[go: up one dir, main page]

TWI863080B - Dynamic locating correction method and system - Google Patents

Dynamic locating correction method and system Download PDF

Info

Publication number
TWI863080B
TWI863080B TW112100089A TW112100089A TWI863080B TW I863080 B TWI863080 B TW I863080B TW 112100089 A TW112100089 A TW 112100089A TW 112100089 A TW112100089 A TW 112100089A TW I863080 B TWI863080 B TW I863080B
Authority
TW
Taiwan
Prior art keywords
precision
coordinate data
computing device
positioning
dynamic
Prior art date
Application number
TW112100089A
Other languages
Chinese (zh)
Other versions
TW202429127A (en
Inventor
陳一元
陳證傑
周弘裕
賴理研
林欣宜
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW112100089A priority Critical patent/TWI863080B/en
Priority to CN202310045283.0A priority patent/CN118294992A/en
Publication of TW202429127A publication Critical patent/TW202429127A/en
Application granted granted Critical
Publication of TWI863080B publication Critical patent/TWI863080B/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/07Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/10Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing dedicated supplementary positioning signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

A dynamic locating correction system includes: a computing device; a correction moving vehicle installing a first and a second precision location module communicating with the computing device, the first and the second precision location module respectively generating a first and a second precision coordinate data to the computing device; and a plurality of client devices installing a plurality of second precision location modules communicating with the computing device, the plurality of second precision location modules generating a plurality of second precision coordinate data to the computing device. In training, the computing device trains a dynamic learning unit based on the first and the second precision coordinate data from the correction moving vehicle. In coordinate data correction, the dynamic learning unit corrects the second precision coordinate data from the plurality of second precision location modules of the plurality of client devices and sends a plurality of corrected second precision coordinate data to the second precision location modules of the plurality of client devices; or the computing device sends a dynamic learning model parameter data of the dynamic learning unit to the second precision location modules of the plurality of client devices and the second precision location modules of the plurality of client devices correct the second precision coordinate data.

Description

動態定位校正方法與系統 Dynamic positioning correction method and system

本發明是有關於一種動態定位校正方法與系統。 The present invention relates to a dynamic positioning correction method and system.

在櫃場自動化作業管理中,掌控作業提升效率為櫃場管理目標。對於貨櫃場內的貨櫃車之定位追蹤為重要環節。一般港口的貨櫃場的場地面積廣大,進出車一天可能高達5000車次,尖峰時間更可能有高達500輛車同時在貨櫃場作業。在貨櫃場內進行交櫃、領櫃、移櫃等作業時,管理單位必須即時追蹤貨櫃車之位置,事先做排程,提升作業效率。但是,由於多層貨櫃堆疊形成金屬高牆,對定位常用之全球定位系統(Global Positioning System,GPS)訊號造成極大干擾。 In the automated operation management of container yards, controlling operations and improving efficiency are the management goals of container yards. Positioning and tracking of container trucks in container yards is an important link. The container yards of general ports are large in area, and there may be up to 5,000 vehicles entering and leaving the yard every day. During peak hours, there may be up to 500 vehicles operating in the container yard at the same time. When performing operations such as handing over containers, picking up containers, and moving containers in the container yard, the management unit must track the location of container trucks in real time, make schedules in advance, and improve operation efficiency. However, due to the high metal walls formed by the stacking of multiple layers of containers, it causes great interference to the Global Positioning System (GPS) signal commonly used for positioning.

此外,櫃場自動化作業管理中,如何建置影像式定位系統也是一大挑戰。因為現場不易架設攝影機,且受戶外環境的影響大較大(日、夜、雨天、強光等),而且建置成本高。 In addition, in the automated operation management of the counter, how to build an image positioning system is also a big challenge. Because it is not easy to set up a camera on site, and it is greatly affected by the outdoor environment (day, night, rainy days, strong light, etc.), and the construction cost is high.

目前的定位技術而言,高精度GPS技術(如實時動態技術(RTK:Real Time Kinematic)雖然可以達到高精準度定位, 但其單價高,在大規模的應用場域(如貨櫃場)時,系統建置與維護成本極高。 As for current positioning technology, high-precision GPS technology (such as real-time kinematic technology (RTK)) can achieve high-precision positioning, but its unit price is high. When it is used in large-scale application scenarios (such as container yards), the system construction and maintenance costs are extremely high.

至於比較便宜的定位技術,例如以無線電波為基礎之定位技術,雖然其建置成本低,但仍需克服以下問題:金屬干擾、多路徑效應、定位模組本身的誤差、氣候環境影響與時變性等。 As for cheaper positioning technologies, such as those based on radio waves, although their construction costs are low, they still need to overcome the following problems: metal interference, multipath effects, errors in the positioning module itself, climate and environmental influences, and time-varying properties.

故而,需要一個建置容易、維護成本低並能克服無線電波干擾的動態定位校正方法與系統。 Therefore, a dynamic positioning correction method and system that is easy to build, has low maintenance costs, and can overcome radio wave interference is needed.

本發明目的係利用深度學習進行動態定位校正,克服金屬貨櫃堆疊及天候等對GPS訊號的干擾,提高GPS定位精確度,達到低成本高精度大區域之室外定位追蹤之目標。 The purpose of this invention is to use deep learning to perform dynamic positioning correction, overcome the interference of metal container stacking and weather on GPS signals, improve GPS positioning accuracy, and achieve the goal of low-cost, high-precision, large-area outdoor positioning tracking.

本發明提出一種動態定位校正系統,包括:一運算裝置;一校正移動車輛,安裝一第一精度定位模組與一第二精度定位模組,該第一精度定位模組與該第二精度定位模組通訊於該運算裝置,該第一精度定位模組產生一第一精度座標資料給該運算裝置,該第二精度定位模組產生一第二精度座標資料給該運算裝置;以及複數個用戶端裝置,安裝複數個第二精度定位模組,該些第二精度定位模組通訊於該運算裝置,該些第二精度定位模組產生複數個第二精度座標資料給該運算裝置,其中,於訓練時,該運算裝置根據由該校正移動車輛所傳來的該第一精度座標資料與該第二精度座標資料而訓練該運算裝置之一動態學習單元;於 座標資料校正時,該動態學習單元校正由安裝於該些用戶端裝置的該些第二精度定位模組所傳來的該些第二精度座標資料並將複數個校正後第二精度座標資料傳給該些用戶端裝置的該些第二精度定位模組,或者,該運算裝置傳送該動態學習單元的一動態學習模型參數資料給安裝於該些用戶端裝置的該些第二精度定位模組而由安裝於該些用戶端裝置的該些第二精度定位模組校正該些第二精度座標資料。 The present invention provides a dynamic positioning correction system, comprising: a computing device; a correction mobile vehicle, equipped with a first precision positioning module and a second precision positioning module, the first precision positioning module and the second precision positioning module communicate with the computing device, the first precision positioning module generates a first precision coordinate data for the computing device, and the second precision positioning module generates a second precision coordinate data for the computing device; and a plurality of client devices, equipped with a plurality of second precision positioning modules, the second precision positioning modules communicate with the computing device, the second precision positioning modules generate a plurality of second precision coordinate data for the computing device, wherein during training, the computing device is based on the first precision positioning module and the second precision positioning module. The first precision coordinate data and the second precision coordinate data transmitted by the calibration mobile vehicle are used to train a dynamic learning unit of the computing device; when the coordinate data is calibrated, the dynamic learning unit calibrates the second precision coordinate data transmitted by the second precision positioning modules installed on the client devices and transmits a plurality of corrected second precision coordinate data to the second precision positioning modules of the client devices, or the computing device transmits a dynamic learning model parameter data of the dynamic learning unit to the second precision positioning modules installed on the client devices, and the second precision positioning modules installed on the client devices calibrate the second precision coordinate data.

本發明另一實施例係提出一種動態定位校正方法,包括:由一第一精度定位模組產生一第一精度座標資料給一運算裝置,該第一精度定位模組安裝於一校正移動車輛;由安裝於該校正移動車輛的一第二精度定位模組產生一第二精度座標資料給該運算裝置;根據由該校正移動車輛所傳來的該第一精度座標資料與該第二精度座標資料而訓練該運算裝置之一動態學習單元;以及於座標資料校正時,該動態學習單元校正由安裝於複數個用戶端裝置的複數個第二精度定位模組所傳來的複數個第二精度座標資料並將複數個校正後第二精度座標資料傳給該些用戶端裝置的該些第二精度定位模組,或者,該運算裝置傳送該動態學習單元的一動態學習模型參數資料給安裝於該些用戶端裝置的該些第二精度定位模組而由安裝於該些用戶端裝置的該些第二精度定位模組校正該些第二精度座標資料。 Another embodiment of the present invention is to provide a dynamic positioning calibration method, comprising: generating a first precision coordinate data to a computing device by a first precision positioning module, the first precision positioning module being installed on a calibration mobile vehicle; generating a second precision coordinate data to the computing device by a second precision positioning module installed on the calibration mobile vehicle; training a dynamic learning unit of the computing device according to the first precision coordinate data and the second precision coordinate data transmitted by the calibration mobile vehicle; and during the coordinate data calibration, The dynamic learning unit calibrates a plurality of second-precision coordinate data transmitted from a plurality of second-precision positioning modules installed in a plurality of client devices and transmits a plurality of calibrated second-precision coordinate data to the second-precision positioning modules of the client devices, or the computing device transmits a dynamic learning model parameter data of the dynamic learning unit to the second-precision positioning modules installed in the client devices, and the second-precision positioning modules installed in the client devices calibrate the second-precision coordinate data.

本發明的動態定位校正系統所需基礎建設成本低,建置容易。而且本發明可透過整合網路的自動化系統,帶來高效 率與不中斷的服務,可協助貨櫃港達成降低人力成本、縮短作業時間、增加作業安全、減少意外事故及增進管理效率等目標。本發明可為未來自駕拖車技術鋪路:車輛定位可成為自動報到、資料交換、工作指令下達等作業功能之基礎,達成櫃場內作業自動化之目標。 The dynamic positioning correction system of the present invention requires low infrastructure costs and is easy to build. Moreover, the present invention can bring high efficiency and uninterrupted services through the integration of network automation systems, which can help container ports achieve the goals of reducing labor costs, shortening operation time, increasing operation safety, reducing accidents and improving management efficiency. The present invention can pave the way for future self-driving trailer technology: vehicle positioning can become the basis for automatic reporting, data exchange, work order issuance and other operation functions, achieving the goal of automation of operations in the container yard.

為了對本發明之上述及其他方面有更佳的瞭解,下文特舉實施例,並配合所附圖式詳細說明如下: In order to better understand the above and other aspects of the present invention, the following is a specific example and a detailed description with the attached drawings as follows:

100:動態定位校正系統 100: Dynamic positioning correction system

110:高精度定位模組 110: High-precision positioning module

105:校正移動車輛 105: Calibrate moving vehicles

120:低精度定位模組 120: Low-precision positioning module

115:用戶端裝置 115: Client device

130:運算裝置 130: Computing device

131:動態學習單元 131: Dynamic Learning Unit

133:輸出資料單元 133: Output data unit

135:運算效能判斷單元 135: Computational performance judgment unit

137:儲存單元 137: Storage unit

D:低精度座標資料 D: Low-precision coordinate data

P:參數資料 P: parameter data

D”:校正後座標資料 D”: Corrected coordinate data

300:定位模組 300: Positioning module

310:定位單元 310: Positioning unit

320:通訊單元 320: Communication unit

330:處理單元 330: Processing unit

340:儲存單元 340: Storage unit

341:軌跡資料庫 341:Track database

401:GPS衛星 401:GPS satellite

403:工業電腦 403:Industrial Computer

405:樹莓派主機板 405: Raspberry Pi motherboard

第1圖繪示根據本發明一實施例的動態定位校正系統之方塊圖。 Figure 1 shows a block diagram of a dynamic positioning correction system according to an embodiment of the present invention.

第2A圖顯示根據本發明一實施例之動態定位校正系統之訓練階段。 Figure 2A shows the training phase of the dynamic positioning correction system according to an embodiment of the present invention.

第2B圖與第2C圖顯示根據本發明一實施例之動態定位校正系統之操作示意方塊圖。 Figures 2B and 2C show schematic block diagrams of the operation of a dynamic positioning correction system according to an embodiment of the present invention.

第3圖顯示根據本發明一實施例之定位模組之功能方塊圖。 Figure 3 shows a functional block diagram of a positioning module according to an embodiment of the present invention.

第4圖顯示根據本發明一實施例之動態定位校正系統之操作示意圖。 Figure 4 shows a schematic diagram of the operation of a dynamic positioning correction system according to an embodiment of the present invention.

第5圖顯示根據本發明一實施例之動態定位校正方法之流程圖。 Figure 5 shows a flow chart of a dynamic positioning correction method according to an embodiment of the present invention.

本說明書的技術用語係參照本技術領域之習慣用語, 如本說明書對部分用語有加以說明或定義,該部分用語之解釋係以本說明書之說明或定義為準。本揭露之各個實施例分別具有一或多個技術特徵。在可能實施的前提下,本技術領域具有通常知識者可選擇性地實施任一實施例中部分或全部的技術特徵,或者選擇性地將這些實施例中部分或全部的技術特徵加以組合。 The technical terms in this manual refer to the customary terms in this technical field. If this manual explains or defines some terms, the interpretation of these terms shall be based on the explanation or definition in this manual. Each embodiment disclosed in this disclosure has one or more technical features. Under the premise of possible implementation, a person with ordinary knowledge in this technical field can selectively implement some or all of the technical features in any embodiment, or selectively combine some or all of the technical features in these embodiments.

請參照第1圖,其繪示根據本發明一實施例的動態定位校正系統之方塊圖。如第1圖所示,根據本發明一實施例的動態定位校正系統100包括:安裝高精度定位模組110與低精度定位模組120的校正移動車輛105、複數個用戶端裝置115(各用戶端裝置115安裝個別的低精度定位模組120),與運算裝置130。運算裝置130包括:動態學習單元131、輸出資料單元133、運算效能判斷單元135與儲存單元137。 Please refer to FIG. 1, which shows a block diagram of a dynamic positioning correction system according to an embodiment of the present invention. As shown in FIG. 1, a dynamic positioning correction system 100 according to an embodiment of the present invention includes: a correction mobile vehicle 105 equipped with a high-precision positioning module 110 and a low-precision positioning module 120, a plurality of client devices 115 (each client device 115 is equipped with a respective low-precision positioning module 120), and a computing device 130. The computing device 130 includes: a dynamic learning unit 131, an output data unit 133, a computing performance judgment unit 135, and a storage unit 137.

其中,動態學習單元131、輸出資料單元133、運算效能判斷單元135可以例如是藉由使用一晶片、晶片內的一電路區塊、一韌體電路、含有數個電子元件及導線的電路板或儲存複數組程式碼的一儲存媒體來實現。儲存單元137例如但不受限於,為硬碟、光碟、固態硬碟等。 Among them, the dynamic learning unit 131, the output data unit 133, and the computing performance judgment unit 135 can be implemented by using, for example, a chip, a circuit block in a chip, a firmware circuit, a circuit board containing several electronic components and wires, or a storage medium storing multiple sets of program codes. The storage unit 137 is, for example but not limited to, a hard disk, an optical disk, a solid state drive, etc.

高精度定位模組110為有線通訊或無線通訊於運算裝置130。高精度定位模組110可提供高精度座標資料(例如但不受限於,實時動態(RTK)座標信號或影像座標信號)給運算裝置130。高精度定位模組110例如但不受限於,RTK、攝影機或雷射探測與測距(Light Detection And Ranging,LiDAR)等。在 底下,高精度座標資料亦可稱為第一精度座標資料。低精度定位模組120係以智慧手機等硬體之GPS訊號為基礎,同時以RTK、攝影機或LiDAR等硬體之高精度定位模組110之訊號作為基準事實,訓練AI動態學習單元以產生校正之座標資料,提高GPS訊號準確度,達成低成本高精度大區域之室外定位目標。 The high-precision positioning module 110 is wired or wirelessly communicated with the computing device 130. The high-precision positioning module 110 can provide high-precision coordinate data (such as but not limited to, real-time kinematic (RTK) coordinate signals or image coordinate signals) to the computing device 130. The high-precision positioning module 110 is such as but not limited to, RTK, camera or laser detection and ranging (Light Detection And Ranging, LiDAR) and the like. Hereinafter, the high-precision coordinate data may also be referred to as the first-precision coordinate data. The low-precision positioning module 120 is based on the GPS signal of hardware such as smartphones, and uses the signal of the high-precision positioning module 110 of hardware such as RTK, cameras or LiDAR as a benchmark fact to train the AI dynamic learning unit to generate corrected coordinate data, improve the accuracy of GPS signals, and achieve the goal of low-cost, high-precision, large-area outdoor positioning.

該些低精度定位模組120通訊於運算裝置130。低精度定位模組120例如但不受限於智慧手機之GPS信號接收電路。該些低精度定位模組120可產生低精度座標資料(例如但不受限於,一般GPS座標資訊)給運算裝置130。低精度定位模組120所即時產生的低精度座標資料包括,例如但不受限於,硬體唯一辨識碼、低精度座標與低精度座標產生時間等。硬體唯一辨識碼可用於辨識該低精度座標資料是由哪一個用戶端裝置115所產生。在底下,低精度座標資料亦可稱為第二精度座標資料。 The low-precision positioning modules 120 communicate with the computing device 130. The low-precision positioning modules 120 are, for example but not limited to, the GPS signal receiving circuit of a smart phone. The low-precision positioning modules 120 can generate low-precision coordinate data (for example but not limited to, general GPS coordinate information) for the computing device 130. The low-precision coordinate data generated in real time by the low-precision positioning module 120 includes, for example but not limited to, a hardware unique identification code, low-precision coordinates, and low-precision coordinate generation time. The hardware unique identification code can be used to identify which client device 115 generated the low-precision coordinate data. In the following, the low-precision coordinate data may also be referred to as second-precision coordinate data.

在本發明一實施例中,低精度定位模組120所提供的低精度座標資料的定位誤差可能有數公尺,定位誤差屬於公尺等級;以及,高精度定位模組110所提供高精度座標資料的定位誤差可能只有幾公分,定位誤差屬於公分等級。 In one embodiment of the present invention, the positioning error of the low-precision coordinate data provided by the low-precision positioning module 120 may be several meters, and the positioning error belongs to the meter level; and the positioning error of the high-precision coordinate data provided by the high-precision positioning module 110 may be only a few centimeters, and the positioning error belongs to the centimeter level.

例如但不受限於,該些用戶端裝置115為貨車司機的智慧型手機。 For example but not limited to, the client devices 115 are smart phones of truck drivers.

在本發明一實施例中,運算裝置130安裝於雲端伺服器上,以及,高精度定位模組110為無線通訊於運算裝置130。在本發明另一實施例中,運算裝置130安裝於校正移動車輛105 上,以及,高精度定位模組110為有線通訊於運算裝置130。 In one embodiment of the present invention, the computing device 130 is installed on a cloud server, and the high-precision positioning module 110 is in wireless communication with the computing device 130. In another embodiment of the present invention, the computing device 130 is installed on a calibration mobile vehicle 105, and the high-precision positioning module 110 is in wired communication with the computing device 130.

於訓練階段,動態學習單元131可根據安裝於同一校正移動車輛105的高精度定位模組110與低精度定位模組120所分別提供的高精度座標資料與低精度座標資料而執行訓練AI動態學習模型,此AI動態學習模型例如但不受限於,可為長短期記憶(Long Short-Term Memory,LSTM)、循環神經網路(Recurrent Neural Network,RNN)、閘循環單元(Gated Recurrent Unit,GRU)等AI演算模型。 During the training phase, the dynamic learning unit 131 can execute training of the AI dynamic learning model based on the high-precision coordinate data and low-precision coordinate data provided by the high-precision positioning module 110 and the low-precision positioning module 120 installed on the same calibration mobile vehicle 105. The AI dynamic learning model can be, for example but not limited to, an AI calculation model such as a long short-term memory (LSTM), a recurrent neural network (RNN), or a gated recurrent unit (GRU).

也就是說,在訓練階段,動態學習單元131可將校正移動車輛105的高精度定位模組110所提供的高精度座標資料當成參考值,進而校正安裝於校正移動車輛105的低精度定位模組120所提供的低精度座標資料,藉此來訓練AI動態學習模型。 That is, during the training phase, the dynamic learning unit 131 can use the high-precision coordinate data provided by the high-precision positioning module 110 of the calibration mobile vehicle 105 as a reference value, and then calibrate the low-precision coordinate data provided by the low-precision positioning module 120 installed on the calibration mobile vehicle 105, thereby training the AI dynamic learning model.

於座標校正階段,動態學習單元131可將安裝於用戶端裝置115的該些低精度定位模組120所傳來的即時低精度座標資料校正為校正後座標資料。 In the coordinate correction stage, the dynamic learning unit 131 can correct the real-time low-precision coordinate data transmitted by the low-precision positioning modules 120 installed in the client device 115 into corrected coordinate data.

輸出資料單元133可輸出動態學習單元131的動態學習模型及/或經校正後座標資料給該些用戶端裝置115。 The output data unit 133 can output the dynamic learning model and/or the corrected coordinate data of the dynamic learning unit 131 to the client devices 115.

當運算效能判斷單元135判斷該用戶端裝置115的運算效能數值大於一門檻值(代表該用戶端裝置115的運算能力足夠自行將本身的低精度座標資料校正為校正後座標資料)時,資料輸出單元133輸出AI動態學習模型的參數資料給該用戶端裝置115。於接收到AI動態學習模型的參數資料後,用戶端裝置115 可藉此來修正本身的AI動態學習模型,其中,用戶端裝置115的AI動態學習模型例如是安裝於用戶端裝置115的手機應用程式。 When the computing performance determination unit 135 determines that the computing performance value of the client device 115 is greater than a threshold value (indicating that the computing power of the client device 115 is sufficient to automatically calibrate its own low-precision coordinate data to the calibrated coordinate data), the data output unit 133 outputs the parameter data of the AI dynamic learning model to the client device 115. After receiving the parameter data of the AI dynamic learning model, the client device 115 can use it to correct its own AI dynamic learning model, wherein the AI dynamic learning model of the client device 115 is, for example, a mobile phone application installed on the client device 115.

相反地,當運算效能判斷單元135判斷該用戶端裝置115的運算效能數值小於門檻值(代表該用戶端裝置115的運算能力不足以自行將本身的低精度座標資料校正為校正後座標資料),則資料輸出單元133輸出校正後座標資料給該用戶端裝置115。於接收到校正後座標資料後,用戶端裝置115可將該校正後座標資料當成本身的座標信號,以提高定位精準度。 On the contrary, when the computing performance determination unit 135 determines that the computing performance value of the client device 115 is less than the threshold value (indicating that the computing capability of the client device 115 is insufficient to calibrate its own low-precision coordinate data into the corrected coordinate data), the data output unit 133 outputs the corrected coordinate data to the client device 115. After receiving the corrected coordinate data, the client device 115 can use the corrected coordinate data as its own coordinate signal to improve positioning accuracy.

儲存單元137可儲存該些低精度定位模組120的個別唯一辨識碼、該些低精度定位模組120的低精度座標資料與低精度座標產生時間資訊、該些低精度定位模組120的校正後座標資料等。 The storage unit 137 can store the individual unique identification codes of the low-precision positioning modules 120, the low-precision coordinate data of the low-precision positioning modules 120 and the low-precision coordinate generation time information, the corrected coordinate data of the low-precision positioning modules 120, etc.

第2A圖顯示根據本發明一實施例之動態定位校正系統之訓練階段。在本發明一實施例中,於訓練階段,動態學習單元131可將校正移動車輛105的高精度定位模組110所提供的高精度座標資料當成參考值,進而校正安裝於校正移動車輛105的低精度定位模組120所提供的低精度座標資料,藉此來訓練AI動態學習模型。 FIG. 2A shows the training phase of the dynamic positioning correction system according to an embodiment of the present invention. In an embodiment of the present invention, during the training phase, the dynamic learning unit 131 can use the high-precision coordinate data provided by the high-precision positioning module 110 of the correction mobile vehicle 105 as a reference value, and then correct the low-precision coordinate data provided by the low-precision positioning module 120 installed on the correction mobile vehicle 105, thereby training the AI dynamic learning model.

於訓練階段,安裝有高精度定位模組110與低精度定位模組120的校正移動車輛繞行櫃場。校正移動車輛105的高精度定位模組110與低精度定位模組120各自不斷的產生高精度 座標資料與低精度座標資料,並且傳遞到運算裝置130。運算裝置130的儲存單元137保存高精度軌跡(由高精度座標資料所組成)與低精度軌跡(由低精度座標資料所組成)。 During the training phase, a calibration mobile vehicle equipped with a high-precision positioning module 110 and a low-precision positioning module 120 circulates around the store. The high-precision positioning module 110 and the low-precision positioning module 120 of the calibration mobile vehicle 105 each continuously generate high-precision coordinate data and low-precision coordinate data, and transmit them to the computing device 130. The storage unit 137 of the computing device 130 saves the high-precision trajectory (composed of high-precision coordinate data) and the low-precision trajectory (composed of low-precision coordinate data).

運算裝置130中的軌跡資料比對模組(未顯示出)從儲存單元137取出在同一起迄時間段內,由校正移動車輛105的高精度定位模組110與低精度定位模組120所產生的高精度座標資料與低精度座標資料,藉此確保所取出的高精度軌跡與低精度軌跡是在同一起訖時間段。動態學習單元131根據高精度軌跡與低精度軌跡來執行AI模型訓練。當訓練完成後,運算裝置130便將新的AI模型更新到儲存單元137,並且運算裝置130將新的AI模型統一傳遞給櫃場中的具備門檻計算能力的用戶端裝置115。運算裝置130不會將新的AI模型傳送給不具備門檻計算能力的用戶端裝置115。 The trajectory data comparison module (not shown) in the computing device 130 retrieves the high-precision coordinate data and low-precision coordinate data generated by the high-precision positioning module 110 and the low-precision positioning module 120 of the calibrated mobile vehicle 105 from the storage unit 137 within the same start and end time period, thereby ensuring that the retrieved high-precision trajectory and low-precision trajectory are in the same start and end time period. The dynamic learning unit 131 performs AI model training based on the high-precision trajectory and the low-precision trajectory. When the training is completed, the computing device 130 updates the new AI model to the storage unit 137, and the computing device 130 uniformly transmits the new AI model to the client device 115 with threshold calculation capabilities in the storage unit 137. The computing device 130 will not transmit the new AI model to the client device 115 that does not have the threshold computing capability.

也就是說,於本案一實施例中,於訓練階段,並不會將用戶端裝置115的低精度定位模組120所提供的低精度座標資料拿來訓練AI動態學習模型。 That is to say, in an embodiment of the present case, during the training phase, the low-precision coordinate data provided by the low-precision positioning module 120 of the client device 115 will not be used to train the AI dynamic learning model.

訓練好的動態學習單元131可產生校正後座標資料,用以校正低精度座標資料,提高低精度座標資料的準確度,達成低成本高精度大區域之室外定位目標。 The trained dynamic learning unit 131 can generate corrected coordinate data to correct low-precision coordinate data, improve the accuracy of low-precision coordinate data, and achieve the goal of low-cost, high-precision, large-area outdoor positioning.

第2B圖與第2C圖顯示根據本發明一實施例之動態定位校正系統之操作示意方塊圖。於第2B圖與第2C圖中,該些低精度定位模組120產生低精度座標資料D給運算裝置130。運 算裝置130將該些低精度座標資料D儲存於儲存單元137內,以供其他應用領域使用或查詢等。 FIG. 2B and FIG. 2C show schematic block diagrams of the operation of a dynamic positioning correction system according to an embodiment of the present invention. In FIG. 2B and FIG. 2C, the low-precision positioning modules 120 generate low-precision coordinate data D to the computing device 130. The computing device 130 stores the low-precision coordinate data D in the storage unit 137 for use or query in other application fields, etc.

於第2B圖中,當運算效能判斷單元135判斷該用戶端裝置115的運算效能數值大於門檻值(代表該用戶端裝置115的運算能力足夠自行將本身的低精度座標資料校正為校正後座標資料)時,資料輸出單元133輸出AI動態學習模型的參數資料P給該用戶端裝置115。於接收到AI動態學習模型的參數資料P後,用戶端裝置115可藉此來修正本身的AI動態學習模型,其中,用戶端裝置115的AI動態學習模型例如是安裝於用戶端裝置115的手機應用程式。 In FIG. 2B , when the computing performance determination unit 135 determines that the computing performance value of the client device 115 is greater than the threshold value (indicating that the computing capability of the client device 115 is sufficient to automatically calibrate its own low-precision coordinate data to the calibrated coordinate data), the data output unit 133 outputs the parameter data P of the AI dynamic learning model to the client device 115. After receiving the parameter data P of the AI dynamic learning model, the client device 115 can use it to correct its own AI dynamic learning model, wherein the AI dynamic learning model of the client device 115 is, for example, a mobile phone application installed on the client device 115.

於第2C圖中,當運算效能判斷單元135判斷該用戶端裝置115的運算效能數值小於門檻值(代表該用戶端裝置115的運算能力不足以自行將本身的低精度座標資料校正為校正後座標資料),則資料輸出單元133輸出校正後座標資料D”給該用戶端裝置115。於接收到校正後座標資料D”後,用戶端裝置115可將該校正後座標資料當成本身的座標信號,以提高定位精準度。 In FIG. 2C, when the computing performance determination unit 135 determines that the computing performance value of the client device 115 is less than the threshold value (indicating that the computing capability of the client device 115 is insufficient to calibrate its own low-precision coordinate data to the corrected coordinate data), the data output unit 133 outputs the corrected coordinate data D" to the client device 115. After receiving the corrected coordinate data D", the client device 115 can use the corrected coordinate data as its own coordinate signal to improve positioning accuracy.

於第2B圖與第2C圖中,動態學習單元131即時接收該些低精度定位模組120所傳來的該些低精度座標資料,根據每一低精度座標資料的軌跡來計算出校正後座標資料與其軌跡,並將全部的校正後座標資料與其軌跡保存於儲存單元137內。 In FIG. 2B and FIG. 2C, the dynamic learning unit 131 receives the low-precision coordinate data transmitted by the low-precision positioning modules 120 in real time, calculates the corrected coordinate data and its trajectory according to the trajectory of each low-precision coordinate data, and saves all the corrected coordinate data and its trajectory in the storage unit 137.

於第2B圖與第2C圖中,運算裝置130提供軌跡查 詢介面,任何裝置皆可透過網際網路存取該查詢介面,取得校正過座標資料。運算裝置130可為一處理器或高階運算器等。 In Figures 2B and 2C, the computing device 130 provides a trajectory query interface. Any device can access the query interface through the Internet to obtain the calibrated coordinate data. The computing device 130 can be a processor or a high-level computing device, etc.

在本發明一實施例中,用戶端裝置115的該些低精度定位模組120對該運算裝置130的系統註冊時,將用戶端裝置115的自身硬體規格(例如,中央處理器(CPU)規格、記憶體使用量等)資訊傳送給運算效能判斷單元135。運算效能判斷單元135按照該些用戶端裝置115之硬體規格等資訊,計算該些用戶端裝置115之運算效能數值。 In one embodiment of the present invention, when the low-precision positioning modules 120 of the client device 115 register with the system of the computing device 130, the hardware specifications (e.g., central processing unit (CPU) specifications, memory usage, etc.) of the client device 115 are transmitted to the computing performance determination unit 135. The computing performance determination unit 135 calculates the computing performance values of the client devices 115 according to the hardware specifications and other information of the client devices 115.

本發明一實施例中,於座標校正階段,可同時持續接收任意多個低精度定位模組之低精度座標資料,再以動態學習單元131針對每一低精度定位模組來讀取歷史未修正低精度座標資料,輸出對應的校正後座標資料。 In one embodiment of the present invention, during the coordinate correction stage, low-precision coordinate data from any number of low-precision positioning modules can be continuously received simultaneously, and then the dynamic learning unit 131 reads the historical uncorrected low-precision coordinate data for each low-precision positioning module and outputs the corresponding corrected coordinate data.

於本發明一實施例中,當貨櫃場的四周被貨櫃堆疊時,動態定位校正系統100能克服外在金屬環境對無線電波干擾,不受天候影響。 In one embodiment of the present invention, when the container yard is surrounded by stacked containers, the dynamic positioning correction system 100 can overcome the interference of the external metal environment on the radio waves and is not affected by the weather.

於本發明一實施例中,動態定位校正系統100可同時持續接收來自任意方向的高精度定位模組之高精度座標資料(因為高精度定位模組110安裝於校正移動車輛上,而此校正移動車輛105也可是貨櫃車,可在貨櫃場內任意移動)來訓練動態學習單元。 In one embodiment of the present invention, the dynamic positioning correction system 100 can simultaneously and continuously receive high-precision coordinate data from a high-precision positioning module from any direction (because the high-precision positioning module 110 is installed on a correction mobile vehicle, and this correction mobile vehicle 105 can also be a container truck that can move freely in the container yard) to train the dynamic learning unit.

在本發明一實施例中,動態定位校正系統100係利用深度學習進行動態定位校正,克服金屬貨櫃堆疊及天候等對GPS 訊號的干擾,提高GPS定位精確度,達到低成本高精度大區域之室外定位追蹤之目標。 In one embodiment of the present invention, the dynamic positioning correction system 100 uses deep learning to perform dynamic positioning correction, overcome the interference of metal container stacking and weather on GPS signals, improve GPS positioning accuracy, and achieve the goal of low-cost, high-precision, large-area outdoor positioning tracking.

現將說明本發明一實施例之動態學習單元131之相關細節,在此以神經網路來實施動態學習單元131為例做說明,但當知本發明並不受限於此。神經網路包括輸入層,隱藏層與輸出層。 The relevant details of the dynamic learning unit 131 of an embodiment of the present invention will now be described. Here, a neural network is used as an example to implement the dynamic learning unit 131, but it should be noted that the present invention is not limited to this. The neural network includes an input layer, a hidden layer, and an output layer.

例如,可以選輸入層的複數個神經元,一個神經元負責運算1個手機GPS座標。假設每0.1秒收到1個GPS座標,1秒可以收到10個GPS座標,1個GPS座標包括經緯度座標,所以,1秒內收到20筆經緯度座標。對於所接收的經緯度座標,該些神經元做迭代運算。至於輸出層則可以預測目前的校正後座標資料或下一個校正後座標資料。 For example, you can select multiple neurons in the input layer, and one neuron is responsible for calculating one mobile phone GPS coordinate. Assume that one GPS coordinate is received every 0.1 seconds, and 10 GPS coordinates can be received in 1 second. One GPS coordinate includes longitude and latitude coordinates, so 20 longitude and latitude coordinates are received in 1 second. For the received longitude and latitude coordinates, these neurons perform iterative operations. As for the output layer, the current corrected coordinate data or the next corrected coordinate data can be predicted.

底下說明本發明一實施例之應用情境。例如但不受限於,貨櫃場內目前有500台貨櫃車,有一個貨櫃車(校正移動車輛)安裝有高精度定位模組(此貨櫃車的司機的手機也可選擇性安裝低精度定位模組),這台校正移動車輛會在貨櫃場內移動,以讓動態學習單元一直動態學習與訓練AI動態學習模型。如果AI動態學習模型已達到穩態的話,則可以不需要再進行動態學習。動態學習單元也可以放在校正移動車輛,或者動態學習單元不安裝在校正移動車輛而是安裝在雲端伺服器(運算裝置),此皆在本發明精神範圍內。至於貨櫃場內的其他台車子的司機手機有安裝應用程式,應用程式可以接收校正後座標資料(由運算裝置130運算後 傳送司機手機,司機手機的運算能力不足夠),或者,應用程式可以自行做座標校正運算(司機手機的運算能力足夠)。 The following describes an application scenario of an embodiment of the present invention. For example, but not limited to, there are currently 500 container trucks in the container yard, and one container truck (calibration mobile vehicle) is equipped with a high-precision positioning module (the driver's mobile phone of this container truck can also optionally be equipped with a low-precision positioning module). This calibration mobile vehicle will move in the container yard to allow the dynamic learning unit to dynamically learn and train the AI dynamic learning model. If the AI dynamic learning model has reached stability, dynamic learning is no longer required. The dynamic learning unit can also be placed on the calibration mobile vehicle, or the dynamic learning unit is not installed on the calibration mobile vehicle but is installed on a cloud server (computing device), all of which are within the spirit and scope of the present invention. As for the drivers' mobile phones of other vehicles in the container yard, there are applications installed. The applications can receive the corrected coordinate data (calculated by the computing device 130 and sent to the driver's mobile phone, the computing power of the driver's mobile phone is insufficient), or the application can perform the coordinate correction calculation by itself (the computing power of the driver's mobile phone is sufficient).

第3圖顯示根據本發明一實施例之定位模組300之功能方塊圖。如第3圖所示,根據本發明一實施例之定位模組300包括定位單元310、通訊單元320、處理單元330與儲存單元340。第3圖的定位模組300可用於實現高精度定位模組110。 FIG. 3 shows a functional block diagram of a positioning module 300 according to an embodiment of the present invention. As shown in FIG. 3, the positioning module 300 according to an embodiment of the present invention includes a positioning unit 310, a communication unit 320, a processing unit 330 and a storage unit 340. The positioning module 300 of FIG. 3 can be used to implement a high-precision positioning module 110.

定位單元310可產生高精度座標資料。定位單元310為一硬體電路。 The positioning unit 310 can generate high-precision coordinate data. The positioning unit 310 is a hardware circuit.

通訊單元320可通訊於其他裝置,例如,運算裝置130,以將該定位單元310所產生的高精度座標資料傳給運算裝置130。通訊單元320為一硬體電路。 The communication unit 320 can communicate with other devices, such as the computing device 130, to transmit the high-precision coordinate data generated by the positioning unit 310 to the computing device 130. The communication unit 320 is a hardware circuit.

處理單元330可為處理器以執行諸多處理操作,例如但不受限於,軌跡點同步比對、定位位移向量計算、定位校正等。 The processing unit 330 can be a processor to perform a variety of processing operations, such as but not limited to, track point synchronization comparison, positioning displacement vector calculation, positioning correction, etc.

儲存單元340可為儲存器,儲存器包括軌跡資料庫341,軌跡資料庫341可儲存軌跡相關資料。 The storage unit 340 may be a memory, and the memory includes a track database 341, and the track database 341 may store track-related data.

處理單元330可以例如是藉由使用一晶片、晶片內的一電路區塊、一韌體電路、含有數個電子元件及導線的電路板或儲存複數組程式碼的一儲存媒體來實現。儲存單元340例如但不受限於,為硬碟、光碟、固態硬碟等。 The processing unit 330 can be implemented, for example, by using a chip, a circuit block in a chip, a firmware circuit, a circuit board containing a plurality of electronic components and wires, or a storage medium storing a plurality of sets of program codes. The storage unit 340 can be, for example but not limited to, a hard disk, an optical disk, a solid state drive, etc.

第4圖顯示根據本發明一實施例之動態定位校正系統之操作示意圖。請同時參考第3圖。如第4圖所示,GPS衛星401可傳送GPS衛星信號給高精度定位模組110的定位單元310(例如 但不受限於,可為ROVER介面卡)。在第4圖中,高精度定位模組110的處理單元330可包括工業電腦403或樹莓派主機板405。處理單元330透過USB線(RS232協定)而從定位單元310接收資料(高精度座標資料或低精度座標資料),並處理單元330透過通訊單元320(例如但不受限於,4G/5G的使用者身分模組(Subscriber Identity Module,SIM)卡或高速行動網卡)而傳送解算前高精度座標資料與解算後高精度座標資料給動態學習單元130。 FIG. 4 shows an operation diagram of a dynamic positioning correction system according to an embodiment of the present invention. Please refer to FIG. 3 at the same time. As shown in FIG. 4, GPS satellite 401 can transmit GPS satellite signals to positioning unit 310 (for example, but not limited to, a ROVER interface card) of high-precision positioning module 110. In FIG. 4, processing unit 330 of high-precision positioning module 110 can include industrial computer 403 or Raspberry Pi motherboard 405. The processing unit 330 receives data (high-precision coordinate data or low-precision coordinate data) from the positioning unit 310 via a USB cable (RS232 protocol), and transmits the high-precision coordinate data before and after the solution to the dynamic learning unit 130 via the communication unit 320 (for example, but not limited to, a 4G/5G Subscriber Identity Module (SIM) card or a high-speed mobile network card).

此外,高精度定位模組110的軌跡資料庫341包括ROVER應用程式。ROVER應用程式可使得高精度定位模組110傳送高精度座標資料至動態學習單元。 In addition, the track database 341 of the high-precision positioning module 110 includes a ROVER application. The ROVER application enables the high-precision positioning module 110 to transmit high-precision coordinate data to the dynamic learning unit.

低精度定位模組120的軌跡資料庫343包括智慧手機應用程式。智慧手機應用程式可使得智慧手機傳送低精度座標資料至動態學習單元131。 The track database 343 of the low-precision positioning module 120 includes a smartphone application. The smartphone application enables the smartphone to transmit low-precision coordinate data to the dynamic learning unit 131.

此外,於第4圖中,用戶端裝置(如智慧手機)115可安裝相關應用程式,以透過4G/5G的SIM卡而傳送低精度座標資料至動態學習單元131。 In addition, in FIG. 4 , the client device (such as a smart phone) 115 can install relevant applications to transmit low-precision coordinate data to the dynamic learning unit 131 via a 4G/5G SIM card.

第5圖顯示根據本發明一實施例之動態定位校正方法之流程圖。於步驟510中,由一第一精度定位模組產生一第一精度座標資料給一運算裝置,該第一精度定位模組安裝於一校正移動車輛。於步驟520中,由安裝於該校正移動車輛的一第二精度定位模組產生一第二精度座標資料給該運算裝置。於步驟530中,根據由該校正移動車輛所傳來的該第一精度座標資料與該第 二精度座標資料而訓練該運算裝置之一動態學習單元。於步驟540中,於座標資料校正時,該動態學習單元校正由安裝於複數個用戶端裝置的複數個第二精度定位模組所傳來的複數個第二精度座標資料並將複數個校正後第二精度座標資料傳給該些用戶端裝置的該些第二精度定位模組,或者,該運算裝置傳送該動態學習單元的一動態學習模型參數資料給安裝於該些用戶端裝置的該些第二精度定位模組而由安裝於該些用戶端裝置的該些第二精度定位模組校正該些第二精度座標資料。 FIG. 5 shows a flow chart of a dynamic positioning calibration method according to an embodiment of the present invention. In step 510, a first precision positioning module generates a first precision coordinate data to a computing device, and the first precision positioning module is installed on a calibration mobile vehicle. In step 520, a second precision positioning module installed on the calibration mobile vehicle generates a second precision coordinate data to the computing device. In step 530, a dynamic learning unit of the computing device is trained according to the first precision coordinate data and the second precision coordinate data transmitted from the calibration mobile vehicle. In step 540, when the coordinate data is corrected, the dynamic learning unit corrects the plurality of second-precision coordinate data transmitted from the plurality of second-precision positioning modules installed in the plurality of client devices and transmits the plurality of corrected second-precision coordinate data to the second-precision positioning modules of the client devices, or the computing device transmits a dynamic learning model parameter data of the dynamic learning unit to the second-precision positioning modules installed in the client devices, and the second-precision positioning modules installed in the client devices correct the second-precision coordinate data.

於本發明一實施例中,以智慧型手機為載具,除了定位之外,也可以達到通訊便利,新增功能與維護方便,如交領櫃預約、與站管人員溝通等等。 In one embodiment of the present invention, a smartphone is used as a carrier. In addition to positioning, it can also achieve convenient communication, add new functions and facilitate maintenance, such as locker reservation, communication with station management personnel, etc.

本發明一實施例的動態定位校正系統所需基礎建設成本低,建置容易。相較之下,目前技術一般以攝影機進行車輛追蹤比較,需建置大量攝影機,現場架設不易,影像辨識也易受外在環境影響。 The infrastructure cost required for the dynamic positioning correction system of an embodiment of the present invention is low and easy to build. In contrast, current technology generally uses cameras for vehicle tracking and comparison, which requires the installation of a large number of cameras, is difficult to set up on site, and image recognition is easily affected by the external environment.

本發明實施例的動態定位校正系統可透過整合網路的自動化系統,帶來高效率與不中斷的服務,可協助貨櫃港達成降低人力成本、縮短作業時間、增加作業安全、減少意外事故及增進管理效率等目標。 The dynamic positioning correction system of the embodiment of the present invention can provide high efficiency and uninterrupted services through an automated system integrated with the network, and can help container ports achieve the goals of reducing labor costs, shortening operation time, increasing operation safety, reducing accidents and improving management efficiency.

更甚者,本發明實施例的動態定位校正系統可為未來自駕拖車技術鋪路:車輛定位可成為自動報到、資料交換、工作指令下達等作業功能之基礎,達成櫃場內作業自動化之目標。 Furthermore, the dynamic positioning correction system of the embodiment of the present invention can pave the way for future self-driving trailer technology: vehicle positioning can become the basis for automatic reporting, data exchange, work order issuance and other operational functions, achieving the goal of automated operations in the container yard.

綜上所述,雖然本發明已以實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 In summary, although the present invention has been disclosed as above by the embodiments, it is not intended to limit the present invention. Those with common knowledge in the technical field to which the present invention belongs can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention shall be subject to the scope of the patent application attached hereto.

510-540:步驟 510-540: Steps

Claims (8)

一種動態定位校正系統,包括:一運算裝置;一校正移動車輛,安裝一第一精度定位模組與一第二精度定位模組,該第一精度定位模組與該第二精度定位模組通訊於該運算裝置,該第一精度定位模組產生一第一精度座標資料給該運算裝置,該第二精度定位模組產生一第二精度座標資料給該運算裝置;以及複數個用戶端裝置,安裝複數個第二精度定位模組,該些第二精度定位模組通訊於該運算裝置,該些第二精度定位模組產生複數個第二精度座標資料給該運算裝置,其中,於訓練時,該運算裝置根據由該校正移動車輛所傳來的該第一精度座標資料與該第二精度座標資料而訓練該運算裝置之一動態學習單元;於座標資料校正時,該動態學習單元校正由安裝於該些用戶端裝置的該些第二精度定位模組所傳來的該些第二精度座標資料並將複數個校正後第二精度座標資料傳給該些用戶端裝置的該些第二精度定位模組,或者,該運算裝置傳送該動態學習單元的一動態學習模型參數資料給安裝於該些用戶端裝置的該些第二精度定位模組而由安裝於該些用戶端裝置的該些第二精度定位模組校正該些第二精度座標資料, 其中,該運算裝置更包括:一輸出資料單元,輸出該動態學習單元的該動態學習模型參數資料及/或該些校正後第二精度座標資料給安裝於該些用戶端裝置的該些第二精度定位模組;一運算效能判斷單元,當該運算效能判斷單元判斷安裝該用戶端裝置的一運算效能數值大於一門檻值時,該資料輸出單元輸出該動態學習模型參數資料給該用戶端裝置的該第二精度定位模組,或者,當該運算效能判斷單元判斷該用戶端裝置的該運算效能數值小於該門檻值時,該資料輸出單元輸出該校正後第二精度座標資料給該用戶端裝置的該第二精度定位模組;以及一儲存單元,儲存安裝於該些用戶端裝置的該些第二精度定位模組的複數個唯一辨識碼、該些第二精度座標資料與複數個第二精度座標產生時間資訊,以及該些校正後第二精度座標資料,其中,該動態學習單元、該輸出資料單元與該運算效能判斷單元藉由使用一晶片、晶片內的一電路區塊、一韌體電路、含有數個電子元件及導線的電路板或儲存複數組程式碼的一儲存媒體來實現。 A dynamic positioning correction system includes: a computing device; a correction mobile vehicle, equipped with a first precision positioning module and a second precision positioning module, the first precision positioning module and the second precision positioning module communicate with the computing device, the first precision positioning module generates a first precision coordinate data for the computing device, and the second precision positioning module generates a second precision coordinate data for the computing device; and a plurality of client devices, equipped with a plurality of second precision positioning modules, the second precision positioning modules communicate with the computing device, and the second precision positioning modules generate a plurality of second precision coordinate data for the computing device, wherein during training, The computing device trains a dynamic learning unit of the computing device according to the first precision coordinate data and the second precision coordinate data transmitted by the calibration mobile vehicle; when the coordinate data is calibrated, the dynamic learning unit calibrates the second precision coordinate data transmitted by the second precision positioning modules installed on the client devices and transmits a plurality of corrected second precision coordinate data to the second precision positioning modules of the client devices, or the computing device transmits a dynamic learning model parameter data of the dynamic learning unit to the second precision positioning modules installed on the client devices and the second precision positioning modules installed on the client devices The computing device further comprises: an output data unit, which outputs the dynamic learning model parameter data of the dynamic learning unit and/or the corrected second precision coordinate data to the second precision positioning modules installed in the client devices; an computing performance judgment unit, when the computing performance judgment unit judges that a computing performance value of the client device is greater than a threshold value, the data output unit outputs the dynamic learning model parameter data to the second precision positioning module of the client device, or when the computing performance judgment unit judges that the computing performance value of the client device is less than the threshold value, the data output unit outputs the dynamic learning model parameter data to the second precision positioning module of the client device. When the threshold value is reached, the data output unit outputs the corrected second precision coordinate data to the second precision positioning module of the client device; and a storage unit stores a plurality of unique identification codes of the second precision positioning modules installed in the client devices, the second precision coordinate data and a plurality of second precision coordinate generation time information, and the corrected second precision coordinate data, wherein the dynamic learning unit, the output data unit and the computing performance judgment unit are implemented by using a chip, a circuit block in a chip, a firmware circuit, a circuit board containing a plurality of electronic components and wires, or a storage medium storing a plurality of sets of program codes. 如請求項1所述之動態定位校正系統,其中,該第一精度座標資料為一實時動態座標信號或一影像座標信號; 該第二精度座標資料為一全球定位系統座標信號;以及該運算裝置安裝於一雲端伺服器或該校正移動車輛。 The dynamic positioning correction system as described in claim 1, wherein the first precision coordinate data is a real-time dynamic coordinate signal or an image coordinate signal; the second precision coordinate data is a global positioning system coordinate signal; and the computing device is installed on a cloud server or the correction mobile vehicle. 如請求項1所述之動態定位校正系統,其中,該運算裝置包括一軌跡查詢介面,透過網際網路存取該軌跡查詢介面以取得該些校正後第二精度座標資料;以及該用戶端裝置註冊於該運算裝置時,該用戶端裝置將一硬體規格資訊傳送給該運算效能判斷單元,該運算效能判斷單元按照該硬體規格資訊,計算該用戶端裝置之一運算效能數值。 The dynamic positioning correction system as described in claim 1, wherein the computing device includes a trajectory query interface, and the trajectory query interface is accessed through the Internet to obtain the corrected second-precision coordinate data; and when the client device is registered in the computing device, the client device transmits a hardware specification information to the computing performance determination unit, and the computing performance determination unit calculates a computing performance value of the client device according to the hardware specification information. 如請求項1所述之動態定位校正系統,其中,該第一精度定位模組包括:一定位單元,產生該第一精度座標資料;一通訊單元,通訊於該運算裝置,以將該定位單元所產生的該第一精度座標資料傳給該運算裝置;一處理單元,用以執行軌跡點同步比對、定位位移向量計算、定位校正;以及一儲存單元,包括一軌跡資料庫,該軌跡資料庫儲存一軌跡相關資料,其中,該處理單元藉由使用一晶片、晶片內的一電路區塊、一韌體電路、含有數個電子元件及導線的電路板或儲存複數組程式碼的一儲存媒體來實現。 The dynamic positioning correction system as described in claim 1, wherein the first precision positioning module includes: a positioning unit, generating the first precision coordinate data; a communication unit, communicating with the computing device, to transmit the first precision coordinate data generated by the positioning unit to the computing device; a processing unit, for executing track point synchronization comparison, positioning displacement vector calculation, and positioning correction; and a storage unit, including a track database, the track database storing track-related data, wherein the processing unit is implemented by using a chip, a circuit block in a chip, a firmware circuit, a circuit board containing a plurality of electronic components and wires, or a storage medium storing a plurality of sets of program codes. 一種動態定位校正方法,包括:由一第一精度定位模組產生一第一精度座標資料給一運算裝置,該第一精度定位模組安裝於一校正移動車輛; 由安裝於該校正移動車輛的一第二精度定位模組產生一第二精度座標資料給該運算裝置;根據由該校正移動車輛所傳來的該第一精度座標資料與該第二精度座標資料而訓練該運算裝置之一動態學習單元;以及於座標資料校正時,該動態學習單元校正由安裝於複數個用戶端裝置的複數個第二精度定位模組所傳來的複數個第二精度座標資料並將複數個校正後第二精度座標資料傳給該些用戶端裝置的該些第二精度定位模組,或者,該運算裝置傳送該動態學習單元的一動態學習模型參數資料給安裝於該些用戶端裝置的該些第二精度定位模組而由安裝於該些用戶端裝置的該些第二精度定位模組校正該些第二精度座標資料,其中,當判斷該用戶端裝置的一運算效能數值大於一門檻值時,輸出該動態學習模型參數資料給該用戶端裝置的該第二精度定位模組;當判斷該用戶端裝置的該運算效能數值小於該門檻值時,輸出該校正後第二精度座標資料給該用戶端裝置的該第二精度定位模組;以及儲存安裝於該些用戶端裝置的該些第二精度定位模組的複數個唯一辨識碼、該些第二精度座標資料與複數個第二精度座標產生時間資訊,以及該些校正後第二精度座標資料。 A dynamic positioning correction method includes: generating first precision coordinate data from a first precision positioning module to a computing device, the first precision positioning module being installed on a calibration mobile vehicle; generating second precision coordinate data from a second precision positioning module installed on the calibration mobile vehicle to the computing device; training a dynamic learning unit of the computing device according to the first precision coordinate data and the second precision coordinate data transmitted from the calibration mobile vehicle; and during coordinate data correction, the dynamic learning unit corrects the second precision coordinate data transmitted from the second precision positioning modules installed on the plurality of client devices and transmits the corrected second precision coordinate data to the second precision positioning modules of the client devices, or the computing device transmits the dynamic learning unit The second precision positioning modules installed on the client devices are provided with a dynamic learning model parameter data, and the second precision positioning modules installed on the client devices correct the second precision coordinate data, wherein when it is determined that a computing performance value of the client device is greater than a threshold value, the dynamic learning model parameter data is output to the second precision positioning module of the client device; when it is determined that When the computing performance value of the client device is less than the threshold value, the corrected second precision coordinate data is output to the second precision positioning module of the client device; and a plurality of unique identification codes of the second precision positioning modules installed in the client devices, the second precision coordinate data and a plurality of second precision coordinate generation time information, and the corrected second precision coordinate data are stored. 如請求項5所述之動態定位校正方法,其中, 該第一精度座標資料為一實時動態座標信號或一影像座標信號;該第二精度座標資料為一全球定位系統座標信號,該第二精度座標資料包括:一硬體唯一辨識碼、一第二精度座標與一第二精度座標產生時間;以及該運算裝置安裝於一雲端伺服器或該校正移動車輛。 The dynamic positioning correction method as described in claim 5, wherein, the first precision coordinate data is a real-time dynamic coordinate signal or an image coordinate signal; the second precision coordinate data is a global positioning system coordinate signal, and the second precision coordinate data includes: a hardware unique identification code, a second precision coordinate and a second precision coordinate generation time; and the computing device is installed on a cloud server or the calibration mobile vehicle. 如請求項5所述之動態定位校正方法,其中,該運算裝置包括一軌跡查詢介面,透過網際網路存取該軌跡查詢介面以取得該些校正後第二精度座標資料;以及該用戶端裝置註冊於該運算裝置時,該用戶端裝置將一硬體規格資訊傳送給該運算裝置,以按照該硬體規格資訊,計算該用戶端裝置之一運算效能數值。 The dynamic positioning correction method as described in claim 5, wherein the computing device includes a trajectory query interface, and the trajectory query interface is accessed through the Internet to obtain the corrected second-precision coordinate data; and when the client device is registered in the computing device, the client device transmits a hardware specification information to the computing device to calculate a computing performance value of the client device according to the hardware specification information. 如請求項5所述之動態定位校正方法,其中,該第一精度定位模組係:產生該第一精度座標資料;將所產生的該第一精度座標資料傳給該運算裝置;執行軌跡點同步比對、定位位移向量計算、定位校正;以及儲存一軌跡相關資料於一軌跡資料庫。 The dynamic positioning correction method as described in claim 5, wherein the first precision positioning module: generates the first precision coordinate data; transmits the generated first precision coordinate data to the computing device; performs track point synchronization comparison, positioning displacement vector calculation, positioning correction; and stores track-related data in a track database.
TW112100089A 2023-01-03 2023-01-03 Dynamic locating correction method and system TWI863080B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW112100089A TWI863080B (en) 2023-01-03 2023-01-03 Dynamic locating correction method and system
CN202310045283.0A CN118294992A (en) 2023-01-03 2023-01-30 Dynamic positioning correction method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW112100089A TWI863080B (en) 2023-01-03 2023-01-03 Dynamic locating correction method and system

Publications (2)

Publication Number Publication Date
TW202429127A TW202429127A (en) 2024-07-16
TWI863080B true TWI863080B (en) 2024-11-21

Family

ID=91680872

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112100089A TWI863080B (en) 2023-01-03 2023-01-03 Dynamic locating correction method and system

Country Status (2)

Country Link
CN (1) CN118294992A (en)
TW (1) TWI863080B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080196025A1 (en) * 2007-02-12 2008-08-14 Microsoft Corporation Tier splitting support for distributed execution environments

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080196025A1 (en) * 2007-02-12 2008-08-14 Microsoft Corporation Tier splitting support for distributed execution environments

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
網路文獻 Ashwin V. Kanhere, Shubh Gupta, Akshay Shetty and Grace Gao, Stanford University Improving GNSS Positioning using Neural Network-based Corrections https://arxiv.org 20220621 https://arxiv.org/pdf/2110.09581 *

Also Published As

Publication number Publication date
TW202429127A (en) 2024-07-16
CN118294992A (en) 2024-07-05

Similar Documents

Publication Publication Date Title
US10659925B2 (en) Positioning method, terminal and server
CN101782767B (en) Digitalized manufacture workshop material real-time distributing system based on Ultra Wideband (UWB)
US12313754B2 (en) Digital association and high precision positioning and tracking system for multimodal transport container
CN106093858A (en) A kind of alignment system based on UWB, RFID, INS multi-source co-located technology and localization method
CN103617743A (en) Iron and steel enterprise vehicle locating system and method based on RFID and power line carrier waves
CN103954984B (en) A kind of personnel and haulage vehicle localization method for grain depot
CN106971466A (en) A kind of wireless parking website and management method based on radio frequency identification
WO2019126950A1 (en) Positioning method, cloud server, terminal, system, electronic device and computer program product
CN106204402A (en) Physical state method for real-time monitoring based on cloud platform
CN104616524A (en) RFID based vehicle finding method for parking lot
CN106447260A (en) Logistics information remote real-time monitoring method based on idle band selection
US11067694B2 (en) Locating method and device, storage medium, and electronic device
CN112327845B (en) Unmanned ship formation control method, unmanned ship and computer-readable storage medium
CN109584684A (en) A kind of wisdom driving training system, method and it is applied to wisdom driving training system positioning system
CN114035218A (en) Fusion positioning method and device, electronic equipment and storage medium
Yu et al. Application of RFID and GPS technology in transportation vehicles monitoring system for dangerous goods
TWI863080B (en) Dynamic locating correction method and system
WO2023142823A1 (en) Assisted positioning method and apparatus, and electronic device and storage medium
CN112415524A (en) Robot and its positioning and navigation method and device
KR100953733B1 (en) System for managing a multipurpose station using solar cell
CN204291051U (en) Based on satellite and the two road transport controller of vehicle of locating of mobile phone
CN112070936B (en) Pedestrian target identification monitoring method and system
CN115733877A (en) Combined navigation and positioning system based on 5G, GNSS, and multi-sensor fusion
TWI739479B (en) Electronic device and positioning method for improving smoothness and precesion of positioning
CN206178905U (en) Support school bus public transport vehicle to carry out school bus / bus system of real -time position tracking of double precision