段,於一接收步驟71中,該影像處理系統1接收來自該輸入裝置2的一病人之無顯影腦部斷層掃描影像及臨床資料;該處理器13根據該病人之無顯影腦部斷層掃描影像及臨床資料,使用該模型訓練階段所得之一推論階段參數組,進行一生成模型運算72,以產生與該病人相關之一虛擬磁振造影擴散加權影像;於一輸出步驟73中,該輸出裝置3將與該病人相關之虛擬磁振造影擴散加權影像提供給使用者(例如,醫師)。須注意的是,由於本發明旨在該病人進行完初步之無顯影腦部斷層掃描後,即利用該生成模型運算72產生該虛擬磁振造影擴散加權影像,也就是說,並不會為該病人進行磁振造影擴散加權成像,因此,在該模型推論階段中,該臨床資料的時間特徵的第二時間差(即,該病人進行無顯影腦部斷層掃描至進行磁振造影擴散加權成像之間隔時間)可為一任意給定值。Please refer to Figures 1 and 5. In a model inference stage of the second preferred embodiment, in a receiving step 71, the image processing system 1 receives a non-imaging brain sectional scan image and clinical data of a patient from the input device 2; the processor 13 uses an inference stage parameter set obtained in the model training stage to perform a generative model operation 72 based on the non-imaging brain sectional scan image and clinical data of the patient to generate a virtual MRI diffusion-weighted image related to the patient; in an output step 73, the output device 3 provides the virtual MRI diffusion-weighted image related to the patient to the user (e.g., a doctor). It should be noted that, since the present invention aims to generate the virtual MRI diffusion-weighted image using the generative model operation 72 after the patient has undergone a preliminary non-imaging brain tomography scan, that is, MRI diffusion-weighted imaging will not be performed on the patient, therefore, in the model inference stage, the second time difference of the time characteristic of the clinical data (i.e., the interval from the patient undergoing a non-imaging brain tomography scan to the patient undergoing MRI diffusion-weighted imaging) can be an arbitrarily given value.

請參閱圖1與圖6,一病人之無顯影腦部斷層掃描影像81經過本發明之影像處理系統1之後,可得到如圖6所示之一虛擬磁振造影擴散加權影像82,其與該病人實際之一磁振造影擴散加權影像83極為相似;其中,該虛擬磁振造影擴散加權影像82及該磁振造影擴散加權影像83中亮部區域為病灶所在區域,也就是說,該虛擬磁振造影擴散加權影像82即可用於早期偵測缺血性腦中風病人的腦梗塞核心。Please refer to Figures 1 and 6. After a patient's non-imaged brain sectional scan image 81 passes through the image processing system 1 of the present invention, a virtual MRI diffusion-weighted image 82 as shown in Figure 6 can be obtained, which is very similar to the patient's actual MRI diffusion-weighted image 83; wherein, the bright areas in the virtual MRI diffusion-weighted image 82 and the MRI diffusion-weighted image 83 are the areas where the lesions are located, that is, the virtual MRI diffusion-weighted image 82 can be used for early detection of the cerebral infarction core of ischemic stroke patients.

歸納上述,藉由本發明之影像處理系統1,病人不須進行昂貴費時的磁振造影擴散加權成像,亦無須注射顯影劑、承受高輻射劑量之風險來進行斷層掃描腦血流灌注成像,僅需在第一線檢查(取得該無顯影腦部斷層掃描影像81)後,即可快速得到該虛擬磁振造影擴散加權影像82,其用於早期偵測缺血性腦中風病人的腦梗塞核心之準確度類似於該磁振造影擴散加權影像83之效果,故確實能達成本發明之目的。To summarize the above, by using the image processing system 1 of the present invention, the patient does not need to undergo expensive and time-consuming MRI diffusion-weighted imaging, nor does he need to inject contrast agents and bear the risk of high radiation doses to undergo CT-based cerebral blood flow perfusion imaging. Instead, the patient only needs to undergo a first-line examination (obtaining the non-developmental brain CT-based scan image 81) to quickly obtain the virtual MRI diffusion-weighted image 82. The accuracy of the virtual MRI diffusion-weighted image 82 in early detection of the core of cerebral infarction in patients with ischemic stroke is similar to that of the MRI diffusion-weighted image 83, so the purpose of the present invention can be achieved.

惟以上所述者,僅為本發明之實施例而已,當不能以此限定本發明實施之範圍,凡是依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。However, the above is only an example of the implementation of the present invention, and it should not be used to limit the scope of the implementation of the present invention. All simple equivalent changes and modifications made according to the scope of the patent application of the present invention and the content of the patent specification are still within the scope of the patent of the present invention.

1:用於早期偵測缺血性腦中風病人的腦梗塞核心之影像處理系統 11:記憶體 12:資料庫 13:處理器 2:輸入裝置 3:輸出裝置 41:生成模型運算 42:鑑別模型運算 43:判斷步驟 44:參數更新步驟 51:接收步驟 52:生成模型運算 53:輸出步驟 61:編碼層 62:瓶頸層 621:通道關注 622:空間關注 63:解碼層 71:接收步驟 72:生成模型運算 73:輸出步驟 81:無顯影腦部斷層掃描影像 82:虛擬磁振造影擴散加權影像 83:磁振造影擴散加權影像 1: Image processing system for early detection of cerebral infarction in ischemic stroke patients 11: Memory 12: Database 13: Processor 2: Input device 3: Output device 41: Generate model operation 42: Identify model operation 43: Determine step 44: Parameter update step 51: Receiving step 52: Generate model operation 53: Output step 61: Coding layer 62: Bottleneck layer 621: Channel attention 622: Spatial attention 63: Decoding layer 71: Receiving step 72: Generate model operation 73: Output step 81: Non-reflected brain cross-sectional scan image 82: Virtual MRI diffusion-weighted image 83: MRI diffusion-weighted image

本發明之其他的特徵及功效,將於參照圖式之實施方式中清楚地呈現,其中:Other features and functions of the present invention will be clearly presented in the embodiments with reference to the drawings, in which:

圖1是一方塊圖,說明本發明用於早期偵測缺血性腦中風病人的腦梗塞核心之影像處理系統的一第一較佳實施例;FIG. 1 is a block diagram illustrating a first preferred embodiment of an image processing system for early detection of cerebral infarction core of ischemic stroke patients according to the present invention;

圖2是一流程圖,說明對應該第一較佳實施例的一影像處理方法的一模型訓練階段;FIG2 is a flow chart illustrating a model training phase of an image processing method corresponding to the first preferred embodiment;

圖3是一流程圖,說明對應該第一較佳實施例的該影像處理方法的一模型推論階段;FIG3 is a flow chart illustrating a model inference phase of the image processing method corresponding to the first preferred embodiment;

圖4是一架構示意圖,說明在本發明用於早期偵測缺血性腦中風病人的腦梗塞核心之影像處理系統的一第二較佳實施例中,一生成模型運算所採用之自編碼器架構;FIG4 is a schematic diagram illustrating a self-encoder architecture used in a generative model operation in a second preferred embodiment of an image processing system for early detection of cerebral infarction core of an ischemic stroke patient according to the present invention;

圖5是一流程圖,說明對應該第二較佳實施例的一影像處理方法的一模型推論階段;及FIG5 is a flow chart illustrating a model inference stage of an image processing method corresponding to the second preferred embodiment; and

圖6是一示意圖,說明病人之一無顯影腦部斷層掃描影像經過本發明之處理後,所得到之一虛擬磁振造影擴散加權影像,及病人實際之一磁振造影擴散加權影像。FIG6 is a schematic diagram illustrating a virtual MRI diffusion-weighted image obtained after a non-imaging brain sectional scan image of a patient is processed by the present invention, and an actual MRI diffusion-weighted image of the patient.

41:生成模型運算 41: Generative model calculation

42:鑑別模型運算 42: Identification model calculation

43:判斷步驟 43: Judgment steps

44:參數更新步驟 44: Parameter update step

Claims (13)

一種用於早期偵測缺血性腦中風病人的腦梗塞核心之影像處理系統,包含: 一記憶體,儲存有至少一指令; 一資料庫,包括至少一訓練資料組,其中,該訓練資料組包括一訓練用之無顯影腦部斷層掃描影像,及對應於該訓練用之無顯影腦部斷層掃描影像的一訓練用之磁振造影擴散加權影像;及 一處理器,通訊耦接於該記憶體及該資料庫,該處理器用以存取並執行該指令,以運作於一模型訓練階段,其包括: 一生成模型運算,用以根據該訓練用之無顯影腦部斷層掃描影像,使用複數參數進行生成模型學習運算,以產生一第一虛擬磁振造影擴散加權影像及一生成誤差; 一鑑別模型運算,用以根據該訓練用之磁振造影擴散加權影像及該第一虛擬磁振造影擴散加權影像,使用複數參數進行鑑別模型學習運算,以產生一鑑別誤差及一鑑別結果; 一判斷步驟,用以根據該生成誤差及該鑑別誤差判斷是否結束該模型訓練階段,若該判斷步驟的結果為是,則結束該模型訓練階段,並以該生成模型運算目前使用之該等參數,作為一推論階段參數組;及 一參數更新步驟,用以更新該生成模型運算及該鑑別模型運算所使用之參數,其中,若該判斷步驟的結果為否,才進行該參數更新步驟。 An image processing system for early detection of cerebral infarction core of ischemic stroke patients, comprising: A memory storing at least one instruction; A database including at least one training data set, wherein the training data set includes a training non-imaging brain tomography scan image and a training magnetic resonance imaging diffusion-weighted image corresponding to the training non-imaging brain tomography scan image; and A processor, communicatively coupled to the memory and the database, the processor is used to access and execute the instruction to operate in a model training phase, which includes: A generative model operation is used to perform a generative model learning operation using complex parameters based on the training non-imaging brain sectional scan image to generate a first virtual MRI diffusion-weighted image and a generative error; An identification model operation is used to perform an identification model learning operation using complex parameters based on the training MRI diffusion-weighted image and the first virtual MRI diffusion-weighted image to generate an identification error and an identification result; A determination step for determining whether to terminate the model training phase according to the generation error and the identification error. If the determination step is yes, the model training phase is terminated, and the parameters currently used in the generation model operation are used as an inference phase parameter set; and A parameter updating step for updating the parameters used in the generation model operation and the identification model operation. If the determination step is no, the parameter updating step is performed. 如請求項1所述之用於早期偵測缺血性腦中風病人的腦梗塞核心之影像處理系統,其中,該處理器還用以存取並執行該指令,以運作於一模型推論階段,在該模型推論階段中,該處理器根據一無顯影腦部斷層掃描影像,並使用該推論階段參數組,以產生一虛擬磁振造影擴散加權影像。An image processing system for early detection of cerebral infarction core in patients with ischemic stroke as described in claim 1, wherein the processor is also used to access and execute the instruction to operate in a model inference stage, in which the processor generates a virtual magnetic resonance imaging diffusion-weighted image based on a non-imaged brain sectional scan image and using the inference stage parameter set. 如請求項1所述之用於早期偵測缺血性腦中風病人的腦梗塞核心之影像處理系統,其中,該資料庫之該訓練資料組還包括一訓練用之臨床資料,在該模型訓練階段中,該處理器係根據該訓練用之無顯影腦部斷層掃描影像及該訓練用之臨床資料,進行之該生成模型運算。An image processing system for early detection of cerebral infarction core in patients with ischemic stroke as described in claim 1, wherein the training data set of the database also includes clinical data for training. In the model training stage, the processor performs the generative model operation based on the non-revealed brain sectional scan images for training and the clinical data for training. 如請求項3所述之用於早期偵測缺血性腦中風病人的腦梗塞核心之影像處理系統,其中,該處理器還用以存取並執行該指令,以運作於一模型推論階段,在該模型推論階段中,該處理器根據一無顯影腦部斷層掃描影像及一臨床資料,並使用該推論階段參數組,以產生一虛擬磁振造影擴散加權影像。An image processing system for early detection of cerebral infarction core in patients with ischemic stroke as described in claim 3, wherein the processor is also used to access and execute the instruction to operate in a model inference stage, in which the processor generates a virtual MRI diffusion-weighted image based on a non-revealed brain sectional scan image and clinical data and using the inference stage parameter set. 一種用於早期偵測缺血性腦中風病人的腦梗塞核心之影像處理方法,包含一模型訓練階段,其包括以下運算及步驟: 一生成模型運算,用以根據一訓練用之無顯影腦部斷層掃描影像,使用複數參數進行生成模型學習運算,以產生一第一虛擬磁振造影擴散加權影像及一生成誤差; 一鑑別模型運算,用以根據一訓練用之磁振造影擴散加權影像及該第一虛擬磁振造影擴散加權影像,使用複數參數進行鑑別模型學習運算,以產生一鑑別誤差及一鑑別結果; 一判斷步驟,用以根據該生成誤差及該鑑別誤差判斷是否結束該模型訓練階段,若該判斷步驟的結果為是,則結束該模型訓練階段,並以該生成模型運算目前使用之參數,作為一推論階段參數組;及 一參數更新步驟,用以更新該生成模型運算及該鑑別模型運算所使用之參數,其中,若該判斷步驟的結果為否,才進行該參數更新步驟。 An image processing method for early detection of cerebral infarction core of ischemic stroke patients includes a model training stage, which includes the following operations and steps: A generative model operation, which is used to perform a generative model learning operation using complex parameters based on a training non-imaging brain sectional scan image to generate a first virtual MRI diffusion-weighted image and a generation error; An identification model operation, which is used to perform an identification model learning operation using complex parameters based on a training MRI diffusion-weighted image and the first virtual MRI diffusion-weighted image to generate an identification error and an identification result; A determination step for determining whether to terminate the model training phase according to the generation error and the identification error. If the determination step is yes, the model training phase is terminated, and the parameters currently used in the generation model operation are used as an inference phase parameter set; and A parameter updating step for updating the parameters used in the generation model operation and the identification model operation. If the determination step is no, the parameter updating step is performed. 如請求項5所述之用於早期偵測缺血性腦中風病人的腦梗塞核心之影像處理方法,還包含一模型推論階段,在該模型推論階段中,係根據一無顯影腦部斷層掃描影像,並使用該推論階段參數組,以產生一虛擬磁振造影擴散加權影像。The image processing method for early detection of cerebral infarction core in ischemic stroke patients as described in claim 5 also includes a model inference stage, in which a virtual MRI diffusion-weighted image is generated based on a non-imaged brain sectional scan image and using the inference stage parameter set. 如請求項5所述之用於早期偵測缺血性腦中風病人的腦梗塞核心之影像處理方法,其中,該訓練資料組還包括一訓練用之臨床資料,在該模型訓練階段中,係根據該訓練用之無顯影腦部斷層掃描影像及該訓練用之臨床資料,進行之該生成模型運算。As described in claim 5, the image processing method for early detection of cerebral infarction core in patients with ischemic stroke, wherein the training data set also includes clinical data for training. In the model training stage, the generative model operation is performed based on the non-revealed brain sectional scan images used for training and the clinical data used for training. 如請求項7所述之用於早期偵測缺血性腦中風病人的腦梗塞核心之影像處理方法,還包含一模型推論階段,在該模型推論階段中,係根據一無顯影腦部斷層掃描影像及一臨床資料,並使用該推論階段參數組,以產生一虛擬磁振造影擴散加權影像。The image processing method for early detection of cerebral infarction core in ischemic stroke patients as described in claim 7 also includes a model inference stage, in which a virtual MRI diffusion-weighted image is generated based on a non-reflective brain sectional scan image and clinical data and using the inference stage parameter set. 如請求項7所述之用於早期偵測缺血性腦中風病人的腦梗塞核心之影像處理方法,其中,該訓練用之臨床資料包括至少一數值,在該模型訓練階段中,係將該數值轉成一矩陣,該矩陣填滿該數值,再根據該訓練用之無顯影腦部斷層掃描影像及該矩陣,進行之該生成模型運算。An image processing method for early detection of cerebral infarction core in ischemic stroke patients as described in claim 7, wherein the clinical data used for training includes at least one numerical value. In the model training stage, the numerical value is converted into a matrix, the matrix is filled with the numerical value, and then the generative model operation is performed based on the non-revealed brain sectional scan image used for training and the matrix. 如請求項9所述之用於早期偵測缺血性腦中風病人的腦梗塞核心之影像處理方法,其中,該模型訓練階段之該生成模型運算包括至少一編碼層之運算、至少一瓶頸層之運算,及至少一解碼層之運算,該瓶頸層之運算係根據該矩陣進行一通道關注運算。An image processing method for early detection of cerebral infarction core in ischemic stroke patients as described in claim 9, wherein the generative model operation in the model training stage includes at least one encoding layer operation, at least one bottleneck layer operation, and at least one decoding layer operation, and the bottleneck layer operation is a channel attention operation based on the matrix. 如請求項9所述之用於早期偵測缺血性腦中風病人的腦梗塞核心之影像處理方法,其中,該模型訓練階段之該生成模型運算包括至少一編碼層之運算、至少一瓶頸層之運算,及至少一解碼層之運算,該瓶頸層之運算係根據該矩陣進行一空間關注運算。An image processing method for early detection of cerebral infarction core in ischemic stroke patients as described in claim 9, wherein the generative model operation in the model training stage includes at least one encoding layer operation, at least one bottleneck layer operation, and at least one decoding layer operation, and the bottleneck layer operation is a spatial attention operation based on the matrix. 如請求項7所述之用於早期偵測缺血性腦中風病人的腦梗塞核心之影像處理方法,其中,該訓練用之臨床資料包括一人口學特徵,該人口學特徵包括一年齡、一性別、一腦中風量表,及一腦側性其中至少一者。An image processing method for early detection of cerebral infarction core in ischemic stroke patients as described in claim 7, wherein the clinical data used for training includes a demographic characteristic, and the demographic characteristic includes at least one of age, gender, a stroke scale, and cerebral laterality. 如請求項7所述之用於早期偵測缺血性腦中風病人的腦梗塞核心之影像處理方法,其中,該訓練用之臨床資料包括一時間特徵,該時間特徵包括一第一時間差及一第二時間差兩者其中至少一者,該第一時間差係指該病人腦中風發作至進行無顯影腦部斷層掃描之間隔時間,該第二時間差係指該病人進行無顯影腦部斷層掃描至進行磁振造影擴散加權成像之間隔時間。An image processing method for early detection of cerebral infarction core in patients with ischemic stroke as described in claim 7, wherein the clinical data used for training includes a time feature, and the time feature includes at least one of a first time difference and a second time difference, the first time difference refers to the interval between the onset of the patient's stroke and the performance of a brain tomography scan without imaging, and the second time difference refers to the interval between the patient's brain tomography scan without imaging and the performance of diffusion-weighted magnetic resonance imaging.
TW113100624A 2024-01-05 2024-01-05 Image processing system and method thereof for early detection of ischemic core of ischemic stroke patient TWI870195B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW113100624A TWI870195B (en) 2024-01-05 2024-01-05 Image processing system and method thereof for early detection of ischemic core of ischemic stroke patient

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW113100624A TWI870195B (en) 2024-01-05 2024-01-05 Image processing system and method thereof for early detection of ischemic core of ischemic stroke patient

Publications (2)

Publication Number Publication Date
TWI870195B true TWI870195B (en) 2025-01-11
TW202527891A TW202527891A (en) 2025-07-16

Family

ID=95151828

Family Applications (1)

Application Number Title Priority Date Filing Date
TW113100624A TWI870195B (en) 2024-01-05 2024-01-05 Image processing system and method thereof for early detection of ischemic core of ischemic stroke patient

Country Status (1)

Country Link
TW (1) TWI870195B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201825047A (en) * 2016-11-22 2018-07-16 美商超精細研究股份有限公司 Method and device for changing detection
TW202100097A (en) * 2019-05-29 2021-01-01 美商閾限科學公司 Systems and methods for monitoring brain health

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201825047A (en) * 2016-11-22 2018-07-16 美商超精細研究股份有限公司 Method and device for changing detection
TW202100097A (en) * 2019-05-29 2021-01-01 美商閾限科學公司 Systems and methods for monitoring brain health

Also Published As

Publication number Publication date
TW202527891A (en) 2025-07-16

Similar Documents

Publication Publication Date Title
CN113256753B (en) PET image region-of-interest enhancement reconstruction method based on multitask learning constraint
CN110428415B (en) Method, device, equipment and storage medium for quality assessment of medical images
Rubin et al. Volumetric analysis of volumetric data: achieving a paradigm shift.
US12354232B2 (en) Spatiotemporal resolution enhancement of biomedical images
JP2024116114A (en) Systems and methods for improving low dose volumetric contrast MRI - Patents.com
TW202032577A (en) Medical image dividing method, device, and system, and image dividing method
US11995834B2 (en) Method and system for the automated determination of examination results in an image sequence
JP4589114B2 (en) Display image data information
CN102483761B (en) Visualization of relevance for content-based image retrieval
Foo et al. Clinical translation of amide proton transfer (APT) MRI for ischemic stroke: a systematic review (2003–2020)
JP2020054579A (en) Disease region extraction device, method, and program
JP2006500099A5 (en)
CN117476153A (en) Medical imaging device, interface information display method and device thereof, and storage medium
van Ommen et al. Effect of prolonged acquisition intervals for CT‐perfusion analysis methods in patients with ischemic stroke
CN114494014A (en) A method and device for super-resolution reconstruction of magnetic resonance image
WO2022069883A1 (en) Method and system for estimating arterial input function
Sweeney et al. Estimation of multiple sclerosis lesion age on magnetic resonance imaging
Karthik et al. Comprehensive assessment of imaging quality of artificial intelligence-assisted compressed sensing-based MR images in routine clinical settings
TWI870195B (en) Image processing system and method thereof for early detection of ischemic core of ischemic stroke patient
CN114782567B (en) Magnetic resonance parameter imaging method, device and intelligent terminal based on deep learning
Sun et al. Artificial intelligence-assisted multistrategy image enhancement of chest X-rays for COVID-19 classification
WO2023169565A1 (en) Image registration method and system
Gu et al. AI-Assisted Compressed Sensing Enables Faster Brain MRI for the Elderly: Image Quality and Diagnostic Equivalence with Conventional Imaging
CN115736964A (en) Energy spectrum CT scanning imaging method, device, system, equipment, medium and product
US20250225652A1 (en) Image processing system and method thereof for early detection of ischemic core of ischemic stroke patient