[go: up one dir, main page]

TWI870160B - System and method for estimating product simulation parameter - Google Patents

System and method for estimating product simulation parameter Download PDF

Info

Publication number
TWI870160B
TWI870160B TW112148909A TW112148909A TWI870160B TW I870160 B TWI870160 B TW I870160B TW 112148909 A TW112148909 A TW 112148909A TW 112148909 A TW112148909 A TW 112148909A TW I870160 B TWI870160 B TW I870160B
Authority
TW
Taiwan
Prior art keywords
product
simulation parameter
information
temperature
oven
Prior art date
Application number
TW112148909A
Other languages
Chinese (zh)
Other versions
TW202526686A (en
Inventor
陳靖瑋
郭恩典
趙浩廷
褚柏胤
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW112148909A priority Critical patent/TWI870160B/en
Priority to CN202311740069.3A priority patent/CN120161733A/en
Application granted granted Critical
Publication of TWI870160B publication Critical patent/TWI870160B/en
Publication of TW202526686A publication Critical patent/TW202526686A/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

A system and a method for estimating a product simulation parameter are provided. The method includes following steps: obtaining a product thermal image corresponding to a product, and obtaining a product temperature when the product is in a tested oven, wherein an equipment information, the product thermal image and the product temperature correspond to a same time point; and utilizing the product thermal image, the product temperature, a product information and the equipment information to obtain a product virtual coefficient corresponding to the product, and using the product virtual coefficient to estimate a product simulation parameter when the product is in a to-be-tested-oven.

Description

推估產品模擬參數的系統及方法System and method for estimating product simulation parameters

本發明是有關於一種推估產品模擬參數的系統及方法。The present invention relates to a system and method for estimating product simulation parameters.

在熱加工製程的技術領域中,通常僅設置數量較少的感測器於熱加工設備的部分區域,導致無法獲得產品在熱加工設備中不同烘箱時的產品參數(例如為溫度及含水率),然若廣設感測器,雖可獲得更多資訊,但由於感測器的價格昂貴,成本上會大幅提升。因此,在熱加工製程的技術領域中,通常只能依賴人員的經驗來調整熱加工設備以確保產品的品質。In the field of thermal processing technology, usually only a small number of sensors are installed in some areas of the thermal processing equipment, resulting in the inability to obtain product parameters (such as temperature and moisture content) when the product is in different ovens in the thermal processing equipment. If sensors are widely installed, more information can be obtained, but the cost will be greatly increased due to the high price of sensors. Therefore, in the field of thermal processing technology, usually only the experience of personnel can be relied on to adjust the thermal processing equipment to ensure product quality.

本發明的推估產品模擬參數的系統,用於熱加工設備以及產品,其中熱加工設備包括已測烘箱以及至少一待測烘箱,其中產品對應於產品資訊,其中熱加工設備對應於設備資訊,其中系統包括第一熱影像感測器、第二熱影像感測器、溫度感測器、儲存媒體以及處理器。第一熱影像感測器設置於熱加工設備的進口段。第二熱影像感測器設置於熱加工設備的出口段。溫度感測器設置於已測烘箱。儲存媒體儲存感測資料獲得單元及第一產品模擬參數推估單元,其中感測資料獲得單元用於通過第一熱影像感測器以及第二熱影像感測器來獲得對應於產品的產品熱影像,並且通過溫度感測器來獲得產品在已測烘箱時的產品溫度,其中設備資訊、產品熱影像以及產品溫度對應於相同的時間點;第一產品模擬參數推估單元用於利用產品熱影像、產品溫度、產品資訊以及設備資訊來獲得對應於產品的產品虛擬係數,並且利用產品虛擬係數來推估出產品在待測烘箱時的第一產品模擬參數。處理器耦接第一熱影像感測器、第二熱影像感測器、溫度感測器以及儲存媒體,並且用於存取和執行感測資料獲得單元及第一產品模擬參數推估單元。The system for estimating product simulation parameters of the present invention is used for thermal processing equipment and products, wherein the thermal processing equipment includes a tested oven and at least one oven to be tested, wherein the product corresponds to product information, wherein the thermal processing equipment corresponds to equipment information, wherein the system includes a first thermal imaging sensor, a second thermal imaging sensor, a temperature sensor, a storage medium and a processor. The first thermal imaging sensor is arranged at the inlet section of the thermal processing equipment. The second thermal imaging sensor is arranged at the outlet section of the thermal processing equipment. The temperature sensor is arranged at the tested oven. The storage medium stores a sensing data acquisition unit and a first product simulation parameter estimation unit, wherein the sensing data acquisition unit is used to obtain a product thermal image corresponding to the product through a first thermal image sensor and a second thermal image sensor, and to obtain the product temperature of the product in the tested oven through a temperature sensor, wherein the equipment information, the product thermal image and the product temperature correspond to the same time point; the first product simulation parameter estimation unit is used to obtain a product virtual coefficient corresponding to the product using the product thermal image, the product temperature, the product information and the equipment information, and to estimate a first product simulation parameter of the product in the tested oven using the product virtual coefficient. The processor is coupled to the first thermal image sensor, the second thermal image sensor, the temperature sensor and the storage medium, and is used to access and execute the sensing data acquisition unit and the first product simulation parameter estimation unit.

本發明的推估產品模擬參數的方法,用於熱加工設備以及產品,其中熱加工設備包括已測烘箱以及至少一待測烘箱,其中產品對應於產品資訊,其中熱加工設備對應於設備資訊,其中方法包括以下步驟:獲得對應於產品的產品熱影像,並且獲得產品在已測烘箱時的產品溫度,其中設備資訊、產品熱影像以及產品溫度對應於相同的時間點;以及利用產品熱影像、產品溫度、產品資訊以及設備資訊來獲得對應於產品的產品虛擬係數,並且利用產品虛擬係數來推估出產品在待測烘箱時的第一產品模擬參數。The method for estimating product simulation parameters of the present invention is used for thermal processing equipment and products, wherein the thermal processing equipment includes a tested oven and at least one oven to be tested, wherein the product corresponds to product information, wherein the thermal processing equipment corresponds to equipment information, and wherein the method includes the following steps: obtaining a product thermal image corresponding to the product, and obtaining the product temperature of the product in the tested oven, wherein the equipment information, the product thermal image and the product temperature correspond to the same time point; and using the product thermal image, the product temperature, the product information and the equipment information to obtain a product virtual coefficient corresponding to the product, and using the product virtual coefficient to estimate a first product simulation parameter of the product in the oven to be tested.

圖1是根據本發明的一實施例繪示的推估產品模擬參數的系統100的示意圖。請參照圖1。需先說明的是,推估產品模擬參數的系統100可用於熱加工設備以及產品,並可進一步推估產品的模擬參數(例如溫度及含水率)。詳細而言,熱加工設備可包括已測烘箱以及至少一待測烘箱,待測烘箱可與已測烘箱為相同的烘箱,在此不做限制。除此之外,產品可對應於產品資訊。另一方面,熱加工設備可對應於設備資訊。在本實施例中,推估產品模擬參數的系統100可包括第一熱影像感測器110、第二熱影像感測器120、溫度感測器130、儲存媒體140、處理器150以及含水率感測器160。第一熱影像感測器110可設置於熱加工設備的進口段。第二熱影像感測器120可設置於熱加工設備的出口段。溫度感測器130可設置於已測烘箱。儲存媒體140可儲存感測資料獲得單元141、第一產品模擬參數推估單元142以及第二產品模擬參數推估單元143。處理器150可耦接第一熱影像感測器110、第二熱影像感測器120、溫度感測器130、儲存媒體140以及含水率感測器160,並且存取和執行感測資料獲得單元141、第一產品模擬參數推估單元142以及第二產品模擬參數推估單元143。含水率感測器160可設置於(熱加工設備的)出口段。在其它實施例中,推估產品模擬參數的系統100可省略含水率感測器160以及第二產品模擬參數推估單元143。FIG. 1 is a schematic diagram of a system 100 for estimating product simulation parameters according to an embodiment of the present invention. Please refer to FIG. 1 . It should be noted that the system 100 for estimating product simulation parameters can be used for thermal processing equipment and products, and can further estimate the simulation parameters of the product (such as temperature and moisture content). In detail, the thermal processing equipment may include a tested oven and at least one oven to be tested, and the oven to be tested may be the same oven as the tested oven, and there is no limitation here. In addition, the product may correspond to product information. On the other hand, the thermal processing equipment may correspond to equipment information. In this embodiment, the system 100 for estimating product simulation parameters may include a first thermal image sensor 110, a second thermal image sensor 120, a temperature sensor 130, a storage medium 140, a processor 150, and a moisture content sensor 160. The first thermal image sensor 110 may be disposed at an inlet section of a thermal processing device. The second thermal image sensor 120 may be disposed at an outlet section of the thermal processing device. The temperature sensor 130 may be disposed in a measured oven. The storage medium 140 may store a sensing data acquisition unit 141, a first product simulation parameter estimation unit 142, and a second product simulation parameter estimation unit 143. The processor 150 may be coupled to the first thermal image sensor 110, the second thermal image sensor 120, the temperature sensor 130, the storage medium 140, and the moisture sensor 160, and access and execute the sensing data acquisition unit 141, the first product simulation parameter estimation unit 142, and the second product simulation parameter estimation unit 143. The moisture sensor 160 may be disposed at the outlet section (of the thermal processing equipment). In other embodiments, the system 100 for estimating product simulation parameters may omit the moisture sensor 160 and the second product simulation parameter estimation unit 143.

圖2是根據本發明的一實施例繪示的推估產品模擬參數的方法的流程圖,其中所述方法可由圖1所示的推估產品模擬參數的系統100實施。請同時參照圖1及圖2。FIG2 is a flow chart of a method for estimating product simulation parameters according to an embodiment of the present invention, wherein the method can be implemented by the system 100 for estimating product simulation parameters shown in FIG1. Please refer to FIG1 and FIG2 at the same time.

首先,執行步驟S210,獲得對應於產品的產品熱影像,並且獲得產品在已測烘箱時的產品溫度,其中設備資訊、產品熱影像以及產品溫度對應於相同的時間點。具體而言,在步驟S210中,感測資料獲得單元141可通過第一熱影像感測器110以及第二熱影像感測器120來獲得對應於產品的產品熱影像,並且可通過溫度感測器130來獲得產品在已測烘箱時的產品溫度,其中設備資訊、產品熱影像以及產品溫度對應於相同的時間點。換言之,在相同的時間點所獲得的設備資訊、產品熱影像以及產品溫度可以在被統合/映射之後用於本發明的後續步驟。First, execute step S210 to obtain a product thermal image corresponding to the product, and obtain the product temperature of the product in the measured oven, wherein the equipment information, the product thermal image, and the product temperature correspond to the same time point. Specifically, in step S210, the sensing data acquisition unit 141 can obtain a product thermal image corresponding to the product through the first thermal image sensor 110 and the second thermal image sensor 120, and can obtain the product temperature of the product in the measured oven through the temperature sensor 130, wherein the equipment information, the product thermal image, and the product temperature correspond to the same time point. In other words, the equipment information, product thermal image, and product temperature obtained at the same time point can be used in the subsequent steps of the present invention after being integrated/mapped.

接著執行步驟S230,利用產品熱影像、產品溫度、產品資訊以及設備資訊來獲得對應於產品的產品虛擬係數,並且利用產品虛擬係數來推估出產品在待測烘箱時的第一產品模擬參數。具體而言,在步驟S230中,第一產品模擬參數推估單元142可利用產品熱影像、產品溫度、產品資訊以及設備資訊來獲得對應於產品的產品虛擬係數,並且利用產品虛擬係數來推估出產品在待測烘箱時的第一產品模擬參數,於本實施例中,第一產品模擬參數為產品的模擬溫度。以下將說明步驟S230中「獲得對應於產品的產品虛擬係數」的實施範例。Then, step S230 is executed to obtain a product virtual coefficient corresponding to the product using the product thermal image, product temperature, product information, and equipment information, and to estimate the first product simulation parameter of the product in the oven to be tested using the product virtual coefficient. Specifically, in step S230, the first product simulation parameter estimation unit 142 can obtain a product virtual coefficient corresponding to the product using the product thermal image, product temperature, product information, and equipment information, and to estimate the first product simulation parameter of the product in the oven to be tested using the product virtual coefficient. In this embodiment, the first product simulation parameter is the simulated temperature of the product. The following will describe an implementation example of "obtaining a product virtual coefficient corresponding to the product" in step S230.

圖3A是圖2所示的步驟S230中「獲得對應於產品的產品虛擬係數」的一個實施範例。請同時參照圖1、圖2及圖3A。在本實施例中,第一產品模擬參數推估單元142可利用產品熱影像、產品溫度、產品資訊以及設備資訊來將能量守恆方程式 轉換為常微分方程式 。在一實施例中,設備資訊可包括對應於已測烘箱的已測烘箱溫度,且設備資訊可包括對應於待測烘箱的待測烘箱溫度。在其他實施例中,設備資訊還可包括但不限於製程參數、主機速度以及排風轉速。在一實施例中,產品資訊可包括但不限於布料、碼重、助劑、寬窄值、密度、比熱容以及厚度。 FIG3A is an implementation example of "obtaining a product virtual coefficient corresponding to a product" in step S230 shown in FIG2. Please refer to FIG1, FIG2 and FIG3A at the same time. In this embodiment, the first product simulation parameter estimation unit 142 can use the product thermal image, product temperature, product information and equipment information to convert the energy conservation equation Convert to ordinary differential equation In one embodiment, the equipment information may include the measured oven temperature corresponding to the measured oven, and the equipment information may include the measured oven temperature corresponding to the oven to be tested. In other embodiments, the equipment information may also include but is not limited to process parameters, host speed, and exhaust speed. In one embodiment, the product information may include but is not limited to fabric, code weight, additives, width, density, specific heat capacity, and thickness.

然後,第一產品模擬參數推估單元142可解析常微分方程式以獲得迭代方程式 ( - )。然後,第一產品模擬參數推估單元142可利用產品資訊以及設備資訊來對產品虛擬係數執行貝葉斯最佳化擬合。接著,第一產品模擬參數推估單元142可將產品資訊、設備資訊以及產品虛擬係數代入迭代方程式,以獲得第一產品模擬參數。在一實施例中,上述貝葉斯最佳化擬合可包括以下步驟(a)、步驟(b)及步驟(c)。 Then, the first product simulation parameter estimation unit 142 can analyze the ordinary differential equation to obtain the iterative equation ( - ). Then, the first product simulation parameter estimation unit 142 may use the product information and the equipment information to perform Bayesian optimization fitting on the product virtual coefficient. Then, the first product simulation parameter estimation unit 142 may substitute the product information, the equipment information and the product virtual coefficient into the iterative equation to obtain the first product simulation parameter. In one embodiment, the above-mentioned Bayesian optimization fitting may include the following steps (a), (b) and (c).

(a)第一產品模擬參數推估單元142利用迭代方程式來求解出第一產品模擬參數,其中第一產品模擬參數包括第一產品模擬參數最小值。(a) The first product simulation parameter estimation unit 142 uses an iterative equation to solve the first product simulation parameter, wherein the first product simulation parameter includes a first product simulation parameter minimum value.

(b)第一產品模擬參數推估單元142利用產品溫度以及第一產品模擬參數最小值之間的差值來更新產品虛擬係數。(b) The first product simulation parameter estimating unit 142 updates the product virtual coefficient using the difference between the product temperature and the minimum value of the first product simulation parameter.

(c) 第一產品模擬參數推估單元142判斷產品溫度以及第一產品模擬參數最小值之間的差值是否對應最小平均絕對誤差百分比值,其中,若判斷結果為「否」重複步驟(b),反之,若判斷結果為「是」,獲取產品虛擬係數 (c) The first product simulation parameter estimation unit 142 determines whether the difference between the product temperature and the minimum value of the first product simulation parameter corresponds to the minimum average absolute error percentage value, wherein if the judgment result is "no", step (b) is repeated; otherwise, if the judgment result is "yes", the product virtual coefficient is obtained. .

圖3B是圖2所示的步驟S230中「獲得對應於產品的產品虛擬係數」的另一個實施範例。請同時參照圖1、圖2及圖3B。在本實施例中,產品以及熱加工設備可對應於加熱階段。詳細而言,加熱階段可包括第一階段(產品溫度小於T transit)、第二階段(產品溫度達到T transit)以及第三階段(產品溫度超過T transit)。T transit例如是100℃。換言之,上述加熱階段即為產品在熱加工設備內加熱的不同階段。第一產品模擬參數推估單元142可利用產品在加熱階段時的能量供給、質量變化以及溫差變化來獲得產品虛擬係數。 FIG3B is another implementation example of “obtaining a product virtual coefficient corresponding to the product” in step S230 shown in FIG2 . Please refer to FIG1 , FIG2 and FIG3B at the same time. In this embodiment, the product and the heat treatment equipment may correspond to a heating stage. Specifically, the heating stage may include a first stage (product temperature is less than T transit ), a second stage (product temperature reaches T transit ) and a third stage (product temperature exceeds T transit ). T transit is, for example, 100° C. In other words, the above-mentioned heating stages are different stages of heating the product in the heat treatment equipment. The first product simulation parameter estimation unit 142 can obtain the product virtual coefficient by utilizing the energy supply, mass change, and temperature difference change of the product during the heating stage.

於此實施例中,假設T transit為蒸發溫度,T product為產品溫度、X 0為產品的初始含水率、m total為產品的入口總質量以及u為產品在熱加工設備內的速度。如公式1所示,含水率(Moisture Content,MC)可基於回潮率(Moisture Regain, MR)得出,例如含水率可為40%。如公式2所示,產品的質量(m product)可透過產品的出口碼重(m final)、產品的初始含水率(X 0)以及產品的出口含水率(X 1)得出。如公式3所示,產品的入口總質量(m total)可由產品的初始含水率(X 0)以及產品的質量(m product)得出。在產品的水分達到沸點(T transit)前為產品及水分共存,故第一產品模擬參數推估單元142可利用混合比熱的方式去估算實際產品在烘箱內的熱傳理論值。混合密度(ρ mix)的計算方式可如公式4所示,另一方面,混合比熱(Cp mix)的計算方式可如公式5所示。雷諾數(Reynold number,Re)的計算方式可如公式6,其中ρ a為熱空氣密度、V jet為氣孔噴射流流速、D為氣孔孔徑、μ為動力黏度。紐塞數(Nusselt number, Nu)的計算方式可如公式7,其中Pr為普朗特數、H為氣孔到產品的距離、D為氣孔孔徑、f為相對氣孔面積、Re為雷諾數。熱傳係數(Heat transfer coefficient,h)的計算方式可如公式8,其中Nu為紐塞數、k為熱傳導係數、D為氣孔孔徑。 … (公式1) … (公式2) … (公式3) … (公式4) … (公式5) 其中ρ mix為混合密度、m wi為入口水重、ρ w為水之密度、ρ product為產品的布料之密度、C p_mix _為混合比熱、C p_w為水之比熱、C p_product為產品之比熱。 … (公式6) … (公式7) … (公式8) In this embodiment, it is assumed that T transit is the evaporation temperature, T product is the product temperature, X 0 is the initial moisture content of the product, m total is the inlet total mass of the product, and u is the speed of the product in the thermal processing equipment. As shown in Formula 1, the moisture content (MC) can be obtained based on the moisture regain (MR), for example, the moisture content can be 40%. As shown in Formula 2, the mass of the product (m product ) can be obtained through the outlet weight of the product (m final ), the initial moisture content of the product (X 0 ) and the outlet moisture content of the product (X 1 ). As shown in Formula 3, the inlet total mass of the product (m total ) can be obtained from the initial moisture content of the product (X 0 ) and the mass of the product (m product ). Before the moisture content of the product reaches the boiling point (T transit ), the product and moisture coexist, so the first product simulation parameter estimation unit 142 can use the method of mixed specific heat to estimate the theoretical value of heat transfer of the actual product in the oven. The calculation method of the mixed density (ρ mix ) can be shown in Formula 4. On the other hand, the calculation method of the mixed specific heat (Cp mix ) can be shown in Formula 5. The calculation method of the Reynolds number (Re) can be shown in Formula 6, where ρ a is the hot air density, V jet is the pore jet flow rate, D is the pore diameter, and μ is the dynamic viscosity. The calculation method of the Nusselt number (Nu) can be shown in Formula 7, where Pr is the Prandtl number, H is the distance from the pore to the product, D is the pore diameter, f is the relative pore area, and Re is the Reynolds number. The heat transfer coefficient (h) can be calculated as shown in Formula 8, where Nu is the Newton number, k is the thermal conductivity, and D is the pore diameter. … (Formula 1) … (Formula 2) … (Formula 3) … (Formula 4) … (Formula 5) where ρ mix is the mixture density, m wi is the inlet water weight, ρ w is the density of water, ρ product is the density of the product fabric, C p_mix is the mixture specific heat, C p_w is the specific heat of water, and C p_product is the specific heat of the product. … (Formula 6) … (Formula 7) … (Formula 8)

更進一步而言,對流熱量(Q)的計算方式可如公式9,其中h為熱傳係數、A為布料面積、T oven為已測烘箱溫度、T product為產品溫度。輻射熱量(Q rad)的計算方式可如公式10,其中ε為放射率、σ為史蒂芬-波茲曼常數、T oven為已測烘箱溫度、T product為產品溫度。溫度變化( )的計算方式可如公式11。除水量(m del)的計算方式可如公式12,其中h fg為水之蒸發潛熱。 … (公式9) … (公式10) … (公式11) … (公式12) Furthermore, the convection heat (Q) can be calculated as in Formula 9, where h is the heat transfer coefficient, A is the fabric area, T oven is the measured oven temperature, and T product is the product temperature. The radiation heat (Q rad ) can be calculated as in Formula 10, where ε is the emissivity, σ is the Stefan-Boltzmann constant, T oven is the measured oven temperature, and T product is the product temperature. Temperature change ( ) can be calculated as shown in Formula 11. The amount of water removed (m del ) can be calculated as shown in Formula 12, where h fg is the latent heat of evaporation of water. … (Formula 9) … (Formula 10) … (Formula 11) … (Formula 12)

在第一產品模擬參數推估單元142(利用上述圖3A或圖3B的實施方式)獲得對應於產品的產品虛擬係數之後,第一產品模擬參數推估單元142可利用產品虛擬係數來推估出產品在待測烘箱時的第一產品模擬參數。After the first product simulation parameter estimation unit 142 (using the implementation of FIG. 3A or FIG. 3B ) obtains the product virtual coefficient corresponding to the product, the first product simulation parameter estimation unit 142 can use the product virtual coefficient to estimate the first product simulation parameter of the product in the oven to be tested.

在一實施例中,產品可包括印刷電路板(PCB,Printed Circuit Board)。In one embodiment, the product may include a printed circuit board (PCB).

在一實施例中,產品可包括織物。在第一產品模擬參數推估單元142執行完圖2的步驟S230(亦稱,利用「物理模型」來推估出第一產品模擬參數的步驟)之後,第二產品模擬參數推估單元143可接著推估出對應於產品的第二產品模擬參數。以下將繼續說明。In one embodiment, the product may include fabric. After the first product simulation parameter estimation unit 142 completes step S230 of FIG. 2 (also known as the step of estimating the first product simulation parameter using the "physical model"), the second product simulation parameter estimation unit 143 may then estimate the second product simulation parameter corresponding to the product. This will be described further below.

圖4A是根據本發明的一實施例繪示的推估第二產品模擬參數的示意圖。圖4B是圖4A的進一步說明。請同時參照圖1、圖2、圖4A及圖4B。在本實施例中,第二產品模擬參數推估單元143可將第一產品模擬參數、產品資訊以及設備資訊輸入至類神經模型,以建立出二維第二產品模擬參數分布模型(例如為二維含水率分布模型,意即於本實施例中,欲推估出對應於產品的第二產品模擬參數為含水率)。在一實施例中,類神經模型可包括5層網路層,並且可以常態分配作為權重(weight)的初始化(Kernel initializer)。進一步而言,類神經模型可以用線性整流函數(Rectified Linear Unit, ReLU)作為激活函數(Activation function),且每次更新的批次(Batch size)為150,且期(epochs)為128,且可利用均方根誤差作為損失函數。在本實施例中,感測資料獲得單元141可通過含水率感測器160來獲得對應於產品的產品含水率。然後,第二產品模擬參數推估單元143可將第一產品模擬參數以及產品含水率輸入至二維第二產品模擬參數分布模型來推估出對應於產品的第二產品模擬參數。FIG. 4A is a schematic diagram of estimating the second product simulation parameter according to an embodiment of the present invention. FIG. 4B is a further explanation of FIG. 4A. Please refer to FIG. 1, FIG. 2, FIG. 4A and FIG. 4B simultaneously. In this embodiment, the second product simulation parameter estimation unit 143 can input the first product simulation parameter, product information and equipment information into the neural model to establish a two-dimensional second product simulation parameter distribution model (for example, a two-dimensional moisture content distribution model, which means that in this embodiment, the second product simulation parameter corresponding to the product is estimated to be the moisture content). In one embodiment, the neural model may include 5 network layers, and can be normally assigned as a weight initialization (Kernel initializer). Furthermore, the neural model can use a linear rectifier function (Rectified Linear Unit, ReLU) as an activation function, and the batch size of each update is 150, the epochs is 128, and the root mean square error can be used as a loss function. In this embodiment, the sensing data acquisition unit 141 can obtain the product moisture content corresponding to the product through the moisture sensor 160. Then, the second product simulation parameter estimation unit 143 can input the first product simulation parameter and the product moisture content into the two-dimensional second product simulation parameter distribution model to estimate the second product simulation parameter corresponding to the product.

舉例來說,如圖4B所示,假設第一產品模擬參數包括T i1、T i2以及T i3,且第一產品模擬參數T i1、第一產品模擬參數T i2、以及第一產品模擬參數T i3分別對應於像素(pixel)點1、像素點2以及像素點3。第二產品模擬參數推估單元143可將第一產品模擬參數T i1以及(通過設置於熱加工設備的出口段的含水率感測器160所獲得的)產品含水率輸入至二維第二產品模擬參數分布模型來推估出像素點1的第二產品模擬參數M o1。相似地,第二產品模擬參數推估單元143可第一產品模擬參數T i2以及(通過設置於熱加工設備的出口段的含水率感測器160所獲得的)產品含水率輸入至二維第二產品模擬參數分布模型來推估出像素點2的第二產品模擬參數M o2。相似地,第二產品模擬參數推估單元143可第一產品模擬參數T i3以及(通過設置於熱加工設備的出口段的含水率感測器160所獲得的)產品含水率輸入至二維第二產品模擬參數分布模型來推估出像素點3的第二產品模擬參數M o3。接著,第二產品模擬參數推估單元143可利用第二產品模擬參數M o1、第二產品模擬參數M o2以及第二產品模擬參數M o3來獲得對應於產品的第二產品模擬參數。 For example, as shown in FIG4B , it is assumed that the first product simulation parameter includes Ti1 , Ti2 , and Ti3 , and the first product simulation parameter Ti1 , the first product simulation parameter Ti2 , and the first product simulation parameter Ti3 correspond to pixel 1, pixel 2, and pixel 3, respectively. The second product simulation parameter estimation unit 143 may input the first product simulation parameter Ti1 and the product moisture content (obtained by the moisture content sensor 160 disposed at the outlet section of the thermal processing equipment) into the two-dimensional second product simulation parameter distribution model to estimate the second product simulation parameter Mo1 of pixel 1. Similarly, the second product simulation parameter estimation unit 143 can input the first product simulation parameter Ti2 and the product moisture content (obtained by the moisture content sensor 160 disposed at the outlet section of the heat treatment equipment) into the two-dimensional second product simulation parameter distribution model to estimate the second product simulation parameter Mo2 of the pixel 2. Similarly, the second product simulation parameter estimation unit 143 can input the first product simulation parameter Ti3 and the product moisture content (obtained by the moisture content sensor 160 disposed at the outlet section of the heat treatment equipment) into the two-dimensional second product simulation parameter distribution model to estimate the second product simulation parameter Mo3 of the pixel 3. Next, the second product simulation parameter estimating unit 143 may utilize the second product simulation parameter Mo1 , the second product simulation parameter Mo2 , and the second product simulation parameter Mo3 to obtain a second product simulation parameter corresponding to the product.

綜上所述,本發明的推估產品模擬參數的系統及方法可在獲得對應於產品的產品虛擬係數之後,利用產品虛擬係數來推估出產品在待測烘箱時的第一產品模擬參數。特別是,本發明可利用產品熱影像、產品溫度、產品資訊以及設備資訊來獲得產品虛擬係數,因此可更準確地(基於「物理模型」)推估出第一產品模擬參數。更進一步而言,本發明的推估產品模擬參數的系統及方法還可利用第一產品模擬參數來推估出第二產品模擬參數。基此,可顯著地提高調整熱加工設備的方便性。In summary, after obtaining the product virtual coefficient corresponding to the product, the system and method of the present invention for estimating product simulation parameters can use the product virtual coefficient to estimate the first product simulation parameter of the product in the oven to be tested. In particular, the present invention can use product thermal images, product temperature, product information and equipment information to obtain product virtual coefficients, so that the first product simulation parameter can be estimated more accurately (based on the "physical model"). Furthermore, the system and method of the present invention for estimating product simulation parameters can also use the first product simulation parameter to estimate the second product simulation parameter. Based on this, the convenience of adjusting thermal processing equipment can be significantly improved.

100:推估產品模擬參數的系統100: System for estimating product simulation parameters

110:第一熱影像感測器110: The first thermal imaging sensor

120:第二熱影像感測器120: Second thermal imaging sensor

130:溫度感測器130: Temperature sensor

140:儲存媒體140: Storage Media

141:感測資料獲得單元141: Sensor data acquisition unit

142:第一產品模擬參數推估單元142: First product simulation parameter estimation unit

143:第二產品模擬參數推估單元143: Second product simulation parameter estimation unit

150:處理器150:Processor

160:含水率感測器160: Moisture content sensor

S210、S230:步驟S210, S230: Step

Ti1、Ti2、Ti3:第一產品模擬參數T i1 , T i2 , T i3 : First product simulation parameters

Mo1、Mo2、Mo3:第二產品模擬參數 Mo1 , Mo2 , Mo3 : Second product simulation parameters

1、2、3:像素點1, 2, 3: Pixels

圖1是根據本發明的一實施例繪示的推估產品模擬參數的系統的示意圖。 圖2是根據本發明的一實施例繪示的推估產品模擬參數的方法的流程圖。 圖3A是圖2所示的步驟S230中「獲得對應於產品的產品虛擬係數」的一個實施範例。 圖3B是圖2所示的步驟S230中「獲得對應於產品的產品虛擬係數」的另一個實施範例。 圖4A是根據本發明的一實施例繪示的推估第二產品模擬參數的示意圖。 圖4B是圖4A的進一步說明。 FIG. 1 is a schematic diagram of a system for estimating product simulation parameters according to an embodiment of the present invention. FIG. 2 is a flow chart of a method for estimating product simulation parameters according to an embodiment of the present invention. FIG. 3A is an implementation example of "obtaining a product virtual coefficient corresponding to a product" in step S230 shown in FIG. 2. FIG. 3B is another implementation example of "obtaining a product virtual coefficient corresponding to a product" in step S230 shown in FIG. 2. FIG. 4A is a schematic diagram of estimating a second product simulation parameter according to an embodiment of the present invention. FIG. 4B is a further explanation of FIG. 4A.

S210、S230:步驟 S210, S230: Steps

Claims (15)

一種推估產品模擬參數的系統,用於熱加工設備以及產品,其中所述熱加工設備包括已測烘箱以及至少一待測烘箱,其中所述產品對應於產品資訊,其中所述熱加工設備對應於設備資訊,其中所述系統包括:第一熱影像感測器,設置於所述熱加工設備的進口段;第二熱影像感測器,設置於所述熱加工設備的出口段;溫度感測器,設置於所述已測烘箱;儲存媒體,儲存感測資料獲得單元及第一產品模擬參數推估單元,其中所述感測資料獲得單元用於通過所述第一熱影像感測器以及所述第二熱影像感測器來獲得對應於所述產品的產品熱影像,並且通過所述溫度感測器來獲得所述產品在所述已測烘箱時的產品溫度,其中所述設備資訊、所述產品熱影像以及所述產品溫度對應於相同的時間點;所述第一產品模擬參數推估單元用於利用所述產品熱影像、所述產品溫度、所述產品資訊以及所述設備資訊來獲得對應於所述產品的產品虛擬係數,並且利用所述產品虛擬係數來推估出所述產品在所述待測烘箱時的第一產品模擬參數;以及處理器,耦接所述第一熱影像感測器、所述第二熱影像感測器、所述溫度感測器以及所述儲存媒體,並且用於存取和執行所述感測資料獲得單元及所述第一產品模擬參數推估單元,其中所述系統更包括耦接所述處理器的含水率感測器,其中 所述含水率感測器設置於所述出口段,其中所述產品包括織物,其中儲存媒體更儲存第二產品模擬參數推估單元,其中所述第二產品模擬參數推估單元用於將所述第一產品模擬參數、所述產品資訊以及所述設備資訊輸入至類神經模型,以建立出二維第二產品模擬參數分布模型;所述感測資料獲得單元用於通過所述含水率感測器來獲得對應於所述產品的產品含水率;所述第二產品模擬參數推估單元用於將所述第一產品模擬參數以及所述產品含水率輸入至所述二維第二產品模擬參數分布模型來推估出對應於所述產品的第二產品模擬參數。 A system for estimating product simulation parameters, used for thermal processing equipment and products, wherein the thermal processing equipment includes a tested oven and at least one oven to be tested, wherein the product corresponds to product information, wherein the thermal processing equipment corresponds to equipment information, wherein the system includes: a first thermal imaging sensor, arranged at an inlet section of the thermal processing equipment; a second thermal imaging sensor, arranged at an outlet section of the thermal processing equipment; a temperature sensor, arranged at the tested oven; a storage medium, storing a sensing data acquisition unit and a first product simulation parameter estimation unit, wherein the The sensing data acquisition unit is used to obtain a product thermal image corresponding to the product through the first thermal image sensor and the second thermal image sensor, and to obtain the product temperature of the product in the measured oven through the temperature sensor, wherein the equipment information, the product thermal image and the product temperature correspond to the same time point; the first product simulation parameter estimation unit is used to obtain a product virtual coefficient corresponding to the product using the product thermal image, the product temperature, the product information and the equipment information, and to obtain a product virtual coefficient corresponding to the product using the product thermal image, the product temperature, the product information and the equipment information. The system further comprises a moisture content sensor coupled to the processor, wherein the moisture content sensor is disposed at the outlet section, wherein the product comprises fabric, and wherein the storage medium further stores a second product simulation parameter estimation unit. , wherein the second product simulation parameter estimation unit is used to input the first product simulation parameter, the product information and the equipment information into the neural model to establish a two-dimensional second product simulation parameter distribution model; the sensing data acquisition unit is used to obtain the product moisture content corresponding to the product through the moisture content sensor; the second product simulation parameter estimation unit is used to input the first product simulation parameter and the product moisture content into the two-dimensional second product simulation parameter distribution model to estimate the second product simulation parameter corresponding to the product. 如請求項1所述的系統,其中所述第一產品模擬參數推估單元用於利用所述產品熱影像、所述產品溫度、所述產品資訊以及所述設備資訊來將能量守恆方程式轉換為常微分方程式;所述第一產品模擬參數推估單元用於解析所述常微分方程式以獲得迭代方程式;所述第一產品模擬參數推估單元用於利用所述產品資訊以及所述設備資訊來對所述產品虛擬係數執行貝葉斯最佳化擬合;所述第一產品模擬參數推估單元用於將所述產品資訊、所述設備資訊以及所述產品虛擬係數代入所述迭代方程式,以獲得所述第一產品模擬參數。 The system as described in claim 1, wherein the first product simulation parameter estimation unit is used to convert the energy conservation equation into an ordinary differential equation using the product thermal image, the product temperature, the product information, and the equipment information; the first product simulation parameter estimation unit is used to analyze the ordinary differential equation to obtain an iterative equation; the first product simulation parameter estimation unit is used to perform Bayesian optimization fitting on the product virtual coefficient using the product information and the equipment information; the first product simulation parameter estimation unit is used to substitute the product information, the equipment information, and the product virtual coefficient into the iterative equation to obtain the first product simulation parameter. 如請求項2所述的系統,其中所述貝葉斯最佳化擬合包括以下步驟:所述第一產品模擬參數推估單元利用所述迭代方程式來求解出所述第一產品模擬參數,其中所述第一產品模擬參數包括第一產品模擬參數最小值;以及所述第一產品模擬參數推估單元利用所述產品溫度以及所述第一產品模擬參數最小值之間的差值來更新所述產品虛擬係數;以及所述第一產品模擬參數推估單元判斷所述產品溫度以及所述第一產品模擬參數最小值之間的差值是否對應最小平均絕對誤差百分比值,以獲取所述產品虛擬係數。 The system as described in claim 2, wherein the Bayesian optimization fitting includes the following steps: the first product simulation parameter estimation unit uses the iterative equation to solve the first product simulation parameter, wherein the first product simulation parameter includes the first product simulation parameter minimum value; and the first product simulation parameter estimation unit uses the difference between the product temperature and the first product simulation parameter minimum value to update the product virtual coefficient; and the first product simulation parameter estimation unit determines whether the difference between the product temperature and the first product simulation parameter minimum value corresponds to the minimum mean absolute error percentage value to obtain the product virtual coefficient. 如請求項1所述的系統,其中所述設備資訊包括對應於所述已測烘箱的已測烘箱溫度,且所述設備資訊包括對應於所述待測烘箱的待測烘箱溫度。 A system as described in claim 1, wherein the equipment information includes a measured oven temperature corresponding to the measured oven, and the equipment information includes a measured oven temperature corresponding to the oven to be measured. 如請求項1所述的系統,其中所述產品以及所述熱加工設備對應於加熱階段,其中所述第一產品模擬參數推估單元用於利用所述產品在所述加熱階段時的能量供給、質量變化以及溫差變化來獲得所述產品虛擬係數。 A system as described in claim 1, wherein the product and the heat treatment equipment correspond to a heating stage, wherein the first product simulation parameter estimation unit is used to obtain the product virtual coefficient by utilizing the energy supply, mass change and temperature difference change of the product during the heating stage. 如請求項1所述的系統,其中所述產品資訊包括布料、碼重、助劑、寬窄值、密度、比熱容以及厚度。 A system as described in claim 1, wherein the product information includes fabric, code weight, additives, width, density, specific heat capacity, and thickness. 如請求項1所述的系統,其中所述產品包括印刷電路板(PCB,Printed Circuit Board)。 A system as described in claim 1, wherein the product includes a printed circuit board (PCB). 一種推估產品模擬參數的方法,用於熱加工設備以及產品,其中所述熱加工設備包括已測烘箱以及至少一待測烘箱,其中所述產品對應於產品資訊,其中所述熱加工設備對應於設備資訊,其中所述方法包括以下步驟:獲得對應於所述產品的產品熱影像,並且獲得所述產品在所述已測烘箱時的產品溫度,其中所述設備資訊、所述產品熱影像以及所述產品溫度對應於相同的時間點;以及利用所述產品熱影像、所述產品溫度、所述產品資訊以及所述設備資訊來獲得對應於所述產品的產品虛擬係數,並且利用所述產品虛擬係數來推估出所述產品在所述待測烘箱時的第一產品模擬參數,其中所述方法更包括以下步驟:將所述第一產品模擬參數、所述產品資訊以及所述設備資訊輸入至類神經模型,以建立出二維第二產品模擬參數分布模型;獲得對應於所述產品的產品含水率;以及將所述第一產品模擬參數以及所述產品含水率輸入至所述二維第二產品模擬參數分布模型來推估出對應於所述產品的第二產品模擬參數。 A method for estimating product simulation parameters, for thermal processing equipment and products, wherein the thermal processing equipment includes a tested oven and at least one oven to be tested, wherein the product corresponds to product information, wherein the thermal processing equipment corresponds to equipment information, wherein the method comprises the following steps: obtaining a product thermal image corresponding to the product, and obtaining a product temperature of the product when the product is in the tested oven, wherein the equipment information, the product thermal image and the product temperature correspond to the same time point; and using the product thermal image, the product temperature, the product information and the equipment information to A product virtual coefficient corresponding to the product is obtained, and the product virtual coefficient is used to estimate the first product simulation parameter of the product in the oven to be tested, wherein the method further includes the following steps: inputting the first product simulation parameter, the product information and the equipment information into a neural model to establish a two-dimensional second product simulation parameter distribution model; obtaining the product moisture content corresponding to the product; and inputting the first product simulation parameter and the product moisture content into the two-dimensional second product simulation parameter distribution model to estimate the second product simulation parameter corresponding to the product. 如請求項8所述的方法,其中利用所述產品熱影像、所述產品溫度、所述產品資訊以及所述設備資訊來獲得對應於所述產品的所述產品虛擬係數的步驟包括:利用所述產品熱影像、所述產品溫度、所述產品資訊以及所述設備資訊來將能量守恆方程式轉換為常微分方程式;解析所述常微分方程式以獲得迭代方程式;利用所述產品資訊以及所述設備資訊來對所述產品虛擬係數執行貝葉斯最佳化擬合;將所述產品資訊、所述設備資訊以及所述產品虛擬係數代入所述迭代方程式,以獲得所述第一產品模擬參數。 The method of claim 8, wherein the step of using the product thermal image, the product temperature, the product information and the equipment information to obtain the product virtual coefficient corresponding to the product includes: using the product thermal image, the product temperature, the product information and the equipment information to convert the energy conservation equation into an ordinary differential equation; analyzing the ordinary differential equation to obtain an iterative equation; using the product information and the equipment information to perform Bayesian optimization fitting on the product virtual coefficient; substituting the product information, the equipment information and the product virtual coefficient into the iterative equation to obtain the first product simulation parameter. 如請求項9所述的方法,其中所述貝葉斯最佳化擬合包括以下步驟:利用所述迭代方程式來求解出所述第一產品模擬參數,其中所述第一產品模擬參數包括第一產品模擬參數最小值;利用所述產品溫度以及所述第一產品模擬參數最小值之間的差值來更新所述產品虛擬係數;以及判斷所述產品溫度以及所述第一產品模擬參數最小值之間的差值是否對應最小平均絕對誤差百分比值,以獲取所述產品虛擬係數。 As described in claim 9, the Bayesian optimization fitting includes the following steps: using the iterative equation to solve the first product simulation parameter, wherein the first product simulation parameter includes the first product simulation parameter minimum value; using the difference between the product temperature and the first product simulation parameter minimum value to update the product virtual coefficient; and determining whether the difference between the product temperature and the first product simulation parameter minimum value corresponds to the minimum mean absolute error percentage value to obtain the product virtual coefficient. 如請求項8所述的方法,其中所述設備資訊包括對應於所述已測烘箱的已測烘箱溫度,且所述設備資訊包括對應於所述待測烘箱的待測烘箱溫度。 The method as claimed in claim 8, wherein the equipment information includes the measured oven temperature corresponding to the measured oven, and the equipment information includes the measured oven temperature corresponding to the oven to be measured. 如請求項8所述的方法,其中所述產品以及所述熱加工設備對應於加熱階段,其中利用所述產品熱影像、所述產品溫度、所述產品資訊以及所述設備資訊來獲得對應於所述產品的所述產品虛擬係數的步驟包括:利用所述產品在所述加熱階段時的能量供給、質量變化以及溫差變化來獲得所述產品虛擬係數。 The method of claim 8, wherein the product and the heat treatment equipment correspond to a heating stage, wherein the step of using the product thermal image, the product temperature, the product information and the equipment information to obtain the product virtual coefficient corresponding to the product includes: using the energy supply, mass change and temperature difference change of the product during the heating stage to obtain the product virtual coefficient. 如請求項8所述的方法,其中所述產品包括織物。 A method as claimed in claim 8, wherein the product comprises a fabric. 如請求項8所述的方法,其中所述產品資訊包括布料、碼重、助劑、寬窄值、密度、比熱容以及厚度。 The method as claimed in claim 8, wherein the product information includes fabric, code weight, additives, width, density, specific heat capacity and thickness. 如請求項8所述的方法,其中所述產品包括印刷電路板。 A method as described in claim 8, wherein the product includes a printed circuit board.
TW112148909A 2023-12-15 2023-12-15 System and method for estimating product simulation parameter TWI870160B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW112148909A TWI870160B (en) 2023-12-15 2023-12-15 System and method for estimating product simulation parameter
CN202311740069.3A CN120161733A (en) 2023-12-15 2023-12-18 System and method for estimating product simulation parameters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW112148909A TWI870160B (en) 2023-12-15 2023-12-15 System and method for estimating product simulation parameter

Publications (2)

Publication Number Publication Date
TWI870160B true TWI870160B (en) 2025-01-11
TW202526686A TW202526686A (en) 2025-07-01

Family

ID=95151770

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112148909A TWI870160B (en) 2023-12-15 2023-12-15 System and method for estimating product simulation parameter

Country Status (2)

Country Link
CN (1) CN120161733A (en)
TW (1) TWI870160B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI576695B (en) * 2016-10-20 2017-04-01 英業達股份有限公司 Method for monitoring hardware
US20190324436A1 (en) * 2017-08-02 2019-10-24 Strong Force Iot Portfolio 2016, Llc Data collection systems and methods for updating sensed parameter groups based on pattern recognition
TW201945967A (en) * 2018-04-06 2019-12-01 美商蘭姆研究公司 Process simulation model calibration using CD-SEM
TWI783739B (en) * 2021-10-20 2022-11-11 緯創資通股份有限公司 Method for establishing temperature prediction model heating temperature heating method, and thermal circulation system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI576695B (en) * 2016-10-20 2017-04-01 英業達股份有限公司 Method for monitoring hardware
US20190324436A1 (en) * 2017-08-02 2019-10-24 Strong Force Iot Portfolio 2016, Llc Data collection systems and methods for updating sensed parameter groups based on pattern recognition
TW201945967A (en) * 2018-04-06 2019-12-01 美商蘭姆研究公司 Process simulation model calibration using CD-SEM
TWI783739B (en) * 2021-10-20 2022-11-11 緯創資通股份有限公司 Method for establishing temperature prediction model heating temperature heating method, and thermal circulation system

Also Published As

Publication number Publication date
TW202526686A (en) 2025-07-01
CN120161733A (en) 2025-06-17

Similar Documents

Publication Publication Date Title
CN111024238B (en) Radiation calibration and temperature measurement method for uncooled temperature measurement thermal imager
Elgamal et al. Coupling CFD and diffusion models for analyzing the convective drying behavior of a single rice kernel
CN110310272B (en) Image registration method and terminal equipment
ElGamal et al. Validation of CFD models for the deep-bed drying of rice using thermal imaging
Purlis et al. A moving boundary problem in a food material undergoing volume change–simulation of bread baking
CN105486711B (en) System and method for space material emissivity measurement based on infrared thermal imager
Crawford et al. Robust, automated processing of IR thermography for quantitative boundary-layer transition measurements
TWI870160B (en) System and method for estimating product simulation parameter
CN120371054A (en) Temperature control management method of electric oven
CN113468762A (en) Hot spot temperature calculation method and device, computer equipment and storage medium
CN117287726A (en) An induction cooker heating control method, device and induction cooker
Grooten et al. Dropwise condensation from flowing air–steam mixtures: Diffusion resistance assessed by controlled drainage
Rainieri et al. Effect of a hydrophobic coating on the local heat transfer coefficient in forced convection under wet conditions
Grewal et al. A novel approach to thermochromic liquid crystal calibration using neural networks
CN120469516A (en) A method and system for controlling uniform temperature of electric cookers with gradient temperature difference regulation
CN116649999B (en) Temperature control method and system for detector
Ravula et al. Estimation of the energy requirement of bread during baking by inverse heat transfer method
CN111504428B (en) A fast calibration method for thermal gas flowmeter
Somasundharam et al. Estimation of spatially distributed thermal properties of heterogeneous media with non-intrusive measurement
CN116265909A (en) Method, device, equipment and medium for determining air change rate of hot air aging test chamber
Maldonado et al. Experimental and numerical study of frost formation with natural convection in a triangular arrangement of slender vertical tubes
Yang et al. Positive Online Calibration of Heat Transfer Model for Continuous Casting of Steel Based on Surface Temperature Measurement
Lan et al. Modeling and analysis of cross-flow heat exchanger based on the distributed parameter method
CN108614004B (en) A method and system for fitting a cooling curve
Hu The Two‐Dimensional Heat Transfer Analysis in Arrayed Fins with the Thermal Dissipation Substrate