[go: up one dir, main page]

TWI857765B - Frame rate intelligent control method and frame rate intelligent control system - Google Patents

Frame rate intelligent control method and frame rate intelligent control system Download PDF

Info

Publication number
TWI857765B
TWI857765B TW112132540A TW112132540A TWI857765B TW I857765 B TWI857765 B TW I857765B TW 112132540 A TW112132540 A TW 112132540A TW 112132540 A TW112132540 A TW 112132540A TW I857765 B TWI857765 B TW I857765B
Authority
TW
Taiwan
Prior art keywords
frame rate
electronic device
intelligent control
inference
training data
Prior art date
Application number
TW112132540A
Other languages
Chinese (zh)
Other versions
TW202511902A (en
Inventor
陳冠儒
Original Assignee
宏碁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宏碁股份有限公司 filed Critical 宏碁股份有限公司
Priority to TW112132540A priority Critical patent/TWI857765B/en
Application granted granted Critical
Publication of TWI857765B publication Critical patent/TWI857765B/en
Publication of TW202511902A publication Critical patent/TW202511902A/en

Links

Images

Landscapes

  • Power Sources (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

A frame rate intelligent control method and a frame rate intelligent control system are provided. The frame rate intelligent control method includes the following steps. A plurality of training data are obtained. Each of the training data includes an electronic device model, a game name, a remaining power and an average frame rate. An inference model is trained according to the training data. Using the inference model, the frame rate of an electronic device playing a game is inferenced to obtain a frame rate inference value. The frame rate of the electronic device is set to be the frame rate inference value. The inference model is optimized according to the operation of the electronic device.

Description

幀率智慧控制方法及幀率智慧控制系統 Frame rate intelligent control method and frame rate intelligent control system

本揭露是有關於一種控制方法及控制系統,且特別是有關於一種幀率智慧控制方法及幀率智慧控制系統。 The present disclosure relates to a control method and a control system, and in particular to a frame rate intelligent control method and a frame rate intelligent control system.

玩家可以透過電腦、智慧型手機或平板電腦等電子裝置進行遊戲。這些電子裝置進行遊戲時需要耗費大量電力。尤其是在高幀率的情況下,電力更是加速消耗。 Players can play games through electronic devices such as computers, smartphones or tablets. These electronic devices consume a lot of power when playing games. Especially in the case of high frame rates, power consumption is accelerated.

然而,倘若為了節省電力而降低幀率,將會大幅影響畫質。此外,不同的電子裝置在電力與畫質的表現差異甚大,難以採用統一規則來對不同的電子裝置進行設定。因此,如何在電力與幀率之間取得平衡係為研究人員智利研究之一重要方向。 However, if the frame rate is reduced to save power, the image quality will be greatly affected. In addition, different electronic devices have very different performances in terms of power and image quality, and it is difficult to use a unified rule to set different electronic devices. Therefore, how to strike a balance between power and frame rate is one of the important directions of the researchers' research in Chile.

本揭露係有關於一種幀率智慧控制方法及幀率智慧控制系統,其進行訓練程序、推論程序及優化程序,以針對電子裝 置進行幀率智慧控制,使得電子裝置進行遊戲時,能夠獲得較高的畫面品質,並可確保用電量無虞。 This disclosure is about a frame rate intelligent control method and frame rate intelligent control system, which performs training procedures, inference procedures and optimization procedures to perform frame rate intelligent control on electronic devices, so that when the electronic devices play games, they can obtain higher picture quality and ensure safe power consumption.

根據本揭露之一方面,提出一種幀率智慧控制方法。幀率智慧控制方法包括以下步驟。獲得數筆訓練資料。各個訓練資料包括一電子裝置型號、一遊戲名稱、一剩餘電量及一平均幀率。依據這些訓練資料,訓練一推論模型。藉由推論模型,對進行一遊戲之一電子裝置之一幀率進行推論,以獲得一幀率推論值。電子裝置設定幀率為幀率推論值。依據電子裝置之運作,優化推論模型。優化推論模型之步驟包括以下步驟。判斷電子裝置之幀率是否被手動調整為一手動幀率值。判斷電子裝置是否足以持續進行遊戲一單位時間以上。若幀率未被手動調整,且電子裝置不足以持續進行遊戲該單位時間以上,則對這些訓練資料進行調整,以重新訓練推論模型。 According to one aspect of the present disclosure, a frame rate intelligent control method is proposed. The frame rate intelligent control method includes the following steps. A plurality of training data are obtained. Each training data includes an electronic device model, a game name, a remaining power and an average frame rate. An inference model is trained based on these training data. A frame rate of an electronic device playing a game is inferred by the inference model to obtain a frame rate inference value. The electronic device sets the frame rate to the frame rate inference value. Based on the operation of the electronic device, the inference model is optimized. The step of optimizing the inference model includes the following steps. Determine whether the frame rate of the electronic device is manually adjusted to a manual frame rate value. Determine whether the electronic device is sufficient to continue playing the game for more than one unit time. If the frame rate is not manually adjusted and the electronic device is not sufficient to continue playing the game for more than that unit time, adjust these training data to retrain the inference model.

根據本揭露之另一方面,提出一種幀率智慧控制系統。幀率智慧控制系統包括一儲存單元、一訓練單元、一推論模型、一幀率推論單元及一優化單元。儲存單元用以儲存數筆訓練資料。各個訓練資料包括一電子裝置之一電子裝置型號、一遊戲名稱、一剩餘電量及一平均幀率。訓練單元用以依據這些訓練資料,訓練一推論模型。幀率推論單元用以藉由推論模型,對進行一遊戲之一電子裝置之一幀率進行推論,以獲得一推論幀率值。電子裝置設定幀率為該幀率推論值。優化單元用以依據電子裝置之運作,優化推論模型。優化單元包括一幀率監測元件及一電量監 測元件。幀率監測元件用以判斷電子裝置之幀率是否被手動調整為一手動幀率值。電量監測元件用以判斷電子裝置是否足以持續進行遊戲一單位時間以上。調整元件用以於幀率未被手動調整,且電子裝置不足以持續進行遊戲該單位時間以上時,對這些訓練資料進行調整,以重新訓練推論模型。 According to another aspect of the present disclosure, a frame rate intelligent control system is proposed. The frame rate intelligent control system includes a storage unit, a training unit, an inference model, a frame rate inference unit and an optimization unit. The storage unit is used to store a number of training data. Each training data includes an electronic device model, a game name, a remaining power and an average frame rate of an electronic device. The training unit is used to train an inference model based on these training data. The frame rate inference unit is used to infer a frame rate of an electronic device playing a game through an inference model to obtain an inferred frame rate value. The electronic device sets the frame rate to the frame rate inference value. The optimization unit is used to optimize the inference model according to the operation of the electronic device. The optimization unit includes a frame rate monitoring element and a power monitoring element. The frame rate monitoring element is used to determine whether the frame rate of the electronic device is manually adjusted to a manual frame rate value. The power monitoring element is used to determine whether the electronic device is sufficient to continue playing the game for more than a unit time. The adjustment element is used to adjust these training data to retrain the inference model when the frame rate is not manually adjusted and the electronic device is insufficient to continue playing the game for more than the unit time.

為了對本揭露之上述及其他方面有更佳的瞭解,下文特舉實施例,並配合所附圖式詳細說明如下: In order to better understand the above and other aspects of this disclosure, the following is a specific example, and the attached drawings are used to explain in detail as follows:

100:幀率智慧控制系統 100: Frame rate intelligent control system

110:儲存單元 110: Storage unit

120:訓練單元 120: Training unit

130:幀率推論單元 130: Frame rate inference unit

140:優化單元 140: Optimization unit

141:幀率監測元件 141: Frame rate monitoring element

142:電量監測元件 142: Electricity monitoring element

143:調整元件 143: Adjustment element

144:新增元件 144: New components

800i:電子裝置 800i: Electronics

900:網路 900: Internet

fri:平均幀率 fri: average frame rate

fri’:幀率推論值 fri’: frame rate inference value

fri*:手動幀率值 fri*: Manual frame rate value

gmi,gmi’:遊戲名稱 gmi,gmi’: game name

MDi:推論模型 MDi: Inference Model

OPi:運作資料 OPi: Operational Data

P1:訓練程序 P1: Training program

P2:推論程序 P2: Inference procedure

P3:優化程序 P3: Optimization process

pwi,pwi’:剩餘電量 pwi,pwi’: remaining power

pwi*:執行電量 pwi*: running power

RDi:即時資料 RDi: Real-time data

S110,S111,S112,S113,S114,S115,S116,S117S120,S130,S131,S132,S133,S134,S135,S136,S137,S138,S140,S141,S142,S143,S144,S145:步驟 S110,S111,S112,S113,S114,S115,S116,S117S120,S130,S131,S132,S133,S134,S135,S136,S137,S138,S140,S141,S142,S143,S144,S145: Steps

TRi:訓練資料 TRi: Training data

tyi:電子裝置型號 tyi:Electronic device model

第1圖繪示根據一實施例之幀率智慧控制系統進行推論模型之訓練程序的示意圖。 FIG. 1 is a schematic diagram showing a training procedure of an inference model according to a frame rate intelligence control system of an embodiment.

第2圖繪示根據一實施例之幀率智慧控制系統進行推論模型之推論程序的示意圖。 FIG. 2 is a schematic diagram showing the inference process of the inference model according to the frame rate intelligent control system of one embodiment.

第3圖繪示根據一實施例之幀率智慧控制系統進行推論模型之優化程序的示意圖。 FIG. 3 is a schematic diagram showing an optimization process of an inference model according to a frame rate intelligent control system of an embodiment.

第4圖繪示根據一實施例之幀率智慧控制系統之方塊圖。 FIG. 4 shows a block diagram of a frame rate intelligent control system according to an embodiment.

第5圖繪示根據一實施例之幀率智慧控制方法的流程圖。 Figure 5 shows a flow chart of a frame rate intelligent control method according to an embodiment.

第6圖繪示根據一實施例之步驟S110之細部流程圖。 Figure 6 shows a detailed flow chart of step S110 according to an embodiment.

第7圖示例說明推論模型。 Figure 7 illustrates the inference model.

第8圖繪示根據一實施例之步驟S130的細部流程圖。 Figure 8 shows a detailed flow chart of step S130 according to an embodiment.

第9圖繪示根據一實施例之步驟S140之細部流程圖。 Figure 9 shows a detailed flow chart of step S140 according to an embodiment.

請參照第1圖,其繪示根據一實施例之幀率智慧控制系統100進行推論模型MDi之訓練程序P1的示意圖。幀率智慧控制系統100例如是一伺服器、雲端計算中心或邊緣計算中心。電子裝置800i例如是一筆記型電腦、桌上型電腦、智慧型手機、平板電腦、車載裝置或頭戴式顯示器。電子裝置800i進行遊戲時,可將數筆訓練資料TRi透過網路900上傳到幀率智慧控制系統100。這些電子裝置800i的型號可以不同。幀率智慧控制系統100依據這些訓練資料TRi,可以訓練出數個推論模型MDi。推論模型MDi主要是用以推論出各個電子裝置800i適合的幀率,以使電子裝置800i在電力與幀率之間能夠取得平衡。幀率智慧控制系統100係針對不同的電子裝置型號進行個別訓練,以獲得對應於不同的電子裝置型號的推論模型MDi。 Please refer to Figure 1, which shows a schematic diagram of a training procedure P1 for an inference model MDi according to a frame rate intelligent control system 100 of an embodiment. The frame rate intelligent control system 100 is, for example, a server, a cloud computing center, or an edge computing center. The electronic device 800i is, for example, a laptop, a desktop computer, a smart phone, a tablet computer, a vehicle-mounted device, or a head-mounted display. When the electronic device 800i plays a game, a number of training data TRi can be uploaded to the frame rate intelligent control system 100 via the network 900. The models of these electronic devices 800i can be different. The frame rate intelligent control system 100 can train a number of inference models MDi based on these training data TRi. The inference model MDi is mainly used to infer the appropriate frame rate of each electronic device 800i so that the electronic device 800i can achieve a balance between power and frame rate. The frame rate intelligent control system 100 is trained individually for different electronic device models to obtain the inference model MDi corresponding to the different electronic device models.

請參照第2圖,其繪示根據一實施例之幀率智慧控制系統100進行推論模型MDi之推論程序P2的示意圖。當某一電子裝置800i位於電池放電模式(即未接上市電進行充電)且正在進行遊戲時,可以透過網路900上傳一即時資料RDi至幀率智慧控制系統100。幀率智慧控制系統100藉由推論模型MDi推論出適合的幀率推論值fri’之後,電子裝置800i即可以幀率推論值fri’設定幀率,以期獲得較高的畫面品質,並可確保用電量無虞。 Please refer to Figure 2, which shows a schematic diagram of the inference process P2 of the frame rate intelligent control system 100 according to an embodiment of the inference model MDi. When an electronic device 800i is in battery discharge mode (i.e., not connected to the mains for charging) and is playing a game, it can upload a real-time data RDi to the frame rate intelligent control system 100 through the network 900. After the frame rate intelligent control system 100 infers a suitable frame rate inference value fri' through the inference model MDi, the electronic device 800i can set the frame rate according to the frame rate inference value fri', in order to obtain higher picture quality and ensure power consumption.

請參照第3圖,其繪示根據一實施例之幀率智慧控制系統100進行推論模型MDi之優化程序P3的示意圖。當某一電子裝置800i按照幀率推論值fri’進行遊戲時,電子裝置800i可以透過網路900上傳一運作資料OPi至幀率智慧控制系統100。幀率智慧控制系統100可以依據運作資料OPi優化推論模型MDi。 Please refer to Figure 3, which shows a schematic diagram of an optimization procedure P3 of the frame rate intelligent control system 100 according to an embodiment of the invention for the inference model MDi. When an electronic device 800i plays a game according to the frame rate inference value fri', the electronic device 800i can upload an operation data OPi to the frame rate intelligent control system 100 through the network 900. The frame rate intelligent control system 100 can optimize the inference model MDi according to the operation data OPi.

透過上述訓練程序P1、推論程序P2及優化程序P3,可以針對電子裝置800i進行幀率智慧控制,以使電子裝置800i進行遊戲時,能夠獲得較高的畫面品質,並可確保用電量無虞。 Through the above training program P1, inference program P2 and optimization program P3, the frame rate of the electronic device 800i can be intelligently controlled so that the electronic device 800i can obtain higher picture quality when playing games and ensure power consumption.

請參照第4圖,其繪示根據一實施例之幀率智慧控制系統100之方塊圖。幀率智慧控制系統100包括一儲存單元110、一訓練單元120、上述之推論模型MDi、一幀率推論單元130及一優化單元140。優化單元140包括一幀率監測元件141、一電量監測元件142、一調整元件143及一新增元件144。儲存單元110用以儲存各種資料,例如是一記憶體、一硬碟或一雲端儲存中心。訓練單元120用以進行模型的訓練程序P1(繪示於第1圖),例如是一神經網路晶片、一電路、一電路板或儲存程式碼之儲存裝置。幀率推論單元130用以藉由推論模型MDi進行推論程序P2(繪示於第2圖),例如是一神經網路晶片、一電路、一電路板或儲存程式碼之儲存裝置。優化單元140用以對推論模型MDi進行優化程序P3(繪示於第3圖),例如是一神經網路晶片、一電路、一電路板或儲存程式碼之儲存裝置。訓練單元120、幀率推論單元130及優化單元140分別進行上述之訓練程序P1、推論程序P2及優化程序P3,即 可針對電子裝置800i進行幀率智慧控制,使得電子裝置800i進行遊戲時,能夠獲得較高的畫面品質,並可確保用電量無虞。以下更搭配流程圖詳細說明各項元件之運作。 Please refer to FIG. 4, which shows a block diagram of a frame rate intelligent control system 100 according to an embodiment. The frame rate intelligent control system 100 includes a storage unit 110, a training unit 120, the above-mentioned inference model MDi, a frame rate inference unit 130 and an optimization unit 140. The optimization unit 140 includes a frame rate monitoring element 141, a power monitoring element 142, an adjustment element 143 and a new element 144. The storage unit 110 is used to store various data, such as a memory, a hard disk or a cloud storage center. The training unit 120 is used to perform a training procedure P1 (shown in FIG. 1 ) of the model, and is, for example, a neural network chip, a circuit, a circuit board, or a storage device for storing program codes. The frame rate inference unit 130 is used to perform an inference procedure P2 (shown in FIG. 2 ) by inferring the model MDi, and is, for example, a neural network chip, a circuit, a circuit board, or a storage device for storing program codes. The optimization unit 140 is used to perform an optimization procedure P3 (shown in FIG. 3 ) on the inference model MDi, and is, for example, a neural network chip, a circuit, a circuit board, or a storage device for storing program codes. The training unit 120, the frame rate inference unit 130 and the optimization unit 140 respectively perform the above-mentioned training procedure P1, inference procedure P2 and optimization procedure P3, that is, the frame rate of the electronic device 800i can be intelligently controlled, so that the electronic device 800i can obtain higher picture quality and ensure power consumption when playing games. The following is a detailed description of the operation of each component with a flowchart.

請參照第5圖,其繪示根據一實施例之幀率智慧控制方法的流程圖。在步驟S110中,獲得數筆訓練資料TRi。各個訓練資料TRi包括一電子裝置型號tyi、一遊戲名稱gmi、一剩餘電量pwi及一平均幀率fri。電子裝置型號tyi例如是產品型號、物料編號、圖形處理器規格、中央處理器規格、記憶體規格、電池規格或其組合。遊戲名稱gmi例如是遊戲程式檔名、遊戲視窗標題、執行遊戲之任務名稱。剩餘電量pwi例如是電池電量的百分比。平均幀率fri例如是單位時間之幀率的平均值。單位時間例如是1小時或半小時。電子裝置800i每隔單位時間會上傳一筆訓練資料TRi至幀率智慧控制系統100。舉例來說,當使用者以電子裝置800i進行遊戲3個小時,則會在第一小時、第二小時及第三小時分別傳送三筆訓練資料TRi。這三筆訓練資料TRi的剩餘電量pwi及平均幀率fri可能不會相同。 Please refer to Figure 5, which shows a flow chart of a frame rate intelligent control method according to an embodiment. In step S110, a plurality of training data TRi are obtained. Each training data TRi includes an electronic device model tyi, a game name gmi, a remaining power pwi and an average frame rate fri. The electronic device model tyi is, for example, a product model, a material number, a graphics processor specification, a central processing unit specification, a memory specification, a battery specification or a combination thereof. The game name gmi is, for example, a game program file name, a game window title, or a task name for running the game. The remaining power pwi is, for example, a percentage of the battery power. The average frame rate fri is, for example, the average value of the frame rate per unit time. The unit time is, for example, 1 hour or half an hour. The electronic device 800i uploads a training data TRi to the frame rate intelligent control system 100 every unit time. For example, when the user plays a game with the electronic device 800i for 3 hours, three training data TRi will be transmitted in the first hour, the second hour and the third hour respectively. The remaining power pwi and the average frame rate fri of these three training data TRi may not be the same.

請參照第6圖,其繪示根據一實施例之步驟S110之細部流程圖。步驟S110包括步驟S111~S117。在步驟S111中,電子裝置800i判斷是否正在進行遊戲。若電子裝置800i正在進行遊戲,則進入步驟S112。在步驟S111中,電子裝置800i可以透過任務管理員分析正在執行的應用程式是否有遊戲。在此步驟中,只要有一個以上的遊戲正在進行,即可判定為正在進行遊戲。 Please refer to Figure 6, which shows a detailed flow chart of step S110 according to an embodiment. Step S110 includes steps S111 to S117. In step S111, the electronic device 800i determines whether a game is being played. If the electronic device 800i is playing a game, it proceeds to step S112. In step S111, the electronic device 800i can analyze whether the application being executed has a game through the task manager. In this step, as long as there is more than one game being played, it can be determined that a game is being played.

接著,在步驟S112中,電子裝置800i取得電子裝置型號tyi。電子裝置800i可以透過系統資訊取得電子裝置型號tyi。 Next, in step S112, the electronic device 800i obtains the electronic device model tyi. The electronic device 800i can obtain the electronic device model tyi through system information.

然後,在步驟S113中,電子裝置800i取得遊戲名稱gmi。當電子裝置800i正在進行多個遊戲時,則依據負載最大的遊戲取得遊戲名稱gmi。 Then, in step S113, the electronic device 800i obtains the game name gmi. When the electronic device 800i is playing multiple games, the game name gmi is obtained based on the game with the largest load.

接著,在步驟S114中,電子裝置800i判斷電子裝置800i是否位於電池放電模式。若電子裝置800i位於電池放電模式,則進入步驟S115。 Next, in step S114, the electronic device 800i determines whether the electronic device 800i is in the battery discharge mode. If the electronic device 800i is in the battery discharge mode, the process proceeds to step S115.

在步驟S115中,電子裝置800i判斷遊戲是否已進行單位時間。單位時間例如是1小時或半小時。若遊戲已進行單位時間,則進入步驟S116。 In step S115, the electronic device 800i determines whether the game has been played for a unit time. The unit time is, for example, 1 hour or half an hour. If the game has been played for a unit time, the process proceeds to step S116.

在步驟S116中,電子裝置800i對單位時間計算平均幀率fri。平均幀率fri係為當下時間點往前推算單位時間的平均值。 In step S116, the electronic device 800i calculates the average frame rate fri per unit time. The average frame rate fri is the average value of the unit time calculated from the current time point forward.

接著,在步驟S117中,電子裝置800i上傳一筆訓練資料TRi。此訓練資料TRi包括電子裝置型號tyi、遊戲名稱gmi、剩餘電量pwi及平均幀率fri。 Next, in step S117, the electronic device 800i uploads a training data TRi. The training data TRi includes the electronic device model tyi, the game name gmi, the remaining power pwi and the average frame rate fri.

透過上述步驟S111~S117即完成一筆訓練資料TRi的上傳。若電子裝置800i持續進行相同的遊戲,每隔單位時間仍會再次上傳另一筆訓練資料TRi。再次上傳的訓練資料TRi仍會包含電子裝置型號tyi、遊戲名稱gmi、剩餘電量pwi及平均幀率fri。如第4圖所示,上述這些訓練資料TRi都會儲存於幀率智慧控 制系統100之儲存單元110。 Through the above steps S111~S117, the uploading of a training data TRi is completed. If the electronic device 800i continues to play the same game, another training data TRi will be uploaded again every unit time. The training data TRi uploaded again will still include the electronic device model tyi, game name gmi, remaining power pwi and average frame rate fri. As shown in Figure 4, the above training data TRi will be stored in the storage unit 110 of the frame rate intelligent control system 100.

接著,在第5圖之步驟S120中,幀率智慧控制系統100之訓練單元120依據訓練資料TRi,訓練推論模型MDi。如第4圖所示,訓練單元120自儲存單元110取得多筆訓練資料TRi。這些訓練資料TRi可能對應於不同的電子裝置型號tyi。訓練單元120按照電子裝置型號tyi進行分類,並分別訓練出不同的推論模型MDi。 Next, in step S120 of FIG. 5, the training unit 120 of the frame rate intelligent control system 100 trains the inference model MDi based on the training data TRi. As shown in FIG. 4, the training unit 120 obtains multiple training data TRi from the storage unit 110. These training data TRi may correspond to different electronic device models tyi. The training unit 120 classifies the electronic device models tyi and trains different inference models MDi respectively.

然後,在第5圖之步驟S130中,藉由推論模型MDi,幀率智慧控制系統100之幀率推論單元130對進行遊戲之電子裝置800i之幀率進行推論。請參照第7圖,其示例說明推論模型MDi。推論模型MDi用以在接收到即時的遊戲名稱gmi’、剩餘電量pwi’時,可以輸出幀率推論值fri’。不同的電子裝置型號tyi對應於不同的推論模型MDi。因此,即使遊戲名稱gmi’、剩餘電量pwi’相同,在不同的電子裝置型號tyi之下,可能會獲得不同的幀率推論值fri’。 Then, in step S130 of FIG. 5, the frame rate inference unit 130 of the frame rate intelligent control system 100 infers the frame rate of the electronic device 800i playing the game by inference model MDi. Please refer to FIG. 7, which illustrates the inference model MDi. The inference model MDi is used to output the frame rate inference value fri' when receiving the real-time game name gmi' and the remaining power pwi'. Different electronic device models tyi correspond to different inference models MDi. Therefore, even if the game name gmi' and the remaining power pwi' are the same, different frame rate inference values fri' may be obtained under different electronic device models tyi.

請參照第8圖,其繪示根據一實施例之步驟S130的細部流程圖。步驟S130包括步驟S131~S138。在步驟S131中,電子裝置800i判斷電子裝置800i是否正在進行遊戲。若電子裝置800i正在進行遊戲,則進入步驟S132。在步驟S131中,電子裝置800i可以透過任務管理員分析正在執行的應用程式是否有遊戲。在此步驟中,只要有一個以上的遊戲正在進行,即可判定為正在進行遊戲。 Please refer to Figure 8, which shows a detailed flow chart of step S130 according to an embodiment. Step S130 includes steps S131 to S138. In step S131, the electronic device 800i determines whether the electronic device 800i is playing a game. If the electronic device 800i is playing a game, it proceeds to step S132. In step S131, the electronic device 800i can analyze whether the application being executed has a game through the task manager. In this step, as long as there is more than one game being played, it can be determined that the game is being played.

接著,在步驟S132中,電子裝置800i取得即時的遊戲名稱gmi’與剩餘電量pwi’。當電子裝置800i正在進行多個遊戲時,則依據負載最大的遊戲取得遊戲名稱gmi’。 Next, in step S132, the electronic device 800i obtains the real-time game name gmi' and the remaining power pwi'. When the electronic device 800i is playing multiple games, the game name gmi' is obtained based on the game with the largest load.

然後,在步驟S133中,電子裝置800i判斷電子裝置800i是否位於電池放電模式。若電子裝置800i位於電池放電模式,則進入步驟S134。 Then, in step S133, the electronic device 800i determines whether the electronic device 800i is in the battery discharge mode. If the electronic device 800i is in the battery discharge mode, it proceeds to step S134.

接著,在步驟S134中,電子裝置800i上傳即時資料RDi。此即時資料RDi包括電子裝置型號tyi、即時的遊戲名稱gmi’及即時的剩餘電量pwi’。 Next, in step S134, the electronic device 800i uploads real-time data RDi. The real-time data RDi includes the electronic device model tyi, the real-time game name gmi’ and the real-time remaining power pwi’.

然後,在步驟S135中,幀率智慧控制系統100之幀率推論單元130輸入即時的遊戲名稱gmi’及即時的剩餘電量pwi’至對應電子裝置型號tyi之推論模型MDi,以獲得幀率推論值fri’。幀率推論值fri’並回傳至電子裝置800i。 Then, in step S135, the frame rate inference unit 130 of the frame rate intelligent control system 100 inputs the real-time game name gmi' and the real-time remaining power pwi' to the inference model MDi corresponding to the electronic device model tyi to obtain the frame rate inference value fri'. The frame rate inference value fri' is then returned to the electronic device 800i.

接著,在步驟S136中,電子裝置800i判斷幀率推論值fri’是否為空值。若幀率推論值fri’不為空值,則進入步驟S137;若幀率推論值fri’為空值,則進入步驟S138。當幀率推論值fri’為空值時,表示電子裝置800i之電量不足,推論模型MDi無法推論出適合的幀率推論值fri’。 Next, in step S136, the electronic device 800i determines whether the frame rate inference value fri' is a null value. If the frame rate inference value fri' is not a null value, the process proceeds to step S137; if the frame rate inference value fri' is a null value, the process proceeds to step S138. When the frame rate inference value fri' is a null value, it indicates that the power of the electronic device 800i is insufficient, and the inference model MDi cannot infer a suitable frame rate inference value fri'.

在步驟S137中,電子裝置800i自動設定幀率為幀率推論值fri’。在此步驟中,電子裝置800i係自動對顯示器進行控制,無須使用者手動調整。 In step S137, the electronic device 800i automatically sets the frame rate to the frame rate inference value fri'. In this step, the electronic device 800i automatically controls the display without manual adjustment by the user.

在步驟S138中,電子裝置800i跳出一充電警示訊 息,以通知使用者必須盡快接上電源線。 In step S138, the electronic device 800i pops up a charging warning message to inform the user that the power cord must be connected as soon as possible.

根據上述步驟S131~S138,幀率智慧控制系統100可以即時地推論出適合的幀率推論值fri’,以提供電子裝置800i進行自動設定。 According to the above steps S131~S138, the frame rate intelligent control system 100 can infer the appropriate frame rate inference value fri' in real time to provide the electronic device 800i with automatic settings.

接著,在第5圖之步驟S140中,幀率智慧控制系統100之優化單元140依據電子裝置800i之運作,優化推論模型MDi。在推論模型MDi訓練完成後,仍需要進一步的調整,以提高推論準確度。 Next, in step S140 of FIG. 5, the optimization unit 140 of the frame rate intelligent control system 100 optimizes the inference model MDi according to the operation of the electronic device 800i. After the inference model MDi is trained, further adjustments are still required to improve the inference accuracy.

請參照第9圖,其繪示根據一實施例之步驟S140之細部流程圖。步驟S140包括步驟S141~S145。在步驟S141中,如第4圖所示,幀率智慧控制系統100之優化單元140的幀率監測元件141判斷電子裝置800i之幀率是否被手動調整為一手動幀率值fri*。若電子裝置800i之幀率未被手動調整為手動幀率值fri*,則進入步驟S142;若電子裝置800i之幀率被手動調整為手動幀率值fri*,則進入步驟S144。 Please refer to FIG. 9, which shows a detailed flow chart of step S140 according to an embodiment. Step S140 includes steps S141 to S145. In step S141, as shown in FIG. 4, the frame rate monitoring element 141 of the optimization unit 140 of the frame rate intelligent control system 100 determines whether the frame rate of the electronic device 800i is manually adjusted to a manual frame rate value fri*. If the frame rate of the electronic device 800i is not manually adjusted to the manual frame rate value fri*, then step S142 is entered; if the frame rate of the electronic device 800i is manually adjusted to the manual frame rate value fri*, then step S144 is entered.

在此步驟中,如第4圖所示,當電子裝置800i之幀率被手動調整為手動幀率值fri*時,電子裝置800i會立即上傳手動幀率值fri*至優化單元140之幀率監測元件141。當幀率監測元件141未收到手動幀率值fri*,即可得知電子裝置800i之幀率未被手動調整;當幀率監測元件141收到手動幀率值fri*,即可得知電子裝置800i之幀率被手動調整。 In this step, as shown in FIG. 4, when the frame rate of the electronic device 800i is manually adjusted to the manual frame rate value fri*, the electronic device 800i will immediately upload the manual frame rate value fri* to the frame rate monitoring element 141 of the optimization unit 140. When the frame rate monitoring element 141 does not receive the manual frame rate value fri*, it can be known that the frame rate of the electronic device 800i has not been manually adjusted; when the frame rate monitoring element 141 receives the manual frame rate value fri*, it can be known that the frame rate of the electronic device 800i has been manually adjusted.

在步驟S142中,幀率智慧控制系統100之優化單元 140的電量監測元件142判斷電子裝置800i是否足以持續進行遊戲一單位時間以上。若電子裝置800i不足以持續進行遊戲單位時間以上,則進入步驟S143。 In step S142, the power monitoring element 142 of the optimization unit 140 of the frame rate intelligent control system 100 determines whether the electronic device 800i is sufficient to continue playing the game for more than a unit time. If the electronic device 800i is insufficient to continue playing the game for more than a unit time, the process proceeds to step S143.

在步驟S142中,如第4圖所示,電子裝置800i會定期上傳執行電量pwi*至優化單元140之電量監測元件142。電量監測元件142依據執行電量pwi*,即判斷電子裝置800i是否足以持續進行遊戲單位時間以上。 In step S142, as shown in FIG. 4, the electronic device 800i will periodically upload the execution power pwi* to the power monitoring element 142 of the optimization unit 140. The power monitoring element 142 determines whether the electronic device 800i is sufficient to continue playing the game for more than a unit time based on the execution power pwi*.

進入步驟S143表示電子裝置800i之幀率仍採用幀率推論值fri’,未被手動調整,但電子裝置800i不足以持續進行遊戲單位時間以上。在步驟S143中,幀率智慧控制系統100之優化單元140的調整元件143對訓練資料TRi進行調整,以重新訓練推論模型MDi。舉例來說,調整元件143降低對應幀率推論值fri’之訓練資料TRi的權重,降低未來被推理出來的機率。 Entering step S143 means that the frame rate of the electronic device 800i still uses the frame rate inference value fri' and has not been manually adjusted, but the electronic device 800i is not enough to continue the game for more than a unit time. In step S143, the adjustment element 143 of the optimization unit 140 of the frame rate intelligent control system 100 adjusts the training data TRi to retrain the inference model MDi. For example, the adjustment element 143 reduces the weight of the training data TRi corresponding to the frame rate inference value fri' to reduce the probability of being inferred in the future.

在步驟S144中,幀率智慧控制系統100之優化單元140的電量監測元件142判斷電子裝置800i是否足以持續進行遊戲一單位時間以上。若電子裝置800i不足以持續進行遊戲單位時間以上,則進入步驟S145。 In step S144, the power monitoring element 142 of the optimization unit 140 of the frame rate intelligent control system 100 determines whether the electronic device 800i is sufficient to continue playing the game for more than a unit time. If the electronic device 800i is not sufficient to continue playing the game for more than a unit time, then enter step S145.

在步驟S144中,如第4圖所示,電子裝置800i會定期上傳執行電量pwi*至優化單元140之電量監測元件142。電量監測元件142依據執行電量pwi*,即判斷電子裝置800i是否足以持續進行遊戲單位時間以上。 In step S144, as shown in FIG. 4, the electronic device 800i will periodically upload the execution power pwi* to the power monitoring element 142 of the optimization unit 140. The power monitoring element 142 determines whether the electronic device 800i is sufficient to continue playing the game for more than a unit time based on the execution power pwi*.

進入步驟S145表示電子裝置800i之幀率被手動調 整為手動幀率值fri*,且電子裝置800i足以持續進行遊戲單位時間以上。在步驟S145中,幀率智慧控制系統100之優化單元140的新增元件144依據手動幀率值fri*,對訓練資料TRi進行新增,以提高未來被推理出來的機率。 Entering step S145 indicates that the frame rate of the electronic device 800i is manually adjusted to the manual frame rate value fri*, and the electronic device 800i is sufficient to continue the game for more than the unit time. In step S145, the new component 144 of the optimization unit 140 of the frame rate intelligent control system 100 adds training data TRi according to the manual frame rate value fri* to increase the probability of being inferred in the future.

根據上述實施例,幀率智慧控制系統100分別進行上述之訓練程序P1、推論程序P2及優化程序P3,即可針對電子裝置800i進行幀率智慧控制,使得電子裝置800i進行遊戲時,能夠獲得較高的畫面品質,並可確保用電量無虞。 According to the above embodiment, the frame rate intelligent control system 100 performs the above training procedure P1, inference procedure P2 and optimization procedure P3 respectively, and can perform intelligent frame rate control on the electronic device 800i, so that the electronic device 800i can obtain higher picture quality when playing games and ensure power consumption.

綜上所述,雖然本揭露已以實施例揭露如上,然其並非用以限定本揭露。本揭露所屬技術領域中具有通常知識者,在不脫離本揭露之精神和範圍內,當可作各種之更動與潤飾。因此,本揭露之保護範圍當視後附之申請專利範圍所界定者為準。 In summary, although the present disclosure has been disclosed as above by the embodiments, it is not intended to limit the present disclosure. Those with ordinary knowledge in the technical field to which the present disclosure belongs can make various changes and modifications without departing from the spirit and scope of the present disclosure. Therefore, the protection scope of the present disclosure shall be subject to the scope defined by the attached patent application.

100:幀率智慧控制系統 100: Frame rate intelligent control system

110:儲存單元 110: Storage unit

120:訓練單元 120: Training unit

130:幀率推論單元 130: Frame rate inference unit

140:優化單元 140: Optimization unit

141:幀率監測元件 141: Frame rate monitoring element

142:電量監測元件 142: Electricity monitoring element

143:調整元件 143: Adjustment element

144:新增元件 144: New components

800i:電子裝置 800i: Electronics

fri:平均幀率 fri: average frame rate

fri’:幀率推論值 fri’: frame rate inference value

fri*:手動幀率值 fri*: Manual frame rate value

gmi,gmi’:遊戲名稱 gmi,gmi’: game name

MDi:推論模型 MDi: Inference Model

OPi:運作資料 OPi: Operational Data

pwi,pwi’:剩餘電量 pwi,pwi’: remaining power

pwi*:執行電量 pwi*: running power

RDi:即時資料 RDi: Real-time data

TRi:訓練資料 TRi: Training data

tyi:電子裝置型號 tyi:Electronic device model

Claims (13)

一種幀率智慧控制方法,包括:獲得複數筆訓練資料,各該訓練資料包括一電子裝置型號、一遊戲名稱、一剩餘電量及一平均幀率;依據該些訓練資料,訓練一推論模型;藉由該推論模型,對進行一遊戲之一電子裝置之一幀率進行推論,以獲得一幀率推論值,該電子裝置設定該幀率為該幀率推論值;以及依據一手動幀率值,重新訓練該推論模型。 A frame rate intelligent control method includes: obtaining a plurality of training data, each of which includes an electronic device model, a game name, a remaining power and an average frame rate; training an inference model based on the training data; inferring a frame rate of an electronic device playing a game by using the inference model to obtain a frame rate inference value, and the electronic device sets the frame rate to the frame rate inference value; and retraining the inference model based on a manual frame rate value. 如請求項1所述之幀率智慧控制方法,其中依據該手動幀率值,重新訓練該推論模型包括:判斷該電子裝置之該幀率是否被手動調整為一手動幀率值;判斷該電子裝置是否足以持續進行該遊戲一單位時間以上;若該幀率未被手動調整,且該電子裝置不足以持續進行該遊戲該單位時間以上,則對該些訓練資料進行調整,以重新訓練該推論模型;其中在對該些訓練資料進行調整之步驟中,對應該推論幀率值之該些訓練資料的權重被降低。 The frame rate intelligent control method as described in claim 1, wherein retraining the inference model according to the manual frame rate value includes: determining whether the frame rate of the electronic device is manually adjusted to a manual frame rate value; determining whether the electronic device is sufficient to continue the game for more than a unit time; if the frame rate is not manually adjusted, and the electronic device is insufficient to continue the game for more than the unit time, adjusting the training data to retrain the inference model; wherein in the step of adjusting the training data, the weight of the training data corresponding to the inference frame rate value is reduced. 如請求項1所述之幀率智慧控制方法,其中依據該手動幀率值,重新訓練該推論模型之步驟更包括: 若該幀率被手動調整,且該電子裝置足以持續進行該遊戲該單位時間以上,則依據該手動幀率值,對該些訓練資料進行新增,以重新訓練該推論模型。 The frame rate intelligent control method as described in claim 1, wherein the step of retraining the inference model according to the manual frame rate value further includes: If the frame rate is manually adjusted and the electronic device is sufficient to continue the game for more than the unit time, then according to the manual frame rate value, the training data are added to retrain the inference model. 如請求項3所述之幀率智慧控制方法,其中在對該些訓練資料進行新增之步驟中,對應該手動幀率值的該訓練資料的權重被提高。 The frame rate intelligent control method as described in claim 3, wherein in the step of adding the training data, the weight of the training data corresponding to the manual frame rate value is increased. 如請求項1所述之幀率智慧控制方法,其中該單位時間為1小時。 The frame rate intelligent control method as described in claim 1, wherein the unit time is 1 hour. 如請求項1所述之幀率智慧控制方法,其中獲得該些筆訓練資料之步驟執行於一電池放電模式。 The frame rate intelligent control method as described in claim 1, wherein the step of obtaining the pen training data is performed in a battery discharge mode. 如請求項1所述之幀率智慧控制方法,其中對進行該遊戲之該電子裝置之該幀率進行推論之步驟執行於一電池放電模式。 The frame rate intelligent control method as described in claim 1, wherein the step of inferring the frame rate of the electronic device playing the game is performed in a battery discharge mode. 如請求項1所述之幀率智慧控制方法,其中優化該推論模型之步驟執行於一電池放電模式。 The frame rate intelligent control method as described in claim 1, wherein the step of optimizing the inference model is performed in a battery discharge mode. 一種幀率智慧控制系統,包括: 一儲存單元,用以儲存複數筆訓練資料,各該訓練資料包括一電子裝置之一電子裝置型號、一遊戲名稱、一剩餘電量及一平均幀率;一訓練單元,用以依據該些訓練資料,訓練一推論模型;該推論模型;一幀率推論單元,用以藉由該推論模型,對進行一遊戲之一電子裝置之一幀率進行推論,以獲得一推論幀率值,該電子裝置設定該幀率為該幀率推論值;以及一優化單元,用以依據一手動幀率值,重新訓練該推論模型。 A frame rate intelligent control system includes: a storage unit for storing a plurality of training data, each of which includes an electronic device model, a game name, a remaining power and an average frame rate of an electronic device; a training unit for training an inference model based on the training data; the inference model; a frame rate inference unit for inferring a frame rate of an electronic device playing a game by using the inference model to obtain an inferred frame rate value, and the electronic device sets the frame rate to the frame rate inference value; and an optimization unit for retraining the inference model based on a manual frame rate value. 如請求項9所述之幀率智慧控制系統,其中該優化單元包括:一幀率監測元件,用以判斷該電子裝置之該幀率是否被手動調整為該手動幀率值;一電量監測元件,用以判斷該電子裝置是否足以持續進行該遊戲一單位時間以上;一調整元件,用以於該幀率未被手動調整,且該電子裝置不足以持續進行該遊戲該單位時間以上時,對該些訓練資料進行調整,以重新訓練該推論模型,該調整元件更用以降低對應該推論幀率值之該些訓練資料的權重。 The frame rate intelligent control system as described in claim 9, wherein the optimization unit includes: a frame rate monitoring element for determining whether the frame rate of the electronic device is manually adjusted to the manual frame rate value; a power monitoring element for determining whether the electronic device is sufficient to continue the game for more than a unit time; an adjustment element for adjusting the training data to retrain the inference model when the frame rate is not manually adjusted and the electronic device is insufficient to continue the game for more than the unit time, and the adjustment element is further used to reduce the weight of the training data corresponding to the inference frame rate value. 如請求項9所述之幀率智慧控制系統,其中該優化單元更包括: 一新增元件,用以於該幀率被手動調整,且該電子裝置足以持續進行該遊戲該單位時間以上時,依據該手動幀率值,對該些訓練資料進行新增,以重新訓練該推論模型。 The frame rate intelligent control system as described in claim 9, wherein the optimization unit further includes: An additional component for adding the training data to retrain the inference model according to the manual frame rate value when the frame rate is manually adjusted and the electronic device is sufficient to continue the game for more than the unit time. 如請求項11所述之幀率智慧控制系統,其中該新增元件更用以提高對應該手動幀率值的該訓練資料的權重。 The frame rate intelligent control system as described in claim 11, wherein the additional component is further used to increase the weight of the training data corresponding to the manual frame rate value. 如請求項9所述之幀率智慧控制系統,其中該單位時間為1小時。 The frame rate intelligent control system as described in claim 9, wherein the unit time is 1 hour.
TW112132540A 2023-08-29 2023-08-29 Frame rate intelligent control method and frame rate intelligent control system TWI857765B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW112132540A TWI857765B (en) 2023-08-29 2023-08-29 Frame rate intelligent control method and frame rate intelligent control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW112132540A TWI857765B (en) 2023-08-29 2023-08-29 Frame rate intelligent control method and frame rate intelligent control system

Publications (2)

Publication Number Publication Date
TWI857765B true TWI857765B (en) 2024-10-01
TW202511902A TW202511902A (en) 2025-03-16

Family

ID=94083778

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112132540A TWI857765B (en) 2023-08-29 2023-08-29 Frame rate intelligent control method and frame rate intelligent control system

Country Status (1)

Country Link
TW (1) TWI857765B (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200400764A (en) * 1999-10-22 2004-01-01 Activesky Inc An object oriented video system
TW201215089A (en) * 2010-09-16 2012-04-01 Acer Inc Method for controlling ambient brightness perceived via three-dimensional glasses, three-dimensional glasses, and video display device thereof
US20130346590A1 (en) * 2012-06-21 2013-12-26 Adobe Systems Incorporated Client Side Control of Adaptive Streaming
US20160231801A1 (en) * 2015-02-09 2016-08-11 Microsoft Technology Licensing, Llc Suppressing Power Spikes
CN110941411A (en) * 2019-11-19 2020-03-31 深圳传音控股股份有限公司 Frame rate control method and device and computer storage medium
CN114510140A (en) * 2020-11-16 2022-05-17 深圳市万普拉斯科技有限公司 Frequency modulation method and device and electronic equipment
CN116013221A (en) * 2022-12-13 2023-04-25 Oppo广东移动通信有限公司 Screen refresh rate adjusting method and device, electronic equipment and storage medium
CN116504189A (en) * 2023-04-28 2023-07-28 广州文石信息科技有限公司 Electronic screen driving method, device, equipment and readable storage medium

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200400764A (en) * 1999-10-22 2004-01-01 Activesky Inc An object oriented video system
TW201215089A (en) * 2010-09-16 2012-04-01 Acer Inc Method for controlling ambient brightness perceived via three-dimensional glasses, three-dimensional glasses, and video display device thereof
US20130346590A1 (en) * 2012-06-21 2013-12-26 Adobe Systems Incorporated Client Side Control of Adaptive Streaming
US20160231801A1 (en) * 2015-02-09 2016-08-11 Microsoft Technology Licensing, Llc Suppressing Power Spikes
CN110941411A (en) * 2019-11-19 2020-03-31 深圳传音控股股份有限公司 Frame rate control method and device and computer storage medium
CN114510140A (en) * 2020-11-16 2022-05-17 深圳市万普拉斯科技有限公司 Frequency modulation method and device and electronic equipment
CN116013221A (en) * 2022-12-13 2023-04-25 Oppo广东移动通信有限公司 Screen refresh rate adjusting method and device, electronic equipment and storage medium
CN116504189A (en) * 2023-04-28 2023-07-28 广州文石信息科技有限公司 Electronic screen driving method, device, equipment and readable storage medium

Also Published As

Publication number Publication date
TW202511902A (en) 2025-03-16

Similar Documents

Publication Publication Date Title
CN112631415B (en) CPU frequency adjusting method, device, electronic equipment and storage medium
CN110263921B (en) A training method and device for a federated learning model
US20230321529A1 (en) Video clip classification using feature vectors of a trained image classifier
US20220280867A1 (en) Server load prediction and advanced performance measures
CN112587920B (en) Equipment control method, device, electronic equipment and storage medium
TW202105183A (en) Self-healing machine learning system for transformed data
CN110956202A (en) Image training method, system, medium and intelligent device based on distributed learning
CN107491166A (en) A kind of method and virtual reality device for adjusting virtual reality device parameter
CN118471554A (en) A body data collection system and method
CN107609570B (en) Micro video popularity prediction method based on attribute classification and multi-view feature fusion
CN112169311A (en) Method, system, storage medium and computer device for training AI (Artificial Intelligence)
CN115767091A (en) Entropy-based prefiltering using neural networks for streaming applications
TWI857765B (en) Frame rate intelligent control method and frame rate intelligent control system
CN104069617A (en) Virtual treadmill system and control method thereof
KR20250093260A (en) Server and method for generating and providing customized questions based on personalized learning feedback and learning data
CN115092072A (en) Vehicle state display method, device, equipment and storage medium
WO2020168444A1 (en) Sleep prediction method and apparatus, storage medium, and electronic device
CN117271081B (en) Scheduling method, scheduling device and storage medium
KR20240058063A (en) APPARATUS AND METHOD FOR MONITORING REAL-TIME MEASUREMENT DATA BASED ON IoT
CN112600869A (en) Calculation unloading distribution method and device based on TD3 algorithm
US12526603B2 (en) Systems and methods for context-based docking of information handling systems
US20240272675A1 (en) Systems and methods for managing settings based upon information handling system (ihs) posture and orientation using heterogeneous computing platforms
CN118397223A (en) Scene simulation method, device, equipment and medium based on virtual reality
CN115099032A (en) Method and device for early warning of smoke water lifting amount of thermal power plant
KR102841906B1 (en) Server and method for generating and providing customized questions based on personalized learning feedback and learning data