TWI865049B - System for detecting occurrence period of cyclical event - Google Patents
System for detecting occurrence period of cyclical event Download PDFInfo
- Publication number
- TWI865049B TWI865049B TW112135538A TW112135538A TWI865049B TW I865049 B TWI865049 B TW I865049B TW 112135538 A TW112135538 A TW 112135538A TW 112135538 A TW112135538 A TW 112135538A TW I865049 B TWI865049 B TW I865049B
- Authority
- TW
- Taiwan
- Prior art keywords
- event
- event occurrence
- cycle
- time
- periodic
- Prior art date
Links
Landscapes
- Image Analysis (AREA)
- Alarm Systems (AREA)
Abstract
Description
本發明係有關於一種偵測系統,尤其是指一種用於偵測週期性事件之事件發生週期之偵測系統。The present invention relates to a detection system, and more particularly to a detection system for detecting the occurrence period of a periodic event.
隨著工業朝向自動化與智慧化發展的進程,生產線的無人化與機器人化已逐漸成為目前的主流發展方向,伴隨生產線的生產與品質監控工作也順理成章地由自動化設備加以替代。As the industry develops towards automation and intelligence, unmanned and robotic production lines have gradually become the current mainstream development direction, and the production and quality monitoring work of the production lines has naturally been replaced by automated equipment.
由於在生產線上的工件或產品都被安排依照既定的工作時序進行週期性的工作,一旦在工件或產品無法依照既定的工作週期在該生產線之其中一工作站完成應完成的工作,就會造成整條生產線的工作延宕。因此,需要適當的裝置來監控每一工作站進行工作的工作週期。Since the workpieces or products on the production line are arranged to perform periodic work according to the established work sequence, once the workpiece or product cannot complete the work that should be completed at one of the workstations of the production line according to the established work cycle, it will cause the work of the entire production line to be delayed. Therefore, appropriate devices are needed to monitor the work cycle of each workstation.
環顧現有的工作週期偵測技術中,多半倚賴大量的偵測裝置(如光遮端偵測裝置、觸碰偵測裝置、壓力感測裝置或晶片偵測裝置等)來監控工件的方位或 工作設備特定機構的運動軌跡等手段,然後結合物聯網技術與後台的大數據運算平台來分析確認是否確實在允許的工作週期內完成在每一工作站所應完成的工作。Looking at the existing work cycle detection technology, most of them rely on a large number of detection devices (such as light blocking end detection devices, touch detection devices, pressure sensing devices or chip detection devices, etc.) to monitor the position of the workpiece or the movement trajectory of the specific mechanism of the working equipment, and then combine the Internet of Things technology with the background big data computing platform to analyze and confirm whether the work to be completed at each workstation is completed within the allowed work cycle.
然而,由於每個工作站的工作內容迥異,要完整實現以上技術,就必須因應每個工作站的實際工作內容,架設多種不同的偵測裝置來偵測不同的參數(如溫度、壓力、觸碰次數、觸碰時間、光遮斷信號中斷時間、光遮斷信號延遲時間、光遮斷信號持續時間)等。萬一遇到生產線工作內容調整,所選用的偵測裝置種類與安裝位置也需要伴隨著重新調整。換言之,也就是先前的工作週期偵測技術普遍缺乏通用性,不能通用於各工作站,因此勢必需要花費更多的資源來實現多個不同工作站的工作事件週期的偵測。However, since the work content of each workstation is different, in order to fully realize the above technology, it is necessary to set up a variety of different detection devices to detect different parameters (such as temperature, pressure, number of touches, touch time, light-off signal interruption time, light-off signal delay time, light-off signal duration), etc. according to the actual work content of each workstation. In case of adjustment of the work content of the production line, the type and installation location of the selected detection device also need to be readjusted. In other words, the previous work cycle detection technology generally lacks universality and cannot be used in various workstations. Therefore, more resources must be spent to realize the detection of the work event cycle of multiple different workstations.
有鑒於在先前技術中,普遍存在事件發生(工作)週期偵測技術缺乏通用性,因而導致需要花費更多的資源來實現多個不同週期性事件(工作站的工作事件)之事件發生週期(工作站的工作事件發生週期)偵測的問題;本發明之主要目的在於提供一種新的週期偵測技術,使其能廣泛通用於對多個不同型態的週期性事件偵測其事件發生週期,使其特別適合應用於對多個不同型態工作站的工作週期偵測。In view of the fact that in the prior art, there is a general lack of universality in event occurrence (work) cycle detection technology, which leads to the need to spend more resources to realize the problem of event occurrence cycle (work event occurrence cycle of workstation) detection of multiple different periodic events (work events of workstation); the main purpose of the present invention is to provide a new cycle detection technology, so that it can be widely used in detecting the event occurrence cycle of multiple different types of periodic events, making it particularly suitable for application in the work cycle detection of multiple different types of workstations.
本發明為解決先前技術之問題所採用之其中一種必要技術手段為提供一種週期性事件之事件發生週期偵測系統,其係用於偵測一週期性事件之一事件發生週期,並且包含一監控影像擷取裝置與一週期判斷裝置。 One of the necessary technical means adopted by the present invention to solve the problems of the prior art is to provide a periodic event occurrence cycle detection system, which is used to detect an event occurrence cycle of a periodic event and includes a monitoring image capture device and a cycle judgment device.
監控影像擷取裝置係依據一影像擷取週期而週期性地在複數個影像擷取時間對一監控視野區域擷取對應之複數個靜態監控影像資料,藉以串接成一動態監控影像資料,且週期性事件係在監控視野區域內發生。 The monitoring image capture device periodically captures a plurality of static monitoring image data corresponding to a monitoring field of view at a plurality of image capture times according to an image capture cycle, so as to concatenate them into a dynamic monitoring image data, and the periodic events occur within the monitoring field of view.
週期判斷裝置係通信連接於監控影像擷取裝置,安裝有一判斷程式,並在執行判斷程式後包含一特徵向量擷取模組、一信號生成模組、一頻譜轉換分析模組、一雜訊過濾模組與一事件發生週期判斷模組。 The cycle judgment device is communicatively connected to the monitoring image acquisition device, and is installed with a judgment program. After executing the judgment program, it includes a feature vector acquisition module, a signal generation module, a spectrum conversion analysis module, a noise filtering module, and an event occurrence cycle judgment module.
特徵向量擷取模組係係自監控影像擷取裝置擷取動態監控影像資料,藉由深度學習所產生之一數學運算模型而從動態監控影像資料中擷取出對應於影像擷取時間之靜態監控影像資料之複數個特徵向量。信號生成模組係將特徵向量計算出依照影像擷取時間之發生順序排列之複數個向量數值,藉以依據影像擷取時間與向量數值生成一向量數值時域信號。 The feature vector acquisition module captures dynamic monitoring image data from the monitoring image acquisition device, and extracts multiple feature vectors of static monitoring image data corresponding to the image acquisition time from the dynamic monitoring image data through a mathematical operation model generated by deep learning. The signal generation module calculates the feature vector into multiple vector values arranged in the order of occurrence of the image acquisition time, so as to generate a vector value time domain signal according to the image acquisition time and the vector value.
頻譜轉換分析模組係用以將向量數值時域信號以一解析窗寬時距進行一短時距傅立葉轉換後轉換產生一頻譜圖,且頻譜圖包含複數個解析窗寬時距所對應之複數個組成頻率與複數個組成頻率信號之複數個組成頻率振幅。雜訊過濾模組,係濾除部分組成頻率所對應之至少一雜訊信號,將其餘組成頻率所對應之其餘組成頻率信號作為複數個有效組成頻率信號加以擷取出,並依序在複數個上述之解析窗寬時距中之每一者, 擷取振幅最大之有效組成頻率信號之一者所對應之組成頻率作為每一解析窗寬時距之一代表頻率,據以產生一代表頻率時域信號。 The spectrum conversion analysis module is used to perform a short-time Fourier transformation on the vector value time domain signal with an analytical window width and time interval to generate a spectrum diagram, and the spectrum diagram includes a plurality of component frequencies corresponding to a plurality of analytical window widths and time intervals and a plurality of component frequency amplitudes of a plurality of component frequency signals. The noise filtering module filters out at least one noise signal corresponding to a part of the component frequencies, extracts the remaining component frequency signals corresponding to the remaining component frequencies as a plurality of effective component frequency signals, and sequentially extracts the component frequency corresponding to one of the effective component frequency signals with the largest amplitude as a representative frequency of each analysis window width time interval in each of the plurality of above-mentioned analysis window width time intervals, thereby generating a representative frequency time domain signal.
事件發生週期判斷模組係依據代表頻率時域信號與解析窗寬時距計算出複數個事件發生時間以供判斷事件發生週期。 The event occurrence cycle judgment module calculates multiple event occurrence times based on the representative frequency time domain signal and the analysis window width interval to judge the event occurrence cycle.
在上述必要技術手段的基礎下,所衍生出之附屬技術手段中,較佳者,頻譜轉換分析模組係將組成頻率振幅中最大一者定義為一最大振幅,並將最大振幅所對應之組成頻率中之一者定義為一主頻率;且雜訊過濾模組係依據最大振幅定義出一雜訊臨界振幅,並將組成頻率振幅中小於雜訊臨界振幅者所對應之上述部分些組成頻率所對應之部分該些組成頻率信號視為該至少一雜訊信號而加以濾除,其中,雜訊臨界振幅可為最大振幅的10%。較佳者,解析窗寬時距可等於影像擷取週期,且頻譜轉換分析模組係利用影像擷取週期進行短時距傅立葉轉換。 Among the subsidiary technical means derived from the above necessary technical means, preferably, the spectrum conversion analysis module defines the largest one of the component frequency amplitudes as a maximum amplitude, and defines one of the component frequencies corresponding to the maximum amplitude as a main frequency; and the noise filtering module defines a noise critical amplitude according to the maximum amplitude, and regards the component frequency signals corresponding to the above-mentioned component frequencies whose component frequency amplitudes are smaller than the noise critical amplitude as the at least one noise signal and filters them out, wherein the noise critical amplitude can be 10% of the maximum amplitude. Preferably, the analysis window width and time interval can be equal to the image acquisition cycle, and the spectrum conversion analysis module uses the image acquisition cycle to perform short-time Fourier transformation.
監控影像擷取裝置可為一網路攝影機(IP Cam),且週期性事件可為一生產線之一週期性工作事件,且監控視野區域係為生產線之一工作站監控視野區域。此外,週期判斷裝置更可包含一人機介面模組,用以供一使用者在監控視野區域中設定一關注區域,且週期性事件係在關注區域內週期性地發生。較佳者,人機介面模組包含一顯示器與一操作介面。顯示器係顯示監控視野區域之動態監控影像資料。操作介面係供使用者 設定關注區域。 The monitoring image capture device may be an IP Cam, and the periodic event may be a periodic work event of a production line, and the monitoring field of view is a monitoring field of view of a workstation of the production line. In addition, the periodic judgment device may further include a human-machine interface module for a user to set a focus area in the monitoring field of view, and the periodic event occurs periodically in the focus area. Preferably, the human-machine interface module includes a display and an operation interface. The display displays the dynamic monitoring image data of the monitoring field of view. The operation interface is for the user to set the focus area.
特徵向量擷取模組更可包含有一關注區域特徵向量擷取單元,且關注區域特徵向量擷取單元係藉由數學運算模型而從動態監控影像資料中對應於關注區域之部分擷取出對應於影像擷取時間之靜態監控影像資料之特徵向量。 The feature vector acquisition module may further include a focus region feature vector acquisition unit, and the focus region feature vector acquisition unit uses a mathematical operation model to acquire a feature vector of static monitoring image data corresponding to the image acquisition time from the portion of the dynamic monitoring image data corresponding to the focus region.
事件發生週期判斷模組更可包含一達成率運算單元、一統計單元、一事件發生時間運算單元與一事件發生週期運算單元。達成率運算單元係依序累加該時距頻率乘積項而獲得一事件週期達成率。統計單元係在事件達成率每一次剛滿一整數時,統計出一乘積項累加項數,藉以在該事件達成率剛滿複數個上述之整數時,分別統計出對應之複數個上述之乘積項累加項數。事件發生時間運算單元係將乘積項累加項數分別乘以解析窗寬時距,藉以運算出複數個事件發生時間。事件發生週期運算單元係依據任兩相鄰之事件發生時間之至少一事件發生時間差計算出事件發生週期。 The event occurrence cycle judgment module may further include a success rate calculation unit, a statistics unit, an event occurrence time calculation unit and an event occurrence cycle calculation unit. The success rate calculation unit accumulates the time interval frequency product terms in sequence to obtain an event cycle success rate. The statistics unit calculates a product term accumulation number every time the event success rate just reaches an integer, so as to calculate the corresponding multiple product term accumulation numbers when the event success rate just reaches multiple integers. The event occurrence time calculation unit multiplies the product term accumulation number by the analysis window width time interval to calculate multiple event occurrence times. The event occurrence cycle calculation unit calculates the event occurrence cycle based on at least one event occurrence time difference between any two adjacent event occurrence times.
綜合以上所述,由於在本發明所提供之週期性事件之事件發生週期偵測系統中,係利用直接從動態監控影像資料中的靜態監控影像資料中解析出週期性事件之事件發生週期,因此,可直接通用於對多個不同週期性事件(如工作站的週期性工作事件)之事件發生週期(如工作站的工作事件發生週期)的偵測,因此可以達到不再需要花費更多的資源來實現多個不同週期性事件之事件發生週期偵測的功效。 In summary, the event occurrence cycle detection system of the periodic event provided by the present invention directly analyzes the event occurrence cycle of the periodic event from the static monitoring image data in the dynamic monitoring image data. Therefore, it can be directly used for the detection of the event occurrence cycle (such as the work event occurrence cycle of the work station) of multiple different periodic events (such as the periodic work events of the workstation). Therefore, it is no longer necessary to spend more resources to realize the effect of event occurrence cycle detection of multiple different periodic events.
特別是當其應用於工作站時,不再需要花費更多的資源,即可輕鬆實現對多個不同工作站的工作事件之工作事件發生週期的偵測,因此,可大幅降低對生產線中之多種工作事件週期進行偵測的執行成本。 Especially when it is applied to workstations, it is no longer necessary to spend more resources to easily detect the work event occurrence cycle of work events in multiple different workstations. Therefore, the execution cost of detecting multiple work event cycles in the production line can be greatly reduced.
100:偵測系統 100: Detection system
200:工作站 200: Workstation
210:輸入輸送帶 210: Input conveyor belt
220:工作設備 220:Working equipment
2201:機器手臂 2201:Robot Arm
2202:工作平台 2202:Working platform
2203:檢測探針 2203: Detection probe
230:輸出輸送帶 230: Output conveyor belt
300:待測電路板 300: Circuit board to be tested
1:監控影像擷取裝置 1: Monitoring image capture device
2:週期判斷裝置 2: Cycle judgment device
21:人機介面模組 21: Human-machine interface module
211:顯示器 211: Display
212:操作介面 212: Operation interface
JAP:判斷程式 JAP: Judgment Program
22:特徵向量擷取模組 22: Feature vector extraction module
221:關注區域特徵向量擷取單元 221: Focus on the regional feature vector acquisition unit
23:信號生成模組 23:Signal generation module
231:向量數值運算單元 231: Vector numerical operation unit
232:信號生成單元 232:Signal generation unit
24:頻譜轉換分析模組 24: Spectrum conversion analysis module
25:雜訊過濾模組 25: Noise filtering module
251:雜訊過濾單元 251: Noise filtering unit
252:代表頻率信號生成單元 252: represents the frequency signal generation unit
26:事件發生週期判斷模組 26: Event occurrence cycle judgment module
261:達成率運算單元 261: Achievement rate calculation unit
262:統計單元 262: Statistical unit
263:事件發生時間運算單元 263: Event occurrence time calculation unit
264:事件發生週期運算單元 264: Event occurrence cycle operation unit
第一圖係顯示在本發明較佳實施例中,監控影像擷取裝置週對一監控視野區域擷取動態監控影像資料之示意圖;第二A圖至第二E圖係顯示在一事件發生週期中,於部分影像擷取時間所擷取之靜態監控影像資料;第三圖係顯示本發明較佳實施例所提供之週期性事件之事件發生週期偵測系統之功能方塊圖;第四圖係顯示本發明較佳實施例中所生成之向量數值時域信號波形圖;第五圖係顯示本發明較佳實施例中之頻譜圖;第六圖係顯示本發明較佳實施例中之濾除雜訊信號後之頻譜圖;第七圖係顯示本發明較佳實施例中之代表頻率時域信號波形圖;以及第八圖係顯示本發明之事件發生次數與事件發生時間之對應曲線圖。 The first figure is a schematic diagram showing a monitoring image capture device capturing dynamic monitoring image data of a monitoring field of view in a preferred embodiment of the present invention; the second figure A to the second figure E are static monitoring image data captured during a portion of the image capture time in an event occurrence cycle; the third figure is a functional block diagram of the event occurrence cycle detection system of a periodic event provided by the preferred embodiment of the present invention; the fourth figure The first figure shows the waveform of the vector value time domain signal generated in the preferred embodiment of the present invention; the fifth figure shows the spectrum diagram in the preferred embodiment of the present invention; the sixth figure shows the spectrum diagram after the noise signal is filtered in the preferred embodiment of the present invention; the seventh figure shows the waveform of the representative frequency time domain signal in the preferred embodiment of the present invention; and the eighth figure shows the corresponding curve diagram of the number of event occurrences and the time of event occurrence of the present invention.
由於本發明所提供之週期性事件之事件發生週期偵測系統,可廣泛運用於偵測多種不同的週期性事件的事件發生週期,特別適合用於偵測週期性工作事件的事件發生週期,其應用層面相當廣闊,故在此不再一一贅述,僅列舉其應用於生產線工作站的其中一個較佳實施例來加以具體說明,且此實施例僅用以方便、明晰地輔助說明本發明實施例的目的與功效。 Since the event occurrence cycle detection system of the periodic event provided by the present invention can be widely used to detect the event occurrence cycle of various different periodic events, and is particularly suitable for detecting the event occurrence cycle of periodic work events, its application level is quite broad, so it will not be described one by one here, and only one of the better embodiments of its application in the production line workstation is listed for specific explanation, and this embodiment is only used to conveniently and clearly assist in explaining the purpose and effect of the embodiment of the present invention.
請參閱第一圖至第三圖,第一圖係顯示在本發明較佳實施例中,監控影像擷取裝置週對一監控視野區域擷取動態監控影像資料之示意圖;第二A圖至第二E圖係顯示在一事件發生週期中,於部分影像擷取時間所擷取之靜態監控影像資料。如第一圖至第三圖所示,一種週期性事件之事件發生週期偵測系統(以下簡稱「偵測系統」)100,其係用於偵測一週期性事件之一事件發生週期,並且包含一監控影像擷取裝置1與一週期判斷裝置2。在本實施例中,週期性事件可為發生於一生產線之一工作站200之週期性工作事件。 Please refer to the first to third figures. The first figure is a schematic diagram showing a monitoring image capture device capturing dynamic monitoring image data of a monitoring field of view area in a preferred embodiment of the present invention; the second figure A to the second figure E are static monitoring image data captured at a portion of the image capture time in an event occurrence cycle. As shown in the first to third figures, a periodic event occurrence cycle detection system (hereinafter referred to as "detection system") 100 is used to detect an event occurrence cycle of a periodic event, and includes a monitoring image capture device 1 and a cycle judgment device 2. In this embodiment, the periodic event may be a periodic work event occurring at a workstation 200 in a production line.
工作站200包含一輸入輸送帶210、一工作設備220與一輸出輸送帶230。工作設備220包含一機器手臂2201、一工作平台2202與一檢測探針2203。在本實施例中,發生於工作站200之週期性工作事件,依照時間順序包含以下步驟:利用輸入輸送帶210將一待測電路板300朝向工作設備220輸送;利用機器手臂2201自輸入輸送帶210擷取待測電路板300;將待測電路板300放置於工作平台2202;將檢測探針2203伸出並接觸待測電路板 300;將檢測探針2203縮回,並利用機器手臂2201將待測電路板300自工作平台2202移動至輸出輸送帶230。 The workstation 200 includes an input conveyor belt 210, a working device 220 and an output conveyor belt 230. The working device 220 includes a robot arm 2201, a working platform 2202 and a detection probe 2203. In this embodiment, the periodic work events occurring at the workstation 200 include the following steps in chronological order: using the input conveyor belt 210 to convey a circuit board 300 to be tested toward the working equipment 220; using the robot arm 2201 to pick up the circuit board 300 to be tested from the input conveyor belt 210; placing the circuit board 300 to be tested on the working platform 2202; extending the detection probe 2203 and contacting the circuit board 300 to be tested; retracting the detection probe 2203, and using the robot arm 2201 to move the circuit board 300 to be tested from the working platform 2202 to the output conveyor belt 230.
依據工作站200的工作時序,週期性工作事件會以一事件發生週期而週期性發生。監控影像擷取裝置1可為設置於工作站200之一網路攝影機(IP Cam),並依據一影像擷取週期而週期性地在複數個影像擷取時間對一監控視野區域擷取對應之複數個靜態監控影像資料,藉以串接成一動態監控影像資料,且週期性事件係在監控視野區域內發生。 According to the working sequence of the workstation 200, periodic working events will occur periodically with an event occurrence cycle. The monitoring image capture device 1 can be an IP Cam installed in the workstation 200, and periodically captures a plurality of static monitoring image data corresponding to a monitoring field of view at a plurality of image capture times according to an image capture cycle, so as to concatenate them into a dynamic monitoring image data, and the periodic events occur in the monitoring field of view.
所謂的「影像擷取週期」是指任何相鄰兩次擷取靜態監控影像的時間間隔,也就是動態監控影像資料中之幀率(frame rate)的倒數。在本實施例中,幀率(frame rate)為30fps,也就是每秒擷取30個靜態監控影像,相當於影像擷取週期為1/30秒,約為0.033秒。換言之,動態監控影像資料就是將該些靜態監控影像資料以30fps的幀率所串接形成的。 The so-called "image capture cycle" refers to the time interval between any two adjacent captures of static surveillance images, which is the reciprocal of the frame rate in the dynamic surveillance image data. In this embodiment, the frame rate is 30fps, which means that 30 static surveillance images are captured per second, which is equivalent to an image capture cycle of 1/30 second, about 0.033 seconds. In other words, the dynamic surveillance image data is formed by concatenating the static surveillance image data at a frame rate of 30fps.
所謂的「監控視野區域」是指監控影像擷取裝置1所能擷取影像的視野範圍區域,在本實施例中,由於週期性事件係為發生於生產線200之一週期性工作事件,因此,監控視野區域係為生產線200之一工作站監控視野區域,其涵蓋部分之輸入輸送帶210、工作設備200與部分之輸出輸送帶230,即第二A圖至第二E圖的圖式範圍所對應的區域。承以上所述,當週期性工作事件依照時間順序進行到上述的步驟的瞬間,監控影像擷取裝置1所擷取之靜態監控影像資料包含如第二A圖至第二E 圖所顯示的內容。 The so-called "monitoring field of view" refers to the field of view of the monitoring image capture device 1 that can capture images. In this embodiment, since the periodic event is a periodic work event occurring in the production line 200, the monitoring field of view is a monitoring field of view of a workstation of the production line 200, which covers part of the input conveyor belt 210, the working equipment 200 and part of the output conveyor belt 230, that is, the area corresponding to the diagram range of the second A figure to the second E figure. Based on the above, when the periodic work event proceeds to the above steps in chronological order, the static monitoring image data captured by the monitoring image capture device 1 includes the content shown in the second A figure to the second E figure.
週期判斷裝置2可為一工業電腦、一桌上型電腦、一筆記型電腦、一平板電腦或一智慧型手機,藉由有線通信或無線通信手段通信連接於監控影像擷取裝置1,包含一人機介面模組21,並且安裝有一判斷程式JAP。人機介面模組21包含一顯示器211與一操作介面212。顯示器211可顯示監控視野區域之動態監控影像資料。操作介面212可為觸控面板、按鍵或滑鼠等,用以供一使用者(週期判斷裝置2的操作人員)在監控視野區域中設定一關注區域ROI。 The cycle judgment device 2 can be an industrial computer, a desktop computer, a laptop computer, a tablet computer or a smart phone, which is connected to the monitoring image acquisition device 1 by wired communication or wireless communication means, and includes a human-machine interface module 21, and is installed with a judgment program JAP. The human-machine interface module 21 includes a display 211 and an operation interface 212. The display 211 can display dynamic monitoring image data of the monitoring field of view. The operation interface 212 can be a touch panel, a button or a mouse, etc., for a user (operator of the cycle judgment device 2) to set a region of interest ROI in the monitoring field of view.
一般而言,關注區域ROI可選擇當週期性事件發生時,動態監控影像資料中週期性變化較為顯著的區域,或者選擇可同時涵蓋出多種不同週期性事件發生位置的區域,也就是最能反映出週期性事件的週期性變化的區域。在本實施例中,最能反映週期性事件的週期性變化的區域是在工作平台2202處,所以可以選擇靠近於工作平台2202的周邊輪廓所圍構出來的區域作為關注區域ROI。 Generally speaking, the region of interest ROI can be selected from the region where the periodic changes in the dynamic monitoring image data are more significant when a periodic event occurs, or the region that can simultaneously cover the locations of multiple different periodic events, that is, the region that best reflects the periodic changes of periodic events. In this embodiment, the region that best reflects the periodic changes of periodic events is at the work platform 2202, so the region surrounded by the peripheral contour close to the work platform 2202 can be selected as the region of interest ROI.
在執行判斷程式JAP後,週期判斷裝置2可再包含一特徵向量擷取模組22、一信號生成模組23、一頻譜轉換分析模組24、一雜訊過濾模組25與一事件發生週期判斷模組26。 After executing the judgment program JAP, the cycle judgment device 2 may further include a feature vector acquisition module 22, a signal generation module 23, a spectrum conversion analysis module 24, a noise filtering module 25 and an event occurrence cycle judgment module 26.
特徵向量擷取模組22包含有一關注區域特徵向量擷取單元221。特徵向量擷取模組22可藉由深度學習所產生之一數學運算模型而直接從動態監控影像資 料中擷取出對應於影像擷取時間之靜態監控影像資料之複數個特徵向量。更佳者,也可利用特徵向量擷取模組22之關注區域特徵向量擷取單元221藉由深度學習所產生之另一數學運算模型而從動態監控影像資料中對應於關注區域ROI之部分擷取出對應於影像擷取時間之靜態監控影像資料之複數個特徵向量。 The feature vector extraction module 22 includes a focus region feature vector extraction unit 221. The feature vector extraction module 22 can directly extract multiple feature vectors of static monitoring image data corresponding to the image capture time from the dynamic monitoring image data through a mathematical operation model generated by deep learning. More preferably, the focus region feature vector extraction unit 221 of the feature vector extraction module 22 can also be used to extract multiple feature vectors of static monitoring image data corresponding to the image capture time from the part of the dynamic monitoring image data corresponding to the focus region ROI through another mathematical operation model generated by deep learning.
關於數學運算模型,初期可藉由每個像素之色度、彩度、灰階、銳利度、飽和度等相關參數作為初始學習的輸入資料,並利用如類神經網路、回歸運算或其他現有的學習演算法建立初始的數學運算模型,然後經由多次深度學習更新以對初始的數學運算模型進行多版本的修改而形成。所謂的特徵向量是數學運算模型對每一個(每一幀)靜態監控影像資料所擷取出的多個具有代表性的特徵變數,並將每一個特徵變數當作一個分量所組成的多維向量。 Regarding the mathematical operation model, the relevant parameters such as chromaticity, saturation, grayscale, sharpness, saturation, etc. of each pixel can be used as the input data for initial learning, and the initial mathematical operation model can be established by using neural networks, regression operations or other existing learning algorithms. Then, multiple versions of the initial mathematical operation model are modified through multiple deep learning updates. The so-called feature vector is a number of representative feature variables extracted by the mathematical operation model for each (each frame) static monitoring image data, and each feature variable is regarded as a multidimensional vector composed of a component.
舉例來說,數學運算模型針對第一幀靜態監控影像資料可擷取出的4個具有代表性的特徵變數A 1、B 1、C 1與D 1,則對應於第一幀靜態監控影像資料的特徵向量即為(A 1,B 1,C 1,D 1)。相似地,數學運算模型針對第二幀靜態監控影像資料可擷取出的4個對應的具有代表性的特徵變數A 2、B 2、C 2與D 2,則對應於第二幀靜態監控影像資料的特徵向量即為(A 2,B 2,C 2,D 2),餘此類推。實際上,具有代表性的特徵變數的數量可能為數個、數十個甚至上百個,端視經過多次學習修改所得到之數學運算模型的運算結果而定。每種不同的數學運算模型所運 算得到之特徵變數的數量也可能不盡相同。 For example, the mathematical operation model can extract four representative feature variables A 1 , B 1 , C 1 and D 1 for the first frame of static monitoring image data, and the feature vector corresponding to the first frame of static monitoring image data is ( A 1 , B 1 , C 1 , D 1 ). Similarly, the mathematical operation model can extract four corresponding representative feature variables A 2 , B 2 , C 2 and D 2 for the second frame of static monitoring image data, and the feature vector corresponding to the second frame of static monitoring image data is ( A 2 , B 2 , C 2 , D 2 ), and so on. In fact, the number of representative eigenvalues may be several, dozens, or even hundreds, depending on the calculation results of the mathematical operation model obtained after multiple learning and modification. The number of eigenvalues calculated by each different mathematical operation model may also be different.
必須要強調的是,由於週期性事件會週期性地發生,所以多個靜態監控影像資料可會隨著產生週期性的變化,因此,不論是利用哪一種數學運算模型對複數個靜態監控影像資料擷取出的特徵向量,這些特徵向量勢必也都會伴隨著呈現出週期性的變化。因此,不論採用經由哪一種方式進行深度學習所產生之數學運算模型,都可以實施本發明。 It must be emphasized that since periodic events occur periodically, multiple static monitoring image data may undergo periodic changes. Therefore, no matter which mathematical operation model is used to extract feature vectors from multiple static monitoring image data, these feature vectors will inevitably show periodic changes. Therefore, no matter which mathematical operation model is used to generate deep learning, the present invention can be implemented.
在本實施例中,影像擷取週期為1/30秒,也就是第一個(第一幀)靜態監控影像資料的影像擷取時間是1/30秒,其對應之特徵向量為(A 1,B 1,C 1,D 1);第二個(第二幀)靜態監控影像資料的影像擷取時間是2/30秒,其對應之特徵向量為(A 2,B 2,C 2,D 2)餘此類推。 In this embodiment, the image capture cycle is 1/30 second, that is, the image capture time of the first (first frame) static monitoring image data is 1/30 second, and its corresponding feature vector is ( A1 , B1 , C1 , D1 ) ; the image capture time of the second (second frame) static monitoring image data is 2/30 second , and its corresponding feature vector is ( A2 , B2 , C2 , D2 ) , and so on.
信號生成模組23包含一向量數值運算單元231與一信號生成單元232。向量數值運算單元231係將特徵向量計算出依照影像擷取時間之發生順序排列之複數個向量數值。向量數值可藉由平方合開根號的方式計算出,譬如特徵向量為(A 1,B 1,C 1,D 1)之向量數值V 1即等於,特徵向量為(A 2,B 2,C 2,D 2)之向量數值V 2即等於。 The signal generation module 23 includes a vector numerical operation unit 231 and a signal generation unit 232. The vector numerical operation unit 231 calculates the feature vector into a plurality of vector values arranged in the order of occurrence of the image capture time. The vector value can be calculated by square root addition. For example , the vector value V1 of the feature vector ( A1 , B1 , C1 , D1 ) is equal to , the vector value V 2 of the eigenvector ( A 2 , B 2 , C 2 , D 2 ) is equal to .
數值信號生成單元232可依據影像擷取時間與向量數值生成一向量數值時域信號。譬如第1幀時間(1/30秒)對應於向量數值V 1,第2幀時間(2/30秒)對應於向量數值V 2,餘此類推,藉由向量數值與時間的對應關係,可以產生一向量數值時域信號,其波形圖如第 四圖所示。 The digital signal generating unit 232 can generate a vector digital time domain signal according to the image capture time and the vector digital value. For example, the first frame time (1/30 second) corresponds to the vector digital value V 1 , the second frame time (2/30 second) corresponds to the vector digital value V 2 , and so on. Through the correspondence between the vector digital value and time, a vector digital time domain signal can be generated, and its waveform is shown in the fourth figure.
頻譜轉換分析模組24係用以將向量數值時域信號以一解析窗寬時距(window width)進行一短時距傅立葉轉換(Short-time Fourier Transform,STFT)後轉換產生一頻譜圖(如第五圖所示),且頻譜圖包含複數個解析窗寬時距所對應之複數個組成頻率與複數個組成頻率信號之複數個組成頻率振幅。短時距傅立葉轉換(Short-time Fourier Transform,STFT)是將向量數值時域信號切割成多個時距為解析窗寬時距(window width)的局部信號,然後再對多個局部信號進行傅立葉轉換。因此,解析窗寬時距應為影像擷取週期(1/30秒)的整數倍,最好為1倍,也就是以解析窗寬時距正好等於影像擷取週期為最佳。 The spectrum conversion analysis module 24 is used to perform a short-time Fourier Transform (STFT) on the vector valued time domain signal with an analytical window width to generate a spectrum diagram (as shown in the fifth figure), and the spectrum diagram includes a plurality of component frequencies corresponding to a plurality of analytical window widths and a plurality of component frequency amplitudes of a plurality of component frequency signals. The short-time Fourier Transform (STFT) is to cut the vector valued time domain signal into a plurality of local signals with a time interval of the analytical window width, and then perform Fourier transformation on the plurality of local signals. Therefore, the resolution window width interval should be an integer multiple of the image acquisition cycle (1/30 second), preferably 1 times, that is, the resolution window width interval is exactly equal to the image acquisition cycle.
頻譜轉換分析模組24可針對每一個解析窗寬時距,將組成頻率振幅中最大一者定義為一最大振幅,並將最大振幅所對應之組成頻率中之一者定義為一主頻率。在本實施例中,第一個解析窗寬時距為0~1/30秒,第二個解析窗寬時距為1/30~2/30秒。在本實施例中,主頻率約為1/70Hz(約等於0.014Hz)。 The spectrum conversion analysis module 24 can define the largest one of the component frequency amplitudes as a maximum amplitude for each analysis window width time interval, and define one of the component frequencies corresponding to the maximum amplitude as a main frequency. In this embodiment, the first analysis window width time interval is 0 to 1/30 seconds, and the second analysis window width time interval is 1/30 to 2/30 seconds. In this embodiment, the main frequency is approximately 1/70 Hz (approximately equal to 0.014 Hz).
雜訊過濾模組25包含一雜訊過濾單元251與一代表頻率信號生成單元252。雜訊過濾單元251可依據最大振幅定義出一雜訊臨界振幅,並將組成頻率振幅中小於雜訊臨界振幅者所對應之上述部分些組成頻率所對應之部分該些組成頻率信號視為該至少一雜訊信號而加以濾除,較佳者,雜訊臨界振幅可為最大振幅的10%。 經過雜訊過濾單元251濾除雜訊後,第五圖所示之頻譜圖會轉變成第六圖所示之頻譜圖。 The noise filtering module 25 includes a noise filtering unit 251 and a representative frequency signal generating unit 252. The noise filtering unit 251 can define a noise critical amplitude according to the maximum amplitude, and regard the above-mentioned component frequency signals corresponding to the component frequency amplitudes less than the noise critical amplitude as the at least one noise signal and filter them. Preferably, the noise critical amplitude can be 10% of the maximum amplitude. After the noise is filtered by the noise filtering unit 251, the spectrum diagram shown in the fifth figure will be transformed into the spectrum diagram shown in the sixth figure.
代表頻率信號生成單元252可將其餘組成頻率所對應之其餘組成頻率信號作為複數個有效組成頻率信號加以擷取出,並依序在每一解析窗寬時距中,擷取振幅最大之有效組成頻率信號之一者所對應之組成頻率作為每一解析窗寬時距之一代表頻率,據以產生一代表頻率時域信號。也就是在第一個解析窗寬時距(0~1/30秒)擷取振幅最大的頻率作為第一個解析窗寬時距(0~1/30秒)的代表頻率,在第二個解析窗寬時距(1/30~2/30秒)擷取振幅最大的頻率作為第二個解析窗寬時距(0~1/30秒)的代表頻率,餘此類推,可獲得如第七圖所示之代表頻率時域信號波形圖。因為是每一解析窗寬時距對應於一代表頻率,所以代表頻率時域信號波形圖會是有振幅變化的方波。在本實施例中主頻率約為1/70Hz(約等於0.014Hz),從第七圖可以看出,大部分的解析窗寬時距所對應之代表頻率為1/70Hz(約等於0.014Hz)。 The representative frequency signal generating unit 252 can extract the remaining component frequency signals corresponding to the remaining component frequencies as a plurality of effective component frequency signals, and sequentially extract the component frequency corresponding to one of the effective component frequency signals with the largest amplitude in each analysis window width time interval as a representative frequency in each analysis window width time interval, thereby generating a representative frequency time domain signal. That is, the frequency with the largest amplitude in the first analysis window width (0~1/30 seconds) is captured as the representative frequency of the first analysis window width (0~1/30 seconds), and the frequency with the largest amplitude in the second analysis window width (1/30~2/30 seconds) is captured as the representative frequency of the second analysis window width, and so on, and the representative frequency time domain signal waveform shown in Figure 7 can be obtained. Because each analysis window width corresponds to a representative frequency, the representative frequency time domain signal waveform will be a square wave with amplitude changes. In this embodiment, the main frequency is about 1/70Hz (about 0.014Hz). As can be seen from Figure 7, the representative frequency corresponding to most of the analysis window width intervals is 1/70Hz (about 0.014Hz).
事件發生週期判斷模組26可包含一達成率運算單元261、一統計單元262、一事件發生時間運算單元263與一事件發生週期運算單元264。 The event occurrence cycle judgment module 26 may include an achievement rate calculation unit 261, a statistics unit 262, an event occurrence time calculation unit 263 and an event occurrence cycle calculation unit 264.
達成率運算單元261係將每一該些解析窗寬時距與對應之該代表頻率相乘以計算出一時距頻率乘積項,並且依序累加該些時距頻率乘積項而獲得一事件週期達成率。具體而言,事件週期達成率(event cycle
achievement rate,ECAR)可藉由以下算式計算出:
其中,i表示第i個解析窗寬時距;f i 表示第i個解析窗寬時距所對應之代表頻率,單位為Hz;T W 表示解析窗寬時距,在本實施例中為1/30秒;n表示時距頻率乘積項的乘積項累加項數。 Wherein, i represents the i-th analysis window width time interval; fi represents the representative frequency corresponding to the i-th analysis window width time interval, and the unit is Hz; T W represents the analysis window width time interval, which is 1/30 second in this embodiment; and n represents the number of accumulated product items of the time-frequency product items.
事件週期達成率ECAR等於1的意義為完成一次週期性事件,事件週期達成率ECAR等於2的意義為完成二次週期性事件,餘此類推。 The event cycle achievement rate ECAR equals 1, which means that one periodic event is completed; the event cycle achievement rate ECAR equals 2, which means that two periodic events are completed, and so on.
統計單元262係在事件達成率每一次剛滿一整數時,統計出一乘積項累加項數,藉以在該事件達成率剛滿複數個上述之整數時,分別統計出對應之複數個上述之乘積項累加項數。在本實施例中當乘積項累加項數n約等於2100、4201、6300...時,事件週期達成率ECAR分別剛滿1、2、3...。所謂「剛滿」的意義,包含「正好等於」或為「若不存在正好等於者,則以大於但最接近者為剛滿」。 The statistical unit 262 counts a product term accumulation number every time the event achievement rate just reaches an integer, so that when the event achievement rate just reaches a plurality of the above integers, the corresponding plurality of the above product term accumulation numbers are respectively counted. In this embodiment, when the product term accumulation number n is approximately equal to 2100, 4201, 6300..., the event cycle achievement rate ECAR just reaches 1, 2, 3... respectively. The so-called "just reaches" means "just equal to" or "if there is no exactly equal, the one that is greater than but closest is just reached".
譬如:若累加項數n為2100時,事件週期達成率ECAR=1,則事件週期達成率ECAR剛滿1時的乘積項累加項數n為2100。又譬如:若乘積項累加項數n為2099時,事件週期達成率ECAR=0.9998;乘積項累加項數n為2100時,事件週期達成率ECAR=1.0001;乘積項累 加項數n為2101時,事件週期達成率ECAR=1.0003,則事件週期達成率ECAR剛滿1時的累加項數n為2100。 For example: if the number of accumulated items n is 2100, the event cycle achievement rate ECAR=1, then the number of accumulated items n of the product items when the event cycle achievement rate ECAR just reaches 1 is 2100. Another example: if the number of accumulated items n of the product items is 2099, the event cycle achievement rate ECAR=0.9998; the number of accumulated items n of the product items is 2100, the event cycle achievement rate ECAR=1.0001; the number of accumulated items n of the product items is 2101, the event cycle achievement rate ECAR=1.0003, then the number of accumulated items n when the event cycle achievement rate ECAR just reaches 1 is 2100.
事件發生時間運算單元263係將乘積項累加項數分別乘以解析窗寬時距,藉以運算出複數個事件發生時間。在本實施例中,當事件週期達成率ECAR=1時,乘積項累加項數n(2100)乘以解析窗寬時距(1/30),可以計算出第一次週期性事件的事件發生時間為70秒;當事件週期達成率ECAR=2時,乘積項累加項數n(4201)乘以解析窗寬時距(1/30),可以計算出第二次週期性事件的事件發生時間為140.03秒;當事件週期達成率ECAR=3時,乘積項累加項數n(6300)乘以解析窗寬時距(1/30),可以計算出第三次週期性事件的事件發生時間為210秒;餘此類推。 The event occurrence time calculation unit 263 multiplies the product term accumulation term by the analysis window width time interval respectively to calculate a plurality of event occurrence times. In this embodiment, when the event cycle achievement rate ECAR=1, the number of product terms accumulated n(2100) multiplied by the resolution window width interval (1/30) can be calculated to be 70 seconds for the first periodic event; when the event cycle achievement rate ECAR=2, the number of product terms accumulated n(4201) multiplied by the resolution window width interval (1/30) can be calculated to be 140.03 seconds for the second periodic event; when the event cycle achievement rate ECAR=3, the number of product terms accumulated n(6300) multiplied by the resolution window width interval (1/30) can be calculated to be 210 seconds for the third periodic event; and so on.
由於事件週期達成率ECAR反映著週期性事件之事件發生次數,所以也可以用事件發生次數加以替代,因而產生如第八圖所示之事件發生次數與事件發生時間之對應曲線圖。其中,各圓點標記處為事件發生次數為整數的數據點,由左至右,第一個圓點標記表示第一次週期性事件之事件發生時間,第二個圓點標記表示第二次週期性事件之事件發生時間,餘此類推。 Since the event cycle achievement rate ECAR reflects the number of occurrences of periodic events, it can also be replaced by the number of occurrences of events, thus generating a corresponding curve diagram of the number of occurrences of events and the time of event occurrence as shown in Figure 8. Among them, each dot is a data point with an integer number of event occurrences. From left to right, the first dot indicates the time of occurrence of the first periodic event, the second dot indicates the time of occurrence of the second periodic event, and so on.
事件發生週期運算單元264可依據兩相鄰之事件發生時間之時間差距計算出一事件發生時間差。較佳者,可將多個事件發生時間差加以平均作為事件發生週期。 The event occurrence cycle calculation unit 264 can calculate an event occurrence time difference based on the time difference between the occurrence times of two adjacent events. Preferably, multiple event occurrence time differences can be averaged as the event occurrence cycle.
在本實施例中,第一次週期性事件的事件 發生時間為70秒,第二次週期性事件的事件發生時間為140.03秒,第三次週期性事件的事件發生時間為210秒。因此,第二次週期性事件與第一次週期性事件的事件發生時間差為70.03秒,第三次週期性事件與第二次週期性事件的事件發生時間差為69.97秒,兩者加以算術平均後可以得到事件發生週期為70秒。或者可繼續再將其餘多個事件發生時間差與上述兩個事件發生時間差加以平均而計算出更精確的事件發生週期。 In this embodiment, the event occurrence time of the first periodic event is 70 seconds, the event occurrence time of the second periodic event is 140.03 seconds, and the event occurrence time of the third periodic event is 210 seconds. Therefore, the event occurrence time difference between the second periodic event and the first periodic event is 70.03 seconds, and the event occurrence time difference between the third periodic event and the second periodic event is 69.97 seconds. After arithmetic averaging the two, the event occurrence cycle can be obtained as 70 seconds. Alternatively, the remaining event occurrence time differences can be averaged with the above two event occurrence time differences to calculate a more accurate event occurrence cycle.
在實務上,事件發生週期判斷模組26除了利用上述方式判斷出較精確的事件發生週期為之外,也可以直接在代表頻率時域信號波形圖中,找到所有解析窗寬時距所對應的代表頻率最多者,作為主頻率,本實施例中代表頻率最多者約為0.014Hz(相當於約1/70Hz),表示主頻率約為1/70Hz,然後直接將主頻率取倒數而粗略推估出事件發生週期約為70秒。 In practice, in addition to using the above method to determine a more accurate event occurrence cycle, the event occurrence cycle determination module 26 can also directly find the most representative frequencies corresponding to all analytical window width intervals in the representative frequency time domain signal waveform as the main frequency. In this embodiment, the most representative frequency is about 0.014Hz (equivalent to about 1/70Hz), indicating that the main frequency is about 1/70Hz, and then directly take the inverse of the main frequency to roughly estimate the event occurrence cycle to be about 70 seconds.
同時,在第八圖中,第30個圓點標記大約落在2100秒處,表示大約歷經2100秒可完成30次週期性事件,亦可驗證出事件發生週期約為70秒。此外,從第七圖與第八圖亦可知悉,大於在2100秒至2600秒之間,各解析窗寬時距的代表頻率皆為零,且沒有任何圓點標記,表示大約在2100秒至2600秒這段期間,沒有週期性事件發生。 At the same time, in the eighth figure, the 30th dot mark falls at about 2100 seconds, indicating that 30 periodic events can be completed in about 2100 seconds, and it can also be verified that the event cycle is about 70 seconds. In addition, it can be seen from the seventh and eighth figures that the representative frequency of each analysis window width time interval is zero between 2100 seconds and 2600 seconds, and there are no dot marks, indicating that no periodic events occur during the period from about 2100 seconds to 2600 seconds.
由於上述之特徵向量擷取模組22、信號生成模組23、頻譜轉換分析模組24、雜訊過濾模組25與事件發生週期判斷模組26都是在執行判斷程式JAP所產生 的,因此,特徵擷取模組21、監督式學習模組22、判斷模組23與驗證示警模組24在本質上可以是判斷程式JAP之(部分)主程式、副程式或執行判斷程式JAP後所產生之程式頁面或功能介面。舉凡在所屬技術領域(特別是人工智慧演算法領域)中具有通常知識者,都可以依據以上學習與判斷邏輯,利用適當的程式語言來編寫具備上述之特徵向量擷取模組22、信號生成模組23、頻譜轉換分析模組24、雜訊過濾模組25與事件發生週期判斷模組26功能之判斷程式JAP(含其主程式或副程式),藉以實現本發明之上述種種技術。 Since the above-mentioned feature vector acquisition module 22, signal generation module 23, spectrum conversion analysis module 24, noise filtering module 25 and event occurrence cycle judgment module 26 are all generated by executing the judgment program JAP, the feature acquisition module 21, supervised learning module 22, judgment module 23 and verification alarm module 24 can essentially be the (partial) main program, sub-program of the judgment program JAP or the program page or function interface generated after executing the judgment program JAP. Anyone with general knowledge in the relevant technical field (especially the field of artificial intelligence algorithms) can use the above learning and judgment logic and appropriate programming language to write a judgment program JAP (including its main program or sub-program) with the above-mentioned eigenvector acquisition module 22, signal generation module 23, spectrum conversion analysis module 24, noise filtering module 25 and event occurrence cycle judgment module 26 functions, so as to realize the above-mentioned various technologies of the present invention.
綜合以上所述,由於在本發明所提供之週期性事件之事件發生週期偵測系統100中,係利用直接從動態監控影像資料中的靜態監控影像資料中解析出週期性事件之事件發生週期,因此,可直接通用於對多個不同週期性事件(如工作站200的週期性工作事件)之事件發生週期(如工作站200的工作事件發生週期)的偵測,因此可以達到不再需要花費更多的資源來實現多個不同週期性事件之事件發生週期偵測的功效。 In summary, since the event occurrence cycle detection system 100 provided by the present invention directly analyzes the event occurrence cycle of the periodic event from the static monitoring image data in the dynamic monitoring image data, it can be directly used for detecting the event occurrence cycle (such as the work event occurrence cycle of the workstation 200) of multiple different periodic events (such as the periodic working events of the workstation 200), so that it is no longer necessary to spend more resources to realize the effect of event occurrence cycle detection of multiple different periodic events.
特別是當其應用於工作站時,不再需要花費更多的資源,即可輕鬆實現對多個不同工作站的工作事件之工作事件發生週期的偵測,因此,可大幅降低對生產線中之多種工作事件週期進行偵測的執行成本。 Especially when it is applied to workstations, it is no longer necessary to spend more resources to easily detect the work event occurrence cycle of work events in multiple different workstations. Therefore, the execution cost of detecting multiple work event cycles in the production line can be greatly reduced.
藉由以上較佳具體實施例之詳述,係希望能更加清楚描述本發明之特徵與精神,而並非以上述所揭露的較佳具體實施例來對本發明之範疇加以限制。相 反地,其目的是希望能涵蓋各種改變及具相等性的安排於本發明所欲申請之專利範圍的範疇內。 The above detailed description of the preferred specific embodiments is intended to more clearly describe the features and spirit of the present invention, but is not intended to limit the scope of the present invention by the preferred specific embodiments disclosed above. On the contrary, the purpose is to cover various changes and arrangements with equivalents within the scope of the patent application for the present invention.
100:偵測系統 100: Detection system
1:監控影像擷取裝置 1: Monitoring image capture device
2:週期判斷裝置 2: Cycle judgment device
21:人機介面模組 21: Human-machine interface module
211:顯示器 211: Display
212:操作介面 212: Operation interface
JAP:判斷程式 JAP: Judgment Program
22:特徵向量擷取模組 22: Feature vector extraction module
221:關注區域特徵向量擷取單元 221: Focus on the regional feature vector acquisition unit
23:信號生成模組 23:Signal generation module
231:向量數值運算單元 231: Vector numerical operation unit
232:信號生成單元 232:Signal generation unit
24:頻譜轉換分析模組 24: Spectrum conversion analysis module
25:雜訊過濾模組 25: Noise filtering module
251:雜訊過濾單元 251: Noise filtering unit
252:代表頻率信號生成單元 252: represents the frequency signal generation unit
26:事件發生週期判斷模組 26: Event occurrence cycle judgment module
261:達成率運算單元 261: Achievement rate calculation unit
262:統計單元 262: Statistical unit
263:事件發生時間運算單元 263: Event occurrence time calculation unit
264:事件發生週期運算單元 264: Event occurrence cycle operation unit
Claims (7)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW112135538A TWI865049B (en) | 2023-09-18 | 2023-09-18 | System for detecting occurrence period of cyclical event |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW112135538A TWI865049B (en) | 2023-09-18 | 2023-09-18 | System for detecting occurrence period of cyclical event |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TWI865049B true TWI865049B (en) | 2024-12-01 |
| TW202514295A TW202514295A (en) | 2025-04-01 |
Family
ID=94769150
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW112135538A TWI865049B (en) | 2023-09-18 | 2023-09-18 | System for detecting occurrence period of cyclical event |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI865049B (en) |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104123536A (en) * | 2009-08-20 | 2014-10-29 | 皇家飞利浦电子股份有限公司 | System and method for image analysis |
| CN115775411A (en) * | 2022-11-23 | 2023-03-10 | 北京京东乾石科技有限公司 | Period determination method and device |
| CN116403059A (en) * | 2023-01-17 | 2023-07-07 | 珠海高凌信息科技股份有限公司 | Multi-mode depth model-based environment identification method, device and storage medium |
-
2023
- 2023-09-18 TW TW112135538A patent/TWI865049B/en active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104123536A (en) * | 2009-08-20 | 2014-10-29 | 皇家飞利浦电子股份有限公司 | System and method for image analysis |
| CN115775411A (en) * | 2022-11-23 | 2023-03-10 | 北京京东乾石科技有限公司 | Period determination method and device |
| CN116403059A (en) * | 2023-01-17 | 2023-07-07 | 珠海高凌信息科技股份有限公司 | Multi-mode depth model-based environment identification method, device and storage medium |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202514295A (en) | 2025-04-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Rato et al. | Translation-invariant multiscale energy-based PCA for monitoring batch processes in semiconductor manufacturing | |
| EP2792788B1 (en) | Process for extracting dominant spectral components from a power spectrum of noisy measurements | |
| US8942939B2 (en) | Real-time detection system and the method thereof | |
| CN106373124A (en) | Gray-level co-occurrence matrix and RANSAC-based industrial product surface defect visual detection method | |
| JP2015215709A (en) | Apparatus data processor and apparatus data processing method | |
| TWI865049B (en) | System for detecting occurrence period of cyclical event | |
| KR100679721B1 (en) | Fluctuation Detection Method of Semiconductor Process Equipment | |
| US20250078512A1 (en) | System for detecting occurrence period of cyclical event | |
| Sheriff et al. | Univariate process monitoring using multiscale Shewhart charts | |
| CN117991029B (en) | Method and system for automatically preventing electromagnetic interference based on torsion testing machine | |
| KR20180073273A (en) | Method and apparatus for reducing false alarm based on statics analysis | |
| CN118096704A (en) | Burner state monitoring system and method based on machine vision | |
| Souma et al. | Towards online health monitoring of robotic arm | |
| KR101830331B1 (en) | Apparatus for detecting abnormal operation of machinery and method using the same | |
| CN109829944A (en) | Particulate matter accumulated partial size statistical method based on image procossing | |
| Čisar et al. | Kernel sets in compass edge detection | |
| Shui et al. | An anomaly detection and diagnosis method based on real-time health monitoring for progressive stamping processes | |
| US20230068757A1 (en) | Work rate measurement device and work rate measurement method | |
| CN112601967B (en) | Method and system for condition monitoring of electrical equipment | |
| CN114358079B (en) | A method, system and storage medium for adaptive recognition of multi-source heterogeneous data collection | |
| Sheriff et al. | Enhanced performance of shewhart charts using multiscale representation | |
| CN121244562A (en) | A visual inspection and sorting method and system for defects in insulation board processing | |
| TWI436047B (en) | System and method for evaluating mechanical vibration signal using mse | |
| TWI854452B (en) | Diagnostic device, diagnostic method, semiconductor manufacturing device system, and semiconductor device manufacturing system | |
| KR102761767B1 (en) | Pre-Trained Partial Discharge Analyzer Base on Partial Discharge Signal Differentiation Analysis and Partial Discharge Peak Phase Dispersion Analysis |