[go: up one dir, main page]

TWI855579B - Inspection system and artificial intelligence model data management method - Google Patents

Inspection system and artificial intelligence model data management method Download PDF

Info

Publication number
TWI855579B
TWI855579B TW112107688A TW112107688A TWI855579B TW I855579 B TWI855579 B TW I855579B TW 112107688 A TW112107688 A TW 112107688A TW 112107688 A TW112107688 A TW 112107688A TW I855579 B TWI855579 B TW I855579B
Authority
TW
Taiwan
Prior art keywords
model
artificial intelligence
data
inspection
performance
Prior art date
Application number
TW112107688A
Other languages
Chinese (zh)
Other versions
TW202336685A (en
Inventor
望月葵
藤井心平
大西貴子
Original Assignee
日商歐姆龍股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2023023185A external-priority patent/JP2023133160A/en
Application filed by 日商歐姆龍股份有限公司 filed Critical 日商歐姆龍股份有限公司
Publication of TW202336685A publication Critical patent/TW202336685A/en
Application granted granted Critical
Publication of TWI855579B publication Critical patent/TWI855579B/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06395Quality analysis or management
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41875Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by quality surveillance of production

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Educational Administration (AREA)
  • Marketing (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Development Economics (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Game Theory and Decision Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • General Factory Administration (AREA)

Abstract

本發明提供一種能夠將合適的AI模型更容易地應用於生產線的技術。一種檢查系統(1),在製品的生產線(100)中使用AI模型執行基於所述製品的圖像資料的檢查,所述檢查系統(1)包括管理資訊顯示部(10c),所述管理資訊顯示部(10c)顯示與製品的檢查所使用的一個或多個AI模型的管理相關的資訊,管理資訊顯示部(10c)能夠顯示與AI模型的規格相關的規格資訊、及與所述AI模型針對各種資料的性能相關的性能資訊,性能資訊包括AI模型針對量產應用前的模型測試的性能、及應用於量產時的性能。The present invention provides a technology that can more easily apply a suitable AI model to a production line. An inspection system (1) uses an AI model in a production line (100) of a product to perform inspection based on image data of the product. The inspection system (1) includes a management information display unit (10c), the management information display unit (10c) displays information related to the management of one or more AI models used for product inspection, and the management information display unit (10c) can display specification information related to the specifications of the AI model and performance information related to the performance of the AI model for various data, the performance information including the performance of the AI model for model testing before mass production application and the performance when applied to mass production.

Description

檢查系統以及人工智慧模型資料的管理方法Inspection system and artificial intelligence model data management method

本發明是有關於一種在製品的生產中對製品的優劣進行檢查的檢查系統以及人工智慧(Artificial Intelligence,AI)模型資料的管理方法。The present invention relates to an inspection system for inspecting the quality of products during the production of products and a management method for artificial intelligence (AI) model data.

在製品的生產線中,在生產線的中間步驟或最終步驟配置製品的檢查裝置,而進行不良的檢測或不良品的分類等。例如,在零件安裝基板的生產線中,通常包括在印刷配線基板印刷膏狀焊料的裝置(印刷裝置)、在印刷有膏狀焊料的基板安裝零件的裝置(裝配裝置)、加熱零件安裝後的基板並將零件焊接於基板的裝置(回焊裝置)。並且,在包括配置於各生產裝置後的檢查裝置的檢查系統中,檢查各生產裝置中的作業是否如預定般準確進行。然後,在檢查系統中,收集管理各檢查結果的資訊,而能夠合適、迅速地應對不良率的變化,有助於生產線整體的生產性的提高。In the production line of finished products, product inspection equipment is configured in the middle step or the final step of the production line to detect defects or classify defective products. For example, in the production line of component mounting substrates, it is usually included that there is a device for printing paste solder on the printed wiring substrate (printing device), a device for mounting components on the substrate printed with paste solder (assembly device), and a device for heating the substrate after component mounting and soldering the components to the substrate (reflow device). In addition, in the inspection system including the inspection equipment configured after each production device, it is checked whether the operation in each production device is carried out accurately as planned. Then, in the inspection system, the information of each inspection result is collected and managed, so that the change of defective rate can be appropriately and quickly responded, which helps to improve the productivity of the entire production line.

在如上所述的檢查系統中,藉由拍攝製品等檢查對象,對事先學習的AI模型輸入該圖像,而導入如檢查與該製品相關的優劣的步驟。此處,生產線中所量產的製品的品質不斷地變化,若該變化增大,則AI模型無法準確地判定製品的優劣,因此過看(over-detect)或漏看(undetect)的風險變大。在此種情況下,需要使用新獲得的學習資料使AI模型再次學習,而使用與品質的變化相應的最佳的AI模型。In the inspection system described above, by photographing an inspection object such as a product, the image is input to the previously learned AI model, and a step such as inspecting the quality of the product is introduced. Here, the quality of mass-produced products in the production line is constantly changing. If the change increases, the AI model cannot accurately determine the quality of the product, so the risk of over-detection or under-detection increases. In this case, it is necessary to use newly acquired learning data to re-learn the AI model and use the best AI model corresponding to the change in quality.

關於此種狀況,公知如下一種技術:使圖像判定用的模型學習新的良品圖像、不良品圖像,藉此能夠生成對於具有前所未有的新特徵的資料亦合適地判定的模型(參照專利文獻1)。然而,AI模型的性能(=過看率、漏看率)若單純地增加學習資料,則不會變得聰明,若學習資料與測試資料的總體的特徵存在背離,則有導致過度學習之虞。In this regard, the following technology is known: by making the image judgment model learn new good product images and defective product images, a model that can appropriately judge data with unprecedented new characteristics can be generated (see Patent Document 1). However, the performance of the AI model (= over-reading rate, missed reading rate) will not become smarter if the learning data is simply increased, and if the overall characteristics of the learning data and the test data deviate, there is a risk of over-learning.

認為過度學習是以各種等級產生,例如有如以下的模式。 (1)對於學習資料發揮高的性能,但對於測試資料、庫資料(library data)、實際的量產資料無法發揮高的性能的模式 (2)對於學習資料、測試資料發揮高的性能,但對於庫資料、實際的量產資料無法發揮高的性能的模式 (3)對於學習資料、測試資料、庫資料發揮高的性能,但對於實際的量產資料無法發揮高的性能的模式 如上所述,因針對特定的總體的資料的性能、及針對大範圍的量產資料的性能存在背離,導致預學習AI模型在量產中有時無法發揮如假定般的效果。並且,針對此種問題,在量產時,對能夠將更合適的AI模型應用於生產線的系統的要求提高。 [現有技術文獻] [專利文獻] Overlearning is considered to occur at various levels, such as the following patterns. (1) A pattern in which high performance is achieved for learning data, but high performance is not achieved for test data, library data, and actual mass production data (2) A pattern in which high performance is achieved for learning data and test data, but high performance is not achieved for library data and actual mass production data (3) A pattern in which high performance is achieved for learning data, test data, and library data, but high performance is not achieved for actual mass production data As described above, due to the divergence between the performance for specific overall data and the performance for a wide range of mass production data, the pre-learned AI model may not perform as expected in mass production. Furthermore, in response to this problem, there is an increasing demand for a system that can apply a more appropriate AI model to the production line during mass production. [Prior art literature] [Patent literature]

[專利文獻1]日本專利特開2020-107104號公報[Patent Document 1] Japanese Patent Publication No. 2020-107104

[發明所欲解決之課題][The problem that the invention wants to solve]

本發明鑒於所述實際情況,其目的在於提供一種能夠將合適的AI模型更容易地應用於生產線的技術。 [解決課題之手段] In view of the above-mentioned actual situation, the purpose of the present invention is to provide a technology that can more easily apply a suitable AI model to a production line. [Means for solving the problem]

為了達成所述目的,本發明採用以下結構。即, 一種檢查系統,在製品的生產線中,使用AI模型執行基於所述製品的圖像資料的檢查, 所述檢查系統的特徵在於包括: 管理資訊顯示部,顯示與所述製品的檢查所使用的一個或多個AI模型的管理相關的資訊, 所述管理資訊顯示部能夠顯示與所述AI模型的規格相關的規格資訊、及與所述AI模型針對各種資料的性能相關的性能資訊, 所述性能資訊包括所述AI模型針對量產應用前的模型測試的性能、及應用於量產時的性能。 In order to achieve the above-mentioned purpose, the present invention adopts the following structure. That is, An inspection system, in a production line of a product, uses an AI model to perform inspection based on the image data of the product, The inspection system is characterized by including: A management information display unit, which displays information related to the management of one or more AI models used for the inspection of the product, The management information display unit can display specification information related to the specifications of the AI model, and performance information related to the performance of the AI model for various data, The performance information includes the performance of the AI model for model testing before mass production application, and the performance when applied to mass production.

藉此,使用者能夠一邊俯瞰AI模型的規格資訊與性能資訊,一邊在例如AI模型針對量產應用前的模型測試的性能與應用於量產時的性能存在背離的情況下分析原因。並且,能夠將AI模型變更為其他模型或利用新的圖像資料進行學習、評價後應用等,能夠將合適的AI模型更容易地應用於生產線。This allows users to have an overview of the AI model's specifications and performance information, and analyze the cause when, for example, the performance of the AI model in the model test before mass production application deviates from the performance when applied to mass production. In addition, the AI model can be changed to another model or used for learning and evaluation using new image data, making it easier to apply the appropriate AI model to the production line.

而且,在本發明中,可為所述管理資訊顯示部以一個畫面顯示所述AI模型針對量產應用前的模型測試的性能、應用於量產時的性能、及應用於量產的狀況作為所述性能資訊。藉此,使用者僅藉由觀察該一個畫面,即能夠迅速地決定AI模型的變更、再學習等方針。Furthermore, in the present invention, the management information display unit can display the performance of the AI model in the model test before mass production application, the performance when applied to mass production, and the status of application to mass production as the performance information on one screen. In this way, the user can quickly decide on the policy of changing and relearning the AI model by only observing the one screen.

而且,在本發明中,可為所述AI模型的量產應用前的模型測試包括針對測試資料的模型測試、或針對庫資料的模型測試的至少任一者。藉此,能夠迅速地把握偏差、期間不同的資料相關的性能,因此藉此亦能夠迅速地決定AI模型的變更、再學習等方針。Furthermore, in the present invention, the model test before mass production of the AI model may include at least one of a model test on test data or a model test on library data. This allows the performance of deviations and different data to be quickly grasped, thereby also allowing the AI model to be quickly changed, re-learned, and other policies to be decided.

而且,在本發明中,可為所述性能包括基於所述AI模型將不使用所述AI模型的檢查中的良品判定為不良品的數量的過看指標、及基於所述AI模型將不使用所述AI模型的檢查中的不良品(實際不良)判定為良品的數量的漏看指標。藉此,能夠立即識別AI模型的判定過度嚴格抑或過度寬鬆,並且能夠判斷模型是否過度學習的模型的有效性。再者,「不使用AI模型的檢查」亦可為目視檢查。或亦可為優劣的判定精度高的其他檢查。例如,在判定精度高的情況下,亦可為規則庫檢查。Moreover, in the present invention, the performance may include an over-reading indicator based on the number of good products judged as defective products by the AI model in an inspection without using the AI model, and an under-reading indicator based on the number of defective products (actually defective) judged as good products by the AI model in an inspection without using the AI model. Thereby, it is possible to immediately identify whether the judgment of the AI model is too strict or too loose, and to judge whether the model is over-learned, and the effectiveness of the model. Furthermore, "inspection without using the AI model" may also be a visual inspection. Or it may also be other inspections with high accuracy in judging the quality. For example, when the judgment accuracy is high, it may also be a rule library inspection.

而且,在本發明中,可為所述性能資訊進而包括所述AI模型的量產應用前的模型測試及量產中的各檢查圖像、所述檢查圖像相關的所述AI模型對優劣的判定結果、及所述檢查圖像相關的AI輸出值。藉此,對於個別檢查圖像,AI模型能夠確認進行了何種判定,而能夠更合適地決定AI模型的變更、再學習等方針。Furthermore, in the present invention, the performance information may further include the model test before mass production application of the AI model and each inspection image during mass production, the AI model's judgment result on the quality of the inspection image, and the AI output value related to the inspection image. In this way, for each inspection image, the AI model can confirm what kind of judgment has been made, and can more appropriately determine the policy of changing and relearning the AI model.

而且,在本發明中,可為所述性能資訊進而包括所述AI模型的關於所述檢查圖像的AI輸出值的直方圖。藉此,亦能夠更容易地確認AI模型對於檢查圖像的判斷的傾向。Moreover, in the present invention, the performance information may further include a histogram of the AI output value of the AI model with respect to the inspection image. This makes it easier to confirm the tendency of the AI model to judge the inspection image.

而且,在本發明中,可為所述管理資訊顯示部能夠對針對所述製品的各檢查項目顯示所述性能資訊。藉此,能夠確認關於各檢查項目的AI模型的成績,而能夠更詳細地決定AI模型的變更、再學習等方針。Furthermore, in the present invention, the management information display unit can display the performance information for each inspection item of the product. This allows the performance of the AI model for each inspection item to be confirmed, and allows the policy of changing and relearning the AI model to be determined in more detail.

而且,在本發明中,可為所述管理資訊顯示部能夠以檢查對象零件的各型號組的顯示與對多個型號組進行彙總的顯示來切換所述規格資訊及所述性能資訊的顯示。藉此,能夠詳細地確認關於各型號組的AI模型的性能,並且能夠更容易地研究不同的型號組間的AI模型的移設或更換。此處,所謂型號組表示將零件尺寸或零件顏色相似的型號彙總成一體的集合。該型號組內的型號以同一檢查基準、顏色參數進行檢查,因此無需以各型號進行教學,能夠提高教學的效率。Furthermore, in the present invention, the management information display unit can switch the display of the specification information and the performance information by displaying each model group of the inspection target parts and displaying a summary of multiple model groups. In this way, the performance of the AI model of each model group can be confirmed in detail, and the relocation or replacement of AI models between different model groups can be studied more easily. Here, the so-called model group refers to a collection of models with similar part sizes or part colors. The models in the model group are inspected with the same inspection criteria and color parameters, so there is no need to teach with each model, which can improve the efficiency of teaching.

而且,在本發明中,可為所述管理資訊顯示部在對多個型號組進行彙總的顯示的顯示畫面中能夠執行將一個型號組所應用的AI模型應用於其他型號組的處理。藉此,使用者能夠一邊觀察管理資訊顯示部的顯示畫面,一邊立即將一個型號組所應用的AI模型應用於其他型號組。Furthermore, in the present invention, the management information display unit can execute a process of applying the AI model applied to one model group to other model groups in a display screen that summarizes a plurality of model groups. Thus, the user can immediately apply the AI model applied to one model group to other model groups while observing the display screen of the management information display unit.

而且,在本發明中,可為所述規格資訊包括所述AI模型的網路資訊、學習時的學習資料的資訊、所述AI模型的批號(lot number)的至少任一者。藉此,使用者能夠更容易地確認AI模型的基本資訊、溯源。Furthermore, in the present invention, the specification information may include at least one of network information of the AI model, information of learning materials during learning, and a lot number of the AI model. Thus, the user can more easily confirm the basic information and traceability of the AI model.

而且,本發明可為一種AI模型資料的管理方法,用於在製品的生產線中使用AI模型執行基於所述製品的圖像資料的檢查的檢查系統, 所述AI模型資料的管理方法的特徵在於: 將所述AI模型資料和與所述AI模型資料的規格相關的規格資訊、及與所述AI模型針對各種資料的性能相關的性能資訊建立關聯而進行管理, 所述性能資訊包括所述AI模型針對量產應用前的模型測試的性能、及應用於量產時的性能。再者,此處,所謂管理除了記憶並保存資訊以外,例如亦包括即時進行基於圖像資料的檢查而顯示針對該圖像資料的性能資訊。 Moreover, the present invention may be a method for managing AI model data, which is used in an inspection system that uses an AI model in a production line of a product to perform inspections based on image data of the product. The method for managing AI model data is characterized in that: The AI model data is managed by associating specification information related to the specifications of the AI model data and performance information related to the performance of the AI model for various data. The performance information includes the performance of the AI model for model testing before mass production and the performance when applied to mass production. Furthermore, here, the so-called management includes not only memorizing and saving information, but also, for example, real-time inspection based on image data to display performance information for the image data.

而且,本發明可為所述AI模型資料的管理方法,其特徵在於:所述AI模型的量產應用前的模型測試包括針對測試資料的模型測試、或針對庫資料的模型測試的至少任一者。Furthermore, the present invention may be a method for managing the AI model data, characterized in that the model test before the mass production application of the AI model includes at least one of a model test on test data or a model test on library data.

而且,本發明可為所述AI模型資料的管理方法,其特徵在於:所述性能包括基於所述AI模型將不使用所述AI模型的檢查中的良品判定為不良品的數量的過看指標、及基於所述AI模型將不使用所述AI模型的檢查中的不良品判定為良品的數量的漏看指標。Moreover, the present invention can be a method for managing the AI model data, which is characterized in that: the performance includes an over-reading indicator based on the number of good products judged as defective products in an inspection without using the AI model by the AI model, and a missing indicator based on the number of defective products judged as good products in an inspection without using the AI model by the AI model.

而且,本發明可為所述AI模型資料的管理方法,其特徵在於:所述性能資訊進而包括所述AI模型的量產應用前的模型測試及量產中的各檢查圖像、所述檢查圖像相關的所述AI模型對優劣的判定結果、及所述檢查圖像相關的AI輸出值。Moreover, the present invention can be a method for managing the AI model data, which is characterized in that the performance information further includes model testing before mass production application of the AI model and various inspection images during mass production, the judgment results of the AI model on the quality of the inspection image, and the AI output value related to the inspection image.

而且,本發明可為所述AI模型資料的管理方法,其特徵在於:所述規格資訊包括所述AI模型的網路資訊、學習時的學習資料的資訊、所述AI模型的批號的至少任一者。Furthermore, the present invention may be a method for managing the AI model data, characterized in that the specification information includes at least any one of network information of the AI model, information of learning data during learning, and a batch number of the AI model.

而且,本發明可為一種AI模型資料集,包括一個或多個AI模型資料,用於在製品的生產線中使用AI模型執行基於所述製品的圖像資料的檢查的檢查系統,所述AI模型資料集的特徵在於: 包括與所述AI模型資料建立關聯的與所述AI模型資料的規格相關的規格資訊、及與所述AI模型針對各種資料的性能相關的性能資訊, 所述性能資訊包括各檢查圖像、及所述檢查圖像相關的所述AI模型對優劣的判定結果。 Moreover, the present invention may be an AI model data set, including one or more AI model data, for use in an inspection system that uses an AI model in a production line of a product to perform inspection based on image data of the product, wherein the AI model data set is characterized in that: It includes specification information related to the specifications of the AI model data and performance information related to the performance of the AI model for various data, The performance information includes each inspection image and the judgment result of the AI model on the quality of the inspection image.

而且,本發明可為所述AI模型資料集,其特徵在於:所述性能包括基於所述AI模型將不使用所述AI模型的檢查中的良品判定為不良品的數量的過看指標、及基於所述AI模型將不使用所述AI模型的檢查中的不良品判定為良品的數量的漏看指標。Moreover, the present invention may be the AI model dataset, characterized in that: the performance includes an over-reading indicator based on the number of good products judged as defective products in an inspection without using the AI model by the AI model, and a missing indicator based on the number of defective products judged as good products in an inspection without using the AI model by the AI model.

而且,本發明可為所述AI模型資料集,其特徵在於:所述性能資訊進而包括所述檢查圖像相關的AI輸出值。Moreover, the present invention may be the AI model dataset, characterized in that the performance information further includes the AI output value related to the inspection image.

而且,本發明可為所述AI模型資料集,其特徵在於:所述規格資訊包括所述AI模型的網路資訊、學習時的學習資料的資訊、所述AI模型的批號的至少任一者。Furthermore, the present invention may be the AI model dataset, characterized in that the specification information includes at least any one of network information of the AI model, information of learning data during learning, and a batch number of the AI model.

再者,所述結構及處理各自只要不產生技術性的矛盾,則能夠彼此組合而構成本發明。 [發明的效果] Furthermore, as long as the above structures and processes do not cause technical contradictions, they can be combined with each other to constitute the present invention. [Effect of the invention]

根據本發明,能夠將合適的AI模型更容易地應用於生產線。According to the present invention, suitable AI models can be more easily applied to production lines.

<應用例> 如圖1所示,作為應用本發明的對象的一例的生產線100包括焊錫印刷裝置100a、焊錫印刷後檢查裝置100b、裝配機100c、裝配後檢查裝置100d、回焊爐100e、回焊後檢查裝置100f。生產線100中的各裝置經由區域網路(Local Area Network,LAN)等網路連接於教學終端10。各檢查裝置100b、檢查裝置100d、檢查裝置100f在各步驟的出口處檢查印刷基板的狀態,而自動檢測不良或不良之虞。 <Application example> As shown in FIG. 1, a production line 100 as an example of an object to which the present invention is applied includes a solder printing device 100a, a post-solder printing inspection device 100b, an assembly machine 100c, a post-assembly inspection device 100d, a reflow furnace 100e, and a post-reflow inspection device 100f. Each device in the production line 100 is connected to a teaching terminal 10 via a network such as a local area network (LAN). Each inspection device 100b, inspection device 100d, and inspection device 100f inspects the state of the printed circuit board at the exit of each step and automatically detects defects or the possibility of defects.

再者,生產線100的各檢查裝置中的檢查使用預先學習的AI模型進行。AI模型使用教學終端10,事先使用學習資料進行學習。其後,基於測試資料、庫資料、量產資料對性能進行評價。Furthermore, the inspection in each inspection device of the production line 100 is performed using a pre-learned AI model. The AI model is learned in advance using learning data using the teaching terminal 10. Thereafter, the performance is evaluated based on test data, library data, and mass production data.

此處,AI模型使用學習資料的小範圍的偏差、與期間相關的資料進行學習,因此在針對大範圍的偏差、與期間的範圍相關的量產資料的檢查中,未必發揮出充分的性能。針對於此,本應用例中對於多個AI模型,使用者能夠俯瞰確認AI模型生成時的規格資訊及針對測試資料、庫資料、量產資料發揮出何種性能的性能資訊,而能夠將最佳的AI模型更容易地應用於量產。Here, the AI model is learned using data with small deviations and period-related data of the learning data, so it may not be able to fully demonstrate its performance when inspecting mass production data with large deviations and period-related data. In response to this, in this application, for multiple AI models, users can view the specification information when the AI model was generated and the performance information of what kind of performance is demonstrated for test data, library data, and mass production data, and can more easily apply the best AI model to mass production.

圖8中示出本應用例中的AI模型管理畫面21的一例。在AI模型管理畫面21設置有AI使用歷史顯示區域22。AI使用歷史顯示區域22是顯示各AI模型的量產中的使用歷史的區域。在AI使用歷史顯示區域22的左端22b記載有量產所使用的AI模型的模型名。在記載有各模型名的列中以條形圖顯示使用該模型的期間。藉由AI使用歷史顯示區域22,能夠示出量產中使用各模型的期間的歷史資訊。FIG8 shows an example of an AI model management screen 21 in this application case. An AI usage history display area 22 is provided in the AI model management screen 21. The AI usage history display area 22 is an area for displaying the usage history of each AI model in mass production. The model name of the AI model used in mass production is recorded at the left end 22b of the AI usage history display area 22. The period of use of the model is displayed in a bar graph in the column recording each model name. The AI usage history display area 22 can display historical information of the period of use of each model in mass production.

而且,AI模型管理畫面21在AI使用歷史顯示區域22的右側包括性能顯示區域23。關於各AI模型,在該性能顯示區域23的左欄23a顯示針對測試資料的性能。而且,關於各AI模型,在性能顯示區域23的右欄23b顯示針對庫資料的性能。更具體而言,以條形圖顯示測試資料使用時的過看率與漏看率、庫資料使用時的過看率與漏看率。Furthermore, the AI model management screen 21 includes a performance display area 23 on the right side of the AI use history display area 22. For each AI model, the performance for the test data is displayed in the left column 23a of the performance display area 23. Moreover, for each AI model, the performance for the library data is displayed in the right column 23b of the performance display area 23. More specifically, the over-view rate and the missed rate when the test data is used, and the over-view rate and the missed rate when the library data is used are displayed in a bar graph.

而且,在AI使用歷史顯示區域22的下側設置有量產性能顯示區域24。量產性能顯示區域24顯示AI使用歷史顯示區域22所示的各工作日中該日所使用的AI模型針對量產資料的性能。更具體而言,以摺線圖顯示過看率與漏看率。Furthermore, a mass production performance display area 24 is provided below the AI usage history display area 22. The mass production performance display area 24 displays the performance of the AI model used on each working day shown in the AI usage history display area 22 for the mass production data. More specifically, the over-view rate and the missed-view rate are displayed in a bar graph.

而且,在AI模型管理畫面21中的右端對應於各AI模型的模型名而設置有詳細顯示按鈕21d。藉由按下該詳細顯示按鈕21d,而顯示各AI模型的詳細資訊。圖9中示出藉由按下詳細顯示按鈕21d所顯示的第一詳細顯示畫面31a的例子。在第一詳細顯示畫面31a顯示顯示模式選擇區域32,在該顯示模式選擇區域32中,能夠選擇詳細顯示畫面中的顯示內容。在圖9中,在顯示模式選擇區域32中選擇基本資訊。藉此,第一詳細顯示畫面31a成為顯示基本資訊的畫面。Moreover, a detailed display button 21d is provided at the right end of the AI model management screen 21 corresponding to the model name of each AI model. By pressing the detailed display button 21d, detailed information of each AI model is displayed. FIG9 shows an example of a first detailed display screen 31a displayed by pressing the detailed display button 21d. A display mode selection area 32 is displayed on the first detailed display screen 31a, and in the display mode selection area 32, the display content in the detailed display screen can be selected. In FIG9, basic information is selected in the display mode selection area 32. Thereby, the first detailed display screen 31a becomes a screen for displaying basic information.

如圖9所示,在第一詳細顯示畫面31a設置有基本資訊顯示區域33。在該基本資訊顯示區域33中,記載有對象的AI模型的模型名、生成日期時間、所檢查的圖像的圖像尺寸、所使用的網路名、學習資料名、學習資料的回收期間、檢查對象的製品的批號、註解。As shown in FIG9 , a basic information display area 33 is provided in the first detailed display screen 31a. In the basic information display area 33, the model name of the target AI model, the date and time of generation, the image size of the image to be inspected, the network name used, the name of the learning data, the collection period of the learning data, the lot number of the product to be inspected, and comments are recorded.

在本應用例中,如上所述,使用者能夠容易地俯瞰確認各AI模型的基本資訊(規格資訊)、各測試及量產中發揮何種性能的性能資訊。其結果為,能夠更容易或以更高精度進行變更應用於量產的AI模型、使其再學習等判斷。In this application, as described above, users can easily check the basic information (specification information) of each AI model and the performance information of each test and mass production at a glance. As a result, it is easier or more accurate to make decisions such as changing the AI model used in mass production or relearning it.

以下,基於圖式,對本發明的實施的方式進行說明。但關於以下各例中所記載的結構要素,只要無特別記載,則並非將該發明的範圍僅限定於該些。Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, unless otherwise specified, the scope of the present invention is not limited to the structural elements described in the following examples.

<實施例> 將作為應用本發明的發明的對象的一例的生產線100示於圖1。如上所述,生產線100例如包括焊錫印刷裝置100a、焊錫印刷後檢查裝置100b、裝配機100c、裝配後檢查裝置100d、回焊爐100e、回焊後檢查裝置100f。焊錫印刷裝置100a是印刷基板上的印刷電極部焊錫膏的裝置。裝配機100c是用以將應安裝於印刷基板的大量電子零件載置於焊錫膏上的裝置。而且,回焊爐100e是用以將載置於印刷基板上的電子零件焊接於基板上的印刷配線的加熱裝置。並且,各檢查裝置100b、檢查裝置100d、檢查裝置100f在各步驟的出口處檢查印刷基板的狀態,而自動檢測不良或不良之虞。 <Example> A production line 100 as an example of an object of the invention to which the present invention is applied is shown in FIG1. As described above, the production line 100 includes, for example, a solder printing device 100a, a post-solder printing inspection device 100b, an assembly machine 100c, a post-assembly inspection device 100d, a reflow furnace 100e, and a post-reflow inspection device 100f. The solder printing device 100a is a device for printing solder paste on an electrode portion on a printed substrate. The assembly machine 100c is a device for placing a large number of electronic components to be mounted on a printed substrate on the solder paste. Furthermore, the reflow furnace 100e is a heating device for soldering the electronic components placed on the printed substrate to the printed wiring on the substrate. Furthermore, each inspection device 100b, inspection device 100d, and inspection device 100f inspects the state of the printed circuit board at the exit of each step and automatically detects defects or the risk of defects.

上述焊錫印刷後檢查裝置100b、裝配後檢查裝置100d、回焊後檢查裝置100f(以下亦將該些總稱為檢查裝置30)經由LAN等網路而連接於教學終端10、及資料庫20(以下亦簡稱為DB 20)。教學終端10可包括具備中央處理單元(central processing unit,CPU)(處理器)、主記憶裝置(記憶體)、輔助記憶裝置(硬碟等)、輸入裝置(鍵盤、滑鼠、控制器、觸控面板等)、輸出裝置(顯示器、印表機、擴音器等)等的通用的電腦系統。或亦可包括平板終端等具有可攜性的電腦系統。The above-mentioned post-solder printing inspection device 100b, post-assembly inspection device 100d, and post-reflow inspection device 100f (hereinafter collectively referred to as the inspection device 30) are connected to the teaching terminal 10 and the database 20 (hereinafter also referred to as DB 20) via a network such as a LAN. The teaching terminal 10 may include a general-purpose computer system having a central processing unit (CPU) (processor), a main memory device (memory), an auxiliary memory device (hard disk, etc.), an input device (keyboard, mouse, controller, touch panel, etc.), an output device (display, printer, speaker, etc.), etc. Or it may also include a portable computer system such as a tablet terminal.

再者,生產線100的檢查裝置30中的檢查是使用經預先學習的預學習AI模型(以下亦簡稱為AI模型)進行。AI模型儲存於DB 20中,經適當選擇而用於檢查裝置30中的檢查。而且,AI模型使用教學終端10進行學習,以能夠事先基於學習資料而在檢查裝置30中判定印刷基板的良與不良。其後,AI模型基於測試資料、庫資料、量產資料進行性能評價。Furthermore, the inspection in the inspection device 30 of the production line 100 is performed using a pre-learned AI model (hereinafter also referred to as an AI model). The AI model is stored in the DB 20 and is used for the inspection in the inspection device 30 after appropriate selection. Moreover, the AI model is learned using the teaching terminal 10 so that the quality of the printed circuit board can be determined in advance in the inspection device 30 based on the learning data. Thereafter, the AI model is evaluated for performance based on the test data, the library data, and the mass production data.

圖2的(a)、圖2的(b)中示出學習資料、測試資料、庫資料、量產資料的各資料的特性。圖2的(a)、圖2的(b)的橫軸為收集資料的期間,縱軸為資料的偏差的範圍。此處,學習資料為使AI進行學習時所使用的圖像資料,為自非常短的期間的量產資料中選擇的資料,期間、偏差的範圍限於小的範圍。而且,測試資料為預學習AI模型的測試所使用的資料,雖然亦取決於資料的獲取方法,但通常認為偏差、期間的範圍小。庫資料為進而基於大範圍的量產資料的資料,例如為包括其他批次的製品、其他據點所生產的製品的資料的自大的總體中收集的資料。而且,量產資料為實際的量產過程中所獲取的資料,為偏差、期間均具有充分大的範圍的資料。再者,學習資料、測試資料、庫資料的各資料的關係存在各種模式,如圖2的(a)所示,存在各資料獨立的情況,如圖2的(b)所示,亦存在例如學習資料與庫資料重合、或測試資料與庫資料重合等各資料的一部分或全部重覆的情況。Figure 2 (a) and Figure 2 (b) show the characteristics of each data of learning data, test data, library data, and mass production data. The horizontal axis of Figure 2 (a) and Figure 2 (b) is the period of data collection, and the vertical axis is the range of data deviation. Here, the learning data is the image data used when the AI is learning. It is the data selected from the mass production data of a very short period, and the range of period and deviation is limited to a small range. In addition, the test data is the data used for testing the pre-learning AI model. Although it also depends on the method of obtaining the data, it is generally believed that the range of deviation and period is small. The library data is further based on a large range of mass production data, for example, data collected from a large group including data of other batches of products and products produced by other bases. Moreover, mass production data is data obtained in the actual mass production process, and is data with a sufficiently large range of deviations and periods. Furthermore, there are various patterns in the relationship between each data of learning data, test data, and library data. As shown in (a) of Figure 2, there are cases where each data is independent, and as shown in (b) of Figure 2, there are cases where part or all of each data is repeated, such as when learning data overlaps with library data, or when test data overlaps with library data.

此處,由於首先使用作為總體的資料的偏差、期間的範圍小的學習資料使AI模型進行學習,故而在針對資料的偏差、期間的範圍大的量產資料的檢查中,未必發揮出充分的性能。對於任一檢查,存在應用後方可獲知何種AI模型適合的部分,視情況需要進行AI模型的更換、再學習。如上所述,早期提高各生產線中的檢查精度並不容易。Here, since the AI model is first trained using learning data with a small range of deviations and periods of overall data, it may not be able to fully demonstrate its performance in the inspection of mass-produced data with a large range of deviations and periods of data. For any inspection, there are parts where it is not known which AI model is suitable until it is applied, and the AI model needs to be replaced and re-learned as needed. As mentioned above, it is not easy to improve the inspection accuracy in each production line at an early stage.

因此,在本發明中,對於多個AI模型,使用者能夠俯瞰瀏覽表示生成時的規格或表示使用何種學習資料進行學習的規格資訊及對測試資料、庫資料、量產資料發揮何種性能的性能資訊。藉此,能夠將最佳的AI模型更容易地應用於量產。Therefore, in the present invention, for multiple AI models, users can view the specifications when they were generated or the specification information indicating what kind of learning data was used for learning, and the performance information indicating what kind of performance was exerted on the test data, library data, and mass production data. In this way, the best AI model can be applied to mass production more easily.

繼而,使用圖3的流程圖對使用本發明中的檢查系統1的處理的順序的一例進行說明。本流程開始後,首先,在步驟S101中,使用者在教學終端10選擇成為使用AI模型的檢查的對象的零件的型號組。然後,在步驟S102中,選擇相當於成為使用AI模型的檢查的對象的不良內容的檢查邏輯。由此,在步驟S103中,在教學終端10顯示AI模型管理畫面21(下文進行說明),所述AI模型管理畫面21顯示針對步驟S101及步驟S102中所選擇的型號組、檢查邏輯所使用的AI模型的資訊。Next, an example of the processing sequence of the inspection system 1 of the present invention is described using the flowchart of Figure 3. After the start of this process, first, in step S101, the user selects a model group of parts that are the object of inspection using the AI model in the teaching terminal 10. Then, in step S102, the inspection logic corresponding to the inappropriate content that is the object of inspection using the AI model is selected. As a result, in step S103, the AI model management screen 21 (described below) is displayed on the teaching terminal 10, and the AI model management screen 21 displays information on the AI model used by the inspection logic for the model group selected in steps S101 and S102.

然後,在步驟S104中,使用者一邊觀察AI模型管理畫面21,一邊判斷是否新生成AI模型。在新生成AI模型的情況下,進入步驟S105,生成新的AI模型。另一方面,在不新生成AI模型的情況下,進入步驟S106。Then, in step S104, the user determines whether to generate a new AI model while viewing the AI model management screen 21. If the AI model is to be generated, the process proceeds to step S105 to generate a new AI model. On the other hand, if the AI model is not to be generated, the process proceeds to step S106.

繼而,在步驟S106中,使用者判斷是否自系統外導入AI模型。在使用者判斷自系統外導入AI模型的情況下,進入步驟S107,自外部導入AI模型。在判斷不自系統外導入AI模型的情況下,進入步驟S108。Next, in step S106, the user determines whether to import the AI model from outside the system. If the user determines to import the AI model from outside the system, the process proceeds to step S107 to import the AI model from outside. If the user determines not to import the AI model from outside the system, the process proceeds to step S108.

在步驟S108中,使用者判斷是否針對測試資料、庫資料測試全部AI模型。此處,在使用者判斷測試全部AI模型的情況下,進入步驟S109。在判斷不測試全部AI模型的情況下,進入步驟S112。In step S108, the user determines whether to test all AI models for the test data and the library data. Here, if the user determines to test all AI models, the process proceeds to step S109. If the user determines not to test all AI models, the process proceeds to step S112.

在步驟S109中,針對測試資料、庫資料測試列表於AI模型管理畫面21中的全部AI模型。步驟S109的處理結束後進入步驟S110。在步驟S110中,將針對測試資料、庫資料的測試結果顯示於AI模型管理畫面21,並且將測試結果與測試日期時間一起保存。再者,此時所保存的測試結果在下一次在S103中顯示AI模型管理畫面時顯示。在步驟S111中,使用者判斷是否變更量產檢查所使用的AI模型。在判斷變更量產檢查所使用的AI模型的情況下,進入步驟S112,變更量產檢查所使用的AI模型。另一方面,在不變更量產檢查所使用的AI模型的情況下,進入步驟S113,實施量產檢查。步驟S113的處理結束後,暫時結束本常式。In step S109, all AI models listed in the AI model management screen 21 are tested for the test data and library data. After the processing of step S109 is completed, step S110 is entered. In step S110, the test results for the test data and library data are displayed on the AI model management screen 21, and the test results are saved together with the test date and time. Furthermore, the test results saved at this time are displayed the next time the AI model management screen is displayed in S103. In step S111, the user determines whether to change the AI model used for mass production inspection. If it is determined that the AI model used for mass production inspection is changed, step S112 is entered to change the AI model used for mass production inspection. On the other hand, without changing the AI model used for mass production inspection, the process proceeds to step S113 to implement mass production inspection. After the processing of step S113 is completed, this routine is temporarily terminated.

<功能方塊圖> 圖4中示出本發明的檢查系統1的功能方塊圖。檢查系統1包括教學終端10、DB 20、檢查裝置30。教學終端10包括生成AI模型時顯示學習資料或生成日期時間等資訊的AI模型生成資訊顯示部10a、生成AI模型的AI模型生成部10b。而且,教學終端10包括具有顯示AI模型應用於量產的歷史資訊、及針對測試資料或量產資料的性能資訊的功能的AI模型管理資訊顯示部10c、向AI模型提供各種圖像資料並進行測試的AI模型測試處理部10d。AI模型管理資訊顯示部10c相當於本實施例中的管理資訊顯示部。 <Functional Block Diagram> FIG4 shows a functional block diagram of the inspection system 1 of the present invention. The inspection system 1 includes a teaching terminal 10, a DB 20, and an inspection device 30. The teaching terminal 10 includes an AI model generation information display unit 10a that displays information such as learning data or generation date and time when generating an AI model, and an AI model generation unit 10b that generates an AI model. In addition, the teaching terminal 10 includes an AI model management information display unit 10c that has the function of displaying historical information on the application of the AI model to mass production and performance information for test data or mass production data, and an AI model test processing unit 10d that provides various image data to the AI model and performs tests. The AI model management information display unit 10c is equivalent to the management information display unit in this embodiment.

DB 20包括儲存AI模型本體及檢查臨限值的AI模型本體/臨限值儲存部20a、儲存所生成的AI模型的規格資訊即學習資料、生成日期時間等資訊的AI模型管理資訊儲存部20b、儲存量產資料的性能的資訊的量產結果資訊儲存部20c。而且,DB 20包括儲存AI模型的學習所使用的圖像資料的學習資料用圖像儲存部20d、儲存AI模型的測試用的圖像資料的測試資料用圖像儲存部20e、儲存AI模型的庫測試用的圖像資料的庫資料用圖像儲存部20f。再者,亦在學習資料用圖像儲存部20d、測試資料用圖像儲存部20e、庫資料用圖像儲存部20f中儲存有圖像資料的不良種類(不良名稱)。漏看率是作為漏看了作為檢查邏輯的對象的不良種類的樣品的比率而算出,因此需要不良種類的圖像資料。DB 20 includes an AI model body/limit value storage unit 20a for storing the AI model body and the check limit value, an AI model management information storage unit 20b for storing the specification information of the generated AI model, i.e., the learning data, the generation date and time, and the mass production result information storage unit 20c for storing the performance information of the mass production data. In addition, DB 20 includes a learning data image storage unit 20d for storing the image data used for learning the AI model, a test data image storage unit 20e for storing the image data for testing the AI model, and a library data image storage unit 20f for storing the image data for library testing of the AI model. Furthermore, the image storage unit 20d for learning data, the image storage unit 20e for test data, and the image storage unit 20f for library data store defective types (defective names) of the image data. The missed rate is calculated as the ratio of samples of the defective type that are the object of the inspection logic that are missed, so image data of the defective type is required.

而且,檢查裝置30包括使用量產時所獲取的圖像資料進行檢查的量產檢查部30a。Furthermore, the inspection device 30 includes a mass production inspection section 30a that performs inspection using image data acquired during mass production.

(AI模型生成階段) 圖4中以箭頭表示生成AI模型的階段中的檢查系統1的資訊的轉移。在AI模型生成的階段,首先,自學習資料用圖像儲存部20d向AI模型生成部10b輸入AI模型的學習用的學習資料。然後,在AI模型生成部10b,使AI模型進行學習,藉此生成學成的AI模型。自AI模型生成部10b向AI模型生成資訊顯示部10a輸入與所生成的AI模型相關的資訊,在AI模型生成資訊顯示部10a中顯示所生成的AI模型的資訊。然後,AI模型生成資訊顯示部10a向AI模型本體/臨限值儲存部20a輸入所生成的AI模型。而且,將所生成的AI模型的學習資料、生成日期時間等資訊輸入AI模型管理資訊儲存部20b。再者,此處,輸入AI模型管理資訊儲存部20b的資訊在本實施例中相當於規格資訊,與AI模型資料建立關聯而記憶。 (AI model generation stage) In FIG. 4 , arrows indicate the transfer of information of the inspection system 1 in the stage of generating an AI model. In the stage of generating an AI model, first, the learning data for learning the AI model is input to the AI model generation unit 10b from the learning data image storage unit 20d. Then, in the AI model generation unit 10b, the AI model is made to learn, thereby generating a learned AI model. Information related to the generated AI model is input from the AI model generation unit 10b to the AI model generation information display unit 10a, and the information of the generated AI model is displayed in the AI model generation information display unit 10a. Then, the AI model generation information display unit 10a inputs the generated AI model to the AI model body/threshold value storage unit 20a. Furthermore, the information such as the learning data and generation date of the generated AI model is input into the AI model management information storage unit 20b. Furthermore, here, the information input into the AI model management information storage unit 20b is equivalent to the specification information in this embodiment, and is associated with the AI model data and stored.

(AI模型測試階段) 繼而,使用圖5對AI模型測試階段中的檢查系統1的資訊的轉移進行說明。在AI模型測試階段,自測試資料用圖像儲存部20e向AI模型測試處理部10d輸入模型測試所使用的測試資料。而且,自庫資料用圖像儲存部20f向AI模型測試處理部10d輸入模型測試所使用的庫資料。進而,自AI模型本體/臨限值儲存部20a向AI模型測試處理部10d輸入應實施模型測試的AI模型。 (AI model test phase) Next, the information transfer of the inspection system 1 in the AI model test phase is explained using FIG5. In the AI model test phase, the test data used for model testing is input from the test data image storage unit 20e to the AI model test processing unit 10d. Moreover, the library data used for model testing is input from the library data image storage unit 20f to the AI model test processing unit 10d. Furthermore, the AI model to be model tested is input from the AI model body/threshold value storage unit 20a to the AI model test processing unit 10d.

而且,自AI模型測試處理部10d向AI模型管理資訊顯示部10c輸入針對測試資料、庫資料的模型測試的結果,在AI模型管理資訊顯示部10c中顯示測試的結果。此時,將學習資料、AI模型的生成日期時間等AI模型的資訊自AI模型管理資訊儲存部20b交付至AI模型管理資訊顯示部10c進行顯示。進而,自量產結果資訊儲存部20c向AI模型管理資訊顯示部10c輸入基於實際的量產結果的AI模型的性能進行顯示。Furthermore, the results of the model test on the test data and library data are input from the AI model test processing unit 10d to the AI model management information display unit 10c, and the test results are displayed in the AI model management information display unit 10c. At this time, the information of the AI model, such as the learning data and the generation date and time of the AI model, is delivered from the AI model management information storage unit 20b to the AI model management information display unit 10c for display. Furthermore, the performance of the AI model based on the actual mass production results is input from the mass production result information storage unit 20c to the AI model management information display unit 10c for display.

(量產檢查階段) 繼而,使用圖6對量產檢查階段中的檢查系統1的資訊的轉移進行說明。在量產檢查階段,自資料庫20的AI模型本體/臨限值儲存部20a向檢查裝置30輸入所選擇的AI模型本體及量產檢查中的檢查臨限值。然後,在量產檢查部30a中,使用所選擇的AI模型實施量產檢查。繼而,自量產檢查部30a向量產結果資訊儲存部20c輸入量產檢查結果資料。在量產結果資訊儲存部20c中,與所使用的AI模型建立關聯而儲積量產檢查結果資料。 (Mass production inspection stage) Next, the transfer of information of the inspection system 1 in the mass production inspection stage is explained using FIG6. In the mass production inspection stage, the selected AI model body and the inspection limit value in the mass production inspection are input to the inspection device 30 from the AI model body/limit value storage unit 20a of the database 20. Then, in the mass production inspection unit 30a, the mass production inspection is implemented using the selected AI model. Next, the mass production inspection result data is input from the mass production inspection unit 30a to the mass production result information storage unit 20c. In the mass production result information storage unit 20c, the mass production inspection result data is stored in association with the AI model used.

圖7所示的顯示為對與檢查裝置30中的檢查的各檢查項目的優劣判定相關的臨限值進行設定的設定用畫面顯示11。其中,例如關於作為檢查項目的潤濕性,顯示為利用AI的檢查。並且,藉由點擊設置於臨限值顯示窗的右側的AI檢查邏輯的設定按鈕11a,而能夠顯示下文所述的AI模型管理畫面21。The display shown in FIG7 is a setting screen display 11 for setting the critical value related to the quality judgment of each inspection item in the inspection device 30. Among them, for example, regarding the wettability as an inspection item, it is displayed as an inspection using AI. And by clicking the setting button 11a of the AI inspection logic set on the right side of the critical value display window, the AI model management screen 21 described below can be displayed.

繼而,圖8表示由AI模型管理資訊顯示部10c所顯示的AI模型管理畫面21的一例。在該AI模型管理畫面21中,在上端配置有檢查邏輯顯示區域21a。此處記載為針對何種檢查項目的AI模型的管理畫面。在圖8的例子中,示出為關於焊料的潤濕性所使用的AI模型的管理畫面。而且,在AI模型管理畫面21中的檢查邏輯顯示區域21a的下側的左端設置有表示為與對何種零件的檢查相關的AI模型的型號組顯示區域21b。Next, FIG8 shows an example of an AI model management screen 21 displayed by the AI model management information display unit 10c. In the AI model management screen 21, an inspection logic display area 21a is configured at the upper end. Here, the management screen for the AI model for which inspection item is recorded. In the example of FIG8, the management screen for the AI model used for the wettability of the solder is shown. Moreover, at the lower left end of the inspection logic display area 21a in the AI model management screen 21, a model group display area 21b indicating which type of parts the AI model is related to the inspection is provided.

在該例中,示出為與型號組R1005相關的管理資訊。而且,在型號組顯示區域21b的右側設置有顯示切換按鈕區域21c。該顯示切換按鈕區域21c顯示用以切換型號組單元的AI模型管理畫面抑或包括多個型號組的整體的AI模型管理畫面的按鈕。在該例中,加深顯示型號組單元一欄,表示選擇了型號組單元的AI模型管理畫面。In this example, management information related to model group R1005 is shown. In addition, a display switching button area 21c is provided on the right side of the model group display area 21b. The display switching button area 21c displays a button for switching the AI model management screen of the model group unit or the overall AI model management screen including multiple model groups. In this example, the column of the model group unit is displayed in a darker color, indicating that the AI model management screen of the model group unit is selected.

而且,在AI模型管理畫面21設置有AI使用歷史顯示區域22。AI使用歷史顯示區域22是顯示各AI模型的量產中的使用歷史的區域。在AI使用歷史顯示區域22的左端22b記載有量產所使用的AI模型的模型名。在記載有各模型名的列中以條形圖顯示使用該模型的期間。在AI使用歷史顯示區域22的上端列設置有記載有使用AI模型的日期的日期區域22a。藉由該AI使用歷史顯示區域22,能夠示出量產中使用各模型的期間的歷史資訊。該歷史資訊在本實施例中相當於應用於量產的狀況。再者,藉由點擊AI使用歷史顯示區域22的左上端的模型名欄的按鈕,而顯示排序選單,從而能夠選擇AI使用歷史顯示區域22的顯示方法。例如具有僅顯示具有量產檢查所使用的實績的AI模型、或模型生成日期時間越新越顯示於上側等排序功能。In addition, an AI usage history display area 22 is provided in the AI model management screen 21. The AI usage history display area 22 is an area for displaying the usage history of each AI model in mass production. The model name of the AI model used in mass production is recorded at the left end 22b of the AI usage history display area 22. The period during which the model was used is displayed in a bar graph in the column recording each model name. A date area 22a recording the date on which the AI model was used is provided in the upper column of the AI usage history display area 22. The AI usage history display area 22 can display historical information of the period during which each model was used in mass production. In the present embodiment, this historical information is equivalent to the status applied to mass production. Furthermore, by clicking the button of the model name column at the upper left end of the AI usage history display area 22, a sorting menu is displayed, and the display method of the AI usage history display area 22 can be selected. For example, there is a sorting function such as only displaying AI models with a record of being used in mass production inspection, or displaying models with a newer generation date at the top.

而且,AI模型管理畫面21在AI使用歷史顯示區域22的右側包括性能顯示區域23。關於各AI模型,在該性能顯示區域23的左欄23a顯示針對測試資料的性能。而且,關於各AI模型,在性能顯示區域23的右欄23b顯示針對庫資料的性能。更具體而言,以條形圖顯示測試資料使用時的過看率與漏看率、庫資料使用時的過看率與漏看率。再者,性能顯示區域23中的性能資料可為在顯示AI模型管理畫面21的狀態下即時執行的測試的結果,亦可為過去進行的測試的結果。在性能顯示區域23的上側顯示模型測試的執行日期時間。顯示於該性能顯示區域23的資訊在本實施例中相當於性能資訊,相當於AI模型針對量產應用前的模型測試的性能。而且,本實施例中所示的過看率相當於過看指標,漏看率相當於漏看指標。Moreover, the AI model management screen 21 includes a performance display area 23 on the right side of the AI usage history display area 22. For each AI model, the performance for the test data is displayed in the left column 23a of the performance display area 23. Moreover, for each AI model, the performance for the library data is displayed in the right column 23b of the performance display area 23. More specifically, the over-view rate and the missed rate when the test data is used, and the over-view rate and the missed rate when the library data is used are displayed in a bar graph. Furthermore, the performance data in the performance display area 23 can be the result of a test executed in real time while the AI model management screen 21 is displayed, or it can be the result of a test performed in the past. The execution date and time of the model test is displayed on the upper side of the performance display area 23. The information displayed in the performance display area 23 is equivalent to performance information in this embodiment, which is equivalent to the performance of the AI model for model testing before mass production application. In addition, the over-viewing rate shown in this embodiment is equivalent to the over-viewing index, and the missed viewing rate is equivalent to the missed viewing index.

而且,在AI使用歷史顯示區域22的下側設置有量產性能顯示區域24。量產性能顯示區域24顯示AI使用歷史顯示區域22所示的各工作日中該日所使用的AI模型針對量產資料的性能。更具體而言,以摺線圖顯示過看率與漏看率。該顯示於量產性能顯示區域24的資訊在本實施例中相當於性能資訊,相當於應用於量產時的性能。Furthermore, a mass production performance display area 24 is provided below the AI usage history display area 22. The mass production performance display area 24 displays the performance of the AI model used on each working day shown in the AI usage history display area 22 for mass production data. More specifically, the over-view rate and the missed-view rate are displayed in a bar graph. The information displayed in the mass production performance display area 24 is equivalent to performance information in this embodiment, which is equivalent to the performance when applied to mass production.

而且,在AI模型管理畫面21中的右端對應於各AI模型的模型名而設置有詳細顯示按鈕21d。藉由按下該詳細顯示按鈕21d,而顯示各AI模型的詳細資訊。圖9中示出藉由按下詳細顯示按鈕21d所顯示的第一詳細顯示畫面31a的例子。在第一詳細顯示畫面31a顯示顯示模式選擇區域32,在該顯示模式選擇區域32中,能夠選擇詳細顯示畫面中的顯示內容。在圖9中,在顯示模式選擇區域32中選擇基本資訊。藉此,第一詳細顯示畫面31a成為顯示基本資訊的畫面。Moreover, a detailed display button 21d is provided at the right end of the AI model management screen 21 corresponding to the model name of each AI model. By pressing the detailed display button 21d, detailed information of each AI model is displayed. FIG9 shows an example of a first detailed display screen 31a displayed by pressing the detailed display button 21d. A display mode selection area 32 is displayed on the first detailed display screen 31a, and in the display mode selection area 32, the display content in the detailed display screen can be selected. In FIG9, basic information is selected in the display mode selection area 32. Thereby, the first detailed display screen 31a becomes a screen for displaying basic information.

如圖9所示,在第一詳細顯示畫面31a設置有基本資訊顯示區域33。在該基本資訊顯示區域33中,記載有對象的AI模型的模型名、生成日期時間、所檢查的圖像的圖像尺寸、所使用的網路名、學習資料名、學習資料的回收期間、檢查對象的製品的批號、註解。在本實施例中,基本資訊顯示區域33所示出的資訊相當於規格資訊。另外,在圖9的基本資訊顯示區域33中的學習資料名的欄位設有詳細按鈕33a,該詳細按鈕33a用以取出與在學習中所使用的學習資料的數量相關的更詳細的資訊。藉由點擊該詳細按鈕33a,能夠瀏覽如圖10的(a)、圖10的(b)所示的在關於各型號的學習中所使用的學習資料的數量的資訊。As shown in FIG9 , a basic information display area 33 is provided in the first detailed display screen 31a. In the basic information display area 33, the model name of the target AI model, the date and time of generation, the image size of the image to be inspected, the network name used, the name of the learning data, the recycling period of the learning data, the batch number of the product to be inspected, and the comments are recorded. In this embodiment, the information shown in the basic information display area 33 is equivalent to the specification information. In addition, a detail button 33a is provided in the field of the learning data name in the basic information display area 33 of FIG9 , and the detail button 33a is used to retrieve more detailed information related to the amount of learning data used in learning. By clicking the detail button 33a, information on the amount of learning materials used in learning for each model as shown in FIG. 10(a) and FIG. 10(b) can be viewed.

圖10的(a)是針對在詳細顯示中的學習模型中的學習為無監督學習的情況下,將學習時所使用的學習資料的數量按照各型號顯示的學習資料數顯示畫面330。在該學習資料數顯示畫面330設有學習資料數區域330a,該學習資料數區域330a將在學習時所使用的學習資料數按照各型號以列表顯示。FIG10(a) is a learning data number display screen 330 that displays the number of learning data used in learning for each model when learning in the learning model in the detailed display is unsupervised learning. The learning data number display screen 330 is provided with a learning data number area 330a that displays the number of learning data used in learning in a list for each model.

在此處,由於能夠僅以良品資料進行學習模型的學習,因此所顯示的學習資料數是良品資料的數量。如此,藉由將關於各型號分別使用了多少數量的學習資料的狀況予以列表化,能夠針對各型號迅速確認學習資料數有無偏頗、針對各型號的學習資料數是否充分等狀況。Here, since the learning model can be trained only with good product data, the number of learning data displayed is the number of good product data. In this way, by listing the number of learning data used for each model, it is possible to quickly check whether the number of learning data for each model is biased or whether the number of learning data for each model is sufficient.

另外,在學習資料數區域330a中,也可以針對學習資料數為極端少的型號進行將顯示顏色改變等的強調顯示。例如,在圖10的(a)的例子中,由於關於型號D的學習資料數為極端少,可理解本學習模型可能對型號D無法發揮充分的性能。作為此強調顯示的方法,除了改變顯示顏色的方法以外,也可以採用改變文字的粗細或大小的方法、改變列表的欄位的顏色等方法。而且,作為進行強調顯示的條件,例如可例示資料數相對於學習資料數區域330a內的各型號的最大值,只有規定比率(例如10%)以下的資料數的情形等。In addition, in the learning data number area 330a, it is also possible to emphasize the model with extremely small learning data by changing the display color. For example, in the example of (a) in FIG. 10, since the learning data for model D is extremely small, it can be understood that the learning model may not be able to fully demonstrate the performance of model D. As a method of this emphasis display, in addition to the method of changing the display color, a method of changing the thickness or size of the text, a method of changing the color of the column of the list, etc. can also be adopted. Moreover, as a condition for emphasizing the display, for example, a case where the number of data is less than a specified ratio (for example, 10%) relative to the maximum value of each model in the learning data number area 330a can be illustrated.

接下來,在圖10的(b)表示了學習資料數顯示畫面331,該學習資料數顯示畫面331針對在詳細顯示中的學習模型的學習為監督式學習的情況下,將學習時所使用的學習資料的數量按照各型號顯示。在此學習資料數顯示畫面331中設有學習資料數區域331a,該學習資料數區域331a將在學習時所使用的學習資料數及驗證資料數按照各型號顯示。在此學習資料數區域331a中,針對學習資料數及驗證資料數分別分成良品資料數與不良品資料數來顯示。Next, FIG. 10 (b) shows a learning data number display screen 331, which displays the number of learning data used in learning for each model when the learning of the learning model in the detailed display is supervised learning. In this learning data number display screen 331, a learning data number area 331a is provided, and the learning data number area 331a displays the number of learning data and the number of verification data used in learning for each model. In this learning data number area 331a, the number of learning data and the number of verification data are divided into the number of good product data and the number of defective product data, respectively.

據此,在詳細顯示中的學習模型之監督式學習時,能夠針對各型號分成良品資料數與不良品資料數來確認使用了多少數量的學習資料及驗證資料,能夠針對學習資料的溯源更詳細進行確認。另外,在此情況下,不一定要顯示驗證資料數。而且,關於驗證資料數,除了學習時的資料以外,也可以顯示測試資料或庫資料的資料數。With this, when supervised learning of a learning model in detailed display, it is possible to check how much learning data and verification data are used by dividing the number of good product data and the number of defective product data for each model, and to check the traceability of learning data in more detail. In this case, it is not necessary to display the number of verification data. In addition, the number of verification data can also display the number of test data or library data in addition to the data during learning.

繼而,使用圖11,對顯示模式選擇區域32中選擇了「針對測試資料的模型測試結果」的情況下所顯示的第二詳細顯示畫面31b進行說明。在該第二詳細顯示畫面31b中,在顯示模式選擇區域32的下側中央配置有詳細顯示針對測試資料的模型測試結果的表即測試結果表34。Next, the second detailed display screen 31b displayed when "Model test results for test data" is selected in the display mode selection area 32 is described using Fig. 11. In the second detailed display screen 31b, a table showing the model test results for test data, i.e., a test result table 34, is arranged at the lower center of the display mode selection area 32.

在該測試結果表34的左端示出模型測試所使用的圖像資料的種類(即良品的圖像資料、抑或不良品的圖像資料、抑或灰色品的圖像資料)。而且,在上段記載有AI模型將各種類的圖像資料判定為良品的數量、判定為不良的數量、過看率或漏看率。而且,在第二詳細顯示畫面31b的下段的左側配置有表示藉由AI模型如何對實際的各圖像資料分別進行判定的圖像顯示區域35。The left end of the test result table 34 shows the type of image data used in the model test (i.e., image data of good products, image data of defective products, or image data of gray products). In addition, the upper section records the number of image data of each type judged as good products, the number judged as defective products, the over-view rate, or the missed-view rate by the AI model. In addition, the image display area 35 showing how each actual image data is judged by the AI model is arranged on the left side of the lower section of the second detailed display screen 31b.

在該圖像顯示區域35中,在左端顯示實際的圖像資料,在該圖像資料的列中的各行顯示將該圖像資料熱圖化而成的圖像資料、目視獲得的優劣之別、利用AI模型獲得的判定結果、此時的AI輸出值。而且,在第二詳細顯示畫面31b的下段的右側設置有直方圖區域36,所述直方圖區域36將以橫軸作為測試各圖像資料時的AI輸出值的直方圖與優劣的臨限值一起顯示。藉由該第二詳細顯示畫面31b,能夠詳細地確認對象的AI模型的測試結果。In the image display area 35, the actual image data is displayed on the left end, and the image data obtained by heat mapping the image data, the visual quality difference, the judgment result obtained by using the AI model, and the AI output value at that time are displayed in each row in the column of the image data. In addition, a histogram area 36 is provided on the right side of the lower section of the second detailed display screen 31b, and the histogram area 36 displays a histogram of the AI output value when testing each image data with the horizontal axis as the critical value of quality. Through the second detailed display screen 31b, the test results of the AI model of the object can be confirmed in detail.

此處,在顯示模式選擇區域32中在選擇了「針對庫資料的模型測試結果」的情況下所顯示的第三詳細顯示畫面的結構與第二詳細顯示畫面31b基本相同,因此省略說明。Here, the structure of the third detailed display screen displayed when "model test results for library data" is selected in the display mode selection area 32 is basically the same as the second detailed display screen 31b, so the description is omitted.

圖12中示出在顯示模式選擇區域32中選擇了「量產結果」的情況下所顯示的第四詳細顯示畫面31c。該第四詳細顯示畫面31c的基本結構亦與第二詳細顯示畫面31b相同,但在該例中,由於應對量產,因此設置有顯示模型使用期間與檢查完畢基板ID的量產資訊區域37,該方面不同於第二詳細顯示畫面31b。FIG12 shows a fourth detailed display screen 31c displayed when "mass production results" is selected in the display mode selection area 32. The basic structure of the fourth detailed display screen 31c is the same as that of the second detailed display screen 31b, but in this example, a mass production information area 37 for displaying the model usage period and the ID of the inspected substrate is provided to cope with mass production, which is different from the second detailed display screen 31b.

繼而,暫時返回圖8的說明,但在AI模型管理畫面21的右下區域設置有模型生成按鈕21e、模型測試按鈕21f、導入按鈕21g、模型應用按鈕21h。藉由點擊模型生成按鈕21e,而能夠開始新的AI模型的生成。藉由點擊模型測試按鈕21f,而能夠即時使用例如測試資料或庫資料實施使用特定的AI模型的測試。而且,藉由點擊導入按鈕21g,而能夠自外部導入新的AI模型。進而,藉由點擊模型應用按鈕21h,而能夠將當前時點未應用於量產的AI模型應用於量產。Next, we return to the description of FIG. 8 for the moment, but a model generation button 21e, a model test button 21f, an import button 21g, and a model application button 21h are provided in the lower right area of the AI model management screen 21. By clicking the model generation button 21e, generation of a new AI model can be started. By clicking the model test button 21f, a test using a specific AI model can be performed immediately using, for example, test data or library data. Moreover, by clicking the import button 21g, a new AI model can be imported from the outside. Furthermore, by clicking the model application button 21h, an AI model that is not currently applied to mass production can be applied to mass production.

再者,在顯示切換按鈕區域21c中,除了目前已說明的型號組單元的顯示以外,能夠選擇以整體進行顯示。圖13中示出在顯示切換按鈕區域21c中選擇了整體的情況下的顯示畫面即AI模型整體管理畫面41。在該AI模型整體管理畫面41設置有表示生產線100中將AI模型應用於多個型號組的狀態的型號組狀況顯示區域45。在型號組狀況顯示區域45的左端45a列舉了型號組的名稱。Furthermore, in the display switching button area 21c, in addition to the display of the model group unit described so far, it is possible to select to display the entire model. FIG. 13 shows a display screen when the entire model is selected in the display switching button area 21c, that is, an AI model overall management screen 41. The AI model overall management screen 41 is provided with a model group status display area 45 that indicates the status of applying the AI model to a plurality of model groups in the production line 100. The names of the model groups are listed at the left end 45a of the model group status display area 45.

並且,針對各型號組的零件,記載了是否開啟利用AI模型的檢查、臨限值、AI模型名、及利用該AI模型的量產時的性能(過看率或漏看率)。再者,即便開啟了利用AI的檢查,在未定義AI模型的情況下,會導致檢查錯誤,因此該列能夠改變列自身的顏色等而報知使用者。在圖13中,對型號組狀況顯示區域45的符合條件的列劃影線。In addition, for each model group part, whether the inspection using the AI model is enabled, the threshold value, the AI model name, and the performance (over-read rate or under-read rate) of mass production using the AI model are recorded. Furthermore, even if the inspection using AI is enabled, if the AI model is not defined, it will cause an inspection error, so the column can change its own color to notify the user. In FIG13, the columns that meet the conditions in the model group status display area 45 are hatched.

而且,在型號組狀況顯示區域45的各型號組的列的右側設置有型號組展開按鈕45b,所述型號組展開按鈕45b藉由簡單的操作便可將成績良好的模型的AI模型展開至其他型號組。點擊該按鈕後,設定展開目標的型號組,藉此能夠將該AI模型向其他型號組展開。Furthermore, a model group expansion button 45b is provided on the right side of each model group row in the model group status display area 45. The model group expansion button 45b can expand the AI model of the model with good performance to other model groups by simple operation. After clicking the button, the model group of the expansion target is set, thereby expanding the AI model to other model groups.

再者,在所述實施例中,已對將本發明應用於印刷基板的生產線100的例子進行了說明,但當然,本發明能夠應用於其他種類的生產線。而且,本發明亦可視為能夠顯示AI模型管理畫面21、第一詳細顯示畫面31a~第四詳細顯示畫面31c的包括AI模型資料、規格資訊、性能資訊的資料集。進而,該資料集亦可包括成為性能資訊的基礎的檢查圖像、或能夠利用AI模型資料進行即時檢查的檢查圖像。Furthermore, in the above-described embodiment, the present invention has been described as being applied to the production line 100 of printed circuit boards, but of course, the present invention can be applied to other types of production lines. Moreover, the present invention can also be regarded as a data set including AI model data, specification information, and performance information that can display the AI model management screen 21 and the first detailed display screen 31a to the fourth detailed display screen 31c. Furthermore, the data set can also include an inspection image that serves as the basis for performance information, or an inspection image that can be inspected in real time using AI model data.

再者,以下為了將本發明的結構要件與實施例的結構進行對比,而對本發明的結構要件標註圖式的符號進行附註。 <附註1> 一種檢查系統(1),在製品的生產線(100)中,使用AI模型執行基於所述製品的圖像資料的檢查, 所述檢查系統(1)的特徵在於包括: 管理資訊顯示部(10c),顯示與所述製品的檢查所使用的一個或多個AI模型的管理相關的資訊, 所述管理資訊顯示部(10c)能夠顯示與所述AI模型的規格相關的規格資訊、及與所述AI模型針對各種資料的性能相關的性能資訊, 所述性能資訊包括所述AI模型針對量產應用前的模型測試的性能、及應用於量產時的性能。 <附註11> 一種AI模型資料的管理方法,用於在製品的生產線(100)中使用AI模型執行基於所述製品的圖像資料的檢查的檢查系統(1), 所述AI模型資料的管理方法的特徵在於: 將所述AI模型資料和與所述AI模型資料的規格相關的規格資訊、及與所述AI模型針對各種資料的性能相關的性能資訊建立關聯而進行管理, 所述性能資訊包括所述AI模型針對量產應用前的模型測試的性能、及應用於量產時的性能。 <附註16> 一種AI模型資料集,包括一個或多個AI模型資料,用於在製品的生產線(100)中使用AI模型執行基於所述製品的圖像資料的檢查的檢查系統(1), 所述AI模型資料集的特徵在於: 包括與所述AI模型資料建立關聯的與所述AI模型資料的規格相關的規格資訊、及與所述AI模型針對各種資料的性能相關的性能資訊, 所述性能資訊包括各檢查圖像、及所述檢查圖像相關的所述AI模型對優劣的判定結果。 Furthermore, in order to compare the structural elements of the present invention with the structure of the embodiment, the symbols of the structural element annotation diagram of the present invention are annotated below. <Annotation 1> An inspection system (1) uses an AI model to perform inspection based on image data of the product in a production line (100) of the product. The inspection system (1) is characterized by comprising: A management information display unit (10c) that displays information related to the management of one or more AI models used for the inspection of the product. The management information display unit (10c) can display specification information related to the specifications of the AI model and performance information related to the performance of the AI model for various data. The performance information includes the performance of the AI model for model testing before mass production application and the performance when applied to mass production. <Note 11> A method for managing AI model data, for use in an inspection system (1) that uses an AI model in a production line (100) of a product to perform inspection based on image data of the product, The method for managing AI model data is characterized by: The AI model data is managed by associating specification information related to the specifications of the AI model data and performance information related to the performance of the AI model for various data, The performance information includes the performance of the AI model for model testing before mass production application and the performance when applied to mass production. <Note 16> An AI model data set, comprising one or more AI model data, is used in an inspection system (1) that uses an AI model in a production line (100) of a product to perform inspection based on image data of the product. The AI model data set is characterized in that: It includes specification information related to the specifications of the AI model data and performance information related to the performance of the AI model for various data, and The performance information includes each inspection image and the judgment result of the AI model on the quality of the inspection image.

1:檢查系統 10:教學終端 10a:AI模型生成資訊顯示部 10b:AI模型生成部 10c:AI模型管理資訊顯示部 10d:AI模型測試處理部 11:設定用畫面顯示 11a:AI檢查邏輯的設定按鈕 20:DB 20a:AI模型本體/臨限值儲存部 20b:AI模型管理資訊儲存部 20c:量產結果資訊儲存部 20d:學習資料用圖像儲存部 20e:測試資料用圖像儲存部 20f:庫資料用圖像儲存部 21:AI模型管理畫面 21a:檢查邏輯顯示區域 21b:型號組顯示區域 21c:顯示切換按鈕區域 21d:詳細顯示按鈕 21e:模型生成按鈕 21f:模型測試按鈕 21g:導入按鈕 21h:模型應用按鈕 22:AI使用歷史顯示區域 22a:日期區域 22b:AI使用歷史顯示區域的左端 23:性能顯示區域 23a:性能顯示區域的左欄 23b:性能顯示區域的右欄 24:量產性能顯示區域 30:檢查裝置 30a:量產檢查部 31a:第一詳細顯示畫面 31b:第二詳細顯示畫面 31c:第四詳細顯示畫面 32:顯示模式選擇區域 33:基本資訊顯示區域 33a:詳細按鈕 34:測試結果表 35:圖像顯示區域 36:直方圖區域 37:量產資訊區域 41:AI模型整體管理畫面 45:型號組狀況顯示區域 45a:型號組狀況顯示區域的左端 45b:型號組展開按鈕 100:生產線 100a:焊錫印刷裝置 100b:焊錫印刷後檢查裝置 100c:裝配機 100d:裝配後檢查裝置 100e:回焊爐 100f:回焊後檢查裝置 330,331:學習資料數顯示畫面 330a,331a:學習資料數區域 1: Inspection system 10: Teaching terminal 10a: AI model generation information display unit 10b: AI model generation unit 10c: AI model management information display unit 10d: AI model test processing unit 11: Setting screen display 11a: AI inspection logic setting button 20: DB 20a: AI model body/limit value storage unit 20b: AI model management information storage unit 20c: Mass production result information storage unit 20d: Learning data image storage unit 20e: Test data image storage unit 20f: Library data image storage unit 21: AI model management screen 21a: Inspection logic display area 21b: Model group display area 21c: Display switching button area 21d: Detailed display button 21e: Model generation button 21f: Model test button 21g: Import button 21h: Model application button 22: AI usage history display area 22a: Date area 22b: Left end of AI usage history display area 23: Performance display area 23a: Left column of performance display area 23b: Right column of performance display area 24: Mass production performance display area 30: Inspection device 30a: Mass production inspection department 31a: First detailed display screen 31b: Second detailed display screen 31c: Fourth detailed display screen 32: Display mode selection area 33: Basic information display area 33a: Detailed button 34: Test result table 35: Image display area 36: Histogram area 37: Mass production information area 41: AI model overall management screen 45: Model group status display area 45a: Left end of model group status display area 45b: Model group expansion button 100: Production line 100a: Solder printing device 100b: Post-solder printing inspection device 100c: Assembly machine 100d: Post-assembly inspection device 100e: Reflow furnace 100f: Post-reflow inspection device 330,331: Learning data number display screen 330a,331a: Learning data number area

圖1是本發明的實施例的檢查系統的概略結構圖。 圖2是表示學習資料、測試資料、庫資料、量產資料的各資料的特性的圖。 圖3是本發明的實施例使用檢查系統的處理的流程圖。 圖4是本發明的實施例的檢查系統的功能方塊圖。 圖5是本發明的實施例的檢查系統的功能方塊圖的第二圖。 圖6是本發明的實施例的檢查系統的功能方塊圖的第三圖。 圖7是表示本發明的實施例的設定用畫面顯示的圖。 圖8是表示本發明的實施例的AI模型管理畫面的一例的圖。 圖9是表示本發明的實施例的第一詳細顯示畫面的圖。 圖10是表示本發明的實施例的學習資料數顯示畫面的圖。 圖11是表示本發明的實施例的第二詳細顯示畫面的圖。 圖12是表示本發明的實施例的第四詳細顯示畫面的圖。 圖13是表示本發明的實施例的AI模型整體管理畫面的圖。 FIG. 1 is a schematic diagram of the inspection system of the embodiment of the present invention. FIG. 2 is a diagram showing the characteristics of each data of learning data, test data, library data, and mass production data. FIG. 3 is a flowchart of the processing using the inspection system of the embodiment of the present invention. FIG. 4 is a functional block diagram of the inspection system of the embodiment of the present invention. FIG. 5 is a second diagram of the functional block diagram of the inspection system of the embodiment of the present invention. FIG. 6 is a third diagram of the functional block diagram of the inspection system of the embodiment of the present invention. FIG. 7 is a diagram showing a screen display for setting of the embodiment of the present invention. FIG. 8 is a diagram showing an example of an AI model management screen of the embodiment of the present invention. FIG. 9 is a diagram showing the first detailed display screen of the embodiment of the present invention. FIG. 10 is a diagram showing a learning data number display screen of an embodiment of the present invention. FIG. 11 is a diagram showing a second detailed display screen of an embodiment of the present invention. FIG. 12 is a diagram showing a fourth detailed display screen of an embodiment of the present invention. FIG. 13 is a diagram showing an AI model overall management screen of an embodiment of the present invention.

21:AI模型管理畫面 21: AI model management screen

21a:檢查邏輯顯示區域 21a: Check the logical display area

21b:型號組顯示區域 21b: Model group display area

21c:顯示切換按鈕區域 21c: Display switch button area

21d:詳細顯示按鈕 21d:Detailed display button

21e:模型生成按鈕 21e: Model generation button

21f:模型測試按鈕 21f: Model test button

21g:導入按鈕 21g: Import button

21h:模型應用按鈕 21h: Model application button

22:AI使用歷史顯示區域 22: AI usage history display area

22a:日期區域 22a: Date area

22b:AI使用歷史顯示區域的左端 22b: Left end of AI usage history display area

23:性能顯示區域 23: Performance display area

23a:性能顯示區域的左欄 23a: Left column of the performance display area

23b:性能顯示區域的右欄 23b: Right column of the performance display area

24:量產性能顯示區域 24: Mass production performance display area

Claims (14)

一種檢查系統,在製品的生產線中,使用人工智慧模型執行基於所述製品的圖像資料的檢查,其特徵在於:所述檢查系統包括管理資訊顯示部,所述管理資訊顯示部顯示與所述製品的檢查所使用的一個或多個人工智慧模型的管理相關的資訊,所述管理資訊顯示部能夠顯示與所述人工智慧模型的規格相關的規格資訊、及與所述人工智慧模型針對各種資料的性能相關的性能資訊,所述性能資訊包括所述人工智慧模型針對量產應用前的模型測試的性能、及應用於量產時的性能,其中所述管理資訊顯示部能夠對針對所述製品的各檢查項目顯示所述性能資訊。 An inspection system, in a production line of a product, uses an artificial intelligence model to perform inspection based on image data of the product, wherein the inspection system includes a management information display unit, the management information display unit displays information related to the management of one or more artificial intelligence models used for the inspection of the product, the management information display unit can display specification information related to the specifications of the artificial intelligence model, and performance information related to the performance of the artificial intelligence model for various data, the performance information includes the performance of the artificial intelligence model for model testing before mass production application, and the performance when applied to mass production, wherein the management information display unit can display the performance information for each inspection item for the product. 如請求項1所述的檢查系統,其中所述管理資訊顯示部以一個畫面顯示所述人工智慧模型針對量產應用前的模型測試的性能、應用於量產時的性能、及應用於量產的狀況作為所述性能資訊。 An inspection system as described in claim 1, wherein the management information display unit displays the performance of the artificial intelligence model for model testing before mass production application, the performance when applied to mass production, and the status of application to mass production as the performance information on one screen. 如請求項1所述的檢查系統,其中所述人工智慧模型的量產應用前的模型測試包括針對測試資料的模型測試、或針對庫資料的模型測試的至少任一者。 The inspection system as described in claim 1, wherein the model testing of the artificial intelligence model before mass production application includes at least one of model testing on test data or model testing on library data. 如請求項1所述的檢查系統,其中所述性能包括基於所述人工智慧模型將不使用所述人工智慧模型的檢查中的良品 判定為不良品的數量的過看指標、及基於所述人工智慧模型將不使用所述人工智慧模型的檢查中的不良品判定為良品的數量的漏看指標。 An inspection system as described in claim 1, wherein the performance includes an over-reading indicator of the number of good products judged as defective products in an inspection without using the artificial intelligence model based on the artificial intelligence model, and an under-reading indicator of the number of defective products judged as good products in an inspection without using the artificial intelligence model based on the artificial intelligence model. 如請求項1所述的檢查系統,其中所述性能資訊進而包括所述人工智慧模型的量產應用前的模型測試及量產中的各檢查圖像、所述檢查圖像相關的所述人工智慧模型對優劣的判定結果、及所述檢查圖像相關的人工智慧輸出值。 The inspection system as described in claim 1, wherein the performance information further includes the model test of the artificial intelligence model before mass production application and each inspection image in mass production, the judgment result of the artificial intelligence model on the quality of the inspection image, and the artificial intelligence output value related to the inspection image. 如請求項5所述的檢查系統,其中所述性能資訊進而包括所述人工智慧模型的關於所述檢查圖像的人工智慧輸出值的直方圖。 An inspection system as described in claim 5, wherein the performance information further includes a histogram of the artificial intelligence output values of the artificial intelligence model with respect to the inspection image. 如請求項1至6中任一項所述的檢查系統,其中所述管理資訊顯示部能夠以檢查對象零件的各型號組的顯示與對多個型號組進行彙總的顯示來切換所述規格資訊及所述性能資訊的顯示。 An inspection system as described in any one of claims 1 to 6, wherein the management information display unit is capable of switching the display of the specification information and the performance information by displaying each model group of the inspection target parts and displaying a summary of multiple model groups. 如請求項7所述的檢查系統,其中所述管理資訊顯示部在對多個型號組進行彙總的顯示的顯示畫面中能夠執行將一個型號組所應用的人工智慧模型應用於其他型號組的處理。 An inspection system as described in claim 7, wherein the management information display unit can perform processing of applying an artificial intelligence model applied to one model group to other model groups in a display screen that summarizes multiple model groups. 如請求項1至6中任一項所述的檢查系統,其中所述規格資訊包括所述人工智慧模型的網路資訊、學習時的學習資料的資訊、所述人工智慧模型的批號的至少任一者。 An inspection system as described in any one of claims 1 to 6, wherein the specification information includes at least one of network information of the artificial intelligence model, information of learning data during learning, and a batch number of the artificial intelligence model. 一種人工智慧模型資料的管理方法,用於在製品的生產線中使用人工智慧模型執行基於所述製品的圖像資料的檢 查的檢查系統,所述人工智慧模型資料的管理方法的特徵在於:將所述人工智慧模型資料和與所述人工智慧模型資料的規格相關的規格資訊、及與所述人工智慧模型針對各種資料的性能相關的性能資訊建立關聯而進行管理,所述性能資訊包括所述人工智慧模型針對量產應用前的模型測試的性能、及應用於量產時的性能,所述人工智慧模型資料的管理方法顯示與所述人工智慧模型資料的規格相關的所述規格資訊、及與所述人工智慧模型針對各種資料的性能相關的所述性能資訊,且對針對所述製品的各檢查項目顯示所述性能資訊。 A method for managing artificial intelligence model data is used in an inspection system that uses artificial intelligence models to perform inspections based on image data of products in a production line of products. The method for managing artificial intelligence model data is characterized in that the artificial intelligence model data is managed by establishing associations with specification information related to the specifications of the artificial intelligence model data and performance information related to the performance of the artificial intelligence model for various data, wherein the performance information includes the performance of the artificial intelligence model for model testing before mass production and the performance when applied to mass production. The method for managing artificial intelligence model data displays the specification information related to the specifications of the artificial intelligence model data and the performance information related to the performance of the artificial intelligence model for various data, and displays the performance information for each inspection item for the product. 如請求項10所述的人工智慧模型資料的管理方法,其中所述人工智慧模型的量產應用前的模型測試包括針對測試資料的模型測試、或針對庫資料的模型測試的至少任一者。 A method for managing artificial intelligence model data as described in claim 10, wherein the model test before mass production application of the artificial intelligence model includes at least one of a model test on test data or a model test on library data. 如請求項10所述的人工智慧模型資料的管理方法,其中所述性能包括基於所述人工智慧模型將不使用所述人工智慧模型的檢查中的良品判定為不良品的數量的過看指標、及基於所述人工智慧模型將不使用所述人工智慧模型的檢查中的不良品判定為良品的數量的漏看指標。 A method for managing artificial intelligence model data as described in claim 10, wherein the performance includes an over-reading indicator of the number of good products judged as defective products in an inspection without using the artificial intelligence model based on the artificial intelligence model, and an under-reading indicator of the number of defective products judged as good products in an inspection without using the artificial intelligence model based on the artificial intelligence model. 如請求項10所述的人工智慧模型資料的管理方法,其中所述性能資訊進而包括所述人工智慧模型的量產應用前的模型測試及量產中的各檢查圖像、所述檢查圖像相關的所述人 工智慧模型對優劣的判定結果、及所述檢查圖像相關的人工智慧輸出值。 A method for managing artificial intelligence model data as described in claim 10, wherein the performance information further includes model testing before mass production of the artificial intelligence model and each inspection image during mass production, the artificial intelligence model's judgment result on the quality of the inspection image, and the artificial intelligence output value related to the inspection image. 如請求項10至13中任一項所述的人工智慧模型資料的管理方法,其中所述規格資訊包括所述人工智慧模型的網路資訊、學習時的學習資料的資訊、所述人工智慧模型的批號的至少任一者。A method for managing artificial intelligence model data as described in any one of claim 10 to 13, wherein the specification information includes at least any one of network information of the artificial intelligence model, information of learning data during learning, and a batch number of the artificial intelligence model.
TW112107688A 2022-03-10 2023-03-03 Inspection system and artificial intelligence model data management method TWI855579B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022037530 2022-03-10
JP2022-037530 2022-03-10
JP2023023185A JP2023133160A (en) 2022-03-10 2023-02-17 Inspection system, AI model data management method, and AI model data set
JP2023-023185 2023-02-17

Publications (2)

Publication Number Publication Date
TW202336685A TW202336685A (en) 2023-09-16
TWI855579B true TWI855579B (en) 2024-09-11

Family

ID=87760122

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112107688A TWI855579B (en) 2022-03-10 2023-03-03 Inspection system and artificial intelligence model data management method

Country Status (2)

Country Link
DE (1) DE102023105625A1 (en)
TW (1) TWI855579B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202034205A (en) * 2018-10-31 2020-09-16 台灣積體電路製造股份有限公司 Test pattern generation systems and methods
CN112845591A (en) * 2020-12-04 2021-05-28 辽宁长江智能科技股份有限公司 Production control method and system for continuous casting-hot rolling production line of steel mill
US20210182740A1 (en) * 2019-12-17 2021-06-17 Lg Electronics Inc. Artificial intelligence server and method for updating artificial intelligence model by merging plurality of pieces of update information
CN114008640A (en) * 2019-11-15 2022-02-01 环球互连及数据中心公司 Safety artificial intelligence model training and registering system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7075057B2 (en) 2018-12-27 2022-05-25 オムロン株式会社 Image judgment device, image judgment method and image judgment program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202034205A (en) * 2018-10-31 2020-09-16 台灣積體電路製造股份有限公司 Test pattern generation systems and methods
CN114008640A (en) * 2019-11-15 2022-02-01 环球互连及数据中心公司 Safety artificial intelligence model training and registering system
US20210182740A1 (en) * 2019-12-17 2021-06-17 Lg Electronics Inc. Artificial intelligence server and method for updating artificial intelligence model by merging plurality of pieces of update information
CN112845591A (en) * 2020-12-04 2021-05-28 辽宁长江智能科技股份有限公司 Production control method and system for continuous casting-hot rolling production line of steel mill

Also Published As

Publication number Publication date
DE102023105625A1 (en) 2023-09-14
TW202336685A (en) 2023-09-16

Similar Documents

Publication Publication Date Title
US11599803B2 (en) Soldering process parameter suggestion method and system thereof
JP5136026B2 (en) Process improvement support device, process improvement support program, and recording medium recording process improvement support program
TWI447575B (en) Automatic defect repair system
TWI833010B (en) Image recognition apparatus, image recognition method, and computer program product thereof
JPH07114601A (en) Manufacturing defect analysis system, method, and database generation method related thereto
CN112304952B (en) Image recognition device, image recognition method and computer program product thereof
JP7035857B2 (en) Inspection method, inspection system and program
JP2009104523A (en) Defect factor extraction method and apparatus, process stabilization support system, program, and computer-readable recording medium
JP7440823B2 (en) Information processing device, information processing method and program
CN118467263A (en) Method and system for batch testing of chips, electronic equipment, and storage medium
JP7803160B2 (en) Production management system, production management method, and program
TWI855579B (en) Inspection system and artificial intelligence model data management method
JP2023133160A (en) Inspection system, AI model data management method, and AI model data set
CN116303104A (en) Automated process defect screening management method, system and readable storage medium
CN113468350B (en) Image labeling method, device and system
CN119986222A (en) Vehicle electromagnetic compatibility test method and device based on big data platform
JP2023134060A (en) Inspection logic adjustment device
TWI758134B (en) System for using image features corresponding to component identification for secondary inspection and method thereof
JP2009032226A (en) Manufacturing failure factor analysis support device
JP2023134059A (en) Inspection logic adjustment support device
CN116739967A (en) Check the system and how to manage AI model data
CN115983113A (en) A screen printing process optimization method based on a fully connected neural network model
CN116818767B (en) Method and device for detecting aggregation defect of display panel
JP4987827B2 (en) Electronic circuit board design support system
CN118604001B (en) Integrated circuit board quality detection system based on computer vision