[go: up one dir, main page]

TWI858999B - Beamforming-based positioning device and positioning method - Google Patents

Beamforming-based positioning device and positioning method Download PDF

Info

Publication number
TWI858999B
TWI858999B TW112144438A TW112144438A TWI858999B TW I858999 B TWI858999 B TW I858999B TW 112144438 A TW112144438 A TW 112144438A TW 112144438 A TW112144438 A TW 112144438A TW I858999 B TWI858999 B TW I858999B
Authority
TW
Taiwan
Prior art keywords
signal strength
user equipment
space
probability distribution
beam pattern
Prior art date
Application number
TW112144438A
Other languages
Chinese (zh)
Other versions
TW202522916A (en
Inventor
陳昱安
柯俊先
伍紹勳
Original Assignee
中華電信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中華電信股份有限公司 filed Critical 中華電信股份有限公司
Priority to TW112144438A priority Critical patent/TWI858999B/en
Application granted granted Critical
Publication of TWI858999B publication Critical patent/TWI858999B/en
Publication of TW202522916A publication Critical patent/TW202522916A/en

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A beamforming-based positioning device and positioning method are provided. The positioning method includes: obtaining trajectory of a user equipment (UE) in a space and generating a dynamic model according to the trajectory; measuring a plurality of signal strengths of a first beam patten at plurality of locations in the space and generating a first radio power map (RPM) of the first beam pattern in the space according to the plurality of signal strengths; estimating a first probability distribution of the UE in the space according to the dynamic model; measuring a first current signal strength of the first beam patten through the UE and calculating a likelihood function between the first current signal strength and the first RPM to generate a second probability distribution of the UE in the space; and determining a current location of the UE according to the first probability distribution and the second probability distribution and outputting the current location.

Description

基於波束成形的定位裝置和定位方法Positioning device and positioning method based on beamforming

本發明是有關於一種定位裝置和定位方法,且特別是有關於一種基於波束成形的定位裝置和定位方法。 The present invention relates to a positioning device and a positioning method, and in particular to a positioning device and a positioning method based on beamforming.

針對5G新無線電(new radio,NR)的技術演進,其中一個重要的特徵即是引入波束成形(beamforming)技術。不同於過往以全向性訊號傳播的通訊框架,波束成形技術可以提供基於方向與使用者位置的訊號增益與干擾抑制,以增進通訊系統效能。同時,波束成形技術也為通訊系統帶來了新的挑戰,例如:指向性訊號增益帶來特定方向干擾或以使用者為基礎的波束配置技術等。為了克服上述困難,降低基地台間干擾,進而提升系統的傳輸品質,其中一個關鍵即是取得通訊網路中使用者的位置資訊,並據此最佳化波束的配置。因此,如何在波束成形之通訊架構下的通訊系統執行用戶設備(user equipment,UE)的定位,是本領域的重要課題之一。 One of the important features of the technological evolution of 5G new radio (NR) is the introduction of beamforming technology. Different from the previous communication framework based on omnidirectional signal propagation, beamforming technology can provide signal gain and interference suppression based on direction and user position to improve the performance of the communication system. At the same time, beamforming technology also brings new challenges to the communication system, such as: directional signal gain brings interference in a specific direction or user-based beam configuration technology. In order to overcome the above difficulties, reduce interference between base stations, and thus improve the transmission quality of the system, one of the keys is to obtain the location information of users in the communication network and optimize the configuration of the beam accordingly. Therefore, how to perform user equipment (UE) positioning in a communication system under a beamforming communication architecture is one of the important topics in this field.

本發明提供一種基於波束成形的定位裝置和定位方法,可準確地測量用戶設備的當前位置。 The present invention provides a positioning device and positioning method based on beamforming, which can accurately measure the current position of the user equipment.

本發明的一種基於波束成形的定位方法,適用於定位空間中的用戶設備,包含:取得用戶設備在空間中的軌跡,並且根據軌跡產生動態模型;測量第一波束場型在空間中的多個位置的多個訊號強度,並且根據多個訊號強度產生第一波束場型在空間中的第一訊號強度圖譜;根據動態模型預測用戶設備在空間中的第一機率分布;通過用戶設備測量第一波束場型的第一當前訊號強度,並且計算第一當前訊號強度與第一訊號強度圖譜之間的第一似然度函數以產生用戶設備在空間中的第二機率分布;以及根據第一機率分布以及第二機率分布判斷用戶設備的當前位置,並且輸出當前位置。 The present invention discloses a positioning method based on beamforming, which is applicable to positioning a user equipment in space, and includes: obtaining a trajectory of the user equipment in space, and generating a dynamic model according to the trajectory; measuring multiple signal strengths of a first beam pattern at multiple positions in space, and generating a first signal strength spectrum of the first beam pattern in space according to the multiple signal strengths; predicting a first probability distribution of the user equipment in space according to the dynamic model; measuring a first current signal strength of the first beam pattern by the user equipment, and calculating a first likelihood function between the first current signal strength and the first signal strength spectrum to generate a second probability distribution of the user equipment in space; and determining a current position of the user equipment according to the first probability distribution and the second probability distribution, and outputting the current position.

在本發明的一實施例中,上述的根據多個訊號強度產生第一波束場型在空間中的第一訊號強度圖譜的步驟包含:取得多個基底函數;根據多個訊號強度更新多個基底函數中的至少一基底函數的參數,其中參數包含權重;根據參數挑選多個基底函數的子集合;以及根據子集合產生第一訊號強度圖譜。 In one embodiment of the present invention, the above-mentioned step of generating a first signal strength spectrum of a first beam pattern in space according to multiple signal strengths includes: obtaining multiple basis functions; updating parameters of at least one basis function among the multiple basis functions according to the multiple signal strengths, wherein the parameters include weights; selecting a subset of the multiple basis functions according to the parameters; and generating a first signal strength spectrum according to the subset.

在本發明的一實施例中,上述的根據子集合產生第一訊號強度圖譜的步驟包含:計算多個訊號強度與子集合之間的第二似然度函數,並且判斷第二似然度函數是否與收斂條件匹配;以及響應於第二似然度函數與收斂條件匹配,根據子集合產生第一訊 號強度圖譜。 In one embodiment of the present invention, the step of generating a first signal strength spectrum according to a subset includes: calculating a second likelihood function between a plurality of signal strengths and a subset, and determining whether the second likelihood function matches a convergence condition; and generating a first signal strength spectrum according to the subset in response to the second likelihood function matching the convergence condition.

在本發明的一實施例中,上述的根據子集合產生第一訊號強度圖譜的步驟更包含:響應於第二似然度函數與收斂條件不匹配,根據多個訊號強度更新子集合中的至少一基底函數的參數。 In one embodiment of the present invention, the step of generating a first signal strength spectrum based on a subset further includes: in response to the second likelihood function not matching the convergence condition, updating the parameters of at least one basis function in the subset based on multiple signal strengths.

在本發明的一實施例中,上述的多個基底函數關聯於拉普拉斯函數。 In one embodiment of the present invention, the above-mentioned multiple basis functions are related to the Laplace function.

在本發明的一實施例中,上述的定位方法更包含:測量第二波束場型以產生第二波束場型在空間中的第二訊號強度圖譜;通過用戶設備測量第二波束場型的第二當前訊號強度,並且計算第二當前訊號強度與第二訊號強度圖譜之間的第二似然度函數以產生用戶設備在空間中的第三機率分布;以及根據第一機率分布、第二機率分布以及第三機率分布判斷當前位置。 In one embodiment of the present invention, the positioning method further includes: measuring the second beam pattern to generate a second signal strength spectrum of the second beam pattern in space; measuring the second current signal strength of the second beam pattern by the user equipment, and calculating the second likelihood function between the second current signal strength and the second signal strength spectrum to generate a third probability distribution of the user equipment in space; and determining the current position according to the first probability distribution, the second probability distribution and the third probability distribution.

在本發明的一實施例中,上述的第一波束場型以及第二波束場型由相同的基地台提供。 In one embodiment of the present invention, the first beam pattern and the second beam pattern are provided by the same base station.

在本發明的一實施例中,上述的第一波束場型以及第二波束場型分別由不同的基地台提供。 In one embodiment of the present invention, the first beam pattern and the second beam pattern are provided by different base stations.

在本發明的一實施例中,上述的根據第一機率分布以及第二機率分布判斷用戶設備的當前位置的步驟包含:利用粒子濾波器與機器學習模型的其中之一判斷當前位置。 In one embodiment of the present invention, the above-mentioned step of determining the current location of the user device based on the first probability distribution and the second probability distribution includes: using one of a particle filter and a machine learning model to determine the current location.

在本發明的一實施例中,上述的動態模型包含下列的其中之一:自迴歸模型、牛頓力學模型以及機器學習模型。 In one embodiment of the present invention, the above-mentioned dynamic model includes one of the following: autoregressive model, Newtonian mechanics model and machine learning model.

在本發明的一實施例中,上述的多個訊號強度關聯於參 考訊號接收功率。 In one embodiment of the present invention, the above-mentioned multiple signal strengths are associated with the reference signal receiving power.

本發明的一種基於波束成形的定位裝置,適用於定位空間中的用戶設備,包含處理器以及收發器。處理器耦接收發器,並且經配置以執行:通過收發器取得用戶設備在空間中的軌跡,並且根據軌跡產生動態模型;測量第一波束場型在空間中的多個位置的多個訊號強度,並且根據多個訊號強度產生第一波束場型在空間中的第一訊號強度圖譜;根據動態模型預測用戶設備在空間中的第一機率分布;通過用戶設備測量第一波束場型的第一當前訊號強度,並且計算第一當前訊號強度與第一訊號強度圖譜之間的第一似然度函數以產生用戶設備在空間中的第二機率分布;以及根據第一機率分布以及第二機率分布判斷用戶設備的當前位置,並且通過收發器輸出當前位置。 The present invention discloses a positioning device based on beamforming, which is applicable to user equipment in a positioning space and includes a processor and a transceiver. The processor is coupled to the transceiver and is configured to perform: obtaining the trajectory of the user equipment in space through the transceiver and generating a dynamic model according to the trajectory; measuring multiple signal strengths of the first beam pattern at multiple locations in space, and generating a first signal strength spectrum of the first beam pattern in space according to the multiple signal strengths; predicting a first probability distribution of the user equipment in space according to the dynamic model; measuring the first current signal strength of the first beam pattern through the user equipment, and calculating a first likelihood function between the first current signal strength and the first signal strength spectrum to generate a second probability distribution of the user equipment in space; and determining the current position of the user equipment according to the first probability distribution and the second probability distribution, and outputting the current position through the transceiver.

基於上述,基於波束場型之訊號強度圖譜重建與定位系統,旨在利用波束指向性的方向增益以及用戶的訊號強度量測結果,重建基於波束場型之訊號強度圖譜(radio power map,RPM),並提供應用情境中用戶管理的功能。本發明的定位方法可以進一步切分成兩個部分,其中第一部分為訊號強度圖譜的建立。此方法基於預先得知的波束增益模型以及貝式稀疏演算法(Bayesian sparse learning),藉由近似無線訊號的通道衰減,重建環境中的訊號強度圖譜,其中訊號強度圖譜可用於表示訊號強度隨空間的變化。基於這些不同波束指向對應的訊號強度圖譜,定位系統可以為目標空間中的用戶設備進行定位與追蹤。此追蹤演算法能夠利用 波束場型的方向性,進一步改善定位的精確度。這些用戶的位置資訊,可以作為網路中的參考資訊,進一步最佳化網路中的設置,進而提供用戶更高的網速與服務體驗。 Based on the above, the signal strength spectrum reconstruction and positioning system based on the beam pattern aims to utilize the directional gain of the beam directivity and the signal strength measurement results of the user to reconstruct the signal strength spectrum (radio power map, RPM) based on the beam pattern, and provide user management functions in the application scenario. The positioning method of the present invention can be further divided into two parts, wherein the first part is the establishment of the signal strength spectrum. This method is based on a pre-known beam gain model and a Bayesian sparse learning algorithm, and reconstructs the signal strength spectrum in the environment by approximating the channel attenuation of the wireless signal, wherein the signal strength spectrum can be used to represent the variation of the signal strength with space. Based on the signal strength spectra corresponding to these different beam directivities, the positioning system can locate and track the user equipment in the target space. This tracking algorithm can utilize the directionality of the beam pattern to further improve the accuracy of positioning. These user location information can be used as reference information in the network to further optimize the settings in the network, thereby providing users with higher network speeds and service experience.

圖1根據本發明的一實施例繪示一種基於波束成形的定位裝置100的示意圖,其中定位裝置100可通訊連接至一或多個基地台200(例如:基地台210或220)以及用戶設備300。定位裝置100適用於通過具有波束成形功能的一或多個基地台200來定位特定空間(例如:室內空間)中的用戶設備300。 FIG1 shows a schematic diagram of a positioning device 100 based on beamforming according to an embodiment of the present invention, wherein the positioning device 100 can be communicatively connected to one or more base stations 200 (e.g., base stations 210 or 220) and a user equipment 300. The positioning device 100 is suitable for positioning a user equipment 300 in a specific space (e.g., an indoor space) through one or more base stations 200 with beamforming function.

圖2根據本發明的一實施例繪示定位裝置100的方塊圖。定位裝置100可包含處理器110、儲存媒體120以及收發器130。 FIG. 2 shows a block diagram of a positioning device 100 according to an embodiment of the present invention. The positioning device 100 may include a processor 110, a storage medium 120, and a transceiver 130.

處理器110例如是中央處理單元(central processing unit,CPU),或是其他可程式化之一般用途或特殊用途的微控制單元(micro control unit,MCU)、微處理器(microprocessor)、數位信號處理器(digital signal processor,DSP)、可程式化控制器、特殊應用積體電路(application specific integrated circuit,ASIC)、圖形處理器(graphics processing unit,GPU)、影像訊號處理器(image signal processor,ISP)、影像處理單元(image processing unit,IPU)、算數邏輯單元(arithmetic logic unit,ALU)、複雜可程式邏輯裝置(complex programmable logic device,CPLD)、現場可程式化邏輯閘陣列(field programmable gate array,FPGA)或其他類似元件或上述元件的組合。處理器110可耦接至儲存媒體120以及收發器130,並且存取和執行儲存於儲存媒體120中的多個模組和各種應用程式。 The processor 110 is, for example, a central processing unit (CPU), or other programmable general-purpose or special-purpose micro control unit (MCU), microprocessor, digital signal processor (DSP), programmable controller, application specific integrated circuit (ASIC), graphics processing unit (GPU), image signal processor (ISP), image processing unit (IPU), arithmetic logic unit (ALU), complex programmable logic device (CPLD), field programmable gate array (FPGA), or other similar components or combinations of the above components. The processor 110 may be coupled to the storage medium 120 and the transceiver 130, and access and execute multiple modules and various applications stored in the storage medium 120.

儲存媒體120例如是任何型態的固定式或可移動式的隨機存取記憶體(random access memory,RAM)、唯讀記憶體(read-only memory,ROM)、快閃記憶體(flash memory)、硬碟(hard disk drive,HDD)、固態硬碟(solid state drive,SSD)或類似元件或上述元件的組合,而用於儲存可由處理器110執行的多個模組或各種應用程式。 The storage medium 120 is, for example, any type of fixed or removable random access memory (RAM), read-only memory (ROM), flash memory, hard disk drive (HDD), solid state drive (SSD) or similar elements or a combination of the above elements, and is used to store multiple modules or various applications that can be executed by the processor 110.

收發器130以無線或有線的方式傳送或接收訊號。收發 器130還可以執行例如低噪聲放大、阻抗匹配、混頻、向上或向下頻率轉換、濾波、放大以及類似的操作。定位裝置100可通過收發器130通訊連接至基地台200或用戶設備300。 The transceiver 130 transmits or receives signals wirelessly or wiredly. The transceiver 130 may also perform operations such as low noise amplification, impedance matching, mixing, up or down frequency conversion, filtering, amplification, and the like. The positioning device 100 may be connected to the base station 200 or the user equipment 300 through the transceiver 130.

圖3根據本發明的一實施例繪示一種基於波束成形的定位方法的流程圖,其中定位方法可由如圖2所示的定位裝置100實施。定位方法可包含用於建立模型的流程S300以及用於定位用戶設備300的流程S400。 FIG3 shows a flow chart of a positioning method based on beamforming according to an embodiment of the present invention, wherein the positioning method can be implemented by the positioning device 100 shown in FIG2 . The positioning method can include a process S300 for establishing a model and a process S400 for positioning the user equipment 300.

參照流程S300,在步驟S310中,定位裝置100的處理器110可取得用戶設備300在特定空間中的軌跡,其中特定空間例如位在基地台200的服務範圍之內。上述的軌跡例如是根據與用戶設備300過去在特定空間中的移動相關聯的歷史資料而產生的。 Referring to process S300, in step S310, the processor 110 of the positioning device 100 may obtain the trajectory of the user equipment 300 in a specific space, wherein the specific space is, for example, located within the service range of the base station 200. The above-mentioned trajectory is, for example, generated based on historical data associated with the past movement of the user equipment 300 in the specific space.

在步驟S320中,處理器110可根據軌跡產生用戶設備300在特定空間中的動態模型。動態模型可包含例如自迴歸模型(autoregressive model)、牛頓力學模型(Newtonian model)或機器學習(machine learning,ML)模型。 In step S320, the processor 110 may generate a dynamic model of the user equipment 300 in a specific space according to the trajectory. The dynamic model may include, for example, an autoregressive model, a Newtonian model, or a machine learning (ML) model.

另一方面,在步驟S350中,處理器110可取得基地台的相關資訊,包含基地台200的位置資訊或波束場型(pattern)增益等。在步驟S360中,處理器110可通過收發器130測量基地台200的一或多個波束場型的每一者在特定空間中的多個位置的多個訊號強度。 On the other hand, in step S350, the processor 110 may obtain relevant information of the base station, including location information or beam pattern gain of the base station 200. In step S360, the processor 110 may measure multiple signal strengths of each of one or more beam patterns of the base station 200 at multiple locations in a specific space through the transceiver 130.

在一實施例中,上述的一或多個波束場型可由相同的基地台200提供。舉例來說,處理器110可通過收發器130測量基 地台210提供的兩種(或以上)波束場型的每一者在多個位置的多個訊號強度。在一實施例中,上述的一或多個波束場型可由不同的基地台200提供。舉例來說,處理器110可測量基地台210的波束場型在特定空間中的多個位置的多個訊號強度,並可測量基地台220的波束場型在特定空間中的多個位置的多個訊號強度。在一實施例中,訊號強度可包含參考訊號接收功率(reference signal received power,RSRP)。 In one embodiment, the one or more beam patterns mentioned above may be provided by the same base station 200. For example, the processor 110 may measure multiple signal strengths of each of the two (or more) beam patterns provided by the base station 210 at multiple locations through the transceiver 130. In one embodiment, the one or more beam patterns mentioned above may be provided by different base stations 200. For example, the processor 110 may measure multiple signal strengths of the beam pattern of the base station 210 at multiple locations in a specific space, and may measure multiple signal strengths of the beam pattern of the base station 220 at multiple locations in a specific space. In one embodiment, the signal strength may include a reference signal received power (RSRP).

舉例來說,定位裝置100可測量特定空間中每隔一公尺的位置上的基地台200的訊號強度。基地台200的運作頻率例如是2.6GHz,並可搭載三個平板天線以切換不同的場型指向。每個平板天線對應的波束寬度約為60度。處理器110可通過收發器130通訊連接至搭載高度為1.5公尺之全向性天線的訊號掃描器(scanner),以通過訊號掃描器在各個測量位置停留1分鐘以進行訊號強度的測量。 For example, the positioning device 100 can measure the signal strength of the base station 200 at every one meter in a specific space. The operating frequency of the base station 200 is, for example, 2.6GHz, and it can be equipped with three flat antennas to switch different field patterns. The beam width corresponding to each flat antenna is about 60 degrees. The processor 110 can communicate with the signal scanner (scanner) equipped with an omnidirectional antenna at a height of 1.5 meters through the transceiver 130, so that the signal scanner stays at each measurement location for 1 minute to measure the signal strength.

在步驟S370中,處理器110可根據測量到的多個訊號強度產生基地台200的波束場型在特定空間中的訊號強度圖譜。舉例來說,處理器110可根據對應於基地台210的多個訊號強度產生基地台210的波束場型在特定空間中的訊號強度圖譜,且可根據對應於基地台220的多個訊號強度產生基地台220的波束場型在特定空間中的訊號強度圖譜。 In step S370, the processor 110 may generate a signal strength spectrum of the beam pattern of the base station 200 in a specific space according to the measured multiple signal strengths. For example, the processor 110 may generate a signal strength spectrum of the beam pattern of the base station 210 in a specific space according to the multiple signal strengths corresponding to the base station 210, and may generate a signal strength spectrum of the beam pattern of the base station 220 in a specific space according to the multiple signal strengths corresponding to the base station 220.

考量到室內空間中的反射、穿透或折射等多路徑通道效應,處理器110可利用多個基底函數來產生訊號強度圖譜。圖4根 據本發明的一實施例繪示步驟S370的流程圖。在步驟S510中,處理器110可對測量到的多個訊號強度執行前處理(例如:正規化)。在步驟S520中,處理器110可根據多個訊號強度產生基地台200的波束場型在特定空間中的訊號強度圖譜(例如:基地台210及/或220的訊號強度圖譜)。在步驟S530中,處理器110可儲存訊號強度圖譜。舉例來說,處理器110可將所產生的一或多個訊號強度圖譜儲存在儲存媒體120中。 Considering the multi-path channel effects such as reflection, penetration or refraction in the indoor space, the processor 110 can use multiple basis functions to generate a signal strength spectrum. FIG4 shows a flow chart of step S370 according to an embodiment of the present invention. In step S510, the processor 110 can perform pre-processing (e.g., normalization) on the measured multiple signal strengths. In step S520, the processor 110 can generate a signal strength spectrum of the beam pattern of the base station 200 in a specific space (e.g., a signal strength spectrum of the base station 210 and/or 220) based on the multiple signal strengths. In step S530, the processor 110 can store the signal strength spectrum. For example, the processor 110 may store the generated one or more signal strength spectra in the storage medium 120.

圖5根據本發明的一實施例繪示步驟S520的流程圖。處理器110可基於貝氏稀疏學習(Bayesian sparse learning)而根據多個訊號強度產生訊號強度圖譜。具體來說,在步驟S610中,取得多個基底函數,並且初始化各個基底函數的參數,其中參數例如包含關聯於基底函數的位置或強度的權重。每個基底函數可用於表示一個由多路徑效應產生之虛擬訊號源。基底函數例如是拉普拉斯函數(Laplace function),但本發明不限於此。 FIG5 is a flow chart of step S520 according to an embodiment of the present invention. The processor 110 may generate a signal intensity spectrum based on a plurality of signal intensities based on Bayesian sparse learning. Specifically, in step S610, a plurality of basis functions are obtained, and parameters of each basis function are initialized, wherein the parameters include, for example, weights associated with the position or intensity of the basis function. Each basis function may be used to represent a virtual signal source generated by a multipath effect. The basis function is, for example, a Laplace function, but the present invention is not limited thereto.

在步驟S620中,處理器110可根據多個訊號強度更新多個基底函數中的一或多個基底函數的參數。 In step S620, the processor 110 may update the parameters of one or more basis functions among the multiple basis functions according to the multiple signal strengths.

在步驟S630中,處理器110可根據所述參數挑選多個基底函數的子集合。舉例來說,處理器110可將權重過小(例如:權重小於閾值)的基底函數過濾掉以保留權重較大(例如:權重大於或等於閾值)的一或多個基底函數,進而取得子集合。 In step S630, the processor 110 may select a subset of multiple basis functions according to the parameters. For example, the processor 110 may filter out basis functions with too small weights (e.g., weights less than a threshold) to retain one or more basis functions with larger weights (e.g., weights greater than or equal to the threshold), thereby obtaining a subset.

在步驟S640中,處理器110可計算多個強度訊號與子集合之間的似然度函數(likelihood function),並且判斷似然度函數 是否與收斂條件匹配。若似然度函數與收斂條件(例如:似然度函數大於閾值)匹配,代表當前的子集合及其參數可忠實地反映出多個強度訊號的特性。據此,處理器110可執行步驟S650。若似然度函數與收斂條件不匹配,則處理器110可重新執行步驟S620以更新多個基底函數中的一或多個基底函數的參數,直到選出能代表多個強度訊號的子集合為止。 In step S640, the processor 110 may calculate the likelihood function between the multiple intensity signals and the subset, and determine whether the likelihood function matches the convergence condition. If the likelihood function matches the convergence condition (for example, the likelihood function is greater than the threshold), it means that the current subset and its parameters can faithfully reflect the characteristics of the multiple intensity signals. Accordingly, the processor 110 may execute step S650. If the likelihood function does not match the convergence condition, the processor 110 may re-execute step S620 to update the parameters of one or more basis functions in the multiple basis functions until a subset that can represent the multiple intensity signals is selected.

在步驟S650中,處理器110可根據多個基底函數的子集合產生訊號強度圖譜。 In step S650, the processor 110 may generate a signal strength spectrum based on a subset of multiple basis functions.

回到圖3,參照流程S400,在步驟S410中,處理器110可通過收發器130取得特定空間的空間資訊。空間資訊例如包含空間的格局或空間中的不可移動物件(例如:傢俱)之位置等資訊。 Returning to FIG. 3 , referring to process S400 , in step S410 , the processor 110 can obtain spatial information of a specific space through the transceiver 130 . The spatial information may include, for example, the layout of the space or the location of immovable objects (e.g., furniture) in the space.

在步驟S420中,處理器110可根據動態模型預測用戶設備300在特定空間中的各個位置上的機率以取得機率分布。在一實施例中,處理器110可根據動態模型及空間資訊預設用戶設備300在特定空間中的機率分布。舉例來說,處理器110可基於空間資訊指示某一位置存在不可移動物件而將用戶設備300在該位置上的機率設為零。 In step S420, the processor 110 may predict the probability of the user device 300 at each position in the specific space according to the dynamic model to obtain a probability distribution. In one embodiment, the processor 110 may preset the probability distribution of the user device 300 in the specific space according to the dynamic model and the spatial information. For example, the processor 110 may set the probability of the user device 300 at a certain position to zero based on the spatial information indicating that there is an immovable object at the position.

另一方面,在步驟S450中,處理器110可通過收發器130通訊連接用戶設備300,並通過用戶設備300測量基地台200的一或多個波束場型的當前訊號強度。舉例來說,假設基地台210提供了兩種波束場型,用戶設備300可測量分別對應於基地台210所提供的兩種波束場型的兩個當前訊號強度。舉另一例來說,假設 基地台210提供一種波束場型且基地台220提供了另一種波束場型,用戶設備300可測量由基地台210提供的波束場型的當前訊號強度以及由基地台220提供的波束場型的當前訊號強度。 On the other hand, in step S450, the processor 110 may be connected to the user equipment 300 through the transceiver 130, and measure the current signal strength of one or more beam patterns of the base station 200 through the user equipment 300. For example, assuming that the base station 210 provides two beam patterns, the user equipment 300 may measure two current signal strengths corresponding to the two beam patterns provided by the base station 210. For another example, assuming that the base station 210 provides one beam pattern and the base station 220 provides another beam pattern, the user equipment 300 may measure the current signal strength of the beam pattern provided by the base station 210 and the current signal strength of the beam pattern provided by the base station 220.

在步驟S460中,處理器110可計算一或多個當前訊號強度中的每一者與對應的訊號強度圖譜之間的似然度函數。據此,處理器110可取得一或多個似然度函數。處理器110可進一步根據一或多個似然度函數的每一者產生用戶設備300在特定空間中的機率分布。舉例來說,假設基地台210和基地台220分別提供了兩種波束場型。針對由基地台210提供的波束場型,處理器110可計算該波束場型與對應於該波束場型的訊號強度圖譜之間的似然度函數。針對由基地台220提供的波束場型,處理器110可計算該波束場型與對應於該波束場型的訊號強度圖譜之間的似然度函數。據此,處理器110可取得兩個似然度函數。處理器110可進一步根據兩個似然度函數產生分別對應於兩個似然度函數的兩個機率分布。 In step S460, the processor 110 may calculate a likelihood function between each of the one or more current signal strengths and the corresponding signal strength spectrum. Accordingly, the processor 110 may obtain one or more likelihood functions. The processor 110 may further generate a probability distribution of the user equipment 300 in a specific space based on each of the one or more likelihood functions. For example, it is assumed that the base station 210 and the base station 220 provide two beam patterns respectively. For the beam pattern provided by the base station 210, the processor 110 may calculate a likelihood function between the beam pattern and the signal strength spectrum corresponding to the beam pattern. For the beam pattern provided by the base station 220, the processor 110 may calculate the likelihood function between the beam pattern and the signal strength spectrum corresponding to the beam pattern. Accordingly, the processor 110 may obtain two likelihood functions. The processor 110 may further generate two probability distributions corresponding to the two likelihood functions respectively based on the two likelihood functions.

在步驟S470中,處理器110可根據在步驟S420中取得的機率分布以及在步驟S460中取得的一或多個機率分布來判斷用戶設備300在特定空間中的當前位置,並且通過收發器130輸出用戶設備300的當前位置以供定位裝置100的用戶參考。在一實施例中,處理器110可利用粒子濾波器(particle filter)或機器學習模型而根據在步驟S420中取得的機率分布以及在步驟S460中取得的一或多個機率分布來判斷用戶設備300的當前位置。 In step S470, the processor 110 may determine the current position of the user equipment 300 in a specific space according to the probability distribution obtained in step S420 and one or more probability distributions obtained in step S460, and output the current position of the user equipment 300 through the transceiver 130 for reference by the user of the positioning device 100. In one embodiment, the processor 110 may use a particle filter or a machine learning model to determine the current position of the user equipment 300 according to the probability distribution obtained in step S420 and one or more probability distributions obtained in step S460.

透過通道的建模以及波束場型的引入,本發明的定位方法可以透過模擬通道進行定位精確度的驗證。對應於不同的波束掃描方式以及全向性與指向性的天線場型資訊,其對應的定位誤差如表1所示。相較全向性天線的定位結果,本發明基於指向性天線的定位方法可以改善50%的定位誤差。為了進一步改善定位的誤差,用戶可執行以下步驟:增加基地台的個數;或增加每個基地台所使用的指向性天線數量(即:增加基地台提供的波束場型的數量)。 Through channel modeling and the introduction of beam patterns, the positioning method of the present invention can verify the positioning accuracy through simulated channels. For different beam scanning methods and omnidirectional and directional antenna pattern information, the corresponding positioning errors are shown in Table 1. Compared with the positioning results of omnidirectional antennas, the positioning method based on directional antennas of the present invention can improve the positioning error by 50%. In order to further improve the positioning error, users can perform the following steps: increase the number of base stations; or increase the number of directional antennas used by each base station (i.e., increase the number of beam patterns provided by the base station).

Figure 112144438-A0305-02-0014-1
Figure 112144438-A0305-02-0014-1

透過引入更精密的波束場型,用戶可以模擬的方式驗證對各種參數對定位精確度的影響。考慮到波束掃描的複雜度,針對24個指向天線的應用情境,本實施例僅考慮使用具有最強強度之波束場型進行定位,其結果如表2所示。從表2的結果可以發現,不論是透過增加指向性天線個數或是增加基地台個數都可以有效地增加本發明的定位方法的定位精確度。 By introducing more precise beam patterns, users can verify the impact of various parameters on positioning accuracy in a simulated manner. Considering the complexity of beam scanning, for the application scenario of 24 directional antennas, this embodiment only considers using the beam pattern with the strongest intensity for positioning, and the results are shown in Table 2. From the results in Table 2, it can be found that whether by increasing the number of directional antennas or increasing the number of base stations, the positioning accuracy of the positioning method of the present invention can be effectively increased.

表2

Figure 112144438-A0305-02-0015-3
Table 2
Figure 112144438-A0305-02-0015-3

圖6根據本發明的另一實施例繪示一種基於波束成形的定位方法的流程圖,其中所述定位方法可由如圖2所示的定位裝置100實施。在步驟S710中,取得用戶設備在空間中的軌跡,並且根據軌跡產生動態模型。在步驟S720中,測量第一波束場型在空間中的多個位置的多個訊號強度,並且根據多個訊號強度產生第一波束場型在空間中的第一訊號強度圖譜。在步驟S730中,根據動態模型預測用戶設備在空間中的第一機率分布。在步驟S740中,通過用戶設備測量第一波束場型的第一當前訊號強度,並且計算第一當前訊號強度與第一訊號強度圖譜之間的第一似然度函數以產生用戶設備在空間中的第二機率分布。在步驟S750中,根據第一機率分布以及第二機率分布判斷用戶設備的當前位置,並且輸出當前位置。 FIG6 is a flow chart of a positioning method based on beamforming according to another embodiment of the present invention, wherein the positioning method can be implemented by the positioning device 100 shown in FIG2 . In step S710, the trajectory of the user equipment in space is obtained, and a dynamic model is generated based on the trajectory. In step S720, multiple signal strengths of a first beam pattern at multiple positions in space are measured, and a first signal strength spectrum of the first beam pattern in space is generated based on the multiple signal strengths. In step S730, a first probability distribution of the user equipment in space is predicted based on the dynamic model. In step S740, the first current signal strength of the first beam pattern is measured by the user equipment, and the first likelihood function between the first current signal strength and the first signal strength spectrum is calculated to generate a second probability distribution of the user equipment in space. In step S750, the current position of the user equipment is determined according to the first probability distribution and the second probability distribution, and the current position is output.

綜上所述,本發明之目的在於提供基於波束場型之訊號強度圖譜重建,並於波束通訊網路中提供用戶位置管理,旨在利用波束指向性的方向增益以及環境中的訊號強度量測,提供應用情境中用戶管理的功能。此系統可以進一步切分成兩個部分,第一部分為訊號強度圖譜的建立,此方法基於波束增益模型以及貝式稀 疏演算構成,其技術如下所列:考量到室內空間中的反射、穿透或折射等多路徑通道效應,本發明引入一基底選擇機制,透過複數基底函數表示室內環境中的訊號反射與折射效應,亦即,學習出室內空間中,無線訊號的通道衰減以及反射散射的綜合效果;透過去除波束場型的指向性增益,克服基底函數和波束場型不一致造成的建模誤差,以重建精確的訊號強度圖譜;以及根據這些基於波束場型之訊號強度圖譜。在第二部分中,定位系統可進一步透過用戶接收之訊號強度提供目標空間中的用戶定位與追蹤,其技術如下所列:引入室內空間的規劃,限制定位範圍,並結合用戶的動態模型,形成一綜合的預先知識分佈(prior information),其中上述追蹤演算法能夠利用波束場型的方向性,提供相較於全向性無線通訊系統下,更加精確的定位精確度;以及根據收訊強度選擇有效的波束以及基地台,增進用戶追蹤之精確度,也降低運算時的複雜度。 In summary, the purpose of the present invention is to provide signal strength spectrum reconstruction based on beam pattern and to provide user location management in beam communication networks, aiming to utilize the directional gain of beam directivity and the signal strength measurement in the environment to provide user management functions in application scenarios. This system can be further divided into two parts. The first part is the establishment of the signal strength spectrum. This method is based on the beam gain model and Bayesian sparse calculation. The technology is listed as follows: considering the multi-path channel effects such as reflection, penetration or refraction in the indoor space, the present invention introduces a basis selection mechanism to represent the signal reflection and refraction effects in the indoor environment through complex basis functions, that is, to learn the comprehensive effects of channel attenuation and reflection scattering of wireless signals in the indoor space; by removing the directional gain of the beam pattern, the modeling error caused by the inconsistency between the basis function and the beam pattern is overcome to reconstruct an accurate signal strength spectrum; and based on these signal strength spectra based on the beam pattern. In the second part, the positioning system can further provide user positioning and tracking in the target space through the signal strength received by the user. The technologies are listed as follows: Introducing indoor space planning, limiting the positioning range, and combining the user's dynamic model to form a comprehensive prior information distribution. The above tracking algorithm can use the directionality of the beam pattern to provide more accurate positioning accuracy compared to omnidirectional wireless communication systems; and selecting effective beams and base stations based on the signal strength to improve the accuracy of user tracking and reduce the complexity of calculations.

本發明的定位系統可進一步結合開放無線電存取網路(radio access network,RAN)的計算架構,並提供以下之優勢:透過於邊緣計算伺服器上進行定位計算,減少資料於核心網路中的傳遞時間。定位系統之架構可以降低定位的響應時間,且可應用於諸如智慧工廠等中的時間敏感之網路。定位系統所輸出的當前位置等資訊可以作為網路中的參考資訊,進一步用於最佳化網路中的設置,以提供用戶更高的網速與服務體驗。 The positioning system of the present invention can be further combined with the computing architecture of the open radio access network (RAN) and provide the following advantages: by performing positioning calculations on edge computing servers, the transmission time of data in the core network is reduced. The positioning system architecture can reduce the response time of positioning and can be applied to time-sensitive networks such as smart factories. The current location information output by the positioning system can be used as reference information in the network, and further used to optimize the settings in the network to provide users with higher network speed and service experience.

100:定位裝置 100: Positioning device

110:處理器 110: Processor

120:儲存媒體 120: Storage media

130:收發器 130: Transceiver

200、210、220:基地台 200, 210, 220: base stations

300:用戶設備 300: User equipment

S300、S400:流程 S300, S400: Process

S310、S320、S350、S360、S370、S410、S420、S450、S460、S470、S510、S520、S530、S610、S620、S630、S640、S650、S710、S720、S730、S740、S750:步驟 S310, S320, S350, S360, S370, S410, S420, S450, S460, S470, S510, S520, S530, S610, S620, S630, S640, S650, S710, S720, S730, S740, S750: Steps

圖1根據本發明的一實施例繪示一種基於波束成形的定位裝置的示意圖。 FIG1 is a schematic diagram of a positioning device based on beamforming according to an embodiment of the present invention.

圖2根據本發明的一實施例繪示定位裝置的方塊圖。 FIG. 2 shows a block diagram of a positioning device according to an embodiment of the present invention.

圖3根據本發明的一實施例繪示一種基於波束成形的定位方法的流程圖。 FIG3 shows a flow chart of a positioning method based on beamforming according to an embodiment of the present invention.

圖4根據本發明的一實施例繪示步驟S370的流程圖。 FIG. 4 shows a flow chart of step S370 according to an embodiment of the present invention.

圖5根據本發明的一實施例繪示步驟S520的流程圖。 FIG5 is a flow chart of step S520 according to an embodiment of the present invention.

圖6根據本發明的另一實施例繪示一種基於波束成形的定位方法的流程圖。 FIG6 shows a flow chart of a positioning method based on beamforming according to another embodiment of the present invention.

S710、S720、S730、S740、S750:步驟 S710, S720, S730, S740, S750: Steps

Claims (11)

一種基於波束成形的定位方法,適用於定位空間中的用戶設備,包括:取得所述用戶設備在所述空間中的軌跡,並且根據所述軌跡產生動態模型;測量第一波束場型在所述空間中的多個位置的多個訊號強度,並且根據所述多個訊號強度產生所述第一波束場型在所述空間中的第一訊號強度圖譜,包括:取得多個基底函數;根據所述多個訊號強度更新所述多個基底函數中的至少一基底函數的參數,其中所述參數包括權重;根據所述參數挑選所述多個基底函數的子集合;以及根據所述子集合產生所述第一訊號強度圖譜;根據所述動態模型預測所述用戶設備在所述空間中的第一機率分布;通過所述用戶設備測量所述第一波束場型的第一當前訊號強度,並且計算所述第一當前訊號強度與所述第一訊號強度圖譜之間的第一似然度函數以產生所述用戶設備在所述空間中的第二機率分布;以及根據所述第一機率分布以及所述第二機率分布判斷所述用戶設備的當前位置,並且輸出所述當前位置。 A positioning method based on beamforming, applicable to positioning a user equipment in a space, comprising: obtaining a trajectory of the user equipment in the space, and generating a dynamic model according to the trajectory; measuring multiple signal strengths of a first beam pattern at multiple positions in the space, and generating a first signal strength spectrum of the first beam pattern in the space according to the multiple signal strengths, comprising: obtaining multiple basis functions; updating parameters of at least one basis function of the multiple basis functions according to the multiple signal strengths, wherein the parameters include weights; selecting the multiple basis functions according to the parameters; a subset of basis functions; and generating the first signal strength spectrum according to the subset; predicting the first probability distribution of the user equipment in the space according to the dynamic model; measuring the first current signal strength of the first beam pattern by the user equipment, and calculating the first likelihood function between the first current signal strength and the first signal strength spectrum to generate the second probability distribution of the user equipment in the space; and determining the current position of the user equipment according to the first probability distribution and the second probability distribution, and outputting the current position. 如請求項1所述的定位方法,其中根據所述子集合產生所述第一訊號強度圖譜的步驟包括:計算所述多個訊號強度與所述子集合之間的第二似然度函數, 並且判斷所述第二似然度函數是否與收斂條件匹配;以及響應於所述第二似然度函數與所述收斂條件匹配,根據所述子集合產生所述第一訊號強度圖譜。 The positioning method as described in claim 1, wherein the step of generating the first signal strength spectrum according to the subset includes: calculating the second likelihood function between the plurality of signal strengths and the subset, and determining whether the second likelihood function matches a convergence condition; and in response to the second likelihood function matching the convergence condition, generating the first signal strength spectrum according to the subset. 如請求項2所述的定位方法,其中根據所述子集合產生所述第一訊號強度圖譜的步驟更包括:響應於所述第二似然度函數與所述收斂條件不匹配,根據所述多個訊號強度更新所述子集合中的至少一基底函數的參數。 The positioning method as described in claim 2, wherein the step of generating the first signal strength spectrum according to the subset further includes: in response to the second likelihood function not matching the convergence condition, updating the parameters of at least one basis function in the subset according to the multiple signal strengths. 如請求項1所述的定位方法,其中所述多個基底函數關聯於拉普拉斯函數。 A positioning method as described in claim 1, wherein the multiple basis functions are related to the Laplace function. 如請求項1所述的定位方法,更包括:測量第二波束場型以產生所述第二波束場型在所述空間中的第二訊號強度圖譜;通過所述用戶設備測量所述第二波束場型的第二當前訊號強度,並且計算所述第二當前訊號強度與所述第二訊號強度圖譜之間的第二似然度函數以產生所述用戶設備在所述空間中的第三機率分布;以及根據所述第一機率分布、所述第二機率分布以及所述第三機率分布判斷所述當前位置。 The positioning method as described in claim 1 further includes: measuring a second beam pattern to generate a second signal strength spectrum of the second beam pattern in the space; measuring a second current signal strength of the second beam pattern by the user equipment, and calculating a second likelihood function between the second current signal strength and the second signal strength spectrum to generate a third probability distribution of the user equipment in the space; and determining the current position according to the first probability distribution, the second probability distribution and the third probability distribution. 如請求項5所述的定位方法,其中所述第一波束場型以及所述第二波束場型由相同的基地台提供。 A positioning method as described in claim 5, wherein the first beam pattern and the second beam pattern are provided by the same base station. 如請求項5所述的定位方法,其中所述第一波束場型以及所述第二波束場型分別由不同的基地台提供。 A positioning method as described in claim 5, wherein the first beam pattern and the second beam pattern are provided by different base stations respectively. 如請求項1所述的定位方法,其中根據所述第一機率分布以及所述第二機率分布判斷所述用戶設備的所述當前位置的步驟包括:利用粒子濾波器與機器學習模型的其中之一判斷所述當前位置。 In the positioning method as described in claim 1, the step of determining the current position of the user equipment according to the first probability distribution and the second probability distribution includes: determining the current position using one of a particle filter and a machine learning model. 如請求項1所述的定位方法,其中所述動態模型包括下列的其中之一:自迴歸模型、牛頓力學模型以及機器學習模型。 A positioning method as described in claim 1, wherein the dynamic model includes one of the following: an autoregressive model, a Newtonian mechanics model, and a machine learning model. 如請求項1所述的定位方法,其中所述多個訊號強度關聯於參考訊號接收功率。 A positioning method as described in claim 1, wherein the multiple signal strengths are related to the reference signal receiving power. 一種基於波束成形的定位裝置,適用於定位空間中的用戶設備,包括:收發器;以及處理器,耦接所述收發器,並且經配置以執行:通過所述收發器取得所述用戶設備在所述空間中的軌跡,並且根據所述軌跡產生動態模型;測量第一波束場型在所述空間中的多個位置的多個訊號強度,並且根據所述多個訊號強度產生所述第一波束場型在所述空間中的第一訊號強度圖譜,包括:取得多個基底函數;根據所述多個訊號強度更新所述多個基底函數中的至少一基底函數的參數,其中所述參數包括權重;根據所述參數挑選所述多個基底函數的子集合;以及根據所述子集合產生所述第一訊號強度圖譜;根據所述動態模型預測所述用戶設備在所述空間中的第一機 率分布;通過所述用戶設備測量所述第一波束場型的第一當前訊號強度,並且計算所述第一當前訊號強度與所述第一訊號強度圖譜之間的第一似然度函數以產生所述用戶設備在所述空間中的第二機率分布;以及根據所述第一機率分布以及所述第二機率分布判斷所述用戶設備的當前位置,並且通過所述收發器輸出所述當前位置。 A positioning device based on beamforming, suitable for positioning a user equipment in space, comprising: a transceiver; and a processor, coupled to the transceiver and configured to execute: obtaining a trajectory of the user equipment in the space through the transceiver, and generating a dynamic model according to the trajectory; measuring multiple signal strengths of a first beam pattern at multiple positions in the space, and generating a first signal strength spectrum of the first beam pattern in the space according to the multiple signal strengths, comprising: obtaining multiple basis functions; updating parameters of at least one basis function of the multiple basis functions according to the multiple signal strengths, wherein the parameters include weights; re-selecting a subset of the plurality of basis functions according to the parameters; and generating the first signal strength spectrum according to the subset; predicting a first probability distribution of the user equipment in the space according to the dynamic model; measuring a first current signal strength of the first beam pattern by the user equipment, and calculating a first likelihood function between the first current signal strength and the first signal strength spectrum to generate a second probability distribution of the user equipment in the space; and determining a current position of the user equipment according to the first probability distribution and the second probability distribution, and outputting the current position through the transceiver.
TW112144438A 2023-11-17 2023-11-17 Beamforming-based positioning device and positioning method TWI858999B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW112144438A TWI858999B (en) 2023-11-17 2023-11-17 Beamforming-based positioning device and positioning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW112144438A TWI858999B (en) 2023-11-17 2023-11-17 Beamforming-based positioning device and positioning method

Publications (2)

Publication Number Publication Date
TWI858999B true TWI858999B (en) 2024-10-11
TW202522916A TW202522916A (en) 2025-06-01

Family

ID=94084001

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112144438A TWI858999B (en) 2023-11-17 2023-11-17 Beamforming-based positioning device and positioning method

Country Status (1)

Country Link
TW (1) TWI858999B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201346309A (en) * 2012-05-09 2013-11-16 Ting-Yueh Chin RSS-based DoA indoor location estimation system and method
US20190182793A1 (en) * 2016-08-01 2019-06-13 Telefonaktiebolaget Lm Ericsson (Publ) Communication Nodes and Methods Therein for Positioning in a Wireless Communications Network
US20210058740A1 (en) * 2019-08-23 2021-02-25 Google Llc Indoor positioning for mobile devices
CN116709202A (en) * 2023-06-28 2023-09-05 重庆大学 Indoor 3D fingerprint positioning method and system based on millimeter wave beam pattern trajectory
TW202341681A (en) * 2022-03-31 2023-10-16 國立陽明交通大學 Beam domain based localization system and method
CN116939496A (en) * 2023-07-12 2023-10-24 杭州电子科技大学 Millimeter wave communication fingerprint positioning method under intelligent super surface

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201346309A (en) * 2012-05-09 2013-11-16 Ting-Yueh Chin RSS-based DoA indoor location estimation system and method
US20190182793A1 (en) * 2016-08-01 2019-06-13 Telefonaktiebolaget Lm Ericsson (Publ) Communication Nodes and Methods Therein for Positioning in a Wireless Communications Network
US20210058740A1 (en) * 2019-08-23 2021-02-25 Google Llc Indoor positioning for mobile devices
TW202341681A (en) * 2022-03-31 2023-10-16 國立陽明交通大學 Beam domain based localization system and method
CN116709202A (en) * 2023-06-28 2023-09-05 重庆大学 Indoor 3D fingerprint positioning method and system based on millimeter wave beam pattern trajectory
CN116939496A (en) * 2023-07-12 2023-10-24 杭州电子科技大学 Millimeter wave communication fingerprint positioning method under intelligent super surface

Also Published As

Publication number Publication date
TW202522916A (en) 2025-06-01

Similar Documents

Publication Publication Date Title
JP7279856B2 (en) Method and apparatus
CN109963287B (en) Antenna direction angle optimization method, device, equipment and medium
Talvitie et al. Distance-based interpolation and extrapolation methods for RSS-based localization with indoor wireless signals
Eleryan et al. Synthetic generation of radio maps for device-free passive localization
CN106412973B (en) Network coverage quality detection method and device
CN109302712B (en) Method for determining position of intelligent base station, intelligent base station and storage medium
CN114448531B (en) A channel characteristic analysis method, system, medium, equipment and processing terminal
CN111327377A (en) Method, device, equipment and storage medium for field intensity prediction
CN114818452A (en) Antenna configuration parameter optimization method, device and storage medium
WO2022017012A1 (en) Network configuration method and apparatus
CN113015184A (en) Wireless network power adjustment method, device and storage medium
CN114826462A (en) Beam domain channel amplification method for large-scale MIMO statistical port selection
TWI858999B (en) Beamforming-based positioning device and positioning method
Banimelhem et al. Hata path loss model tuning for cellular networks in Irbid City
JP2010048708A (en) ,system, method, and program for estimating direction
CN113543017A (en) Wave beam switching method of millimeter wave internet of vehicles and related equipment
CN109787698A (en) Probe radiation right-value optimization method and system when channel simulation in Multi probe darkroom
JP3862021B2 (en) Radio wave propagation simulator
CN119719701B (en) Array antenna sidelobe optimization method and system based on improved crossover genetic algorithm
WO2017020273A1 (en) Method and device for positioning and method of generating a positioning database in multicarrier network
CN114390534A (en) Beam pattern determination method, beam pattern determination device, electronic equipment and storage medium
Polyzos et al. Bayesian Active Learning for Sample Efficient 5G Radio Map Reconstruction
Eleryan et al. AROMA: Automatic generation of radio maps for localization systems
CN115913413B (en) Intelligent space millimeter wave propagation characteristic analysis method
CN114339855A (en) Wireless network coverage rate evaluation method and device and computing equipment