TWI852055B - Apparel size recommendation method and system - Google Patents
Apparel size recommendation method and system Download PDFInfo
- Publication number
- TWI852055B TWI852055B TW111128880A TW111128880A TWI852055B TW I852055 B TWI852055 B TW I852055B TW 111128880 A TW111128880 A TW 111128880A TW 111128880 A TW111128880 A TW 111128880A TW I852055 B TWI852055 B TW I852055B
- Authority
- TW
- Taiwan
- Prior art keywords
- clothing
- size
- model
- data
- user
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 39
- 238000010801 machine learning Methods 0.000 claims description 9
- 230000004044 response Effects 0.000 claims description 5
- 238000013179 statistical model Methods 0.000 claims description 5
- 238000001914 filtration Methods 0.000 claims 1
- 230000037237 body shape Effects 0.000 description 8
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 6
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 3
- 238000004422 calculation algorithm Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 238000007476 Maximum Likelihood Methods 0.000 description 1
- 235000014443 Pyrus communis Nutrition 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000003066 decision tree Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 238000007477 logistic regression Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003058 natural language processing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Landscapes
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
本發明是有關於一種服飾推薦方法,且特別是有關於一種服飾尺寸推薦方法與系統。 The present invention relates to a clothing recommendation method, and in particular to a clothing size recommendation method and system.
隨著電商生態的蓬勃發展,網路購物已經是現代人日常生活中不可或缺的購物方式。對於數位通路來說,由於消費者無法實際看到商品實體,因此如何將商品的商品資訊確切地傳達給消費者是影響線上購物體驗非常重要的一環。尤其是,對於服飾商品的線上銷售來說,由於無法實際地試穿想購買的服飾,因此消費者往往會遭遇到不知如何選購服飾尺寸的困境。 With the booming development of e-commerce, online shopping has become an indispensable way of shopping in modern people's daily life. For digital channels, since consumers cannot actually see the physical product, how to accurately convey the product information to consumers is a very important part that affects the online shopping experience. In particular, for the online sales of clothing products, since consumers cannot actually try on the clothing they want to buy, they often encounter the dilemma of not knowing how to choose the size of the clothing.
目前來說,服飾商品的銷售業者會提供服飾商品之各種尺寸的平量量測資料給消費者參考,例如服飾商品的衣寬或衣長等等。甚至是,服飾商品的銷售業者還會供模特兒的試穿報告給消費者參考。然而,即便消費者可參考銷售業者提供的上述資訊,但消費者還是可能因為種種因素而無法順利地挑選出適合的服飾 尺寸。上述因素可能包括模特兒與消費者之間的身材落差或者消費者對於自身身材的詳細數據並不了解等等。另一方面,雖然市場上已經出現藉由大數據分析技術來推薦消費者適合的服飾尺寸的服務,但對於風格變化多元的服飾商品來說,如何基於有限的交易資料將消費者的身材資訊映射至適當的服飾尺寸是不容易的。 Currently, clothing sellers provide consumers with various measurements of clothing products, such as the width or length of clothing products. They even provide models’ fitting reports for consumers to refer to. However, even if consumers can refer to the above information provided by the seller, they may still not be able to successfully select the appropriate clothing size due to various factors. The above factors may include the difference in body shape between the model and the consumer or the consumer’s lack of understanding of the detailed data of their own body shape. On the other hand, although there are services in the market that use big data analysis technology to recommend clothing sizes suitable for consumers, it is not easy to map consumers' body information to appropriate clothing sizes based on limited transaction data for clothing products with diverse styles.
有鑑於此,本發明提出一種服飾尺寸推薦方法與系統,其可針對多元化服飾商品提供符合消費者需求的尺寸建議。 In view of this, the present invention proposes a clothing size recommendation method and system, which can provide size recommendations that meet consumer needs for diversified clothing products.
本發明實施例提供一種服飾尺寸推薦方法,其包括下列步驟。獲取使用者的基本人體資訊。根據基本人體資訊與大眾人體模型資料決定使用者的人體圍度資料。根據第一服飾商品決定尺寸推薦模型的第一模型參數,以將對應於第一服飾商品的第一模型參數應用至尺寸推薦模型。透過使用尺寸推薦模型而根據使用者的人體圍度資料以及第一服飾商品的服飾特性資料決定第一服飾商品的推薦尺寸。提供第一服飾商品的推薦尺寸予使用者。 The embodiment of the present invention provides a clothing size recommendation method, which includes the following steps. Obtaining basic human body information of a user. Determining the user's body circumference data based on the basic human body information and public body model data. Determining a first model parameter of a size recommendation model based on a first clothing product, so as to apply the first model parameter corresponding to the first clothing product to the size recommendation model. Determining the recommended size of the first clothing product based on the user's body circumference data and the clothing characteristic data of the first clothing product by using the size recommendation model. Providing the recommended size of the first clothing product to the user.
本發明實施例提供一種服飾尺寸推薦系統,其包括儲存裝置以及處理器。處理器耦接儲存裝置,經配置以執行下列步驟。獲取使用者的基本人體資訊。根據基本人體資訊與大眾人體模型資料決定使用者的人體圍度資料。根據第一服飾商品決定尺寸推薦模型的第一模型參數,以將對應於第一服飾商品的第一模型參 數應用至尺寸推薦模型。透過使用尺寸推薦模型而根據使用者的人體圍度資料以及第一服飾商品的服飾特性資料決定第一服飾商品的推薦尺寸。提供第一服飾商品的推薦尺寸予使用者。 The embodiment of the present invention provides a clothing size recommendation system, which includes a storage device and a processor. The processor is coupled to the storage device and configured to perform the following steps. Obtain basic human body information of a user. Determine the user's body circumference data based on the basic human body information and public body model data. Determine a first model parameter of a size recommendation model based on a first clothing product, so as to apply the first model parameter corresponding to the first clothing product to the size recommendation model. Determine the recommended size of the first clothing product based on the user's body circumference data and the clothing characteristic data of the first clothing product by using the size recommendation model. Provide the recommended size of the first clothing product to the user.
基於上述,於本發明的實施例中,人體圍度資料可根據使用者提供的基本人體資訊而產生,且尺寸推薦模型所應用的模型參數可反應於不同的服飾商品而有所變化。基此,針對風格多元化的服飾商品,可根據詳盡的人體圍度資料以及專屬的模型參數而透過尺寸推薦模型決定出適合使用者的推薦尺寸,從而更優化服飾商品的線上購物體驗。 Based on the above, in the embodiment of the present invention, the human body circumference data can be generated according to the basic human body information provided by the user, and the model parameters used by the size recommendation model can be changed according to different clothing products. Based on this, for clothing products with diverse styles, the recommended size suitable for the user can be determined through the size recommendation model based on the detailed human body circumference data and the exclusive model parameters, thereby optimizing the online shopping experience of clothing products.
110:服飾尺寸推薦系統 110: Clothing size recommendation system
111:儲存裝置 111: Storage device
112:處理器 112: Processor
120:使用者裝置 120: User device
M1:尺寸推薦模型 M1: Size recommended model
P_1~P_n:匹配資訊 P_1~P_n: matching information
A_d:服飾特性資料 A_d: Clothing characteristic data
Body_info:人體圍度資料 Body_info: human body measurement data
S210~S250、S402~S420、S502~S518、S602~S618、S802~S814:步驟 S210~S250, S402~S420, S502~S518, S602~S618, S802~S814: Steps
圖1是依照本發明一實施例的服飾尺寸推薦系統的示意圖。 Figure 1 is a schematic diagram of a clothing size recommendation system according to an embodiment of the present invention.
圖2是依照本發明一實施例的服飾尺寸推薦方法的流程圖。 Figure 2 is a flow chart of a clothing size recommendation method according to an embodiment of the present invention.
圖3是依照本發明一實施例的利用尺寸推薦模型的示意圖。 FIG3 is a schematic diagram of a size recommendation model according to an embodiment of the present invention.
圖4是依照本發明一實施例的服飾尺寸推薦方法的流程圖。 Figure 4 is a flow chart of a clothing size recommendation method according to an embodiment of the present invention.
圖5是依照本發明一實施例的服飾尺寸推薦方法的流程圖。 Figure 5 is a flow chart of a clothing size recommendation method according to an embodiment of the present invention.
圖6是依照本發明一實施例的服飾尺寸推薦方法的流程圖。 Figure 6 is a flow chart of a clothing size recommendation method according to an embodiment of the present invention.
圖7是依照本發明一實施例的服飾尺寸推薦方法的流程圖。 Figure 7 is a flow chart of a clothing size recommendation method according to an embodiment of the present invention.
本發明的部份實施例接下來將會配合附圖來詳細描 述,以下的描述所引用的元件符號,當不同附圖出現相同的元件符號將視為相同或相似的元件。這些實施例只是本發明的一部份,並未揭示所有本發明的可實施方式。更確切的說,這些實施例只是本發明的專利申請範圍中的方法與系統的範例。 Some embodiments of the present invention will be described in detail with reference to the accompanying drawings. The component symbols cited in the following description will be regarded as the same or similar components when the same component symbols appear in different drawings. These embodiments are only part of the present invention and do not disclose all possible implementations of the present invention. More precisely, these embodiments are only examples of methods and systems within the scope of the patent application of the present invention.
圖1是依照本發明一實施例的服飾尺寸推薦系統的示意圖。請參照圖1,服飾尺寸推薦系統110包括儲存裝置111以及處理器112。服飾尺寸推薦系統110可由一或多台計算機裝置構成,上述計算機裝置例如是電腦或伺服器裝置等等,本發明對此不限制。需說明的是,當服飾尺寸推薦系統110由多台計算機裝置構成時,這些計算機裝置可透過有線或無線的通信介面相連接。
FIG1 is a schematic diagram of a clothing size recommendation system according to an embodiment of the present invention. Referring to FIG1 , the clothing
於一些實施例中,服飾尺寸推薦系統110經由網路連接使用者裝置120,以經由網路接收使用者裝置120提供的資料或傳送資料至使用者裝置120。使用者裝置120可例如為筆記型電腦、平板電腦、手機等等電子裝置,本發明對此不限制。於一些實施例中,使用者裝置120為使用者(亦可視為消費者)進行線上購物所操控的電子裝置。
In some embodiments, the clothing
儲存裝置111可用以儲存影像、指令、程式碼、軟體模組等等資料,其可以例如是任意型式的固定式或可移動式隨機存取記憶體(random access memory,RAM)、唯讀記憶體(read-only memory,ROM)、快閃記憶體(flash memory)、硬碟或其他類似裝置、積體電路及其組合。
The
處理器112耦接儲存裝置111,例如是中央處理單元(central processing unit,CPU)、應用處理器(application processor,AP),或是其他可程式化之一般用途或特殊用途的微處理器(microprocessor)、數位訊號處理器(digital signal processor,DSP)、影像訊號處理器(image signal processor,ISP)、圖形處理器(graphics processing unit,GPU)或其他類似裝置、積體電路及其組合。處理器112可存取並執行記錄在儲存裝置111中的軟體模組,以實現本發明實施例中的服飾尺寸推薦方法。上述軟體模組可廣泛地解釋為意謂指令、指令集、代碼、程式碼、程式、應用程式、軟體套件、執行緒、程序、功能等。
The
圖2是依照本發明一實施例的服飾尺寸推薦方法的流程圖,而圖2的方法流程可以由圖1的服飾尺寸推薦系統110來實現。請同時參照圖1及圖2,以下即搭配圖1中服飾尺寸推薦系統110的元件,說明本實施例的服飾尺寸推薦方法的步驟。
FIG2 is a flow chart of a clothing size recommendation method according to an embodiment of the present invention, and the method flow of FIG2 can be implemented by the clothing
於步驟S210,處理器112獲取使用者的基本人體資訊。使用者可透過使用者裝置120提供基本人體資訊給服飾尺寸推薦系統110的處理器112。更詳細而言,當使用者進行線上購物時,使用者裝置120可經由網路連接線上購物平台或線上商店。使用者可經由使用者裝置120所顯示的應用程式介面輸入使用者的基本人體資訊,致使服飾尺寸推薦系統110的處理器112可經由網路接收到使用者的基本人體資訊。
In step S210, the
於一些實施例中,使用者的基本人體資訊可包括身高、
體重、性別或年紀等等。此外,於一些實施例中,使用者的基本人體資訊還可包括體態特徵等等。上述體態特徵例如是「倒三角形」、「梨形」、「直筒形」或「蘋果形」等等,但本發明不限制於此。舉例而言,使用者裝置120所顯示的應用程式介面可呈現有體態特徵的圖像化選項供使用者選擇。或者,於一些實施例中,透過由使用者利用使用者裝置120進行拍照或選取儲存於使用者裝置120中的影像,使用者裝置120可將使用者的全身影像或半身影像傳輸給服飾尺寸推薦系統110的處理器112。處理器112可透過影像辨識技術或機器學習技術來分析出使用者的基本人體資訊。
In some embodiments, the basic human body information of the user may include height, weight, gender or age, etc. In addition, in some embodiments, the basic human body information of the user may also include body shape features, etc. The above body shape features are, for example, "inverted triangle", "pear shape", "straight tube shape" or "apple shape", etc., but the present invention is not limited thereto. For example, the application program interface displayed by the
於步驟S220,處理器112根據基本人體資訊與大眾人體模型資料決定使用者的人體圍度資料。於一些實施例中,紀錄有大眾人體模型資料的資料庫儲存於儲存裝置111中,處理器112可根據大眾人體模型資料將使用者提供的基本人體資訊轉換為使用者的人體圍度資料。使用者的人體圍度資料可包括胸圍、肩寬、腰圍、臀圍、腿圍、臂圍、臂長與腿長等等。更詳細來說,大眾人體模型資料可包括多個預設人體模型,且這些預設人體模型分別具有對應的人體圍度資料。處理器112可將使用者提供的基本人體資訊映射至大眾人體模型資料中的某一個預設人體模型,並將該預設人體模型所對應的人體圍度資料作為使用者的人體圍度資料。此外,於一些實施例中,若人體圍度資訊為使用者已知資訊,使用者也可透過直接輸入方式而經由使用者裝置120將人體
圍度資訊提供給服飾尺寸推薦系統110。另外,於一些實施例中,透過由使用者利用使用者裝置120進行拍照或選取儲存於使用者裝置120中的影像,使用者裝置120可將使用者的全身影像或半身影像傳輸給服飾尺寸推薦系統110的處理器112。處理器112可透過影像辨識技術或機器學習技術來分析出使用者的人體圍度資訊。
In step S220, the
於步驟S230,處理器112根據第一服飾商品決定尺寸推薦模型的第一模型參數,以將對應於第一服飾商品的第一模型參數應用至尺寸推薦模型。尺寸推薦模型可以是機器學習模型,其所應用的機器學習演算法可以是線性迴歸(Linear Regression)、對率迴歸(Logistic Regression)、LASSO迴歸、脊迴歸(Ridge Regression)、決策樹(Decision Tree)、神經網路(Neural Network)、或支持向量機(support vector machine)等等,但本發明不限制於此。或者,尺寸推薦模型可以是統計模型,例如是基於中央極限定理、大數法則或是最大概似法而建立的統計模型,但本發明不限制於此。本發明實施例中的模型類型可視實際應用而設置。當第一服飾商品的交易資料已經收集足夠,處理器112可依據第一服飾商品的交易資料進行機器學習或統計分析而獲取尺寸推薦模型的第一模型參數。當尚未收集到第一服飾商品的交易資料,處理器112可先決定相似於第一服飾商品的第二服飾商品,再使用第二服飾商品的第二模型參數作為第一服飾商品的第一模型參數。尺寸推薦模型的模型參數有可能是迴歸模型的迴歸係數或統
計模型的平均數、期望值與變異數,又或是機器學習模型當中的閾值(threshold)、特徵劃分點(split)、權重(weight)、邊界(boundary)等等,但本發明不限制於此。
In step S230, the
須特別說明的是,於本發明實施例中,處理器112可自儲存裝置111讀取尺寸推薦模型的模型參數,且各個服飾商品會對應至一組專屬的模型參數。更具體而言,反應接收使用者所下達之選取第一服飾商品的指令,處理器112可根據第一服飾商品決定對應的一組第一模型參數。對應的,反應接收使用者所下達之選取第二服飾商品的指令時,處理器112可根據第二服飾商品決定對應的一組第二模型參數。第一服飾商品的第一模型參數可相異於第二服飾商品的第二模型參數。
It should be particularly noted that in the embodiment of the present invention, the
於步驟S240,處理器112透過使用尺寸推薦模型而根據使用者的人體圍度資料以及第一服飾商品的服飾特性資料決定第一服飾商品的推薦尺寸。第一服飾商品的服飾特性資料可包括第一服飾商品的各種預設服飾尺寸(例如XS號、S號、M號、L號、XL號等等)的服飾細部尺寸資料。服飾細部尺寸資料可包括第一服飾商品的平量尺寸,例如袖長、袖寬、衣寬、衣長、裙長、裙寬、褲長、褲管寬度等等,但本發明不限制於此。
In step S240, the
詳細來說,圖3是依照本發明一實施例的利用尺寸推薦模型的示意圖。請參照圖3,處理器112可將使用者的人體圍度資料Body_info以及第一服飾商品的服飾特性資料A_d輸入至應用模型參數M_P(即第一模型參數)的尺寸推薦模型M1。然而,於
其他實施例中,處理器112可先計算人體圍度資料與服飾細部尺寸資料之間的比例關係或相乘結果,再將前述比例關係或相乘結果輸入至應用第一模型參數的尺寸推薦模型。於是,尺寸推薦模型M1可輸出分別對應於第一服飾商品之n個服飾尺寸的n筆匹配資訊P_1~P_n,其中n為大於1的整數。例如,尺寸推薦模型M1可輸出第一服飾商品之服飾尺寸「S號」的匹配資訊P_1。尺寸推薦模型M1所輸出之匹配資訊P_1~P_n例如是分類類別、分類機率、統計機率或基於前述資料產生的數值等等。接著,處理器112根據第一服飾商品之n個服飾尺寸的n筆匹配資訊P_1~P_n來決定出第一服飾商品的推薦尺寸。然而,於其他實施例中,尺寸推薦模型也可直接輸出第一服飾商品的推薦尺寸。
In detail, FIG. 3 is a schematic diagram of a size recommendation model according to an embodiment of the present invention. Referring to FIG. 3 , the
接著,於步驟S250,處理器112提供第一服飾商品的推薦尺寸予使用者。處理器112可將第一服飾商品的推薦尺寸傳輸至使用者裝置120進行顯示,好讓使用者可以於線上選購第一服飾商品時參考第一服飾商品的推薦尺寸。基此,由於本發明實施例的服飾尺寸推薦系統110可針對各個服飾商品應用專屬的模型參數,因此可針對多風格元化服飾商品提供符合消費者需求的尺寸建議。
Next, in step S250, the
於一些實施例中,處理器112還可決定推薦尺寸的描述資訊,並提供關於推薦尺寸的描述資訊予使用者。處理器112可將推薦尺寸的描述資訊傳輸至使用者裝置120進行顯示,好讓使用者可以於線上選購第一服飾商品時參考推薦尺寸的描述資訊,
從而協助使用者更一步理解推薦尺寸的建議程度與合身程度。推薦尺寸的描述資訊可透過數值、文字或圖示來呈現給使用者。
In some embodiments, the
更進一步來說,於一些實施例中,推薦尺寸的描述資訊可以是推薦分數或機率值,而此描述資訊可根據尺寸推薦模型所輸出之分類機率或統計機率而產生。於一些實施例中,推薦尺寸的描述資訊可以是文字描述,而此文字描述可以是處理器112比對推薦尺寸與一參考尺寸進行比較而產生。若推薦尺寸大於此參考尺寸,處理器112可決定文字描述為第一文字說明「舒適」。若推薦尺寸相同於此參考尺寸,處理器112可決定文字描述為第二文字說明「標準」。若推薦尺寸小於此參考尺寸,處理器112可決定文字描述為第三文字說明「貼身」。
Furthermore, in some embodiments, the descriptive information of the recommended size may be a recommendation score or a probability value, and the descriptive information may be generated according to the classification probability or statistical probability output by the size recommendation model. In some embodiments, the descriptive information of the recommended size may be a text description, and the text description may be generated by the
於一些實施例中,處理器112可根據使用者的基本人體資訊或人體圍度資訊來查找標準尺寸建議表,以決定該使用者穿著第一服飾商品的一參考尺寸。之後,處理器112再比較尺寸推薦模型產生的推薦尺寸與參考尺寸來提供推薦尺寸的描述資訊。上述的標準尺寸建議表可以由第一服飾商品的服飾廠商提供而紀錄於儲存裝置111。或者,於一些實施例中,處理器112可對具備相似身材的其他消費者購買第一服飾商品的購買尺寸進行統計分析來決定對應於該使用者的一參考尺寸。
In some embodiments, the
圖4是依照本發明一實施例的服飾尺寸推薦方法的流程圖,而圖4的方法流程可以由圖1的服飾尺寸推薦系統110來實現。
FIG. 4 is a flow chart of a clothing size recommendation method according to an embodiment of the present invention, and the method flow of FIG. 4 can be implemented by the clothing
於步驟S402,處理器112獲取使用者的基本人體資訊。於步驟S404,處理器112根據基本人體資訊與大眾人體模型資料決定關聯於使用者的多個人體圍度資料。
In step S402, the
於步驟S406,處理器112判斷第一服飾商品的交易資料是否符合預設條件。舉例而言,處理器112可判斷第一服飾商品的交易資料中的交易次數是否大於預設次數(例如0次)。若步驟S406判斷為是,代表第一服飾商品的交易資料足夠且第一模型參數已經基於第一服飾商品的交易資料而產生,於步驟S410,處理器112可自資料庫獲取第一模型參數。另一方面,若步驟S406判斷為否,代表第一服飾商品的交易資料不足夠且第一模型參數尚未基於第一服飾商品的交易資料而產生。於是,於步驟S408,當第一服飾商品的交易資料未符合預設條件,處理器112可基於第一服飾商品的服飾特性資料挑選第二服飾商品,以使用對應於第二服飾商品的第二模型參數作為第一模型參數。
In step S406, the
更詳細而言,除了各預設服飾尺寸的服飾細部尺寸資料,第一服飾商品的服飾特性資料還可包括其他服飾描述資料,例如商品名稱、文字敘述、花色、用途、季節、材質、設計風格與版型資訊等等。處理器112可比對第一服飾商品的服飾特性資料與其他服飾商品的服飾特性資料,以挑選出與第一服飾商品相似的第二服飾商品,並將基於第二服飾商品之交易資料而產生的第二模型參數作為第一模型參數。於一些實施例中,處理器112可對第一服飾商品的服飾特性資料與多個其他服飾商品的服飾特
性資料進行相似度比對,以自其他服飾商品挑選第二服飾商品。當中,處理器112標記第一服飾商品的服飾特性資料的過程中,處理器112所應用相關方法可能為獨熱編碼(one-hot encoding)、詞袋模型(Bag-of-words model)、潛在語意分析(Latent Semantic Analysis)或詞嵌入(Word Embedding)等等。
In more detail, in addition to the detailed size data of each preset clothing size, the clothing characteristic data of the first clothing product may also include other clothing description data, such as product name, text description, pattern, purpose, season, material, design style and pattern information, etc. The
舉例而言,處理器112可採用Sequence Matcher演算法對第一服飾商品的服飾特性資料與其他服飾商品的服飾特性資料進行相似度計算,從而挑選出與第一服飾商品相似的第二服飾商品,其挑選方法可以為機器學習模型、投票機制(voting)等方式實施。舉例而言,假設第一服飾商品為一件長袖西裝襯衫,而處理器112自資料庫搜尋出的第二服飾商品將為另一件款式相近的長袖西裝襯衫。如此一來,對於剛啟動銷售的服飾商品,即便沒有足夠的交易資料,本發明實施例的服飾尺寸推薦系統110還是可以參照其他相似服飾商品的模型參數來決定推薦尺寸。
For example, the
接著,於步驟S412,處理器112將對應於第一服飾商品的第一模型參數應用至尺寸推薦模型。於步驟S414,處理器112透過使用尺寸推薦模型而根據使用者的人體圍度資料以及第一服飾商品的服飾特性資料決定第一服飾商品的推薦尺寸。於步驟S416,處理器112提供第一服飾商品的推薦尺寸予使用者。
Next, in step S412, the
在使用者參考第一服飾商品的推薦尺寸並進行交易之後,於步驟S418,處理器112收集第一服飾商品的交易資料。第一服飾商品的交易資料可包括實際購買尺寸、客戶回饋資訊或退
換貨資訊。於步驟S420,處理器112根據第一服飾商品的交易資料更新尺寸推薦模型的第一模型參數。也就是說,在完成關聯於第一服飾商品的一筆交易過後,該筆交易的交易資料可用於更新尺寸推薦模型的第一模型參數。隨著第一服飾商品的交易資料的累積,處理器112可持續地更新尺寸推薦模型的第一模型參數,致使尺寸推薦模型的第一模型參數可以收斂至穩定狀態。
After the user refers to the recommended size of the first clothing item and conducts a transaction, in step S418, the
於一些實施例中,處理器112根據第一服飾商品的交易資料判斷一交易的推薦尺寸是否推薦成功。接著,處理器112根據交易的推薦尺寸是否推薦成功而利用第一服飾商品的交易資料更新尺寸推薦模型的第一模型參數。
In some embodiments, the
詳細而言,處理器112可比對實際購買尺寸與推薦尺寸是否相同來判斷推薦尺寸是否推薦成功。當實際購買尺寸與推薦尺寸不相同,處理器112可判定基於尺寸推薦模型決定的推薦尺寸並未推薦成功(即推薦失敗)。或者,處理器112可自使用者提供的客戶回饋資訊進行關鍵字檢測或自然語言處理,而根據客戶回饋資訊中的關鍵字或語義來判斷推薦尺寸是否推薦成功。或者,當處理器112判定使用者對應於推薦尺寸的第一服飾商品進行退貨時,處理器112可判定基於尺寸推薦模型決定的推薦尺寸並未推薦成功。
Specifically, the
於一些實施例中,若一筆交易的推薦尺寸被判定為推薦成功,處理器112可根據該筆交易的推薦尺寸與使用者的人體圍度資料來更新尺寸推薦模型的第一模型參數。若一筆交易的推薦
尺寸被判定為推薦失敗,處理器112可不根據該筆交易的交易資料來更新尺寸推薦模型的第一模型參數。
In some embodiments, if the recommended size of a transaction is determined to be successfully recommended, the
圖5是依照本發明一實施例的服飾尺寸推薦方法的流程圖,而圖5的方法流程可以由圖1的服飾尺寸推薦系統110來實現。
FIG5 is a flow chart of a clothing size recommendation method according to an embodiment of the present invention, and the method flow of FIG5 can be implemented by the clothing
於步驟S502,處理器112獲取使用者的基本人體資訊。於步驟S504,處理器112根據基本人體資訊與大眾人體模型資料決定關聯於使用者的多個人體圍度資料。於步驟S506,處理器112根據第一服飾商品決定尺寸推薦模型的第一模型參數,以將對應於第一服飾商品的第一模型參數應用至尺寸推薦模型。
In step S502, the
於步驟S508,處理器112根據人體圍度資料以及第一服飾商品的服飾特性資料而利用尺寸推薦模型來獲取第一服飾商品的多個服飾尺寸各自的匹配資訊。處理器112可將人體圍度資料以及服飾尺寸各自的服飾細部尺寸資料輸入至尺寸推薦模型而對應地獲取多個服飾尺寸各自的匹配資訊。須特別說明的是,為了確保推薦尺寸具有理想的穿著舒適度,處理器112可先濾除掉一些明顯不合適的服飾尺寸。於步驟S510,處理器112可根據人體圍度資料與各服飾尺寸的服飾細部尺寸資料而從服飾尺寸篩選出部份的服飾尺寸。於步驟S512,處理器112根據部份的服飾尺寸各自的匹配資訊決定第一服飾商品的推薦尺寸。
In step S508, the
舉例而言,處理器112可利用尺寸推薦模型而獲取第一服飾商品的多個服飾尺寸「XS號、S號、M號、L號、XL號」各
自的匹配資訊。並且,處理器112可比對使用者的手臂圍與服飾尺寸「XS號、S號、M號、L號、XL號」各自的袖寬,以篩選出部份的服飾尺寸「M號、L號、XL號」。接著,處理器112可根據部份的服飾尺寸「M號、L號、XL號」各自的匹配資訊挑選出決定第一服飾商品的推薦尺寸。
For example, the
於步驟S514,處理器112提供第一服飾商品的推薦尺寸予使用者。於步驟S516,處理器112收集第一服飾商品的交易資料。於步驟S518,處理器112根據第一服飾商品的交易資料更新尺寸推薦模型的第一模型參數。
In step S514, the
然而,於其他實施例中,處理器112也可先比對人體圍度資料與各服飾尺寸的服飾細部尺寸資料來篩選出部份的服飾尺寸,再將部份的服飾尺寸的服飾細部尺寸資料輸入至尺寸推薦模型來獲取部份的服飾尺寸各自的匹配資訊。舉例而言,處理器112可比對使用者的腿圍與服飾尺寸「XS號、S號、M號、L號、XL號」各自的褲管寬度,以篩選出部份的服飾尺寸「M號、L號、XL號」。接著,處理器112可利用尺寸推薦模型而獲取部份的服飾尺寸「M號、L號、XL號」各自的匹配資訊,並據以挑選出決定第一服飾商品的推薦尺寸。
However, in other embodiments, the
圖6是依照本發明一實施例的服飾尺寸推薦方法的流程圖,而圖6的方法流程可以由圖1的服飾尺寸推薦系統110來實現。
FIG. 6 is a flow chart of a clothing size recommendation method according to an embodiment of the present invention, and the method flow of FIG. 6 can be implemented by the clothing
於步驟S602,處理器112獲取使用者的基本人體資訊。
於步驟S604,處理器112根據基本人體資訊與大眾人體模型資料決定關聯於使用者的多個人體圍度資料。於步驟S606,處理器112根據第一服飾商品決定尺寸推薦模型的第一模型參數,以將對應於第一服飾商品的第一模型參數應用至尺寸推薦模型。於步驟S608,處理器112根據人體圍度資料以及第一服飾商品的服飾特性資料而利用尺寸推薦模型來獲取第一服飾商品的多個服飾尺寸各自的匹配資訊。
In step S602, the
於一些實施例中,處理器112將判斷第一服飾商品的各個服飾尺寸所對應的匹配資訊是否符合匹配條件,以決定第一服飾商品的推薦尺寸。於一些實施例中,處理器112可判斷匹配資訊是否大於門檻值來判斷匹配資訊是否符合匹配條件。於一些實施例中,處理器112可對n個服飾尺寸的n筆匹配資訊進行排序操作,以根據各個服飾尺寸所對應的排序名次來判斷匹配資訊是否符合匹配條件。
In some embodiments, the
於一些實施例中,各個服飾尺寸的匹配資訊可包括多個匹配機率值的加權計算值,處理器112可對關聯於各個服飾尺寸的多個匹配機率值進行加權計算操作而獲取各個服飾尺寸的一加權計算值。上述多個匹配機率值可以是基於某一服飾尺寸的不同服飾細部尺寸資料與對應的人體圍度資料而產生。舉例而言,處理器112可根據服飾尺寸「M號」的衣寬與使用者的胸圍而利用第一尺寸推薦模型來產生第一匹配機率值,並根據服飾尺寸「M號」的袖寬與使用者的臂圍而利用第二尺寸推薦模型來來產生第
二匹配機率值。接著,處理器112對第一匹配機率值與第二匹配機率值進行加權計算。之後,處理器112可對各個服飾尺寸的加權計算值進行排序操作或門檻值比對操作,以根據各個服飾尺寸所對應的排序名次或門檻值比對結果來判斷匹配資訊是否符合匹配條件。
In some embodiments, the matching information of each clothing size may include a weighted calculation value of multiple matching probability values, and the
於步驟S610,當服飾尺寸其中之至少二者的匹配資訊皆符合匹配條件時,處理器112根據第一服飾商品的服飾風格指標自服飾尺寸其中之至少二者選擇出推薦尺寸。第一服飾商品的服飾風格指標可設定為指示至少一服飾細部尺寸。不同的服飾商品可對應至不同的服飾風格指標。具體而言,假設第一服飾商品為「正式西裝」,為了達到正式的視覺效果,第一服飾商品的服飾風格指標可設定為指示「衣長」,因為太短或太長的西裝都容易有不正式的感覺。於是,由於第一服飾商品的服飾風格指標設定為指示衣長,處理器112可根據符合匹配條件之服飾尺寸其中之至少二者的衣長來從中決定推薦尺寸。例如,處理器112可根據使用者的身高或上半身長度以及服飾尺寸其中之至少二者的衣長來決定最終的推薦尺寸。另一方面,於步驟S612,當服飾尺寸其中之僅一者的匹配資訊皆符合匹配條件時,處理器112將服飾尺寸其中之僅一者作為推薦尺寸。
In step S610, when the matching information of at least two of the clothing sizes meets the matching conditions, the
於步驟S614,處理器112提供第一服飾商品的推薦尺寸予使用者。於步驟S616,處理器112收集第一服飾商品的交易資料。於步驟S618,處理器112根據第一服飾商品的交易資料更新
尺寸推薦模型的第一模型參數。
In step S614, the
圖7是依照本發明一實施例的服飾尺寸推薦方法的流程圖,而圖7的方法流程可以由圖1的服飾尺寸推薦系統110來實現。
FIG. 7 is a flow chart of a clothing size recommendation method according to an embodiment of the present invention, and the method flow of FIG. 7 can be implemented by the clothing
於步驟S702,處理器112獲取使用者的基本人體資訊。於步驟S704,處理器112根據基本人體資訊與大眾人體模型資料決定關聯於使用者的多個人體圍度資料。於步驟S706,處理器112根據第一服飾商品決定尺寸推薦模型的第一模型參數,以將對應於第一服飾商品的第一模型參數應用至尺寸推薦模型。於步驟S708,處理器112透過使用尺寸推薦模型而根據使用者的人體圍度資料以及第一服飾商品的服飾特性資料決定第一服飾商品的推薦尺寸。於步驟S710,處理器112提供第一服飾商品的推薦尺寸予使用者。
In step S702, the
於步驟S712,處理器112收集使用者的交易紀錄並統計使用者的尺寸推薦失敗次數。詳細而言,每當使用者進行一筆交易而購買某一服飾商品,處理器112可根據交易資料判斷該筆交易的推薦尺寸是否推薦失敗。關於如何判定推薦尺寸是推薦失敗或推薦失敗已於前述實施例說明,於此不在贅述。每當處理器112判定某一使用者的一筆交易的推薦尺寸為推薦失敗時,處理器112可針對該使用者累計尺寸推薦失敗次數。當某一使用者的尺寸推薦失敗次數大於預設值(例如5次)時,代表該使用者的身材與大眾身材具有明顯差異,因而無法透過大眾人體模型資料來準確
地估測該使用者的人體圍度資料。於是,於步驟S714,反應於使用者的尺寸推薦失敗次數大於預設值,處理器112使用使用者的交易紀錄更新關聯於使用者的人體圍度資料。也就是說,當使用者的尺寸推薦失敗次數大於預設值時,處理器112根據使用者的交易紀錄推導與更新使用者的人體圍度資料。在更新使用者的人體圍度資料之後,處理器112透過使用尺寸推薦模型而根據經更新的人體圍度資料以及某一服飾商品的服飾特性資料決定對應的推薦尺寸。
In step S712, the
於一些實施例中,使用者的交易紀錄包括多筆交易的實際購買尺寸或退換貨資訊。舉例而言,假設多筆交易的實際購買尺寸都大於推薦尺寸,則處理器112可根據實際購買尺寸與推薦尺寸之間的差距來調昇與更新使用者的人體圍度資料。
In some embodiments, the user's transaction record includes actual purchase sizes or return and exchange information for multiple transactions. For example, assuming that the actual purchase sizes of multiple transactions are larger than the recommended sizes, the
綜上所述,於本發明實施例中,人體圍度資料可根據使用者提供的基本人體資訊而產生,且尺寸推薦模型所應用的模型參數可反應於不同的服飾商品而有所變化。基此,針對風格多元化的服飾商品,可根據詳盡的人體圍度資料以及專屬的模型參數而透過尺寸推薦模型決定出適合使用者的推薦尺寸,從而更優化服飾商品的線上購物體驗。此外,當服飾商品的交易資料不足時,可使用其他相似的服飾商品的模型參數來進行尺寸推薦,以盡量避免推薦尺寸與使用者期望產生明顯誤差。並且,於本發明實施例中,當推薦尺寸多次不符合使用者期望時,還可根據交易資料更新使用者的人體圍度資料,使尺寸推薦模型可適用於各種身材 的消費者。 In summary, in the embodiment of the present invention, human body circumference data can be generated based on basic human body information provided by the user, and the model parameters used by the size recommendation model can vary according to different clothing products. Therefore, for clothing products with diverse styles, the recommended size suitable for the user can be determined through the size recommendation model based on detailed human body circumference data and exclusive model parameters, thereby optimizing the online shopping experience of clothing products. In addition, when the transaction data of clothing products is insufficient, the model parameters of other similar clothing products can be used to make size recommendations to minimize the obvious error between the recommended size and the user's expectations. Furthermore, in the embodiment of the present invention, when the recommended size does not meet the user's expectations for many times, the user's body circumference data can be updated according to the transaction data, so that the size recommendation model can be applicable to consumers of various body shapes.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed as above by the embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the relevant technical field can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be subject to the scope defined by the attached patent application.
S210~S250:步驟 S210~S250: Steps
Claims (18)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW111128880A TWI852055B (en) | 2022-08-02 | 2022-08-02 | Apparel size recommendation method and system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW111128880A TWI852055B (en) | 2022-08-02 | 2022-08-02 | Apparel size recommendation method and system |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TW202407608A TW202407608A (en) | 2024-02-16 |
| TWI852055B true TWI852055B (en) | 2024-08-11 |
Family
ID=90822688
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW111128880A TWI852055B (en) | 2022-08-02 | 2022-08-02 | Apparel size recommendation method and system |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI852055B (en) |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20140136560A1 (en) * | 2012-11-15 | 2014-05-15 | Size Secret Inc. | System and method for selecting the recommended size of an article of clothing |
| CN109615476A (en) * | 2018-12-12 | 2019-04-12 | 平安科技(深圳)有限公司 | Network dress tries method, apparatus, server and storage medium on |
| TW202036454A (en) * | 2019-03-05 | 2020-10-01 | 日商華歌爾股份有限公司 | Clothing recommendation system, clothing recommendation method, and clothing recommendation program |
| CN113469774A (en) * | 2020-07-14 | 2021-10-01 | 青岛海信电子产业控股股份有限公司 | Intelligent device and size recommendation method |
-
2022
- 2022-08-02 TW TW111128880A patent/TWI852055B/en active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20140136560A1 (en) * | 2012-11-15 | 2014-05-15 | Size Secret Inc. | System and method for selecting the recommended size of an article of clothing |
| CN109615476A (en) * | 2018-12-12 | 2019-04-12 | 平安科技(深圳)有限公司 | Network dress tries method, apparatus, server and storage medium on |
| TW202036454A (en) * | 2019-03-05 | 2020-10-01 | 日商華歌爾股份有限公司 | Clothing recommendation system, clothing recommendation method, and clothing recommendation program |
| CN113469774A (en) * | 2020-07-14 | 2021-10-01 | 青岛海信电子产业控股股份有限公司 | Intelligent device and size recommendation method |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202407608A (en) | 2024-02-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11983748B2 (en) | Using artificial intelligence to determine a size fit prediction | |
| US8762292B2 (en) | System and method for providing customers with personalized information about products | |
| US20210209510A1 (en) | Using artificial intelligence to determine a value for a variable size component | |
| US11062379B2 (en) | Automatic fashion outfit composition and recommendation system and method | |
| JP6313467B2 (en) | Method and system for improving size-based product recommendation using aggregated review data | |
| US20110295711A1 (en) | Apparel Fit Advisory Service | |
| US10026115B2 (en) | Data collection for creating apparel size distributions | |
| CN105765574A (en) | System and method for item and item set matching | |
| CN103140868A (en) | Determining a likelihood of suitability based on historical data | |
| US20190108571A1 (en) | System and method for efficiently determining relevant products for display in an online marketplace | |
| CN109242593B (en) | Case reasoning-based clothing recommendation method and device and storage medium | |
| CN112424812A (en) | Calculating user-specific item-related values on an electronic processing platform | |
| CN117688251B (en) | Commodity retrieval method and system based on knowledge graph | |
| WO2021102564A1 (en) | Automatic item recommendations based on visual attributes and complementarity | |
| US11587028B2 (en) | Computer system for optimizing garment inventory of retailer based on shapes of users | |
| TWI852055B (en) | Apparel size recommendation method and system | |
| US20210279785A1 (en) | Method for providing initial size fit indicator | |
| US20240362698A1 (en) | System and method for dynamically recommending footwear size, and footwear thereof | |
| EP3025288A1 (en) | Method for determining a fitting index of a garment based on anthropometric data of a user, and device and system thereof | |
| JP6494000B1 (en) | Shoe fitting support system and shoe fitting support program | |
| JP2019114001A (en) | Shoe marketing support system and shoe marketing support program | |
| CN110377831A (en) | Retrieval method, retrieval device, readable storage medium and electronic equipment | |
| KR20250095386A (en) | Clothing and shoe matching system and method in online shopping mall | |
| Fadilla Zainol et al. | An Efficient Apparel Size Prediction Using an Artificial Neural Network. | |
| CN116881487A (en) | Recommended methods, apparatus, electronic equipment and storage media |