TWI859031B - 用於預測路段車流量之系統、方法及電腦程式產品 - Google Patents
用於預測路段車流量之系統、方法及電腦程式產品 Download PDFInfo
- Publication number
- TWI859031B TWI859031B TW112149085A TW112149085A TWI859031B TW I859031 B TWI859031 B TW I859031B TW 112149085 A TW112149085 A TW 112149085A TW 112149085 A TW112149085 A TW 112149085A TW I859031 B TWI859031 B TW I859031B
- Authority
- TW
- Taiwan
- Prior art keywords
- data
- signaling data
- real
- road
- time
- Prior art date
Links
Images
Landscapes
- Traffic Control Systems (AREA)
Abstract
本案揭露一種用於預測路段車流量之系統、方法及電腦程式產品,在伺服器端執行:接收複數個行動信令資料及路段上下游關係資料以藉此產生與各行動信令資料對應之路段資訊;利用機器學習方法對各個行動信令資料及與其對應的路段資訊進行分析以產生與各個行動信令資料對應之運具型態,藉此推估出路段即時車流量和上下游路段即時車流量;以及將路段即時車流量和上下游路段即時車流量、與各行動信令資料對應之路段資訊、即時天氣資料、及即時時間資料輸入神經網路模型,俾經神經網路模型以輸出路段未來車流量。
Description
本案係有關一種路段車流量預測技術,尤指一種利用行動信令資料預測路段未來車流量之系統、方法及其電腦程式產品。
為了改善交通壅塞問題,現有技術提供有車流量資訊給用路人與交通管理人員參考。
常見的一種車流量估計方式例如使用車輛偵測器VD(vehicle detector,VD)或電子標籤偵測器(eTag Detector),可安裝在道路上或旁邊的裝置,藉由感測經過的車輛以將感測數據回傳到交通控制中心。另有一種估計方式是利用人工智慧模型來辨識影像中的物件,從而計算出其數量或位置,藉以分析道路上的車流量和特性。
另外,現有技術更可利用估計的車流量資料來產生預測的車流量,然而,車輛偵測器建置和維護的成本高,且易受到環境因素的干擾,人工智慧影像辨識雖可提供多元的車流資訊,但缺點是需要大量的影像數據和運算資源,亦可能受到影像品質和角度的影響。
因此,如何精準地估計即時的路段車流量以及預測未來的路段車流量,為目前待解決的議題。
為解決上述問題及其他問題,本案提出一種用於預測路段車流量之系統、方法及其電腦程式產品。
本案所揭之用於預測路段車流量之系統,係包括:資料接收模組,接收複數個行動信令資料、即時天氣資料、即時時間資料、及路段上下游關係資料;信令資料路段對應模組,根據該資料接收模組所接收之各該行動信令資料和該路段上下游關係資料,產生與各該行動信令資料對應之路段資訊;路段即時車流量推估模組,利用機器學習方法對該資料接收模組所接收之各該行動信令資料以及該信令資料路段對應模組所產生之與各該行動信令資料對應之路段資訊進行分析,以產生與各該行動信令資料對應之運具型態,接著根據該路段上下游關係資料、該複數個行動信令資料、與各該行動信令資料對應之路段資訊、及與各該行動信令資料對應之運具型態,推估出至少一路段的路段即時車流量和上下游路段即時車流量;以及路段未來車流量預測模組,將該信令資料路段對應模組所產生之與各該行動信令資料對應之路段資訊、該路段即時車流量推估模組所推估出之該至少一路段的路段即時車流量和上下游路段即時車流量、該即時天氣資料、及該即時時間資料輸入神經網路模型,以經該神經網路模型輸出該至少一路段的路段未來車流量。
本案所揭之用於預測路段車流量之方法,在伺服器端執行,該方法係包括:接收複數個行動信令資料、即時天氣資料、即時時間資料、及路段上
下游關係資料;根據各該行動信令資料和該路段上下游關係資料,產生與各該行動信令資料對應之路段資訊;利用機器學習方法對各該行動信令資料及與各該行動信令資料對應之路段資訊進行分析,以產生與各該行動信令資料對應之運具型態;根據該路段上下游關係資料、該複數個行動信令資料、與各該行動信令資料對應之路段資訊、及與各該行動信令資料對應之運具型態,推估出至少一路段的路段即時車流量和上下游路段即時車流量;以及將與各該行動信令資料對應之路段資訊、該至少一路段的路段即時車流量和上下游路段即時車流量、該即時天氣資料、及該即時時間資料輸入神經網路模型,以經該神經網路模型輸出該至少一路段的路段未來車流量。
本案所揭之用於預測路段車流量之電腦程式產品,經由電腦載入程式以執行本案所揭之用於預測路段車流量之方法。
本案所揭之用於預測路段車流量之電腦可讀取記錄媒體,儲存有指令,並可利用計算設備或電腦透過處理器及/或記憶體執行電腦可讀取記錄媒體,以於執行電腦可讀取記錄媒體時執行本案所揭之用於預測路段車流量之方法。
於一實施例中,該神經網路模型係以歷史天氣資料、歷史時間資料、歷史路段車道數資料、歷史路段型態資料、歷史路段上下游車流量資料、及歷史路段車流量資料進行長短期記憶(Long Short-Term Memory,LSTM)訓練,其中,將與各該行動信令資料對應之路段資訊、該至少一路段的路段即時車流量和上下游路段即時車流量、該即時天氣資料、及該即時時間資料輸入訓練完的該神經網路模型,以經該神經網路模型輸出該至少一路段的路段未來車流量。
於一實施例中,各該行動信令資料包括速率,供該路段即時車流量推估模組利用支援向量機法對與各該行動信令資料對應之路段資訊、及各該行動信令資料的速率進行分析,以產生各該行動信令資料的運具型態,再根據該複數個行動信令資料、與各該行動信令資料對應之路段資訊、與各該行動信令資料對應之運具型態、及該路段上下游關係資料,推估出該至少一路段的路段即時車流量和上下游路段即時車流量,其中,該至少一路段的路段即時車流量和上下游路段即時車流量之其中一參數係由該運具型態為公車或汽車之行動信令加總而成。
於一實施例中,各該行動信令資料包括位置,供該信令資料路段對應模組將各該行動信令資料的位置對應到複數個網格以確認各該行動信令資料之對應網格,接著計算各該行動信令資料與各自的對應網格中各路段之間的距離,以將所計算出之該距離予以排序,進而取最小距離的路段作為各該行動信令資料的所在路段,俾取得各該行動信令資料的所在路段之包括路名、路段車道數、及/或路段型態之該路段資訊,其中,該複數個行動信令資料中的信令資料停留點係予以剔除,且該信令資料停留點係為一區塊所具有的行動信令資料到達特定量且在特定時間沒有移動者。
於一實施例中,本案所揭之用於預測路段車流量之系統更包括網路傳輸模組,其中,該資料接收模組係接收該複數個行動信令資料以傳至該信令資料路段對應模組,該資料接收模組並接收該即時天氣資料、及該即時時間資料,以由該信令資料路段對應模組經該路段即時車流量推估模組傳至該路段未來車流量預測模組,且由該網路傳輸模組係將該至少一路段的路段未來車流量自該伺服器端傳輸至顯示端。
藉由本案所揭之用於預測路段車流量之系統、方法、電腦程式產品、電腦可讀取記錄媒體,可於不架設如車輛偵測器或電子標籤偵測器之硬體的情況下,利用手機行動信令來推估路段即時車流量、上下游路段即時車流量,進而預測路段未來車流量。是以,能協助用路人或交通控制中心了解路況,藉此精準地提供改道或進行相應的疏散措施。
1:顯示端
11:未來車流量顯示模組
2:伺服器端
21:資料接收模組
22:信令資料路段對應模組
23:路段即時車流量推估模組
24:歷史資料庫
25:路段未來車流量預測模組
251:神經網路模型
26:網路傳輸模組
S1~S5:步驟
S21~S23:步驟
S31~S32:步驟
S41~S43:步驟
圖1係為本案之用於預測路段車流量之系統的實施例架構示意圖。
圖2係為本案之用於預測路段車流量之方法的實施例流程示意圖。
圖3係為本案之用於預測路段車流量之方法中行動信令資料對應到路段的實施例流程示意圖。
圖4係為本案之用於預測路段車流量之方法中推估路段即時車流量的實施例流程示意圖。
圖5係為本案之用於預測路段車流量之方法中預測路段未來車流量的實施例流程示意圖。
圖6係為本案之用於預測路段車流量之系統及方法的具體實施例的示意圖。
以下藉由特定的實施例說明本案之實施方式,熟習此項技藝之人士可由本文所揭示之內容輕易地瞭解本案之其他優點及功效。本說明書所附圖式所繪示之結構、比值、大小等均僅用於配合說明書所揭示之內容,以供熟悉此技藝之人士之瞭解與閱讀,非用於限定本案可實施之限定條件,故任何修飾、改變或調整,在不影響本案所能產生之功效及所能達成之目的下,均應仍落在本案所揭示之技術內容得能涵蓋之範圍內。
於本文中所用之術語「包括」、「包含」、「具有」、「含有」或其任何其他變體都旨在涵蓋非排他性的包含。除非另有說明,單數形式的措辭,如「一」、「一個」、「該」也適用於複數形式,而「或」、「及/或」等措辭可互換使用。
請參閱圖1,係為本案之用於預測路段車流量之系統的實施例架構示意圖。本案之系統包括在伺服器端2之資料接收模組21、信令資料路段對應模組22、路段即時車流量推估模組23、歷史資料庫24、路段未來車流量預測模組25、網路傳輸模組26。
資料接收模組21用於接收來自基地台的行動信令資料(例如行動信令位置、行動信令時間、行動信令移動速率等)、行動信令時間的即時天氣資料(其型態例如晴天、雨天)、行動信令時間的即時時間資料(其型態例如離峰或尖峰),其中,即時天氣資料和即時時間資料在此統稱為即時資料,可由系統預設之行動信令所在地區的氣象局資料及時區標準時間取得。於一實施例中,行動裝置可在通話時、基地台移轉時、網路使用時有連線紀錄、或者亦可每固定時間回傳訊號。資料接收模組21更接收路段上下游關係資料。
信令資料路段對應模組22用於根據行動信令資料(例如行動信令位置)以及路段上下游關係資料產生對應的路段資訊。於一實施例中,信令資料路段對應模組22將行動信令位置對應到多個網格以確認行動信令是落入哪個對應網格中,接著計算行動信令位置與其對網格中的各路段之間的直線距離,經排序這些距離之後取最小距離的路段作為行動信令所在路段,並查詢該路段的路名、路段車道數、路段型態(例如高速公路、快速道路、市區路段、風景區路段)等路段資訊。
路段即時車流量推估模組23用於利用機器學習方法或演算法,對資料接收模組21所接收之路段上下游關係資料、行動信令資料(例如行動信令移動速率)以及信令資料路段對應模組22所產生/查詢/取得之路段資訊進行分析,以推估出某路段的路段即時車流量和路段上下游即時車流量。於一實施例中,路段即時車流量推估模組23採用支援向量機(Support Vector Machine)方法或演算法,對行動信令移動速率進行運具分析以產生行動信令的運具型態,例如軌道運輸、公車、汽車、機車、及步行/自行車,進而根據行動信令資料所在路段、行動信令資料的時間、行動信令資料的運具型態、行動信令的資料量,統計出該路段上當下時間的路段即時車流量,其中,路段即時車流量可由運具型態為公車、汽車車輛數加總而成,也就是說,排除了軌道運輸(如火車或捷運)、機車、及步行/自行車,則運具型態為公車或汽車之行動信令會被計數加總而作為該至少一路段的路段即時車流量和上下游路段即時車流量的參數。同樣地,對於該路段的上下游路段上的行動信令資料,路段即時車流量推估模組23根據行動信令資料量和運具型態推估出該路段的路段上下游即時車流量。
於另一實施例中,可採用其他具有相關學習方法或演算法而可對資料進行分類和迴歸分析的監督學習模型,例如決策樹(decision trees)、隨機森林(random forest)、k-NN、線性迴歸(linear regression)、感知器(perceptron)等。
歷史資料庫24用於儲存歷史資料,包括上下游路段關係資料、由資料接收模組21所收集之(可能少於或多於三個月)歷史行動信令資料、由信令資料路段對應模組22所產生之與歷史行動信令資料對應的歷史路段資訊、由路段即時車流量推估模組23根據歷史行動信令資料所推估出之歷史路段車流量資料和歷史路段上下游車流量資料,也就是說,路段即時車流量推估模組23所推估出之當下的路段即時車流量和路段上下游即時車流量即成為後來的歷史路段車流量資料和歷史路段上下游車流量資料,又,歷史資料更包括與歷史路段車流量資料對應的歷史天氣資料(晴天或雨天)、與歷史路段車流量資料對應的歷史時間資料(尖峰或離峰)。
路段未來車流量預測模組25用於將信令資料路段對應模組22所產生之路段資訊(例如路名、路段車道數、路段型態)、路段即時車流量推估模組23所推估出之路段即時車流量和路段上下游即時車流量、資料接收模組21所接收之即時資料(例如即時天氣資料、即時時間資料),輸入神經網路模型251以經神經網路模型251輸出該路段的路段未來車流量。於一實施例中,神經網路模型251先以歷史資料庫24所儲存之歷史資料進行訓練,例如以與歷史行動信令資料對應的歷史路段資訊、歷史路段車流量資料和歷史路段上下游車流量資料、與歷史路段車流量資料對應的歷史天氣資料(晴天或雨天)、與歷史路段車流量資料對應的歷史時間資料(尖峰或離峰)進行神經網路訓練,例如長短期記憶(Long Short-Term Memory,LSTM)訓練,藉以訓練神經網路模型251。於另一實施例中,
可採用例如循環神經網路(recurrent neural network)進行神經網路模型的訓練,或者,當某些路段的資訊量較少時,可使用元學習(Meta-learning)來當成訓練的神經網路。
換言之,伺服器端2所接收之路段上下游關係資料和複數個行動信令資料先經過信令資料路段對應模組22和路段即時車流量推估模組23處理,接著將這些處理過的資料(例如與歷史行動信令資料對應的歷史路段資訊、歷史路段車流量資料和歷史路段上下游車流量資料、與歷史路段車流量資料對應的歷史天氣資料、與歷史路段車流量資料對應的歷史時間資料)作為神經網路模型251的訓練資料,至於神經網路模型251的輸入資料(例如路段資訊、路段即時車流量和路段上下游即時車流量、即時天氣資料、即時時間資料),則執行一些基本的缺失值、異常值、重複值、標準化、數據編碼、特徵縮放處理,其中,標準化是針對數值型的數值將值域轉換成0~1之間,而數據編碼則是將非數值的數據進行編碼(例如0~288),然後輸入到神經網路的嵌入層(embedding layer)。
另外,在接收了大量行動信令資料後,可先進行分散式處理並定期先分析用戶停留點的資訊,即時地將停留點的信令資料(在後續不需用到)先剔除藉以減少後續處理的資料量。例如,停留點是由各個用戶分別分析至少3周以上白天及晚上某區塊多次信令點最多且達到至少300個信令資料以上來當成用戶的工作地點或住家,因同一地區靜止的工作地及住家是不會進行開車活動,因此可先過濾掉停留點的信令資料減少處理的資料量,又,在一實施例中,因分析時間為平日白天上午9:00~下午17:00及晚上21:00~凌晨5:00分析用戶工作地及住家,通常用戶待在工作地及住家的時間遠比塞在同一地區久,因此抓到同一地區最多信令資料的不會是塞車地點。
網路傳輸模組26用於將路段未來車流量預測模組25預測出之路段未來車流量、路段即時車流量推估模組23所推估出之路段即時車流量和路段上下游即時車流量,傳輸至顯示端1的未來車流量顯示模組11。於一實施例中,路段未來車流量、路段即時車流量、路段上下游即時車流量可由顯示端1的未來車流量顯示模組11(例如應用程式(APP))或網頁呈現。換言之,在用路人的行動裝置上可呈現一路網圖,其上顯示有用路人行動裝置所在路段的路名、目前時間、所在路段即時車流量、所在路段上下游車流量、所在路段的未來車流量(可能15分鐘或30分鐘後)、所在路段上下游的未來車流量,其中,車流量的顯示方式可以數字、級距、顏色作為代表。
請參閱圖2,係為本案之用於預測路段車流量之方法的實施例流程示意圖,所述方法包括步驟S1~S5,可由圖1所示的伺服器端2所執行。
步驟S1,接收行動信令資料和即時資料。於一實施例中,該行動信令資料包括位置、時間、速率等。詳言之,藉由行動裝置與基地台之間的訊號連線,可界定訊號用戶的所在位置或所屬基地台服務範圍,一般而言,行動裝置主要在通話時、基站移轉時或網路使用時有連線紀錄,或者於固定時間回傳訊號。於一實施例中,該即時資料包括與行動信令資料的時間對應之即時天氣資料(其型態例如晴天或雨天)、即時時間資料(其型態例如尖峰或離峰)。於一實施例中,更可接收路段上下游關係資料,具體為一路網資料。
步驟S2,產生與行動信令資料對應之路段資訊。關於行動信令資料對應到路段的詳細方法如圖3之步驟S21~S23所示。
步驟S21,將行動信令資料的位置對應到複數個網格,以確認行動信令資料之對應網格;步驟S22,計算行動信令資料與其對應網格中各路段之
間的距離,以將所計算出之距離予以排序;步驟S23,取最小距離的路段作為行動信令資料的所在路段,以取得行動信令資料所在路段之包括路名、路段車道數及/或路段型態之路段資訊。詳言之,可將一區域劃分成多個網格,根據各行動信令資料的位置確認其所屬的對應網格,接著計算該對應網格中每個道路與該行動信令資料的直線距離,經過距離排序之後,取最小距離的路段作為該行動信令資料的所在路段,藉以取得路名、路段車道數(例如1、2)及路段型態(例如國道、市區、風景區路段)。
於一實施例中,可根據各該行動信令資料的位置剔除信令資料停留點,且該信令資料停留點係為一區塊所具有的行動信令資料到達特定量且在特定時間沒有移動。例如,某區塊的多次行動信令資料最多且數量達到約300個,且大約三周期間這些行動信令資料在上班時間(如:9:00~17:00)或休息時間(如21:00~05:00)近乎不動,應為居住或辦公者,則這些信令資料停留點可先剔除以漸少後續處理的資料量。
步驟S3,根據行動信令資料、路段資訊、路段上下游關係資料,推估出路段即時車流量和路段上下游即時車流量。關於路段即時車流量推估之詳細方法如圖4之步驟S31~S32所示。
步驟S31,利用機器學習方法或演算法,例如支援向量機(support vector machine,SVM)方法或演算法,來分析行動信令資料以產生行動信令資料的運具型態;步驟S32,根據行動信令資料的運具型態(例如軌道運輸、公車、汽車、機車、及步行/自行車)以及路段資訊(例如路名、路段車道數、及路段型態),推估出路段即時車流量,其中,路段即時車流量由運具型態為公車、汽車車輛數加總而成,也就是排除了軌道運輸(如火車或捷運)、機車、及步行/自行車、或居
住/辦公者,而運具型態為公車或汽車之行動信令會被計數加總而作為該至少一路段的路段即時車流量和上下游路段即時車流量的參數。
於一實施例中,支援向量機可處理小樣本、非線性、高維度與局部最小點的問題,又,SVM是一種線性分類器,同時也可進行有效性的非線性分類。於另一實施例中,也可採用其他具有相關學習方法或演算法而可對資料進行分類和迴歸分析的監督學習模型,例如決策樹(decision trees)、隨機森林(random forest)、k-NN、線性迴歸(linear regression)、感知器(perceptron)等。
步驟S4,將步驟S2所取得之路段資訊、步驟S3所推估出的路段即時車流量和路段上下游即時車流量、步驟S1所取得之即時天氣資料、即時時間資料,輸入神經網路模型以經神經網路輸出路段的路段未來車流量。關於路段未來車流量預測之詳細方法如圖5之步驟S41~S43所示。
步驟S41,接收歷史天氣資料、歷史時間資料、歷史路段車道數資料、歷史路段型態資料、歷史路段上下游車流量資料、及歷史路段車流量資料;步驟S42,以歷史天氣資料、歷史時間資料、歷史路段車道數資料、歷史路段型態資料、歷史路段上下游車流量資料、及歷史路段車流量資料進行神經網路訓練,例如長短期記憶(Long Short-Term Memory,LSTM)訓練,藉以訓練神經網路模型;步驟S43,將路段資訊、路段即時車流量、即時天氣資料、時間資料、路段上下游關係資料輸入訓練完的神經網路模型,以令神經網路模型輸出路段未來車流量。於一實施例中,可採用例如循環神經網路(recurrent neural network)進行神經網路模型的訓練,或者,當某些路段的資訊量較少時,可使用元學習(Meta-learning)來當成訓練的神經網路。
步驟S5,傳輸路段未來車流量至顯示端。更者,傳輸路段即時車流量、路段上下游即時車流量、路段上下游未來車流量至顯示端。
除了上述一或多個實施例之外,本案提供一種電腦程式產品,經由電腦載入程式後執行上述一個或多個方法。另外,電腦程式(產品)除可儲存於記錄媒體外,亦可在網路上直接傳輸提供,即電腦程式(產品)係為載有電腦可讀取之程式且不限外在形式之物,所述電腦包括但不限於具有處理器之電子裝置,例如伺服器等。此外,本案還提供一種電腦可讀取記錄媒體,係應用於具有處理器及/或記憶體之計算設備或電腦中,且電腦可讀取記錄媒體儲存有指令,並可利用計算設備或電腦透過處理器及/或記憶體執行電腦可讀取記錄媒體,以於執行電腦可讀取記錄媒體時執行上述方法及/或內容。所述電腦可讀取紀錄媒體(例如硬碟、軟碟、光碟、USB隨身碟)係儲存有該電腦程式(產品)。在一實施例中,該電腦可讀取記錄媒體係非暫態(non-transitory)的電腦可讀取記錄儲存媒體。
請參閱圖6,其為圖1的顯示端1(例如用路人的行動裝置)的未來車流量顯示模組11(例如應用程式(APP))所呈現的畫面,即路網圖,其上顯示有用路人行動裝置所在路段的路名(如:中正二路)、目前時間(如:2023/7/27/16:05:00)、所在路段即時車流量(如:中正二路車流量50)、所在路段的未來車流量(如:預估15分鐘後70),其中數字可代表但不限於車子數量。
換言之,本案利用行動信令資料和路段上下游關係資料可分析出各路段的路段即時車流量,當然各路段的上下游的路段即時車流量即為彼此的上下游路段即時車流量,故本案無須車輛偵測器或電子標籤偵測器。再者,配合例如即時天氣資料(天氣型態為晴天、雨天)、即時時間資料(時間型態為離峰或尖
峰)之即時資料,還有行動信令資料所在的路段道數、路段型態等路段資訊,利用訓練完的神經網路模型預測出行動信令資料所在的路段未來車流量。另外,每次所推估出之各路段的路段即時車流量配合當時的天氣、時間、路段等資料或資料也一併作為神經網路模型的訓練資料。
於另一具體實施例中,如果在2023/11/22 15:30要預測信義路四段於2023/11/22 16:00的車流量資料,可將當下的信義路四段即時車流量、上游路段信義路三段即時車流量、下游路段信義路五段即時車流量、從氣象局取得當下台北市天氣資訊、信義路四段車道數2、信義路四段道路型態為市區道路及預測的時間16:00當成神經網路模型的參數,由神經網路模型進行預測出信義路四段於2023/11/22 16:00的車流量資料。
綜上所述,本案所揭之用於預測路段車流量之系統、方法、電腦程式產品、電腦可讀取記錄媒體,係與交通資訊(時速、旅行時間)網頁、顯示看板、APP結合,除了得知必要的交通資訊或路線以外,亦可協助用路人得知哪些路段未來車流量增多,可以提早改道。又,交控中心人員在得知未來車流量亦可做出相對應的交控改道及疏散措施。因此,本案可於不架設硬體如車輛偵測器VD(vehicle detector)或eTag運算車流量情況下,利用手機行動信令資料預測未來車流量,達到低成本、不易受環境因素干擾、無須大量影像數據和運算資源、不受影像品質或角度影響之效果。
上述實施例僅例示性說明本案之功效,而非用於限制本案,任何熟習此項技藝之人士均可在不違背本案之精神及範疇下對上述該些實施態樣進行修飾與改變。因此本案之權利保護範圍,應如後述之申請專利範圍所列。
S1~S5:步驟
Claims (11)
- 一種用於預測路段車流量之系統,係包括:資料接收模組,接收複數個行動信令資料、即時天氣資料、即時時間資料、及路段上下游關係資料;信令資料路段對應模組,根據該資料接收模組所接收之各該行動信令資料和該路段上下游關係資料,產生與各該行動信令資料對應之路段資訊;路段即時車流量推估模組,利用機器學習方法對該資料接收模組所接收之各該行動信令資料以及該信令資料路段對應模組所產生之與各該行動信令資料對應之路段資訊進行分析,以產生與各該行動信令資料對應之運具型態,接著根據該路段上下游關係資料、該複數個行動信令資料、與各該行動信令資料對應之路段資訊、及與各該行動信令資料對應之運具型態,推估出至少一路段的路段即時車流量和上下游路段即時車流量;以及路段未來車流量預測模組,將該信令資料路段對應模組所產生之與各該行動信令資料對應之路段資訊、該路段即時車流量推估模組所推估出之該至少一路段的路段即時車流量和上下游路段即時車流量、該即時天氣資料、及該即時時間資料輸入神經網路模型,以經該神經網路模型輸出該至少一路段的路段未來車流量。
- 如請求項1所述之系統,其中,該神經網路模型係以歷史天氣資料、歷史時間資料、歷史路段車道數資料、歷史路段型態資料、歷史路段上下游車流量資料、及歷史路段車流量資料進行長短期記憶訓練,其中,將與各該行動信令資料對應之路段資訊、該至少一路段的路段即時車流量和上下游路段即 時車流量、該即時天氣資料、及該即時時間資料輸入訓練完的該神經網路模型,以經該神經網路模型輸出該至少一路段的路段未來車流量。
- 如請求項1所述之系統,其中,各該行動信令資料包括速率,供該路段即時車流量推估模組利用支援向量機法對與各該行動信令資料對應之路段資訊、及各該行動信令資料的速率進行分析,以產生各該行動信令資料的運具型態,再根據該複數個行動信令資料、與各該行動信令資料對應之路段資訊、與各該行動信令資料對應之運具型態、及該路段上下游關係資料,推估出該至少一路段的路段即時車流量和上下游路段即時車流量,其中,該至少一路段的路段即時車流量和上下游路段即時車流量之其中一參數係由該運具型態為公車或汽車之行動信令加總而成。
- 如請求項1所述之系統,其中,各該行動信令資料包括位置,供該信令資料路段對應模組將各該行動信令資料的位置對應到複數個網格以確認各該行動信令資料之對應網格,接著計算各該行動信令資料與各自的對應網格中各路段之間的距離,以將所計算出之該距離予以排序,進而取最小距離的路段作為各該行動信令資料的所在路段,俾取得各該行動信令資料的所在路段之包括路名、路段車道數、及/或路段型態之該路段資訊,其中,該複數個行動信令資料中的信令資料停留點係予以剔除,且該信令資料停留點係為一區塊所具有的行動信令資料到達特定量且在特定時間沒有移動者。
- 如請求項1所述之系統,更包括網路傳輸模組,其中,該資料接收模組係接收該複數個行動信令資料以傳至該信令資料路段對應模組,該資料接收模組並接收該即時天氣資料、及該即時時間資料,以由該信令資料路段對 應模組經該路段即時車流量推估模組傳至該路段未來車流量預測模組,且由該網路傳輸模組將該至少一路段的路段未來車流量傳輸至顯示端。
- 一種用於預測路段車流量之方法,係包括:接收複數個行動信令資料、即時天氣資料、即時時間資料、及路段上下游關係資料;根據各該行動信令資料和該路段上下游關係資料,產生與各該行動信令資料對應之路段資訊;利用機器學習方法對各該行動信令資料及與各該行動信令資料對應之路段資訊進行分析,以產生與各該行動信令資料對應之運具型態;根據該路段上下游關係資料、該複數個行動信令資料、與各該行動信令資料對應之路段資訊、及與各該行動信令資料對應之運具型態,推估出至少一路段的路段即時車流量和上下游路段即時車流量;以及將與各該行動信令資料對應之路段資訊、該至少一路段的路段即時車流量和上下游路段即時車流量、該即時天氣資料、及該即時時間資料輸入神經網路模型,以經該神經網路模型輸出該至少一路段的路段未來車流量。
- 如請求項6所述之方法,其中,所述將與各該行動信令資料對應之路段資訊、該至少一路段的路段即時車流量和上下游路段即時車流量、該即時天氣資料、及該即時時間資料輸入神經網路模型,以經該神經網路模型輸出該至少一路段的路段未來車流量之步驟係包括:以歷史天氣資料、歷史時間資料、歷史路段車道數資料、歷史路段型態資料、歷史路段上下游車流量資料、及該歷史路段車流量資料進行長短期記憶訓練,藉以訓練該神經網路模型;以及將與各該行動信令資料對應之路段資訊、該至少一路段的路段即時車流量和上下游路段即時車流量、該即時天氣資料、及該即時時間資料輸入訓練完的該神經網路模型,以經該神經網路模型輸出該至少一路段的路段未來車流量,其中,該至少一路段的路段即時車流量和上下游路段即時車流量係作為該歷史路段車流量資料和該歷史路段上下游車流量資料,以訓練該神經網路模型。
- 如請求項6所述之方法,其中,各該行動信令資料包括速率,且所述利用機器學習方法對各該行動信令資料及與各該行動信令資料對應之路段資訊進行分析以產生與各該行動信令資料對應之運具型態之步驟係包括:利用支援向量機方法對與各該行動信令資料對應之路段資訊、及各該行動信令資料的速率進行分析,以產生各該行動信令資料的運具型態;以及根據該複數個行動信令資料、與各該行動信令資料對應之路段資訊、與各該行動信令資料對應之運具型態、及該路段上下游關係資料,推估出該至少一路段的路段即時車流量和上下游路段即時車流量,其中,該至少一路段的路段即時車流量和上下游路段即時車流量之其中一參數係由該運具型態為公車或汽車之行動信令加總而成。
- 如請求項6所述之方法,其中,各該行動信令資料包括位置,且所述根據各該行動信令資料產生與各該行動信令資料對應之路段資訊之步驟係包括:將各該行動信令資料的位置對應到複數個網格,以確認各該行動信令資料之對應網格;計算各該行動信令資料與各自的對應網格中各路段之間的距離,以將所計算出之該距離予以排序;以及取最小距離的路段作為各該行動信令資料的所在路段,俾取得各該行動信令資料的所在路段之包括路名、路段車道數、及/或路段型態之該路段資訊,其中,該複數個行動信令資料中的信令資料停留點係予以剔除,且該信令資料停留點係為一區塊所具有的行動信令資料到達特定量且在特定時間沒有移動者。
- 如請求項6所述之方法,更包括:由伺服器端接收該複數個行動信令資料、該即時天氣資料、該即時時間資料、及該路段上下游關係資料;以及將該至少一路段的路段未來車流量自該伺服器端傳輸至顯示端。
- 一種電腦程式產品,經電腦載入程式後執行如請求項6-10任一項所述之方法。
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW112149085A TWI859031B (zh) | 2023-12-15 | 2023-12-15 | 用於預測路段車流量之系統、方法及電腦程式產品 |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW112149085A TWI859031B (zh) | 2023-12-15 | 2023-12-15 | 用於預測路段車流量之系統、方法及電腦程式產品 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TWI859031B true TWI859031B (zh) | 2024-10-11 |
| TW202526855A TW202526855A (zh) | 2025-07-01 |
Family
ID=94084156
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW112149085A TWI859031B (zh) | 2023-12-15 | 2023-12-15 | 用於預測路段車流量之系統、方法及電腦程式產品 |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI859031B (zh) |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20130211706A1 (en) * | 2010-08-13 | 2013-08-15 | Wavemarket, Inc. | Systems, methods, and processor readable media for traffic flow measurement |
| CN111161529A (zh) * | 2018-10-18 | 2020-05-15 | 中华电信股份有限公司 | 运用移动网络信令数据的人工智能车流推估系统及其方法 |
| TW202147272A (zh) * | 2020-06-12 | 2021-12-16 | 中華電信股份有限公司 | 車流推估方法與系統 |
| CN115472006A (zh) * | 2022-08-26 | 2022-12-13 | 武汉大学 | 一种利用手机信令数据的路网新增路段通勤车流预估方法 |
-
2023
- 2023-12-15 TW TW112149085A patent/TWI859031B/zh active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20130211706A1 (en) * | 2010-08-13 | 2013-08-15 | Wavemarket, Inc. | Systems, methods, and processor readable media for traffic flow measurement |
| CN111161529A (zh) * | 2018-10-18 | 2020-05-15 | 中华电信股份有限公司 | 运用移动网络信令数据的人工智能车流推估系统及其方法 |
| TW202147272A (zh) * | 2020-06-12 | 2021-12-16 | 中華電信股份有限公司 | 車流推估方法與系統 |
| CN115472006A (zh) * | 2022-08-26 | 2022-12-13 | 武汉大学 | 一种利用手机信令数据的路网新增路段通勤车流预估方法 |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202526855A (zh) | 2025-07-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Xie et al. | Urban flow prediction from spatiotemporal data using machine learning: A survey | |
| Essien et al. | Improving urban traffic speed prediction using data source fusion and deep learning | |
| US9286793B2 (en) | Traffic prediction using real-world transportation data | |
| CN109923575B (zh) | 测量车辆事故的绝对和/或相对风险可能性的装置和方法 | |
| Li et al. | Identifying important variables for predicting travel time of freeway with non-recurrent congestion with neural networks | |
| US20130289865A1 (en) | Predicting impact of a traffic incident on a road network | |
| JP2015125775A (ja) | システムでの需要の予測のためのマルチタスク学習システムおよび方法 | |
| Pan et al. | Forecasting spatiotemporal impact of traffic incidents for next-generation navigation systems | |
| CN113177657A (zh) | 轨道交通客流预测方法及装置 | |
| Qiao et al. | Short-term travel time prediction considering the effects of weather | |
| CN118366312B (zh) | 一种交通检测系统及方法 | |
| William et al. | Edge based web computing for traffic control management for distributed environment conditions | |
| Sinha et al. | Sustainable time series model for vehicular traffic trends prediction in metropolitan network | |
| Hoong et al. | Road traffic prediction using Bayesian networks | |
| TWI859031B (zh) | 用於預測路段車流量之系統、方法及電腦程式產品 | |
| CN120496316A (zh) | 一种智能ai高速公路交通安全预警系统 | |
| CN119785595A (zh) | 一种车联网场景下的车辆速度监控提示方法 | |
| Sharma et al. | Performance-based operations assessment of adaptive control implementation in Des Moines, Iowa | |
| Xu et al. | Performance and improvement of deep learning algorithms based on LSTM in traffic flow prediction | |
| Mohapatra | Real-Time Traffic Congestion Prediction Using Predictive Data Analysis | |
| CN116699730A (zh) | 一种基于边缘计算的道路团雾预测方法 | |
| Bechere et al. | Urban Traffic Prediction Using Hybrid XGBoost–LSTM Model | |
| CN119516760B (zh) | 一种基于自注意力机制的交通流量预测方法及系统 | |
| Casas et al. | Present and future methodology for the implementation of decision support systems for traffic management | |
| CN119293136B (zh) | 一种基于机器学习的城市空间形态数据分析方法及系统 |