TWI859061B - Optimization device and optimization method for evaluating infectious arthritis - Google Patents
Optimization device and optimization method for evaluating infectious arthritis Download PDFInfo
- Publication number
- TWI859061B TWI859061B TW113103348A TW113103348A TWI859061B TW I859061 B TWI859061 B TW I859061B TW 113103348 A TW113103348 A TW 113103348A TW 113103348 A TW113103348 A TW 113103348A TW I859061 B TWI859061 B TW I859061B
- Authority
- TW
- Taiwan
- Prior art keywords
- knee
- tissue image
- image
- doppler
- grayscale
- Prior art date
Links
Landscapes
- Image Analysis (AREA)
- Image Processing (AREA)
Abstract
Description
本案涉及一種評估感染性關節炎的優化裝置及優化方法。This case involves an optimized device and an optimized method for evaluating infectious arthritis.
現行的感染性關節炎的評估方法為從關節部位抽取檢體樣本,例如膝蓋的滑液、滑膜或血液,花費數天至一週不等的時間對檢體樣本進行細胞培養,從培養的檢體樣本中分離出病原體,再從中分析出病原體的細菌種類以對症下藥。The current method for evaluating infectious arthritis is to extract specimens from the joint, such as the synovial fluid, synovium or blood of the knee, culture the specimens for cells over a period of several days to a week, isolate the pathogens from the cultured specimens, and then analyze the bacterial species of the pathogens to prescribe the right medicine.
檢體樣本的培養相當耗費時間,患部的病情可能在培養樣本的數天的時間之內就快速惡化。因此,為了等待檢體樣本的培養結果,患部往往無法獲得即時的治療而導致病情延誤。The culture of specimens takes a long time, and the condition of the affected part may deteriorate rapidly within a few days of the culture. Therefore, in order to wait for the culture results of the specimens, the affected part often cannot receive immediate treatment, resulting in delayed treatment.
對於需要花費冗長的時間培養檢體樣本之後才能分析出病原體的作法,如何進行流程優化為本技術領域的技術人員所欲解決的技術問題。As it takes a long time to culture specimens before analyzing pathogens, how to optimize the process is a technical problem that technicians in this technical field want to solve.
本案提出一種評估感染性關節炎的優化裝置,包括超音波感測器、都卜勒感測器及控制器。超音波感測器經配置以感測涵蓋有部分膝蓋區域的灰階膝蓋組織影像。都卜勒感測器經配置以感測在部分膝蓋區域上具有血管分布特徵的都卜勒膝蓋組織影像,其中都卜勒膝蓋組織影像與灰階膝蓋組織影像為對應於同一個部分膝蓋區域的組織影像。控制器耦接於超音波感測器及都卜勒感測器且經配置以執行以下操作:輸入灰階膝蓋組織影像至視覺轉換器以擷取灰階膝蓋組織影像的複數個第一影像特徵;輸入都卜勒膝蓋組織影像至視覺轉換器以擷取都卜勒膝蓋組織影像的複數個第二影像特徵;於機器學習分類器同時使用複數個第一影像特徵及複數個第二影像特徵進行分類運算,以產生對應於同一個膝蓋區域的組織影像的複數個分類結果及各分類結果的機率值;以及輸出具有機率值的複數個分類結果以作為評估感染性關節炎的評估資訊。The case proposes an optimized device for evaluating infectious arthritis, including an ultrasound sensor, a Doppler sensor, and a controller. The ultrasound sensor is configured to sense a grayscale knee tissue image covering a partial knee area. The Doppler sensor is configured to sense a Doppler knee tissue image having a vascular distribution feature on a partial knee area, wherein the Doppler knee tissue image and the grayscale knee tissue image are tissue images corresponding to the same partial knee area. The controller is coupled to the ultrasound sensor and the Doppler sensor and is configured to perform the following operations: inputting a grayscale knee tissue image to a visual converter to capture a plurality of first image features of the grayscale knee tissue image; inputting a Doppler knee tissue image to a visual converter to capture a plurality of second image features of the Doppler knee tissue image; using the plurality of first image features and the plurality of second image features simultaneously in a machine learning classifier to perform classification operations to generate a plurality of classification results corresponding to tissue images of the same knee region and a probability value of each classification result; and outputting a plurality of classification results with probability values as evaluation information for evaluating infectious arthritis.
本案另一實施例提出評估感染性關節炎的優化方法,使用一優化裝置來執行。優化方法包括以下步驟:經由優化裝置的超音波感測器獲得對應於一部分膝蓋區域的灰階膝蓋組織影像及經由優化裝置的都卜勒感測器獲得對應同一個部分膝蓋區域的具有血管分布特徵的都卜勒膝蓋組織影像;輸入灰階膝蓋組織影像至視覺轉換器以擷取灰階膝蓋組織影像的複數個第一影像特徵;輸入都卜勒膝蓋組織影像至視覺轉換器以擷取都卜勒膝蓋組織影像的複數個第二影像特徵;於機器學習分類器同時使用複數個第一影像特徵及複數個第二影像特徵進行分類運算,以產生對應於同一個膝蓋區域的組織影像的複數個分類結果及各分類結果的機率值;以及輸出具有機率值的複數個分類結果以作為評估感染性關節炎的評估資訊。Another embodiment of the present invention provides an optimization method for evaluating infectious arthritis, which is performed using an optimization device. The optimization method includes the following steps: obtaining a grayscale knee tissue image corresponding to a portion of the knee region through an ultrasound sensor of the optimization device and obtaining a Doppler knee tissue image with vascular distribution characteristics corresponding to the same portion of the knee region through a Doppler sensor of the optimization device; inputting the grayscale knee tissue image to a visual converter to capture a plurality of first image features of the grayscale knee tissue image; inputting the Doppler knee tissue image to a visual converter to capture a plurality of first image features of the grayscale knee tissue image; An image-to-vision converter is used to capture a plurality of second image features of a Doppler knee tissue image; a plurality of first image features and a plurality of second image features are simultaneously used in a machine learning classifier to perform classification operations to generate a plurality of classification results corresponding to tissue images of the same knee region and a probability value of each classification result; and a plurality of classification results with probability values are output as evaluation information for evaluating infectious arthritis.
以下結合圖式和實施例對本案作進一步說明,以使本發明所屬技術領域的相關人員可以更好的理解本發明並能據以實施,但所舉實施例不作為對本發明的限定。The present invention is further described below with reference to the drawings and embodiments, so that persons skilled in the art can better understand the present invention and implement it accordingly. However, the embodiments are not intended to limit the present invention.
為了降低評估感染性關節炎的時間,優化感染性關節炎的評估流程,本案應用了兩種超音波感測器所獲得的超音波影像,並提出優化方法及執行優化方法的裝置來達成上述目的。In order to reduce the time for evaluating infectious arthritis and optimize the evaluation process of infectious arthritis, this case applies ultrasound images obtained by two ultrasound sensors, and proposes an optimization method and a device for executing the optimization method to achieve the above purpose.
圖1為本案根據一實施例所繪示的評估感染性關節炎的優化裝置的方塊圖。FIG. 1 is a block diagram of an optimized device for evaluating infectious arthritis according to an embodiment of the present invention.
如圖1所示,優化裝置100包括超音波感測器110、都卜勒感測器120及控制器130。控制器130耦接於超音波感測器110及都卜勒感測器120。As shown in FIG1 , the optimization device 100 includes an ultrasonic sensor 110 , a Doppler sensor 120 , and a controller 130 . The controller 130 is coupled to the ultrasonic sensor 110 and the Doppler sensor 120 .
超音波感測器110經配置以感測潛在病患的一部分膝蓋區域並產生對應此部分膝蓋區域的灰階膝蓋組織影像。The ultrasound sensor 110 is configured to sense a portion of a knee region of a potential patient and generate a grayscale knee tissue image corresponding to the portion of the knee region.
都卜勒感測器120經配置以感測同一潛在病患的一部分膝蓋區域並產生對應此部分膝蓋區域且具有血管分布特徵的都卜勒膝蓋組織影像。The Doppler sensor 120 is configured to sense a portion of the knee region of the same potential patient and generate a Doppler knee tissue image corresponding to the portion of the knee region and having vascularity characteristics.
於一實施例中,超音波感測器110與都卜勒感測器120為設置在同一個殼體的架構,透過此架構可以使超音波感測器110與都卜勒感測器120兩個感測器擷取的兩個影像為對應到同一個部分膝蓋區域。舉例而言,當超音波感測器110被放置於膝蓋的皮膚表面上而對膝蓋發射訊號時,超音波感測器110接收回傳訊號並擷取及儲存為灰階膝蓋組織影像。於此同時,基於超音波感測器110與都卜勒感測器120為設置在同一個殼體的架構,在超音波感測器110被放置於膝蓋的皮膚表面上時,都卜勒感測器120也會被放置於同一個膝蓋區域的皮膚表面上。因此,在都卜勒感測器120對膝蓋發射訊號之後所接收到的回傳訊號並將其擷取及儲存為都卜勒膝蓋組織影像的膝蓋區域會是對應於灰階膝蓋組織影像的膝蓋區域。In one embodiment, the ultrasound sensor 110 and the Doppler sensor 120 are arranged in the same housing, and through this structure, the two images captured by the ultrasound sensor 110 and the Doppler sensor 120 correspond to the same part of the knee area. For example, when the ultrasound sensor 110 is placed on the skin surface of the knee and transmits a signal to the knee, the ultrasound sensor 110 receives the return signal and captures and stores it as a grayscale knee tissue image. At the same time, based on the structure that the ultrasonic sensor 110 and the Doppler sensor 120 are set in the same housing, when the ultrasonic sensor 110 is placed on the skin surface of the knee, the Doppler sensor 120 will also be placed on the skin surface of the same knee area. Therefore, after the Doppler sensor 120 transmits a signal to the knee, the return signal received and captured and stored as the knee area of the Doppler knee tissue image will be the knee area corresponding to the grayscale knee tissue image.
於一實施例中,都卜勒膝蓋組織影像與灰階膝蓋組織影像同樣具有組織特徵,差異在於,都卜勒膝蓋組織影像還具有血管分布特徵。都卜勒感測器120會基於血管位於一般的組織與介質的相對位置,而對應呈現血管分布特徵於都卜勒膝蓋組織影像。換言之,血管分布特徵有可能遮蔽影像中原本有呈現一般組織及介質的部分。In one embodiment, the Doppler knee tissue image has the same tissue features as the grayscale knee tissue image, except that the Doppler knee tissue image also has vascular distribution features. The Doppler sensor 120 presents the vascular distribution features in the Doppler knee tissue image based on the relative position of blood vessels to general tissues and media. In other words, the vascular distribution features may obscure the portion of the image that originally presents general tissues and media.
於一實施例中,一組影像對的灰階膝蓋組織影像與都卜勒膝蓋組織影像為對應於同一個部分膝蓋區域的組織影像。基於產生超音波影像的次數,而會產生複數組影像對,而不同的影像對會對應到不同的膝蓋區域。In one embodiment, the grayscale knee tissue image and the Doppler knee tissue image of a set of image pairs are tissue images corresponding to the same partial knee region. Based on the number of times the ultrasound images are generated, a plurality of image pairs are generated, and different image pairs correspond to different knee regions.
控制器130例如是但不限於數位訊號處理器(Digital Signal Processor, DSP)、特定用途積體電路(Application Specific Integrated Circuit, ASIC)、中央處理器(Central Processing Unit, CPU)、系統單晶片(System on Chip, SoC)、現場可程式設計閘陣列(Field Programmable Gate Array, FPGA)、網路處理器(Network Processor)晶片或上述元件的組合。The controller 130 is, for example, but not limited to, a Digital Signal Processor (DSP), an Application Specific Integrated Circuit (ASIC), a Central Processing Unit (CPU), a System Single Chip (System) on Chip (SoC), Field Programmable Gate Array (FPGA), network processor (Network Processor) chip or a combination of the above components.
為利於理解本案的灰階膝蓋組織影像及都卜勒膝蓋組織影像,請參照圖2及圖3。For easier understanding of the grayscale and Doppler knee tissue images of this case, please refer to Figures 2 and 3.
圖2為本案根據一實施例由超音波感測器感測部分膝蓋區域而產生的灰階膝蓋組織的實際影像。圖3為本案根據一實施例由都卜勒感測器感測部分膝蓋區域而產生具有血管分布特徵的都卜勒膝蓋組織影像。圖2及圖3為朝同一個膝蓋區域所產生的兩個組織影像,可被視為一組影像對。如圖2所示,灰階膝蓋組織影像210呈現出人體的組織及介質,例如組織231。FIG. 2 is an actual image of a grayscale knee tissue generated by sensing a portion of the knee region with an ultrasound sensor according to an embodiment of the present invention. FIG. 3 is a Doppler knee tissue image with vascular distribution characteristics generated by sensing a portion of the knee region with a Doppler sensor according to an embodiment of the present invention. FIG. 2 and FIG. 3 are two tissue images generated toward the same knee region and can be considered as a set of image pairs. As shown in FIG. 2 , the grayscale knee tissue image 210 presents tissues and media of the human body, such as tissue 231.
另一方面,圖3則進一步顯示出人體的血管分布特徵。如圖3所示,都卜勒膝蓋組織影像220包括組織239及血管分布特徵235。圖3的不規則封閉形狀(請一併參見附件的紅色外框內的橘色區塊)為都卜勒感測器120感測到的血管分布特徵,包括血管的大小及相對於其他組織與介質的位置關係。On the other hand, FIG3 further shows the vascular distribution characteristics of the human body. As shown in FIG3, the Doppler knee tissue image 220 includes tissue 239 and vascular distribution characteristics 235. The irregular closed shape in FIG3 (please also refer to the orange block in the red frame of the attached file) is the vascular distribution characteristics sensed by the Doppler sensor 120, including the size of the blood vessels and the positional relationship relative to other tissues and media.
由於灰階膝蓋組織影像210與都卜勒膝蓋組織影像220為對應到同一個膝蓋區域(同一組影像對),因此灰階膝蓋組織影像210的組織231與都卜勒膝蓋組織影像220的組織239可以為膝蓋區域的同一個組織特徵。Since the grayscale knee tissue image 210 and the Doppler knee tissue image 220 correspond to the same knee region (the same image pair), the tissue 231 of the grayscale knee tissue image 210 and the tissue 239 of the Doppler knee tissue image 220 may be the same tissue feature of the knee region.
以下說明本案運用灰階膝蓋組織影像210與都卜勒膝蓋組織影像220在機器學習領域來實現評估感染性關節炎的優化方法。The following describes the optimization method for evaluating infectious arthritis using the grayscale knee tissue image 210 and the Doppler knee tissue image 220 in the field of machine learning.
圖4為本案根據一實施例由優化裝置執行評估感染性關節炎的優化方法的資料流的示意圖。FIG. 4 is a schematic diagram of the data flow of an optimization method for evaluating infectious arthritis executed by an optimization device according to an embodiment of the present invention.
於一實施例中,一組影像對的灰階膝蓋組織影像210與都卜勒膝蓋組織影像220會被作為一組輸入資料,經由視覺轉換器310a及視覺轉換器310b進行影像特徵擷取及經由機器學習分類器320產生分類結果,來提供用以評估對應的膝蓋區域是否為高度風險的感染性關節炎的病灶部位的評估資訊。In one embodiment, a set of image pairs of grayscale knee tissue images 210 and Doppler knee tissue images 220 are used as a set of input data, image features are captured by visual converters 310a and 310b, and classification results are generated by machine learning classifiers 320 to provide evaluation information for evaluating whether the corresponding knee area is a lesion site of high-risk infectious arthritis.
於一實施例中,灰階膝蓋組織影像210與都卜勒膝蓋組織影像220會分別被輸入至視覺轉換器310a及視覺轉換器310b。In one embodiment, the grayscale knee tissue image 210 and the Doppler knee tissue image 220 are input to the visual converter 310a and the visual converter 310b, respectively.
視覺轉換器310a及視覺轉換器310b例如是針對影像識別的視覺處理的轉換器(ViT,Vision Tramsformer)。The vision converter 310a and the vision converter 310b are, for example, converters (ViT, Vision Tramsformer) for vision processing for image recognition.
於接收灰階膝蓋組織影像210的視覺轉換器310a中,視覺轉換器310a會執行視覺處理來擷取出灰階膝蓋組織影像210的複數個第一影像特徵216。In the vision converter 310 a that receives the grayscale knee tissue image 210 , the vision converter 310 a performs vision processing to extract a plurality of first image features 216 of the grayscale knee tissue image 210 .
另一方面,於接收都卜勒膝蓋組織影像220的視覺轉換器310b中,視覺轉換器310b會執行視覺處理來擷取出都卜勒膝蓋組織影像220的複數個第二影像特徵226。On the other hand, in the visual converter 310 b receiving the Doppler knee tissue image 220 , the visual converter 310 b performs visual processing to extract a plurality of second image features 226 of the Doppler knee tissue image 220 .
接著,複數個第一影像特徵216及複數個第二影像特徵226會同時被輸入至機器學習分類器320。Then, the plurality of first image features 216 and the plurality of second image features 226 are simultaneously input into the machine learning classifier 320 .
於一實施例中,視覺轉換器310a及視覺轉換器310b可以為同一個視覺轉換器,用以分別處理灰階膝蓋組織影像210和都卜勒膝蓋組織影像220,來分別擷取出複數個第一影像特徵216和複數個第二影像特徵226。In one embodiment, the visual converter 310a and the visual converter 310b may be the same visual converter for processing the grayscale knee tissue image 210 and the Doppler knee tissue image 220 to extract a plurality of first image features 216 and a plurality of second image features 226 respectively.
機器學習分類器320例如是支持向量分類器(Support Vector Classifier)、線性判別(Linear Discriminant)、最近相鄰法(Nearest Neighbors)、決策樹(Decision Tree)、隨機森林(Random Forest)或神經網路(Neural Network)等方法建構得到的分類器。The machine learning classifier 320 is, for example, a classifier constructed by methods such as a support vector classifier, a linear discriminant, a nearest neighbor method, a decision tree, a random forest, or a neural network.
機器學習分類器320會同時處理複數個第一影像特徵216及複數個第二影像特徵226,以對這些影像特徵進行關聯性運算來產生一輸出資料410。輸出資料410包括複數個分類結果及各個分類結果的機率值。接著,這些具有機率值的分類結果會被作為用以評估感染性關節炎的評估資訊。The machine learning classifier 320 processes the plurality of first image features 216 and the plurality of second image features 226 simultaneously to perform correlation operations on these image features to generate an output data 410. The output data 410 includes a plurality of classification results and a probability value of each classification result. Then, these classification results with probability values are used as evaluation information for evaluating infectious arthritis.
以下進一步說明視覺轉換器310a的運作細節。The operation details of the visual converter 310a are further described below.
圖5為本案根據一實施例所繪示的圖4的視覺轉換器處理灰階膝蓋組織影像的細部資料流的示意圖。FIG. 5 is a schematic diagram of the detailed data flow of gray-scale knee tissue image processed by the visual converter of FIG. 4 according to an embodiment of the present invention.
視覺轉換器310a會先將灰階膝蓋組織影像210切割為複數個第一小區塊212。如圖5所示,灰階膝蓋組織影像210被切割為9個第一小區塊212。The visual converter 310a first divides the grayscale knee tissue image 210 into a plurality of first small blocks 212. As shown in FIG5, the grayscale knee tissue image 210 is divided into nine first small blocks 212.
於一實施例中,視覺轉換器310a包括線性投影模組312及轉換編碼器314。視覺轉換器310a切割出複數個第一小區塊212之後會將複數個第一小區塊212輸入至線性投影模組312。在線性投影模組312接收複數個第一小區塊212之後,會添加各個第一小區塊212在灰階膝蓋組織影像210的位置資訊至各個第一小區塊212。以灰階膝蓋組織影像210被切割為9個小區塊為例,左上角的小區塊的位置資訊會以附加的方式被添加到左上角的小區塊中。In one embodiment, the visual converter 310a includes a linear projection module 312 and a conversion encoder 314. After the visual converter 310a cuts out a plurality of first small blocks 212, the plurality of first small blocks 212 are input to the linear projection module 312. After the linear projection module 312 receives the plurality of first small blocks 212, the position information of each first small block 212 in the grayscale knee tissue image 210 is added to each first small block 212. For example, if the grayscale knee tissue image 210 is cut into 9 small blocks, the position information of the small block in the upper left corner is added to the small block in the upper left corner in an additional manner.
除了位置資訊外,線性投影模組312還會將各個第一小區塊212在灰階膝蓋組織影像210所屬的類別資訊添加至各個第一小區塊212。以灰階膝蓋組織影像210被切割為9個小區塊且左上角的小區塊的類別資訊是關節膜為例,會以附加的方式將「關節膜」之類別資訊添加到左上角的小區塊中。In addition to the position information, the linear projection module 312 also adds the category information to which each first small block 212 belongs in the grayscale knee tissue image 210 to each first small block 212. For example, if the grayscale knee tissue image 210 is cut into 9 small blocks and the category information of the small block in the upper left corner is articular membrane, the category information of "articular membrane" will be added to the small block in the upper left corner in an additional manner.
值得一提的是,線性投影模組312會以向量形式處理各個第一小區塊212,因此位置資訊及類別資訊也會以向量形式被添加到各個第一小區塊212中。於下面說明中,將被添加了位置資訊及類別資訊的各個小區塊稱為第一小區塊214。It is worth mentioning that the linear projection module 312 processes each first small block 212 in a vector form, so the position information and the category information are also added to each first small block 212 in a vector form. In the following description, each small block to which the position information and the category information are added is referred to as a first small block 214.
視覺轉換器310a還具有轉換編碼器314。接著,線性投影模組312將攜帶有位置資訊及類別資訊的複數個第一小區塊214輸入至轉換編碼器314。轉換編碼器314使用攜帶有位置資訊及類別資訊的複數個第一小區塊214來分析出複數個第一影像特徵216。轉換編碼器314會將此些第一影像特徵216輸入至機器學習分類器320。The visual converter 310a further includes a conversion encoder 314. Then, the linear projection module 312 inputs the plurality of first small blocks 214 carrying the position information and the category information to the conversion encoder 314. The conversion encoder 314 uses the plurality of first small blocks 214 carrying the position information and the category information to analyze a plurality of first image features 216. The conversion encoder 314 inputs these first image features 216 to the machine learning classifier 320.
視覺轉換器310b也會對都卜勒膝蓋組織影像220執行相同於圖5的影像處理程序。於一實施例中,視覺轉換器310b為獨立於視覺轉換器310a的元件。視覺轉換器310b也包括線性投影模組及轉換編碼器。視覺轉換器310b的線性投影模組及轉換編碼器與圖5的線性投影模組312及轉換編碼器314分別為相同的元件及功能,而實現與線性投影模組312及轉換編碼器134相同的操作。The visual converter 310b also performs the same image processing procedure as that of FIG. 5 on the Doppler knee tissue image 220. In one embodiment, the visual converter 310b is a component independent of the visual converter 310a. The visual converter 310b also includes a linear projection module and a conversion encoder. The linear projection module and the conversion encoder of the visual converter 310b are the same components and functions as the linear projection module 312 and the conversion encoder 314 of FIG. 5, respectively, and implement the same operation as the linear projection module 312 and the conversion encoder 134.
於一實施例中,視覺轉換器310b與視覺轉換器310a為同一個元件,此時視覺轉換器310b包括線性投影模組312及轉換編碼器314。為簡化說明書,以下為視覺轉換器310b包括線性投影模組312及轉換編碼器314的內容進行說明。In one embodiment, the visual converter 310b and the visual converter 310a are the same component, and the visual converter 310b includes a linear projection module 312 and a conversion encoder 314. To simplify the description, the following describes the visual converter 310b including the linear projection module 312 and the conversion encoder 314.
於一實施例中,視覺轉換器310b會先將都卜勒膝蓋組織影像220切割為複數個第二小區塊(圖未繪示)。在線性投影模組312接收複數個第二小區塊之後,會添加各個第二小區塊在都卜勒膝蓋組織影像220的位置資訊至各個第二小區塊。以都卜勒膝蓋組織影像220被切割為9個小區塊為例,右上角的小區塊的位置資訊會以附加的方式被添加到右上角的小區塊中。In one embodiment, the visual converter 310b first cuts the Doppler knee tissue image 220 into a plurality of second small blocks (not shown). After the linear projection module 312 receives the plurality of second small blocks, the position information of each second small block in the Doppler knee tissue image 220 is added to each second small block. For example, if the Doppler knee tissue image 220 is cut into 9 small blocks, the position information of the small block in the upper right corner is added to the small block in the upper right corner in an additional manner.
線性投影模組312會將各個第二小區塊在都卜勒膝蓋組織影像220所屬的類別資訊添加至各個第二小區塊。以都卜勒膝蓋組織影像220被切割為9個小區塊且右上角的小區塊的類別資訊是血管為例,會以附加的方式將「血管」之類別資訊添加到右上角的小區塊中。The linear projection module 312 adds the category information of each second small block in the Doppler knee tissue image 220 to each second small block. For example, if the Doppler knee tissue image 220 is cut into 9 small blocks and the category information of the small block in the upper right corner is blood vessel, the category information of "blood vessel" is added to the small block in the upper right corner in an additional manner.
值得一提的是,線性投影模組312會以向量形式處理各個第二小區塊,因此位置資訊及類別資訊也會以向量形式被添加到各個第二小區塊中。It is worth mentioning that the linear projection module 312 processes each second small block in a vector form, so the position information and the category information are also added to each second small block in a vector form.
接著,線性投影模組312將攜帶有位置資訊及類別資訊的複數個第二小區塊輸入至轉換編碼器314。轉換編碼器314使用攜帶有位置資訊及類別資訊的複數個第二小區塊來分析出複數個第二影像特徵226。轉換編碼器314會將此些第二影像特徵226輸入至機器學習分類器320。Next, the linear projection module 312 inputs the plurality of second small blocks carrying the position information and the category information to the conversion encoder 314. The conversion encoder 314 uses the plurality of second small blocks carrying the position information and the category information to analyze a plurality of second image features 226. The conversion encoder 314 inputs these second image features 226 to the machine learning classifier 320.
接著,如同上述說明,機器學習分類器320會同時處理複數個第一影像特徵216及複數個第二影像特徵226,以對這些影像特徵進行分類運算來產生一輸出資料410。輸出資料410包括各自具有機率值的複數個分類結果。Then, as described above, the machine learning classifier 320 simultaneously processes the plurality of first image features 216 and the plurality of second image features 226 to perform classification operations on these image features to generate an output data 410. The output data 410 includes a plurality of classification results each having a probability value.
於一實施例中,控制器130根據輸出資料410提供具有最大機率值的分類結果來作為評估感染性關節炎的高度關聯的資訊。In one embodiment, the controller 130 provides the classification result having the maximum probability value according to the output data 410 as highly relevant information for evaluating infectious arthritis.
值得一提的是,圖4及圖5中的視覺轉換器310a、視覺轉換器310b及機器學習分類器320為軟體模組,由複數個程式碼組成。圖1的優化裝置100的控制器130執行軟體模組的程式碼來執行視覺轉換器310a、視覺轉換器310b及機器學習分類器320,以實現評估感染性關節炎的優化方法的各個步驟。It is worth mentioning that the visual converter 310a, the visual converter 310b and the machine learning classifier 320 in Figures 4 and 5 are software modules, which are composed of a plurality of program codes. The controller 130 of the optimization device 100 in Figure 1 executes the program codes of the software module to execute the visual converter 310a, the visual converter 310b and the machine learning classifier 320 to implement each step of the optimization method for evaluating infectious arthritis.
圖6為本案根據一實施例所繪示的評估感染性關節炎的優化方法的流程圖。評估感染性關節炎的優化方法可由圖1的優化裝置100來執行。FIG6 is a flow chart of an optimization method for evaluating infectious arthritis according to an embodiment of the present invention. The optimization method for evaluating infectious arthritis can be executed by the optimization device 100 of FIG1 .
於步驟S610中,經由超音波感測器110獲得涵蓋有部分膝蓋區域的灰階膝蓋組織影像210,及經由都卜勒感測器120獲得具有血管分布特徵的都卜勒膝蓋組織影像220。In step S610 , a grayscale knee tissue image 210 covering a portion of the knee area is obtained by the ultrasound sensor 110 , and a Doppler knee tissue image 220 having a vascular distribution feature is obtained by the Doppler sensor 120 .
於一實施例中,當灰階膝蓋組織影像210與都卜勒膝蓋組織影像220所涵蓋的部分膝蓋區域為對應於同一個膝蓋區域時,此兩個影像會被儲存為一組影像對。In one embodiment, when the grayscale knee tissue image 210 and the partial knee area covered by the Doppler knee tissue image 220 correspond to the same knee area, the two images are stored as an image pair.
於步驟S620中,經由控制器130輸入灰階膝蓋組織影像210至視覺轉換器310a,以擷取灰階膝蓋組織影像210的複數個第一影像特徵216。In step S620 , the grayscale knee tissue image 210 is input to the visual converter 310 a via the controller 130 to capture a plurality of first image features 216 of the grayscale knee tissue image 210 .
於步驟S630中,經由控制器130輸入都卜勒膝蓋組織影像220至視覺轉換器310b,以擷取都卜勒膝蓋組織影像220的複數個第二影像特徵226。值得一提的是,控制器130可以同時將灰階膝蓋組織影像210及都卜勒膝蓋組織影像220分別輸入視覺轉換器310a及視覺轉換器310b,步驟S620及步驟S630的執行順序並不以圖6中所示的順序為必然。In step S630, the Doppler knee tissue image 220 is input to the visual converter 310b via the controller 130 to capture the plurality of second image features 226 of the Doppler knee tissue image 220. It is worth mentioning that the controller 130 can simultaneously input the grayscale knee tissue image 210 and the Doppler knee tissue image 220 to the visual converter 310a and the visual converter 310b, respectively, and the execution order of step S620 and step S630 is not necessarily the order shown in FIG. 6 .
於步驟S640中,經由控制器130輸入複數個第一影像特徵216及複數個第二影像特徵226至機器學習分類器320,機器學習分類器320同時使用複數個第一影像特徵216及複數個第二影像特徵226來進行分類運算,以產生複數個分類結果及各分類結果的機率值。In step S640, the controller 130 inputs the plurality of first image features 216 and the plurality of second image features 226 to the machine learning classifier 320. The machine learning classifier 320 simultaneously uses the plurality of first image features 216 and the plurality of second image features 226 to perform classification operations to generate a plurality of classification results and probability values of each classification result.
於一實施例中,所得到的複數個分類結果為針對對應到同一膝蓋區域的灰階膝蓋組織影像210及都卜勒膝蓋組織影像220的資訊。In one embodiment, the obtained classification results are information of the grayscale knee tissue image 210 and the Doppler knee tissue image 220 corresponding to the same knee region.
於步驟S650中,經由控制器130操作機器學習分類器320來輸出具有機率值的複數個分類結果,以作為評估感染性關節炎的評估資訊。In step S650, the controller 130 operates the machine learning classifier 320 to output a plurality of classification results with probability values as evaluation information for evaluating infectious arthritis.
於一實施例中,每一個分類結果有對應的機率值,控制器130會基於機率值由高至低輸出各分類結果供使用者參考。具有最高機率值的分類結果可以被作為評估感染性關節炎的高度關聯的資訊。In one embodiment, each classification result has a corresponding probability value, and the controller 130 outputs the classification results from high to low based on the probability value for the user's reference. The classification result with the highest probability value can be used as highly relevant information for evaluating infectious arthritis.
於一實施例中,圖4的視覺轉換器310a及視覺轉換器310b為經過預訓練的模型。舉例而言,視覺轉換器310a及視覺轉換器310b可以為由其他運算裝置使用無關於灰階膝蓋組織影像210及都卜勒膝蓋組織影像220的其他影像進行訓練之後所得到的視覺轉換模型(Vision Transformer)。由於優化裝置100不需要先對視覺轉換器310a及視覺轉換器310b進行訓練,而是使用通用的影像模型來執行影像特徵的擷取,因此可以節省去訓練視覺轉換器310a及視覺轉換器310b的時間。In one embodiment, the vision transformer 310a and the vision transformer 310b of FIG. 4 are pre-trained models. For example, the vision transformer 310a and the vision transformer 310b may be vision transformer models (Vision Transformer) obtained by other computing devices using other images unrelated to the grayscale knee tissue image 210 and the Doppler knee tissue image 220 for training. Since the optimization device 100 does not need to train the vision transformer 310a and the vision transformer 310b first, but uses a general image model to perform image feature extraction, the time for training the vision transformer 310a and the vision transformer 310b can be saved.
於一實施例中,控制器130會使用複數組影像對來訓練圖4的機器學習分類器320。舉例而言,控制器130將事先感測取得同一個膝蓋區域的灰階膝蓋組織影像(或稱訓練用灰階膝蓋組織影像)及都卜勒膝蓋組織影像(或稱訓練用都卜勒膝蓋組織影像)作為一組影像對,並且在超音波感測器110及都卜勒感測器120每移動一小段距離就取得一組影像對。因此,控制器130以複數組影像對作為訓練資料來訓練機器學習分類器320。In one embodiment, the controller 130 uses a plurality of sets of image pairs to train the machine learning classifier 320 of FIG. 4 . For example, the controller 130 uses a grayscale knee tissue image (or a training grayscale knee tissue image) and a Doppler knee tissue image (or a training Doppler knee tissue image) of the same knee region sensed in advance as a set of image pairs, and obtains a set of image pairs every time the ultrasound sensor 110 and the Doppler sensor 120 move a short distance. Therefore, the controller 130 uses a plurality of sets of image pairs as training data to train the machine learning classifier 320.
綜上所述,在僅考慮一個影像類型來評估感染性關節炎的情況下,例如僅使用灰階膝蓋組織影像,由於灰階膝蓋組織影像缺乏血管分布特徵,導致可用影像特徵較少,而使得評估的效能較差;或者,僅使用都卜勒膝蓋組織影像的情況下,雖然都卜勒膝蓋組織影像具有血管分布特徵而有較多的可用的影像特徵,但由於血管分布特徵會遮蔽其他組織和介質,這會導致部分的影像特徵不連續,而使得評估的準確度失真。相較之下,本案提出的評估感染性關節炎的優化裝置及優化方法同時參考了灰階膝蓋組織影像及都卜勒膝蓋組織影像,灰階膝蓋組織影像補足使用都卜勒膝蓋組織影像導致影像特徵不連續的問題,而都卜勒膝蓋組織影像補足使用灰階膝蓋組織影像的影像特徵較少的問題,據此,本案可以降低評估感染性關節炎的時間,優化感染性關節炎的評估流程,並提升評估感染性關節炎的效能。In summary, when only one image type is considered to evaluate infectious arthritis, for example, only grayscale knee tissue images are used, because grayscale knee tissue images lack vascular distribution characteristics, there are fewer available image features, resulting in poor evaluation performance; or, when only Doppler knee tissue images are used, although Doppler knee tissue images have vascular distribution characteristics and have more available image features, the vascular distribution characteristics will obscure other tissues and media, which will cause some image features to be discontinuous, thereby distorting the accuracy of the evaluation. In contrast, the optimized device and optimized method for evaluating infectious arthritis proposed in this case refer to both grayscale knee tissue images and Doppler knee tissue images. Grayscale knee tissue images supplement the problem of discontinuous image features caused by using Doppler knee tissue images, while Doppler knee tissue images supplement the problem of fewer image features when using grayscale knee tissue images. Based on this, this case can reduce the time for evaluating infectious arthritis, optimize the evaluation process of infectious arthritis, and improve the efficiency of evaluating infectious arthritis.
以上所述僅為本案的具體實例,非因此即侷限本案的申請專利範圍,故舉凡運用本案內容所為的等效變化,均同理皆包含於本案的範圍內,合予陳明。The above is only a specific example of this case, and does not limit the scope of the patent application of this case. Therefore, all equivalent changes made by applying the content of this case are also included in the scope of this case and should be stated.
100:優化裝置 110:超音波感測器 120:都卜勒感測器 130:控制器 210:灰階膝蓋組織影像 212:第一小區塊 214:第一小區塊 216:第一影像特徵 220:都卜勒膝蓋組織影像 226:第二影像特徵 231:組織 235:血管分布特徵 239:組織 310a:視覺轉換器 310b:視覺轉換器 320:機器學習分類器 410:輸出資料 S610~S650:步驟100: optimization device 110: ultrasound sensor 120: Doppler sensor 130: controller 210: grayscale knee tissue image 212: first small block 214: first small block 216: first image feature 220: Doppler knee tissue image 226: second image feature 231: tissue 235: vascular distribution feature 239: tissue 310a: visual converter 310b: visual converter 320: machine learning classifier 410: output data S610~S650: step
圖1為本案根據一實施例所繪示的評估感染性關節炎的優化裝置的方塊圖。FIG. 1 is a block diagram of an optimized device for evaluating infectious arthritis according to an embodiment of the present invention.
圖2為本案根據一實施例由超音波感測器感測部分膝蓋區域而產生的灰階膝蓋組織的實際影像。FIG. 2 is an actual image of the grayscale knee tissue generated by an ultrasonic sensor sensing a portion of the knee area according to an embodiment of the present invention.
圖3為本案根據一實施例由都卜勒感測器感測部分膝蓋區域而產生具有血管分布特徵的都卜勒膝蓋組織影像。FIG. 3 is a Doppler knee tissue image with vascular distribution characteristics generated by sensing a portion of the knee area with a Doppler sensor according to an embodiment of the present invention.
圖4為本案根據一實施例由優化裝置執行評估感染性關節炎的優化方法的資料流的示意圖。FIG. 4 is a schematic diagram of the data flow of an optimization method for evaluating infectious arthritis executed by an optimization device according to an embodiment of the present invention.
圖5為本案根據一實施例所繪示的圖4的視覺轉換器處理灰階膝蓋組織影像的細部資料流的示意圖。FIG. 5 is a schematic diagram of the visual converter of FIG. 4 processing the detailed data flow of the grayscale knee tissue image according to an embodiment of the present invention.
圖6為本案根據一實施例所繪示的評估感染性關節炎的優化方法的流程圖。FIG6 is a flow chart of an optimized method for evaluating infectious arthritis according to an embodiment of the present invention.
210:灰階膝蓋組織影像 210: Grayscale knee tissue image
216:第一影像特徵 216: First image feature
220:都卜勒膝蓋組織影像 220: Doppler knee tissue image
226:第二影像特徵 226: Second image feature
310a:視覺轉換器 310a: Visual converter
310b:視覺轉換器 310b: Visual converter
320:機器學習分類器 320: Machine Learning Classifier
410:輸出資料 410: Output data
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW113103348A TWI859061B (en) | 2024-01-29 | 2024-01-29 | Optimization device and optimization method for evaluating infectious arthritis |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW113103348A TWI859061B (en) | 2024-01-29 | 2024-01-29 | Optimization device and optimization method for evaluating infectious arthritis |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TWI859061B true TWI859061B (en) | 2024-10-11 |
| TW202531143A TW202531143A (en) | 2025-08-01 |
Family
ID=94084144
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW113103348A TWI859061B (en) | 2024-01-29 | 2024-01-29 | Optimization device and optimization method for evaluating infectious arthritis |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI859061B (en) |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1322792C (en) * | 2002-02-27 | 2007-06-20 | 成像治疗仪股份有限公司 | System and method for building and manipulating a centralized measurement value database |
| CN115439701B (en) * | 2022-11-07 | 2023-04-18 | 中国医学科学院北京协和医院 | RA activity deep learning method and device for multi-modal ultrasound images |
| WO2023146917A1 (en) * | 2022-01-27 | 2023-08-03 | The Regents Of The University Of California | A machine learning pipeline for highly sensitive assessment of rotator cuff function |
| TW202339787A (en) * | 2021-10-25 | 2023-10-16 | 德商艾倫貝有限公司 | Platform technology for treatment of inflammatory, immunological and/or autoimmunological diseases |
| WO2024010852A1 (en) * | 2022-07-06 | 2024-01-11 | The Regents Of The University Of California | Motion capture and biomechanical assessment of goal-directed movements |
-
2024
- 2024-01-29 TW TW113103348A patent/TWI859061B/en active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1322792C (en) * | 2002-02-27 | 2007-06-20 | 成像治疗仪股份有限公司 | System and method for building and manipulating a centralized measurement value database |
| TW202339787A (en) * | 2021-10-25 | 2023-10-16 | 德商艾倫貝有限公司 | Platform technology for treatment of inflammatory, immunological and/or autoimmunological diseases |
| WO2023146917A1 (en) * | 2022-01-27 | 2023-08-03 | The Regents Of The University Of California | A machine learning pipeline for highly sensitive assessment of rotator cuff function |
| WO2024010852A1 (en) * | 2022-07-06 | 2024-01-11 | The Regents Of The University Of California | Motion capture and biomechanical assessment of goal-directed movements |
| CN115439701B (en) * | 2022-11-07 | 2023-04-18 | 中国医学科学院北京协和医院 | RA activity deep learning method and device for multi-modal ultrasound images |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202531143A (en) | 2025-08-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Rifai et al. | Analysis for diagnosis of pneumonia symptoms using chest X-ray based on MobileNetV2 models with image enhancement using white balance and contrast limited adaptive histogram equalization (CLAHE) | |
| CN117274607B (en) | Multi-channel pyramid-based lightweight medical image segmentation network, method and device | |
| Pham et al. | Lesion segmentation and automated melanoma detection using deep convolutional neural networks and XGBoost | |
| CN119579905B (en) | A method and system for segmenting auricle reference | |
| Nguyen et al. | Fruit-CoV: An efficient vision-based framework for speedy detection and diagnosis of SARS-CoV-2 infections through recorded cough sounds | |
| CN111914925A (en) | Patient behavior multi-modal perception and analysis system based on deep learning | |
| Srikanth | Parkinson disease detection using various machine learning algorithms | |
| Karaca et al. | Comparative study for tuberculosis detection by using deep learning | |
| He et al. | An expert-knowledge-based graph convolutional network for skeleton-based physical rehabilitation exercises assessment | |
| CN112396063A (en) | Portrait semantic analysis method based on aggregation excitation context pyramid | |
| Yueyuan et al. | Swin transformer combined with convolutional encoder for cephalometric landmarks detection | |
| Sharma et al. | MonkeyPox, measles and chickenpox detection through image-processing using residual neural network (ResNet) | |
| TWI859061B (en) | Optimization device and optimization method for evaluating infectious arthritis | |
| CN115905819A (en) | rPPG signal generation method and device based on generation countermeasure network | |
| Santos et al. | Deep neural network model based on one-stage detector for identifying fundus lesions | |
| Li et al. | Heart sound classification based on two-channel feature fusion and dual attention mechanism | |
| CN116342532B (en) | Bone age intelligent auxiliary evaluation method and system based on feature point detection | |
| CN113344911B (en) | Method and device for measuring size of calculus | |
| Divakaran et al. | Detection of Different Types of Ear Diseases in Infants Using Deep Learning for Early Treatment | |
| WO2024076683A1 (en) | Image processing for medical condition diagnosis | |
| CN118197592A (en) | A multimodal arrhythmia classification auxiliary diagnosis system based on data augmentation | |
| CN115147372A (en) | Traditional Chinese medicine tongue image intelligent identification and treatment method and system based on medical image segmentation | |
| Jusman et al. | Caries Level Classification using Combination of Hu and Zernike Invariant Moments Features and Machine Learning | |
| Hu et al. | Multi-classifier information fusion for human activity recognition in healthcare facilities | |
| Anusha et al. | Detection of COVID-19 by classifying CT-Scan images using Enhanced MobilenetV2. |