TWI857765B - Frame rate intelligent control method and frame rate intelligent control system - Google Patents
Frame rate intelligent control method and frame rate intelligent control system Download PDFInfo
- Publication number
- TWI857765B TWI857765B TW112132540A TW112132540A TWI857765B TW I857765 B TWI857765 B TW I857765B TW 112132540 A TW112132540 A TW 112132540A TW 112132540 A TW112132540 A TW 112132540A TW I857765 B TWI857765 B TW I857765B
- Authority
- TW
- Taiwan
- Prior art keywords
- frame rate
- electronic device
- intelligent control
- inference
- training data
- Prior art date
Links
Images
Landscapes
- Power Sources (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
本揭露是有關於一種控制方法及控制系統,且特別是有關於一種幀率智慧控制方法及幀率智慧控制系統。 The present disclosure relates to a control method and a control system, and in particular to a frame rate intelligent control method and a frame rate intelligent control system.
玩家可以透過電腦、智慧型手機或平板電腦等電子裝置進行遊戲。這些電子裝置進行遊戲時需要耗費大量電力。尤其是在高幀率的情況下,電力更是加速消耗。 Players can play games through electronic devices such as computers, smartphones or tablets. These electronic devices consume a lot of power when playing games. Especially in the case of high frame rates, power consumption is accelerated.
然而,倘若為了節省電力而降低幀率,將會大幅影響畫質。此外,不同的電子裝置在電力與畫質的表現差異甚大,難以採用統一規則來對不同的電子裝置進行設定。因此,如何在電力與幀率之間取得平衡係為研究人員智利研究之一重要方向。 However, if the frame rate is reduced to save power, the image quality will be greatly affected. In addition, different electronic devices have very different performances in terms of power and image quality, and it is difficult to use a unified rule to set different electronic devices. Therefore, how to strike a balance between power and frame rate is one of the important directions of the researchers' research in Chile.
本揭露係有關於一種幀率智慧控制方法及幀率智慧控制系統,其進行訓練程序、推論程序及優化程序,以針對電子裝 置進行幀率智慧控制,使得電子裝置進行遊戲時,能夠獲得較高的畫面品質,並可確保用電量無虞。 This disclosure is about a frame rate intelligent control method and frame rate intelligent control system, which performs training procedures, inference procedures and optimization procedures to perform frame rate intelligent control on electronic devices, so that when the electronic devices play games, they can obtain higher picture quality and ensure safe power consumption.
根據本揭露之一方面,提出一種幀率智慧控制方法。幀率智慧控制方法包括以下步驟。獲得數筆訓練資料。各個訓練資料包括一電子裝置型號、一遊戲名稱、一剩餘電量及一平均幀率。依據這些訓練資料,訓練一推論模型。藉由推論模型,對進行一遊戲之一電子裝置之一幀率進行推論,以獲得一幀率推論值。電子裝置設定幀率為幀率推論值。依據電子裝置之運作,優化推論模型。優化推論模型之步驟包括以下步驟。判斷電子裝置之幀率是否被手動調整為一手動幀率值。判斷電子裝置是否足以持續進行遊戲一單位時間以上。若幀率未被手動調整,且電子裝置不足以持續進行遊戲該單位時間以上,則對這些訓練資料進行調整,以重新訓練推論模型。 According to one aspect of the present disclosure, a frame rate intelligent control method is proposed. The frame rate intelligent control method includes the following steps. A plurality of training data are obtained. Each training data includes an electronic device model, a game name, a remaining power and an average frame rate. An inference model is trained based on these training data. A frame rate of an electronic device playing a game is inferred by the inference model to obtain a frame rate inference value. The electronic device sets the frame rate to the frame rate inference value. Based on the operation of the electronic device, the inference model is optimized. The step of optimizing the inference model includes the following steps. Determine whether the frame rate of the electronic device is manually adjusted to a manual frame rate value. Determine whether the electronic device is sufficient to continue playing the game for more than one unit time. If the frame rate is not manually adjusted and the electronic device is not sufficient to continue playing the game for more than that unit time, adjust these training data to retrain the inference model.
根據本揭露之另一方面,提出一種幀率智慧控制系統。幀率智慧控制系統包括一儲存單元、一訓練單元、一推論模型、一幀率推論單元及一優化單元。儲存單元用以儲存數筆訓練資料。各個訓練資料包括一電子裝置之一電子裝置型號、一遊戲名稱、一剩餘電量及一平均幀率。訓練單元用以依據這些訓練資料,訓練一推論模型。幀率推論單元用以藉由推論模型,對進行一遊戲之一電子裝置之一幀率進行推論,以獲得一推論幀率值。電子裝置設定幀率為該幀率推論值。優化單元用以依據電子裝置之運作,優化推論模型。優化單元包括一幀率監測元件及一電量監 測元件。幀率監測元件用以判斷電子裝置之幀率是否被手動調整為一手動幀率值。電量監測元件用以判斷電子裝置是否足以持續進行遊戲一單位時間以上。調整元件用以於幀率未被手動調整,且電子裝置不足以持續進行遊戲該單位時間以上時,對這些訓練資料進行調整,以重新訓練推論模型。 According to another aspect of the present disclosure, a frame rate intelligent control system is proposed. The frame rate intelligent control system includes a storage unit, a training unit, an inference model, a frame rate inference unit and an optimization unit. The storage unit is used to store a number of training data. Each training data includes an electronic device model, a game name, a remaining power and an average frame rate of an electronic device. The training unit is used to train an inference model based on these training data. The frame rate inference unit is used to infer a frame rate of an electronic device playing a game through an inference model to obtain an inferred frame rate value. The electronic device sets the frame rate to the frame rate inference value. The optimization unit is used to optimize the inference model according to the operation of the electronic device. The optimization unit includes a frame rate monitoring element and a power monitoring element. The frame rate monitoring element is used to determine whether the frame rate of the electronic device is manually adjusted to a manual frame rate value. The power monitoring element is used to determine whether the electronic device is sufficient to continue playing the game for more than a unit time. The adjustment element is used to adjust these training data to retrain the inference model when the frame rate is not manually adjusted and the electronic device is insufficient to continue playing the game for more than the unit time.
為了對本揭露之上述及其他方面有更佳的瞭解,下文特舉實施例,並配合所附圖式詳細說明如下: In order to better understand the above and other aspects of this disclosure, the following is a specific example, and the attached drawings are used to explain in detail as follows:
100:幀率智慧控制系統 100: Frame rate intelligent control system
110:儲存單元 110: Storage unit
120:訓練單元 120: Training unit
130:幀率推論單元 130: Frame rate inference unit
140:優化單元 140: Optimization unit
141:幀率監測元件 141: Frame rate monitoring element
142:電量監測元件 142: Electricity monitoring element
143:調整元件 143: Adjustment element
144:新增元件 144: New components
800i:電子裝置 800i: Electronics
900:網路 900: Internet
fri:平均幀率 fri: average frame rate
fri’:幀率推論值 fri’: frame rate inference value
fri*:手動幀率值 fri*: Manual frame rate value
gmi,gmi’:遊戲名稱 gmi,gmi’: game name
MDi:推論模型 MDi: Inference Model
OPi:運作資料 OPi: Operational Data
P1:訓練程序 P1: Training program
P2:推論程序 P2: Inference procedure
P3:優化程序 P3: Optimization process
pwi,pwi’:剩餘電量 pwi,pwi’: remaining power
pwi*:執行電量 pwi*: running power
RDi:即時資料 RDi: Real-time data
S110,S111,S112,S113,S114,S115,S116,S117S120,S130,S131,S132,S133,S134,S135,S136,S137,S138,S140,S141,S142,S143,S144,S145:步驟 S110,S111,S112,S113,S114,S115,S116,S117S120,S130,S131,S132,S133,S134,S135,S136,S137,S138,S140,S141,S142,S143,S144,S145: Steps
TRi:訓練資料 TRi: Training data
tyi:電子裝置型號 tyi:Electronic device model
第1圖繪示根據一實施例之幀率智慧控制系統進行推論模型之訓練程序的示意圖。 FIG. 1 is a schematic diagram showing a training procedure of an inference model according to a frame rate intelligence control system of an embodiment.
第2圖繪示根據一實施例之幀率智慧控制系統進行推論模型之推論程序的示意圖。 FIG. 2 is a schematic diagram showing the inference process of the inference model according to the frame rate intelligent control system of one embodiment.
第3圖繪示根據一實施例之幀率智慧控制系統進行推論模型之優化程序的示意圖。 FIG. 3 is a schematic diagram showing an optimization process of an inference model according to a frame rate intelligent control system of an embodiment.
第4圖繪示根據一實施例之幀率智慧控制系統之方塊圖。 FIG. 4 shows a block diagram of a frame rate intelligent control system according to an embodiment.
第5圖繪示根據一實施例之幀率智慧控制方法的流程圖。 Figure 5 shows a flow chart of a frame rate intelligent control method according to an embodiment.
第6圖繪示根據一實施例之步驟S110之細部流程圖。 Figure 6 shows a detailed flow chart of step S110 according to an embodiment.
第7圖示例說明推論模型。 Figure 7 illustrates the inference model.
第8圖繪示根據一實施例之步驟S130的細部流程圖。 Figure 8 shows a detailed flow chart of step S130 according to an embodiment.
第9圖繪示根據一實施例之步驟S140之細部流程圖。 Figure 9 shows a detailed flow chart of step S140 according to an embodiment.
請參照第1圖,其繪示根據一實施例之幀率智慧控制系統100進行推論模型MDi之訓練程序P1的示意圖。幀率智慧控制系統100例如是一伺服器、雲端計算中心或邊緣計算中心。電子裝置800i例如是一筆記型電腦、桌上型電腦、智慧型手機、平板電腦、車載裝置或頭戴式顯示器。電子裝置800i進行遊戲時,可將數筆訓練資料TRi透過網路900上傳到幀率智慧控制系統100。這些電子裝置800i的型號可以不同。幀率智慧控制系統100依據這些訓練資料TRi,可以訓練出數個推論模型MDi。推論模型MDi主要是用以推論出各個電子裝置800i適合的幀率,以使電子裝置800i在電力與幀率之間能夠取得平衡。幀率智慧控制系統100係針對不同的電子裝置型號進行個別訓練,以獲得對應於不同的電子裝置型號的推論模型MDi。
Please refer to Figure 1, which shows a schematic diagram of a training procedure P1 for an inference model MDi according to a frame rate
請參照第2圖,其繪示根據一實施例之幀率智慧控制系統100進行推論模型MDi之推論程序P2的示意圖。當某一電子裝置800i位於電池放電模式(即未接上市電進行充電)且正在進行遊戲時,可以透過網路900上傳一即時資料RDi至幀率智慧控制系統100。幀率智慧控制系統100藉由推論模型MDi推論出適合的幀率推論值fri’之後,電子裝置800i即可以幀率推論值fri’設定幀率,以期獲得較高的畫面品質,並可確保用電量無虞。
Please refer to Figure 2, which shows a schematic diagram of the inference process P2 of the frame rate
請參照第3圖,其繪示根據一實施例之幀率智慧控制系統100進行推論模型MDi之優化程序P3的示意圖。當某一電子裝置800i按照幀率推論值fri’進行遊戲時,電子裝置800i可以透過網路900上傳一運作資料OPi至幀率智慧控制系統100。幀率智慧控制系統100可以依據運作資料OPi優化推論模型MDi。
Please refer to Figure 3, which shows a schematic diagram of an optimization procedure P3 of the frame rate
透過上述訓練程序P1、推論程序P2及優化程序P3,可以針對電子裝置800i進行幀率智慧控制,以使電子裝置800i進行遊戲時,能夠獲得較高的畫面品質,並可確保用電量無虞。
Through the above training program P1, inference program P2 and optimization program P3, the frame rate of the
請參照第4圖,其繪示根據一實施例之幀率智慧控制系統100之方塊圖。幀率智慧控制系統100包括一儲存單元110、一訓練單元120、上述之推論模型MDi、一幀率推論單元130及一優化單元140。優化單元140包括一幀率監測元件141、一電量監測元件142、一調整元件143及一新增元件144。儲存單元110用以儲存各種資料,例如是一記憶體、一硬碟或一雲端儲存中心。訓練單元120用以進行模型的訓練程序P1(繪示於第1圖),例如是一神經網路晶片、一電路、一電路板或儲存程式碼之儲存裝置。幀率推論單元130用以藉由推論模型MDi進行推論程序P2(繪示於第2圖),例如是一神經網路晶片、一電路、一電路板或儲存程式碼之儲存裝置。優化單元140用以對推論模型MDi進行優化程序P3(繪示於第3圖),例如是一神經網路晶片、一電路、一電路板或儲存程式碼之儲存裝置。訓練單元120、幀率推論單元130及優化單元140分別進行上述之訓練程序P1、推論程序P2及優化程序P3,即
可針對電子裝置800i進行幀率智慧控制,使得電子裝置800i進行遊戲時,能夠獲得較高的畫面品質,並可確保用電量無虞。以下更搭配流程圖詳細說明各項元件之運作。
Please refer to FIG. 4, which shows a block diagram of a frame rate
請參照第5圖,其繪示根據一實施例之幀率智慧控制方法的流程圖。在步驟S110中,獲得數筆訓練資料TRi。各個訓練資料TRi包括一電子裝置型號tyi、一遊戲名稱gmi、一剩餘電量pwi及一平均幀率fri。電子裝置型號tyi例如是產品型號、物料編號、圖形處理器規格、中央處理器規格、記憶體規格、電池規格或其組合。遊戲名稱gmi例如是遊戲程式檔名、遊戲視窗標題、執行遊戲之任務名稱。剩餘電量pwi例如是電池電量的百分比。平均幀率fri例如是單位時間之幀率的平均值。單位時間例如是1小時或半小時。電子裝置800i每隔單位時間會上傳一筆訓練資料TRi至幀率智慧控制系統100。舉例來說,當使用者以電子裝置800i進行遊戲3個小時,則會在第一小時、第二小時及第三小時分別傳送三筆訓練資料TRi。這三筆訓練資料TRi的剩餘電量pwi及平均幀率fri可能不會相同。
Please refer to Figure 5, which shows a flow chart of a frame rate intelligent control method according to an embodiment. In step S110, a plurality of training data TRi are obtained. Each training data TRi includes an electronic device model tyi, a game name gmi, a remaining power pwi and an average frame rate fri. The electronic device model tyi is, for example, a product model, a material number, a graphics processor specification, a central processing unit specification, a memory specification, a battery specification or a combination thereof. The game name gmi is, for example, a game program file name, a game window title, or a task name for running the game. The remaining power pwi is, for example, a percentage of the battery power. The average frame rate fri is, for example, the average value of the frame rate per unit time. The unit time is, for example, 1 hour or half an hour. The
請參照第6圖,其繪示根據一實施例之步驟S110之細部流程圖。步驟S110包括步驟S111~S117。在步驟S111中,電子裝置800i判斷是否正在進行遊戲。若電子裝置800i正在進行遊戲,則進入步驟S112。在步驟S111中,電子裝置800i可以透過任務管理員分析正在執行的應用程式是否有遊戲。在此步驟中,只要有一個以上的遊戲正在進行,即可判定為正在進行遊戲。
Please refer to Figure 6, which shows a detailed flow chart of step S110 according to an embodiment. Step S110 includes steps S111 to S117. In step S111, the
接著,在步驟S112中,電子裝置800i取得電子裝置型號tyi。電子裝置800i可以透過系統資訊取得電子裝置型號tyi。
Next, in step S112, the
然後,在步驟S113中,電子裝置800i取得遊戲名稱gmi。當電子裝置800i正在進行多個遊戲時,則依據負載最大的遊戲取得遊戲名稱gmi。
Then, in step S113, the
接著,在步驟S114中,電子裝置800i判斷電子裝置800i是否位於電池放電模式。若電子裝置800i位於電池放電模式,則進入步驟S115。
Next, in step S114, the
在步驟S115中,電子裝置800i判斷遊戲是否已進行單位時間。單位時間例如是1小時或半小時。若遊戲已進行單位時間,則進入步驟S116。
In step S115, the
在步驟S116中,電子裝置800i對單位時間計算平均幀率fri。平均幀率fri係為當下時間點往前推算單位時間的平均值。
In step S116, the
接著,在步驟S117中,電子裝置800i上傳一筆訓練資料TRi。此訓練資料TRi包括電子裝置型號tyi、遊戲名稱gmi、剩餘電量pwi及平均幀率fri。
Next, in step S117, the
透過上述步驟S111~S117即完成一筆訓練資料TRi的上傳。若電子裝置800i持續進行相同的遊戲,每隔單位時間仍會再次上傳另一筆訓練資料TRi。再次上傳的訓練資料TRi仍會包含電子裝置型號tyi、遊戲名稱gmi、剩餘電量pwi及平均幀率fri。如第4圖所示,上述這些訓練資料TRi都會儲存於幀率智慧控
制系統100之儲存單元110。
Through the above steps S111~S117, the uploading of a training data TRi is completed. If the
接著,在第5圖之步驟S120中,幀率智慧控制系統100之訓練單元120依據訓練資料TRi,訓練推論模型MDi。如第4圖所示,訓練單元120自儲存單元110取得多筆訓練資料TRi。這些訓練資料TRi可能對應於不同的電子裝置型號tyi。訓練單元120按照電子裝置型號tyi進行分類,並分別訓練出不同的推論模型MDi。
Next, in step S120 of FIG. 5, the
然後,在第5圖之步驟S130中,藉由推論模型MDi,幀率智慧控制系統100之幀率推論單元130對進行遊戲之電子裝置800i之幀率進行推論。請參照第7圖,其示例說明推論模型MDi。推論模型MDi用以在接收到即時的遊戲名稱gmi’、剩餘電量pwi’時,可以輸出幀率推論值fri’。不同的電子裝置型號tyi對應於不同的推論模型MDi。因此,即使遊戲名稱gmi’、剩餘電量pwi’相同,在不同的電子裝置型號tyi之下,可能會獲得不同的幀率推論值fri’。
Then, in step S130 of FIG. 5, the frame rate inference unit 130 of the frame rate
請參照第8圖,其繪示根據一實施例之步驟S130的細部流程圖。步驟S130包括步驟S131~S138。在步驟S131中,電子裝置800i判斷電子裝置800i是否正在進行遊戲。若電子裝置800i正在進行遊戲,則進入步驟S132。在步驟S131中,電子裝置800i可以透過任務管理員分析正在執行的應用程式是否有遊戲。在此步驟中,只要有一個以上的遊戲正在進行,即可判定為正在進行遊戲。
Please refer to Figure 8, which shows a detailed flow chart of step S130 according to an embodiment. Step S130 includes steps S131 to S138. In step S131, the
接著,在步驟S132中,電子裝置800i取得即時的遊戲名稱gmi’與剩餘電量pwi’。當電子裝置800i正在進行多個遊戲時,則依據負載最大的遊戲取得遊戲名稱gmi’。
Next, in step S132, the
然後,在步驟S133中,電子裝置800i判斷電子裝置800i是否位於電池放電模式。若電子裝置800i位於電池放電模式,則進入步驟S134。
Then, in step S133, the
接著,在步驟S134中,電子裝置800i上傳即時資料RDi。此即時資料RDi包括電子裝置型號tyi、即時的遊戲名稱gmi’及即時的剩餘電量pwi’。
Next, in step S134, the
然後,在步驟S135中,幀率智慧控制系統100之幀率推論單元130輸入即時的遊戲名稱gmi’及即時的剩餘電量pwi’至對應電子裝置型號tyi之推論模型MDi,以獲得幀率推論值fri’。幀率推論值fri’並回傳至電子裝置800i。
Then, in step S135, the frame rate inference unit 130 of the frame rate
接著,在步驟S136中,電子裝置800i判斷幀率推論值fri’是否為空值。若幀率推論值fri’不為空值,則進入步驟S137;若幀率推論值fri’為空值,則進入步驟S138。當幀率推論值fri’為空值時,表示電子裝置800i之電量不足,推論模型MDi無法推論出適合的幀率推論值fri’。
Next, in step S136, the
在步驟S137中,電子裝置800i自動設定幀率為幀率推論值fri’。在此步驟中,電子裝置800i係自動對顯示器進行控制,無須使用者手動調整。
In step S137, the
在步驟S138中,電子裝置800i跳出一充電警示訊
息,以通知使用者必須盡快接上電源線。
In step S138, the
根據上述步驟S131~S138,幀率智慧控制系統100可以即時地推論出適合的幀率推論值fri’,以提供電子裝置800i進行自動設定。
According to the above steps S131~S138, the frame rate
接著,在第5圖之步驟S140中,幀率智慧控制系統100之優化單元140依據電子裝置800i之運作,優化推論模型MDi。在推論模型MDi訓練完成後,仍需要進一步的調整,以提高推論準確度。
Next, in step S140 of FIG. 5, the optimization unit 140 of the frame rate
請參照第9圖,其繪示根據一實施例之步驟S140之細部流程圖。步驟S140包括步驟S141~S145。在步驟S141中,如第4圖所示,幀率智慧控制系統100之優化單元140的幀率監測元件141判斷電子裝置800i之幀率是否被手動調整為一手動幀率值fri*。若電子裝置800i之幀率未被手動調整為手動幀率值fri*,則進入步驟S142;若電子裝置800i之幀率被手動調整為手動幀率值fri*,則進入步驟S144。
Please refer to FIG. 9, which shows a detailed flow chart of step S140 according to an embodiment. Step S140 includes steps S141 to S145. In step S141, as shown in FIG. 4, the frame rate monitoring element 141 of the optimization unit 140 of the frame rate
在此步驟中,如第4圖所示,當電子裝置800i之幀率被手動調整為手動幀率值fri*時,電子裝置800i會立即上傳手動幀率值fri*至優化單元140之幀率監測元件141。當幀率監測元件141未收到手動幀率值fri*,即可得知電子裝置800i之幀率未被手動調整;當幀率監測元件141收到手動幀率值fri*,即可得知電子裝置800i之幀率被手動調整。
In this step, as shown in FIG. 4, when the frame rate of the
在步驟S142中,幀率智慧控制系統100之優化單元
140的電量監測元件142判斷電子裝置800i是否足以持續進行遊戲一單位時間以上。若電子裝置800i不足以持續進行遊戲單位時間以上,則進入步驟S143。
In step S142, the power monitoring element 142 of the optimization unit 140 of the frame rate
在步驟S142中,如第4圖所示,電子裝置800i會定期上傳執行電量pwi*至優化單元140之電量監測元件142。電量監測元件142依據執行電量pwi*,即判斷電子裝置800i是否足以持續進行遊戲單位時間以上。
In step S142, as shown in FIG. 4, the
進入步驟S143表示電子裝置800i之幀率仍採用幀率推論值fri’,未被手動調整,但電子裝置800i不足以持續進行遊戲單位時間以上。在步驟S143中,幀率智慧控制系統100之優化單元140的調整元件143對訓練資料TRi進行調整,以重新訓練推論模型MDi。舉例來說,調整元件143降低對應幀率推論值fri’之訓練資料TRi的權重,降低未來被推理出來的機率。
Entering step S143 means that the frame rate of the
在步驟S144中,幀率智慧控制系統100之優化單元140的電量監測元件142判斷電子裝置800i是否足以持續進行遊戲一單位時間以上。若電子裝置800i不足以持續進行遊戲單位時間以上,則進入步驟S145。
In step S144, the power monitoring element 142 of the optimization unit 140 of the frame rate
在步驟S144中,如第4圖所示,電子裝置800i會定期上傳執行電量pwi*至優化單元140之電量監測元件142。電量監測元件142依據執行電量pwi*,即判斷電子裝置800i是否足以持續進行遊戲單位時間以上。
In step S144, as shown in FIG. 4, the
進入步驟S145表示電子裝置800i之幀率被手動調
整為手動幀率值fri*,且電子裝置800i足以持續進行遊戲單位時間以上。在步驟S145中,幀率智慧控制系統100之優化單元140的新增元件144依據手動幀率值fri*,對訓練資料TRi進行新增,以提高未來被推理出來的機率。
Entering step S145 indicates that the frame rate of the
根據上述實施例,幀率智慧控制系統100分別進行上述之訓練程序P1、推論程序P2及優化程序P3,即可針對電子裝置800i進行幀率智慧控制,使得電子裝置800i進行遊戲時,能夠獲得較高的畫面品質,並可確保用電量無虞。
According to the above embodiment, the frame rate
綜上所述,雖然本揭露已以實施例揭露如上,然其並非用以限定本揭露。本揭露所屬技術領域中具有通常知識者,在不脫離本揭露之精神和範圍內,當可作各種之更動與潤飾。因此,本揭露之保護範圍當視後附之申請專利範圍所界定者為準。 In summary, although the present disclosure has been disclosed as above by the embodiments, it is not intended to limit the present disclosure. Those with ordinary knowledge in the technical field to which the present disclosure belongs can make various changes and modifications without departing from the spirit and scope of the present disclosure. Therefore, the protection scope of the present disclosure shall be subject to the scope defined by the attached patent application.
100:幀率智慧控制系統 100: Frame rate intelligent control system
110:儲存單元 110: Storage unit
120:訓練單元 120: Training unit
130:幀率推論單元 130: Frame rate inference unit
140:優化單元 140: Optimization unit
141:幀率監測元件 141: Frame rate monitoring element
142:電量監測元件 142: Electricity monitoring element
143:調整元件 143: Adjustment element
144:新增元件 144: New components
800i:電子裝置 800i: Electronics
fri:平均幀率 fri: average frame rate
fri’:幀率推論值 fri’: frame rate inference value
fri*:手動幀率值 fri*: Manual frame rate value
gmi,gmi’:遊戲名稱 gmi,gmi’: game name
MDi:推論模型 MDi: Inference Model
OPi:運作資料 OPi: Operational Data
pwi,pwi’:剩餘電量 pwi,pwi’: remaining power
pwi*:執行電量 pwi*: running power
RDi:即時資料 RDi: Real-time data
TRi:訓練資料 TRi: Training data
tyi:電子裝置型號 tyi:Electronic device model
Claims (13)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW112132540A TWI857765B (en) | 2023-08-29 | 2023-08-29 | Frame rate intelligent control method and frame rate intelligent control system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW112132540A TWI857765B (en) | 2023-08-29 | 2023-08-29 | Frame rate intelligent control method and frame rate intelligent control system |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TWI857765B true TWI857765B (en) | 2024-10-01 |
| TW202511902A TW202511902A (en) | 2025-03-16 |
Family
ID=94083778
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW112132540A TWI857765B (en) | 2023-08-29 | 2023-08-29 | Frame rate intelligent control method and frame rate intelligent control system |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI857765B (en) |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW200400764A (en) * | 1999-10-22 | 2004-01-01 | Activesky Inc | An object oriented video system |
| TW201215089A (en) * | 2010-09-16 | 2012-04-01 | Acer Inc | Method for controlling ambient brightness perceived via three-dimensional glasses, three-dimensional glasses, and video display device thereof |
| US20130346590A1 (en) * | 2012-06-21 | 2013-12-26 | Adobe Systems Incorporated | Client Side Control of Adaptive Streaming |
| US20160231801A1 (en) * | 2015-02-09 | 2016-08-11 | Microsoft Technology Licensing, Llc | Suppressing Power Spikes |
| CN110941411A (en) * | 2019-11-19 | 2020-03-31 | 深圳传音控股股份有限公司 | Frame rate control method and device and computer storage medium |
| CN114510140A (en) * | 2020-11-16 | 2022-05-17 | 深圳市万普拉斯科技有限公司 | Frequency modulation method and device and electronic equipment |
| CN116013221A (en) * | 2022-12-13 | 2023-04-25 | Oppo广东移动通信有限公司 | Screen refresh rate adjusting method and device, electronic equipment and storage medium |
| CN116504189A (en) * | 2023-04-28 | 2023-07-28 | 广州文石信息科技有限公司 | Electronic screen driving method, device, equipment and readable storage medium |
-
2023
- 2023-08-29 TW TW112132540A patent/TWI857765B/en active
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW200400764A (en) * | 1999-10-22 | 2004-01-01 | Activesky Inc | An object oriented video system |
| TW201215089A (en) * | 2010-09-16 | 2012-04-01 | Acer Inc | Method for controlling ambient brightness perceived via three-dimensional glasses, three-dimensional glasses, and video display device thereof |
| US20130346590A1 (en) * | 2012-06-21 | 2013-12-26 | Adobe Systems Incorporated | Client Side Control of Adaptive Streaming |
| US20160231801A1 (en) * | 2015-02-09 | 2016-08-11 | Microsoft Technology Licensing, Llc | Suppressing Power Spikes |
| CN110941411A (en) * | 2019-11-19 | 2020-03-31 | 深圳传音控股股份有限公司 | Frame rate control method and device and computer storage medium |
| CN114510140A (en) * | 2020-11-16 | 2022-05-17 | 深圳市万普拉斯科技有限公司 | Frequency modulation method and device and electronic equipment |
| CN116013221A (en) * | 2022-12-13 | 2023-04-25 | Oppo广东移动通信有限公司 | Screen refresh rate adjusting method and device, electronic equipment and storage medium |
| CN116504189A (en) * | 2023-04-28 | 2023-07-28 | 广州文石信息科技有限公司 | Electronic screen driving method, device, equipment and readable storage medium |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202511902A (en) | 2025-03-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN112631415B (en) | CPU frequency adjusting method, device, electronic equipment and storage medium | |
| CN110263921B (en) | A training method and device for a federated learning model | |
| US20230321529A1 (en) | Video clip classification using feature vectors of a trained image classifier | |
| US20220280867A1 (en) | Server load prediction and advanced performance measures | |
| CN112587920B (en) | Equipment control method, device, electronic equipment and storage medium | |
| TW202105183A (en) | Self-healing machine learning system for transformed data | |
| CN110956202A (en) | Image training method, system, medium and intelligent device based on distributed learning | |
| CN107491166A (en) | A kind of method and virtual reality device for adjusting virtual reality device parameter | |
| CN118471554A (en) | A body data collection system and method | |
| CN107609570B (en) | Micro video popularity prediction method based on attribute classification and multi-view feature fusion | |
| CN112169311A (en) | Method, system, storage medium and computer device for training AI (Artificial Intelligence) | |
| CN115767091A (en) | Entropy-based prefiltering using neural networks for streaming applications | |
| TWI857765B (en) | Frame rate intelligent control method and frame rate intelligent control system | |
| CN104069617A (en) | Virtual treadmill system and control method thereof | |
| KR20250093260A (en) | Server and method for generating and providing customized questions based on personalized learning feedback and learning data | |
| CN115092072A (en) | Vehicle state display method, device, equipment and storage medium | |
| WO2020168444A1 (en) | Sleep prediction method and apparatus, storage medium, and electronic device | |
| CN117271081B (en) | Scheduling method, scheduling device and storage medium | |
| KR20240058063A (en) | APPARATUS AND METHOD FOR MONITORING REAL-TIME MEASUREMENT DATA BASED ON IoT | |
| CN112600869A (en) | Calculation unloading distribution method and device based on TD3 algorithm | |
| US12526603B2 (en) | Systems and methods for context-based docking of information handling systems | |
| US20240272675A1 (en) | Systems and methods for managing settings based upon information handling system (ihs) posture and orientation using heterogeneous computing platforms | |
| CN118397223A (en) | Scene simulation method, device, equipment and medium based on virtual reality | |
| CN115099032A (en) | Method and device for early warning of smoke water lifting amount of thermal power plant | |
| KR102841906B1 (en) | Server and method for generating and providing customized questions based on personalized learning feedback and learning data |