TWI850189B - Inquiry system for greenhouse gas emission factors - Google Patents
Inquiry system for greenhouse gas emission factors Download PDFInfo
- Publication number
- TWI850189B TWI850189B TW113108768A TW113108768A TWI850189B TW I850189 B TWI850189 B TW I850189B TW 113108768 A TW113108768 A TW 113108768A TW 113108768 A TW113108768 A TW 113108768A TW I850189 B TWI850189 B TW I850189B
- Authority
- TW
- Taiwan
- Prior art keywords
- query
- condition
- keyword
- coefficient
- greenhouse gas
- Prior art date
Links
Images
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
Description
本發明涉及一種碳盤查技術,特別是指一種溫室氣體排放係數的查詢系統。The present invention relates to a carbon inventory technology, and in particular to a greenhouse gas emission coefficient inquiry system.
當企業要進行溫室氣體排放量估算時,通常需要先選定適用的溫室氣體排放係數,例如但不限於碳排放係數。而溫室氣體排放係數的選用需要考量諸多因素,例如但不限於產品或原物料類別、地理位置和年份等。因此,即便是具備一定程度專業知識和經驗的專業人士,也容易選到不洽當的溫室氣體排放係數,而導致溫室氣體排放量估算錯誤。When companies want to estimate greenhouse gas emissions, they usually need to first select an appropriate greenhouse gas emission factor, such as but not limited to the carbon emission factor. The selection of greenhouse gas emission factors needs to take into account many factors, such as but not limited to product or raw material category, geographical location and year. Therefore, even professionals with a certain degree of professional knowledge and experience can easily choose an inappropriate greenhouse gas emission factor, resulting in an incorrect estimate of greenhouse gas emissions.
此外,溫室氣體排放係數的選用一般是從此企業所在國家或區域依據國際溫室氣體盤查標準(例如但不限於ISO14064-1:2018)制定的溫室氣體排放量計算準則(例如但不限於中華民國溫室氣體排放係數管理表)。若是所在國家或區域沒有制定計算準則,則需要從鄰近的國家或區域所制定計算準則中選用。而不同國家或區域制定的溫室氣體排放係數管理表的格式都不盡相同,無形地增加選用溫室氣體排放係數的困難度。In addition, the greenhouse gas emission coefficient is generally selected from the greenhouse gas emission calculation criteria (such as but not limited to the greenhouse gas emission coefficient management table of the Republic of China) formulated by the country or region where the enterprise is located in accordance with the international greenhouse gas inventory standards (such as but not limited to ISO14064-1:2018). If the country or region where the enterprise is located has not formulated calculation criteria, it is necessary to select from the calculation criteria formulated by neighboring countries or regions. The formats of greenhouse gas emission coefficient management tables formulated by different countries or regions are not the same, which invisibly increases the difficulty of selecting greenhouse gas emission coefficients.
為克服現有技術的問題,本發明的目的是提供一種溫室氣體排放係數的查詢系統,讓使用者能更方便、更容易地選擇較適用的溫室氣體排放係數。In order to overcome the problems of the prior art, the purpose of the present invention is to provide a greenhouse gas emission coefficient inquiry system so that users can more conveniently and easily select a more suitable greenhouse gas emission coefficient.
本發明根據一實施例所提供的一種溫室氣體排放係數的查詢系統,包含:一係數資料庫,用以儲存一資料模型,該資料模型是基於國際溫室氣體盤查標準,至少由多個格式不同的溫室氣體排放係數表的資料彙整而成,且包含多筆候選排放係數、各該候選排放係數對應的候選條件和各該候選排放係數對應的至少一個關聯性權重值,各該候選條件包含多筆條件參數;一搜尋單元,與該係數資料庫通訊連接,且用以:取得一查詢條件,該查詢條件包含多個不同的查詢標籤;根據該查詢條件,從該資料模型中搜尋符合的至少一個候選排放係數並取得符合的各該候選排放係數對應的各該關聯性權重值,符合的各該候選排放係數對應的該候選條件至少部分相同於該查詢條件;依據取得的各該關聯性權重值,從符合的各該候選排放係數中篩選出至少一個候選排放係數作為一查詢結果;以及輸出該查詢結果,以供使用者選擇;一人工智慧學習單元,與該係數資料庫通訊連接,且用以:取得一係數選擇結果,該係數選擇結果指向該查詢條件與一目標排放係數,該目標排放係數是該使用者從該查詢結果中選出的候選排放係數;以及利用人工智慧演算法,根據該係數選擇結果計算對應該查詢條件與該目標排放係數之間的關聯性的關聯性權重值給該目標排放係數,以更新至該資料模型;以及一圖形使用者介面,與該搜尋單元和該人工智慧學習單元通訊連接,且用以供該使用者輸入資料,以形成該查詢條件,以及用以呈現該查詢結果給該使用者選擇,以產生該係數選擇結果。The present invention provides a greenhouse gas emission coefficient query system according to an embodiment, comprising: a coefficient database for storing a data model, the data model is based on the international greenhouse gas inventory standard, and is at least a collection of data from a plurality of greenhouse gas emission coefficient tables in different formats, and includes a plurality of candidate emission coefficients, candidate conditions corresponding to each candidate emission coefficient, and at least one correlation weight value corresponding to each candidate emission coefficient, each candidate condition The data model comprises a plurality of condition parameters; a search unit is connected to the coefficient database and is used to: obtain a query condition, the query condition comprises a plurality of different query tags; according to the query condition, search for at least one candidate emission coefficient that meets the query condition from the data model and obtain the correlation weight values corresponding to each candidate emission coefficient that meets the query condition, wherein the candidate condition corresponding to each candidate emission coefficient that meets the query condition is at least partially the same as the query condition; according to each obtained The correlation weight value is used to filter out at least one candidate emission coefficient from the candidate emission coefficients that meet the requirements as a query result; and the query result is output for selection by a user; an artificial intelligence learning unit is connected to the coefficient database and is used to: obtain a coefficient selection result, the coefficient selection result points to the query condition and a target emission coefficient, and the target emission coefficient is the candidate emission coefficient selected by the user from the query result; and Using an artificial intelligence algorithm, a correlation weight value corresponding to the correlation between the query condition and the target emission coefficient is calculated according to the coefficient selection result to give the target emission coefficient to update the data model; and a graphical user interface is connected to the search unit and the artificial intelligence learning unit, and is used for the user to input data to form the query condition, and is used to present the query result to the user for selection to generate the coefficient selection result.
可選擇地,該資料模型更包含不同的關鍵字標籤,各該關鍵字標籤關聯於至少一該條件參數,且該查詢系統更包含:一圖形使用者介面,與該搜尋單元和該人工智慧學習單元通訊連接,且用以呈現該查詢結果,以供該使用者作選擇,從而產生該係數選擇結果給該人工智慧學習單元,以及用以供該使用者輸入一關鍵字的局部;及一推薦單元,與該圖形使用者介面、該搜尋單元和該係數資料庫通訊連接,且用以依據該關鍵字的局部,從該資料模型中搜尋出符合的關鍵字標籤作為關鍵字推薦,並將該關鍵字推薦呈現於該圖形使用者介面,以供該使用者選擇,然後根據該使用者對該關鍵字推薦的選擇,從該資料模型中搜尋出相關連的條件參數,以生成該查詢條件的至少一部分給該搜尋單元,符合的各該關鍵字標籤包含該關鍵字的局部。Optionally, the data model further includes different keyword tags, each of which is associated with at least one of the conditional parameters, and the query system further includes: a graphical user interface, which is in communication with the search unit and the artificial intelligence learning unit and is used to present the query results for the user to choose, thereby generating the coefficient selection results for the artificial intelligence learning unit, and for the user to input a part of a keyword; and a recommendation unit, which is in communication with the graphical user interface, the search unit and the artificial intelligence learning unit. The search unit is communicatively connected to the coefficient database and is used to search for matching keyword tags from the data model as keyword recommendations based on the part of the keyword, and present the keyword recommendations on the graphical user interface for the user to select. Then, based on the user's selection of the keyword recommendation, the data model is searched for related condition parameters to generate at least a part of the query condition for the search unit, wherein each matching keyword tag includes the part of the keyword.
可選擇地,該資料模型更包含不同的關鍵字標籤,各該關鍵字標籤關聯於至少一該條件參數,且該查詢系統更包含:一圖形使用者介面,與該搜尋單元和該人工智慧學習單元通訊連接,且用以呈現該查詢結果,以供該使用者作選擇,從而產生該係數選擇結果給該人工智慧學習單元,以及用以供該使用者輸入一關鍵字;及一推薦單元,與該圖形使用者介面、該搜尋單元和該係數資料庫通訊連接,且用以根據該關鍵字從該資料模型中搜尋符合的關鍵字標籤,並從該資料模型中找出關聯於符合的該關鍵字標籤的條件參數作為查詢標籤推薦,然後將該查詢標籤推薦呈現於該圖形使用者介面,以供該使用者選擇,然後根據該使用者對該查詢標籤推薦的選擇,生成該查詢條件的至少一部分給該搜尋單元。Optionally, the data model further includes different keyword tags, each of which is associated with at least one of the conditional parameters, and the query system further includes: a graphical user interface, which is in communication with the search unit and the artificial intelligence learning unit and is used to present the query results for the user to choose, thereby generating the coefficient selection results for the artificial intelligence learning unit, and for the user to input a keyword; and a recommendation unit, which is in communication with the graphical user interface. The interface, the search unit and the coefficient database are communicatively connected, and are used to search for matching keyword tags from the data model based on the keyword, and find conditional parameters associated with the matching keyword tags from the data model as query tag recommendations, and then present the query tag recommendations on the graphical user interface for the user to select, and then generate at least a portion of the query conditions for the search unit based on the user's selection of the query tag recommendation.
可選擇地,該資料模型更包含不同的關鍵字標籤,各該關鍵字標籤關聯於至少一該條件參數,且該查詢系統更包含:一圖形使用者介面,與該搜尋單元和該人工智慧學習單元通訊連接,且用以呈現該查詢結果,以供該使用者作選擇,從而產生該係數選擇結果給該人工智慧學習單元,以及用以供該使用者輸入一文字串;及一推薦單元,與該圖形使用者介面、該搜尋單元和該係數資料庫通訊連接,且用以從該資料模型中搜尋出現在該文字串中的關鍵字標籤,然後從該資料模型中找出關聯於搜尋出的各該關鍵字標籤的條件參數,以生成該查詢條件的至少一部分給該搜尋單元。Optionally, the data model further includes different keyword tags, each of which is associated with at least one of the conditional parameters, and the query system further includes: a graphical user interface, which is communicated with the search unit and the artificial intelligence learning unit and is used to present the query results for the user to select, thereby generating the coefficient selection results for the artificial intelligence learning unit, and for the user to input a text string; and a recommendation unit, which is communicated with the graphical user interface, the search unit and the coefficient database and is used to search for keyword tags appearing in the text string from the data model, and then find the conditional parameters associated with each of the searched keyword tags from the data model to generate at least a part of the query conditions for the search unit.
可選擇地,該資料模型更包含不同的關鍵字標籤,各該關鍵字標籤關聯於至少一該條件參數,且該查詢系統更包含:一圖形使用者介面,與該搜尋單元和該人工智慧學習單元通訊連接,且用以呈現該查詢結果,以供該使用者作選擇,從而產生該係數選擇結果給該人工智慧學習單元,以及用以供該使用者在其上輸入一檔案;一識別單元,與該圖形使用者介面通訊連接,且用以識別或擷取該檔案中的文字內容;及一推薦單元,與該識別單元、該搜尋單元和該係數資料庫通訊連接,且用以從該資料模型中搜尋出現在該文字內容中的關鍵字標籤,然後從該資料模型中找出關聯於搜尋出的各該關鍵字標籤的條件參數,以生成該查詢條件的至少一部分給該搜尋單元。Optionally, the data model further includes different keyword tags, each of which is associated with at least one of the conditional parameters, and the query system further includes: a graphical user interface, which is connected to the search unit and the artificial intelligence learning unit, and is used to present the query results for the user to choose, thereby generating the coefficient selection results for the artificial intelligence learning unit, and for the user to input a file thereon; an identification A unit is communicatively connected to the graphical user interface and is used to identify or extract the text content in the file; and a recommendation unit is communicatively connected to the identification unit, the search unit and the coefficient database and is used to search for keyword tags appearing in the text content from the data model, and then find out the condition parameters associated with each of the searched keyword tags from the data model to generate at least a part of the query condition for the search unit.
可選擇地,該推薦單元先利用自然語言處理(Natural Language Processing,NLP)技術和大語言模型(Large Language Model,LLM)技術對在該圖形使用者介面上輸入的資料進行翻譯後,再進行關鍵字標籤的搜尋。Optionally, the recommendation unit first translates the data input on the graphical user interface using natural language processing (NLP) technology and large language model (LLM) technology, and then searches for keyword tags.
可選擇地,各該候選條件包含一主條件部分和一附加條件部分,該推薦單元是從各該主條件部分中選擇各該條件參數。Optionally, each of the candidate conditions includes a main condition part and an additional condition part, and the recommendation unit selects each of the condition parameters from each of the main condition parts.
可選擇地,該推薦單元是利用自然語言處理技術進行搜尋,並且利用大語言模型技術生成該查詢條件的至少一部分。Optionally, the recommendation unit searches using natural language processing technology and generates at least a portion of the query condition using large language model technology.
可選擇地,該資料模型是利用自然語言處理技術和大語言模型技術,依據該國際溫室氣體盤查標準和至少該些溫室氣體排放係數表的資料來建立。Optionally, the data model is established using natural language processing technology and large language model technology based on data from the international greenhouse gas inventory standards and at least the greenhouse gas emission factor tables.
可選擇地,該些溫室氣體排放係數表是由不同國家、地區或企業制定。Optionally, the greenhouse gas emission coefficient tables are developed by different countries, regions or companies.
可選擇地,該人工智慧學習單元利用基於增強式學習(Reinforcement learning,RL)的演算法進行關聯性權重值的估算。Optionally, the artificial intelligence learning unit estimates the relevance weight value using an algorithm based on reinforcement learning (RL).
可選擇地,該搜尋單元、該人工智慧學習單元和該推薦單元是由至少一個處理器實現。或者,該搜尋單元、該人工智慧學習單元、該推薦單元和該識別單元是由至少一個處理器實現。Optionally, the search unit, the artificial intelligence learning unit and the recommendation unit are implemented by at least one processor. Alternatively, the search unit, the artificial intelligence learning unit, the recommendation unit and the identification unit are implemented by at least one processor.
可選擇地,該係數資料庫實現於一儲存器。Optionally, the coefficient database is implemented in a memory.
可選擇地,該係數資料庫、該人工智慧學習單元、該搜尋單元和該推薦單元是設置於一服務端伺服器,該圖形使用者介面是由安裝於該使用者的計算機裝置的一應用程式提供,該計算機裝置可連線至該服務端伺服器。或者可選擇地,該係數資料庫、該人工智慧學習單元、該搜尋單元、該推薦單元是設置於一服務端伺服器,該圖形使用者介面是由安裝於該服務端伺服器的一應用程式提供。或者可選擇地,該係數資料庫、該人工智慧學習單元、該搜尋單元、該推薦單元是設置於一服務端伺服器,該圖形使用者介面是由安裝於該服務端伺服器的一應用程式提供,並經由網頁顯示於該使用者的計算機裝置,該計算機裝置可連線至該網頁。Alternatively, the coefficient database, the artificial intelligence learning unit, the search unit and the recommendation unit are arranged on a server-side server, and the graphical user interface is provided by an application installed on the user's computer device, and the computer device can be connected to the server-side server. Alternatively, the coefficient database, the artificial intelligence learning unit, the search unit and the recommendation unit are arranged on a server-side server, and the graphical user interface is provided by an application installed on the server-side server. Alternatively, the coefficient database, the artificial intelligence learning unit, the search unit, and the recommendation unit are located on a server-side server, and the graphical user interface is provided by an application installed on the server-side server and displayed on the user's computer device via a web page, and the computer device can be connected to the web page.
由上述可知,本發明所提供的溫室氣體排放係數的查詢系統藉由彙整不同格式的溫室氣體排放係數表於資料模型中,讓使用者僅利用單一查詢工具就可查詢不同單位(例如但不限於國家、區域或企業)制定的係數,降低選用係數的複雜度;藉由人工智慧技術,統計使用者從搜尋結果中選擇的結果作為往後提供係數推薦的依據,以提升係數推薦的準確性;藉由提供互動式引導的功能,讓使用者透過輸入關鍵字的局部的方式就能輕鬆地獲得關鍵字推薦,以增進查詢條件設定的便利性;藉由提供互動式引導的功能,讓使用者透過輸入關鍵字的方式就能輕鬆地獲得參數推薦,以增進查詢條件設定的便利性;以及藉由提供文字識別功能,讓使用者透過輸入文字串或檔案(例如但不限於產品的使用說明書)就能輕鬆地獲得係數推薦(即查詢結果)。藉此,即便是非專業人士,也能利用本發明的查詢系統查詢出較適用的溫室氣體排放係數。As can be seen from the above, the greenhouse gas emission coefficient query system provided by the present invention integrates greenhouse gas emission coefficient tables of different formats into a data model, allowing users to query coefficients formulated by different units (such as but not limited to countries, regions or enterprises) using only a single query tool, thereby reducing the complexity of selecting coefficients; through artificial intelligence technology, the results selected by users from the search results are statistically analyzed as the basis for providing coefficient recommendations in the future, so as to improve the accuracy of coefficient recommendations; by providing an interactive guide By providing a guidance function, the user can easily obtain keyword recommendations by inputting a partial keyword, so as to enhance the convenience of setting the query conditions; by providing an interactive guidance function, the user can easily obtain parameter recommendations by inputting a keyword, so as to enhance the convenience of setting the query conditions; and by providing a text recognition function, the user can easily obtain coefficient recommendations (i.e., query results) by inputting a text string or a file (such as but not limited to the product manual). In this way, even non-professionals can use the query system of the present invention to query more suitable greenhouse gas emission coefficients.
請參考圖1至圖7所示,本發明根據一實施例所提供的查詢系統是適於查詢溫室氣體排放係數(例如但不限於碳排放係數),以提供查詢者(即使用者)較正確和較收斂的查詢結果。查詢系統包含至少一儲存器(未繪示)、至少一處理器(未繪示)和一圖形使用者介面30,前述的儲存器與前述的處理器之間相互電性連接,圖形使用者介面30與前述的處理器通訊連接。Please refer to FIG. 1 to FIG. 7 , the query system provided by the present invention according to one embodiment is suitable for querying greenhouse gas emission coefficients (such as but not limited to carbon emission coefficients) to provide the queryer (i.e., the user) with more accurate and more convergent query results. The query system includes at least one storage (not shown), at least one processor (not shown) and a
前述的儲存器包含一係數資料庫11,係數資料庫11可儲存一資料模型。資料模型例如但不限於是利用自然語言處理技術和大語言模型技術,基於國際溫室氣體盤查標準,至少彙整多個格式不同的溫室氣體排放係數表的資料來建立,且包含多筆候選排放係數、各候選排放係數對應的至少一個候選條件和各候選排放係數對應的至少一個關聯性權重值,各候選條件包含多筆條件參數。一關聯性權重值表示一組條件參數(即一查詢條件的一組查詢標籤)與一候選排放係數(即目標排放係數)之間的關聯性(即相關聯的程度)。這些溫室氣體排放係數表是由不同國家、地區或企業制定。The aforementioned storage includes a
在本實施例或其他實施例中,資料模型選擇性地可更包含不同的關鍵字標籤,各個關鍵字標籤關聯於至少一個條件參數。例如,所有的關鍵字標籤可以是彼此相互獨立的;或者,至少其中兩個關鍵字標籤彼此為同義詞,例如天然氣的同義詞為天然瓦斯;或者,至少其中兩個關鍵字標籤彼此為相似詞,例如天然氣的相似詞為液化石油氣和瓦斯;或者,至少其中一個關鍵字標籤是另一個關鍵字標籤的不同語言的翻譯(例如“玻璃”的英文翻譯是“Glass”)或字體轉換(例如繁體字與簡體字之間的轉換);或者,前述該等範例的任一組合。In this embodiment or other embodiments, the data model may optionally further include different keyword tags, each keyword tag being associated with at least one conditional parameter. For example, all keyword tags may be independent of each other; or, at least two of the keyword tags are synonyms of each other, such as the synonym of natural gas is natural gas; or, at least two of the keyword tags are similar words to each other, such as the similar words of natural gas are liquefied petroleum gas and gas; or, at least one of the keyword tags is a translation of another keyword tag in a different language (for example, the English translation of "glass" is "Glass") or a font conversion (for example, the conversion between traditional Chinese characters and simplified Chinese characters); or, any combination of the aforementioned examples.
在本實施例或其他實施例中,資料模型例如但不限於包含相關聯的至少一個表單。例如,表一呈現一個表單的一部分,包含多個條件參數(亦即“係數來源”、“州”、“國家”、“地區”、“排放源形式”、“工業類別”、“工業製程”、“產品或原燃物料的區分”、“產品或原燃物料名稱”、“產生溫室氣體種類”、“CO 2係數”和“係數單位”)及其參數內容。然而,本發明並不限於此。 In this embodiment or other embodiments, the data model includes, for example but not limited to, at least one associated table. For example, Table 1 presents a portion of a table, including multiple conditional parameters (i.e., "coefficient source", "state", "country", "region", "emission source form", "industrial category", "industrial process", "product or raw fuel material classification", "product or raw fuel material name", "greenhouse gas type", " CO2 coefficient" and "coefficient unit") and their parameter contents. However, the present invention is not limited to this.
表一
處理器至少包含一搜尋單元21和一人工智慧學習單元22。The processor at least includes a
搜尋單元21可與圖形使用者介面30通訊連接,且可取得一查詢條件,然後根據此查詢條件從資料模型中搜尋符合的候選排放係數,從資料模型中取得符合的各個候選排放係數對應的各關聯性權重值,並且依據取得的各個關聯性權重值從符合的候選排放係數中篩選出候選排放係數作為一查詢結果,最後輸出查詢結果,以供使用者選擇。符合的各個候選排放係數對應的候選條件包含查詢條件。The
人工智慧學習單元22可與係數資料庫11和圖形使用者介面30通訊連接,且可從圖形使用者介面30取得一係數選擇結果,以及利用人工智慧演算法(例如但不限於基於增強式學習的演算法),根據係數選擇結果計算對應查詢條件與目標排放係數之間的關聯性的關聯性權重值給目標排放係數,以更新至資料模型。係數選擇結果指向查詢條件與目標排放係數,目標排放係數是使用者從查詢結果中選出的候選排放係數。The artificial
圖形使用者介面30可供使用者輸入用以形成查詢條件的資料,以及可呈現查詢結果給使用者選擇,以產生係數選擇結果。The
以下示範性地說明查詢系統提供查詢結果的查詢方法。The following is an exemplary description of the query method by which the query system provides query results.
首先,如步驟S11所示,搜尋單元21取得查詢條件。例如,此查詢條件包含多個不同的查詢標籤,例如圖5H所示之“1.3製程排放源”、“採掘工程”、“玻璃製程”、“台灣”和“2021”。First, as shown in step S11, the
然後,如步驟S13所示,搜尋單元21根據此查詢條件,從資料模型中搜尋出符合的至少一個候選排放係數。在本實施例或其他實施例中,符合的候選排放係數對應的至少其中兩個條件參數相同於查詢條件的至少其中兩個查詢標籤。Then, as shown in step S13, the
接著,如步驟S15所示,搜尋單元21從資料模型中取得各個溫室氣體排放係數對應的每個關聯性權重值。Next, as shown in step S15, the
隨後,如步驟S17所示,搜尋單元21根據取得的關聯性權重值,從符合的候選排放係數中篩選作為查詢結果的候選排放係數。篩選條件例如但不限於是依據關聯性權重值的大小排序,選擇前面N個較大的關聯性權重值所對應的候選排放係數,或者是選擇大於或等於一預設閥值的關聯性權重值所對應的候選排放係數。N為大於0的正整數且為預設值。Then, as shown in step S17, the
最後,如步驟S19所示,搜尋單元21輸出查詢結果至圖形使用者介面30,以呈現在圖形使用者介面30上供使用者從其中選出一個候選排放係數作為目標排放係數。Finally, as shown in step S19, the
由於資料模型涵蓋了不同格式的溫室氣體排放係數表的資料,讓使用者不必逐一從這些不同格式的溫室氣體排放係數表查找係數,因此可大幅地節省時間和人力。Since the data model covers data from greenhouse gas emission coefficient tables in different formats, users do not have to look up coefficients from these greenhouse gas emission coefficient tables in different formats one by one, thus greatly saving time and manpower.
並且,當使用者選出目標排放係數後,查詢系統會統計係數選擇結果,以優化查詢結果,舉例說明如下。係數選擇結果是指使用者從查詢結果中選擇的結果。Furthermore, when the user selects the target emission coefficient, the query system will collect statistics on the coefficient selection results to optimize the query results, as shown below. The coefficient selection results refer to the results selected by the user from the query results.
首先,如步驟S21所示,人工智慧學習單元22從圖形使用者介面30接收上述的係數選擇結果。係數選擇結果指向查詢條件與目標排放係數。First, as shown in step S21, the artificial
接著,如步驟S23所示,人工智慧學習單元22根據係數選擇結果,利用人工智慧演算法(例如但不限於基於增強式學習的演算法),計算新的關聯性權重值給目標排放係數。此關聯性權重值表示此查詢條件與目標排放係數之間的關聯性。Next, as shown in step S23, the artificial
最後,如步驟S25所示,將此新的關聯性權重值更新至資料模型中,以替換對應目標排放係數的舊的關聯性權重值。Finally, as shown in step S25, the new relevance weight value is updated to the data model to replace the old relevance weight value corresponding to the target emission factor.
藉由上述查詢結果的優化,之後的使用者所獲得的查詢結果將可比先前的使用者所獲得的查詢結果更準確。By optimizing the query results described above, the query results obtained by subsequent users will be more accurate than the query results obtained by previous users.
在本發明中,查詢系統的處理器可選擇地更包含一推薦單元23或者可選擇地更包含一推薦單元23和一識別單元24。推薦單元23可與圖形使用者介面30、搜尋單元21和係數資料庫11通訊連接,以透過互動式引導,提供關鍵字推薦給使用者,從而逐步完成查詢條件的設定。推薦單元23例如但不限於是利用自然語言處理技術在係數資料庫11中進行搜尋,並且利用大語言模型技術生成查詢條件的至少一部分,然後提供給搜尋單元21。識別單元24可與圖形使用者介面30和推薦單元23通訊連接,以辨識並擷取在圖形使用者介面30上輸入之資料的文字,然後提供給推薦單元23。In the present invention, the processor of the query system may optionally further include a
在本發明中,在步驟S11可以用不同的方式生成查詢條件。以下舉例說明。然而,本發明並不限於這些範例。In the present invention, the query conditions can be generated in step S11 in different ways. The following examples are given to illustrate. However, the present invention is not limited to these examples.
<範例1><Example 1>
圖形使用者介面30可一次性或逐步地提供多個欄位(例如但不限於下拉式選單)給使用者在其上設定不同的查詢標籤(例如但不限於“1.3製程排放源”、“採掘工程”、“玻璃製程”、“台灣”和“2021”等)的內容,以形成查詢條件給搜尋單元21。The
<範例2><Example 2>
圖形使用者介面30可提供至少一個欄位給使用者輸入關鍵字的局部,並透過互動式引導,讓使用者獲得關鍵字推薦,以逐步完成查詢條件的設定。以下將援用圖4示範性地說明利用關鍵字的局部生成查詢條件的至少一部分的方式。The
首先,在步驟S31,當用者可在圖形使用者介面30提供的一個欄位上輸入一關鍵字(例如但不限於“玻璃”)的局部(例如“玻”)(圖6A所示)時,推薦單元23便可從圖形使用者介面30接收此關鍵字的局部。First, in step S31, when the user enters a part (e.g., “玻璃”) of a keyword (e.g., but not limited to, “玻璃”) in a field provided by the graphical user interface 30 (as shown in FIG. 6A ), the
接著,在步驟S32,推薦單元23可依據此關鍵字的局部,藉由與資料模型的資料作比對的方式,從資料模型中搜尋出符合的關鍵字標籤(例如但不限於“玻璃”)作為關鍵字推薦,並在步驟S33輸出此關鍵字推薦,以呈現在圖形使用者介面30(如圖5A所示)上給使用者選擇。符合的關鍵字標籤包含此關鍵字的局部。Next, in step S32, the
然後,推薦單元23可在步驟S34從圖形使用者介面30(如圖5B)接收使用者對關鍵字推薦的選擇(例如“玻璃”),並根據對關鍵字推薦的選擇,從資料模型中搜尋相關聯的條件參數(例如但不限於“玻璃”、“浮法玻璃”、“容器(弗林特)”、“容器(琥珀)”和“纖維玻璃(E玻璃)”)作為查詢標籤推薦,進而在步驟S35輸出此查詢標籤推薦至圖形使用者介面30(如圖5B所示)上給使用者選擇。Then, the
隨後,推薦單元23可在步驟S36從圖形使用者介面30接收使用者對查詢標籤推薦的選擇(例如“浮法玻璃”),並根據對查詢標籤推薦的選擇,從資料模型中搜尋相關連的一組條件參數(例如但不限於“1.3製程排放源”、“採掘工程”和“玻璃製程”)作為查詢標籤組合推薦,以輸出查詢標籤組合推薦至圖形使用者介面30給使用者選擇,如圖5C所示。Subsequently, the
最後,推薦單元23在步驟S37將使用者對查詢標籤組合推薦的選擇設定成至少部分的查詢條件,如圖5D所示。Finally, the
在本範例或其他範例,圖形使用者介面30可進一步提供欄位給使用者設定其他查詢標籤,例如“台灣”和“2021”,讓查詢條件更完整,如圖5E至圖5H所示。In this example or other examples, the
在此範例中,若使用者在圖形使用者介面30直接輸入一個關鍵字,則步驟S31至S33可省略。In this example, if the user directly inputs a keyword in the
在此範例中,在執行步驟S34之前,推薦單元23可先利用自然語言處理技術和大語言模型技術搭配資料模型中的資料,翻譯關鍵字、搜尋與關鍵字相關的同義詞或相似詞、轉換字體或執行前述的任一組合。In this example, before executing step S34, the
<範例3><Example 3>
圖形使用者介面30可提供欄位給使用者在其上輸入一文字串。文字串例如但不限於是由數個查詢標籤及用來區隔這些查詢標籤的符號組成,或者是從一篇文章擷取下來的一串文字,或者是一串包含至少一個查詢標籤的其他文字。以下將援用圖6示範性地說明利用文字串生成查詢條件的至少一部分的方式。The
首先,在步驟S41,當使用者在圖形使用者介面30上輸入文字串時,推薦單元23可從圖形使用者介面30取得此文字串。First, in step S41 , when the user inputs a text string on the
接著,在步驟S42,推薦單元23可將文字串與資料模型中的關鍵字標籤作比對,以搜尋出現在此文字串中的關鍵字標籤。Next, in step S42, the
然後,推薦單元23在步驟S43從資料模型中找出關聯於搜尋出的各個關鍵字標籤的條件參數。Then, the
最後,推薦單元23在步驟S44將搜尋出的條件參數設定成查詢條件的至少一部分,並提供給搜尋單元21。Finally, the
在此範例中,在執行步驟S42之前,推薦單元23可先利用自然語言處理技術和大語言模型技術搭配資料模型中的資料,翻譯關鍵字、搜尋與關鍵字相關的同義詞或相似詞、轉換字體或執行前述的任一組合。In this example, before executing step S42, the
<範例4><Example 4>
圖形使用者介面30可提供欄位給使用者在其上輸入一檔案,例如但不限於是產品的使用說明書。檔案的格式例如但不限於是PDF、Word檔格式、Excel檔格式或影像檔(例如但不限於JPG、PNG或TIFF)。以下將援用圖7示範性地說明利用檔案生成查詢條件的至少一部分的方式。The
首先,在步驟S51,當使用者在圖形使用者介面30上輸入檔案時,識別單元24可從圖形使用者介面30接收此檔案。First, in step S51, when the user inputs a file on the
接著,在步驟S52,識別單元24可識別或擷取此檔案中的文字內容,以提供給推薦單元23。例如,利用光學字元辨識(Optical Character Recognition,OCR)技術識別出PDF檔的文字內容。Next, in step S52, the
然後,在步驟S53,推薦單元23可將檔案的文字內容與資料模型中的關鍵字標籤作比對,以搜尋出現在此文字內容中的關鍵字標籤。Then, in step S53, the
隨後,在步驟S54,推薦單元23從資料模型中找出關聯於搜尋出的各個關鍵字標籤的條件參數。Then, in step S54, the
最後,在步驟S55,推薦單元23將搜尋出的條件參數設定成查詢條件的至少一部分,並提供給搜尋單元21。Finally, in step S55, the
在此範例中,在執行步驟S53之前,推薦單元23可先利用自然語言處理技術和大語言模型技術搭配資料模型中的資料,翻譯關鍵字、搜尋與關鍵字相關的同義詞或相似詞、轉換字體或執行前述的任一組合。In this example, before executing step S53, the
在本實施例或其他實施例,候選條件包含一主條件部分和一附加條件部分,且推薦單元23是從各主條件部分中選擇各條件參數。以表一的例子來說,主條件部分例如但不限於包含對應“排放源形式、“工業類別”、“工業製程”、“產品或原燃物料的區分”、“產品或原燃物料名稱”和“產生溫室氣體種類”等項目的資料,附加條件部分例如但不限於包含對應“州”、“國家”和“地區”等項目的資料。甚至附加條件部分還可包含對應“年份”等項目的資料。In this embodiment or other embodiments, the candidate condition includes a main condition part and an additional condition part, and the
在本發明中,該等處理器和儲存器是設置於一服務端伺服器(未繪示),圖形使用者介面30則是由安裝於使用者的計算機裝置(未繪示)的一應用程式提供,且此計算機裝置可連線至服務端伺服器;或者,該等處理器和儲存器是設置於一服務端伺服器,圖形使用者介面30是由安裝於此服務端伺服器的一應用程式提供;或者,該等處理器和儲存器是設置於一服務端伺服器,而圖形使用者介面30是由安裝於服務端伺服器的一應用程式提供,並經由網頁顯示於使用者的計算機裝置,此計算機裝置可連線至此網頁。In the present invention, the processors and memories are arranged on a server-side server (not shown), and the
綜上所述,本發明所提供的溫室氣體排放係數的查詢系統藉由彙整不同格式的溫室氣體排放係數表於資料模型中,讓使用者僅利用單一查詢工具就可查詢不同單位(例如但不限於國家、區域或企業)制定的係數,降低選用係數的複雜度;藉由人工智慧技術,統計使用者從搜尋結果中選擇的結果作為往後提供係數推薦的依據,以提升係數推薦的準確性;藉由提供互動式引導的功能,讓使用者透過輸入關鍵字的局部的方式就能輕鬆地獲得關鍵字推薦,以增進查詢條件設定的便利性;藉由提供互動式引導的功能,讓使用者透過輸入關鍵字的方式就能輕鬆地獲得參數推薦,以增進查詢條件設定的便利性;以及藉由提供文字識別功能,讓使用者透過輸入文字串或檔案(例如但不限於產品的使用說明書)就能輕鬆地獲得係數推薦(即查詢結果)。藉此,即便是非專業人士,也能利用本發明的查詢系統查詢出較適用的溫室氣體排放係數。In summary, the greenhouse gas emission coefficient query system provided by the present invention integrates greenhouse gas emission coefficient tables of different formats into a data model, allowing users to query coefficients formulated by different units (such as but not limited to countries, regions or enterprises) using only a single query tool, thereby reducing the complexity of selecting coefficients; through artificial intelligence technology, the results selected by users from the search results are statistically analyzed as the basis for providing coefficient recommendations in the future, so as to improve the accuracy of coefficient recommendations; by providing an interactive guide By providing a guidance function, the user can easily obtain keyword recommendations by inputting a partial keyword, so as to enhance the convenience of setting the query conditions; by providing an interactive guidance function, the user can easily obtain parameter recommendations by inputting a keyword, so as to enhance the convenience of setting the query conditions; and by providing a text recognition function, the user can easily obtain coefficient recommendations (i.e., query results) by inputting a text string or a file (such as but not limited to the product manual). In this way, even non-professionals can use the query system of the present invention to query more suitable greenhouse gas emission coefficients.
雖然本發明以前述之實施例揭露如上,然而這些實施例並非用以限定本發明。在不脫離本發明之精神和範圍內,所為之更動、潤飾與各實施態樣的組合,均屬本發明之專利保護範圍。關於本發明所界定之保護範圍請參考所附之申請專利範圍。Although the present invention is disclosed as above with the aforementioned embodiments, these embodiments are not intended to limit the present invention. Within the spirit and scope of the present invention, the changes, modifications and combinations of various embodiments are all within the scope of patent protection of the present invention. For the scope of protection defined by the present invention, please refer to the attached patent application scope.
11:係數資料庫11: Coefficient database
21:搜尋單元21:Search unit
22:人工智慧學習單元22: Artificial Intelligence Learning Unit
23:推薦單元23: Recommended Unit
24:識別單元24: Identification unit
30:圖形使用者介面30: Graphical User Interface
在結合以下附圖研究了詳細描述之後,將發現本發明的其他方面及其優點: 圖1為根據本發明一實施例的溫室氣體排放係數的查詢系統的功能方塊圖; 圖2為根據本發明一實施例溫室氣體排放係數的查詢方法的流程圖; 圖3為根據本發明一實施例優化查詢結果的方法的流程圖; 圖4為根據本發明一實施例利用關鍵字的局部生成查詢條件的至少一部分的方法的流程圖; 圖5A為圖1的查詢系統的圖形使用者介面的示意圖,以呈現使用者在欄位中輸入關鍵字的局部的狀態; 圖5B為圖1的查詢系統的圖形使用者介面的示意圖,以呈現根據對關鍵字推薦的選擇,提供查詢標籤推薦的狀態; 圖5C為圖1的查詢系統的圖形使用者介面的示意圖,以呈現根據對查詢標籤推薦的選擇,提供查詢標籤組合推薦的狀態; 圖5D為圖1的查詢系統的圖形使用者介面的示意圖,以呈現提供用以設定屬於附加條件部分的條件參數的欄位的狀態; 圖5E為圖1的查詢系統的圖形使用者介面的示意圖,以呈現設定屬於附加條件部分的條件參數的狀態; 圖5F為圖1的查詢系統的圖形使用者介面的示意圖,以呈現提供用以設定屬於附加條件部分的條件參數的欄位的狀態; 圖5G為圖1的查詢系統的圖形使用者介面的示意圖,以呈現設定屬於附加條件部分的條件參數的狀態; 圖5H為圖1的查詢系統的圖形使用者介面的示意圖,以呈現完成查詢條件的設定的狀態; 圖6為根據本發明一實施例利用文字串生成查詢條件的至少一部分的方法的流程圖;及 圖7為根據本發明一實施例利用檔案生成查詢條件的至少一部分的方法的流程圖。 After studying the detailed description in conjunction with the following figures, other aspects of the present invention and its advantages will be discovered: Figure 1 is a functional block diagram of a greenhouse gas emission coefficient query system according to an embodiment of the present invention; Figure 2 is a flow chart of a greenhouse gas emission coefficient query method according to an embodiment of the present invention; Figure 3 is a flow chart of a method for optimizing query results according to an embodiment of the present invention; Figure 4 is a flow chart of a method for generating at least a portion of a query condition using a portion of a keyword according to an embodiment of the present invention; Figure 5A is a schematic diagram of a graphical user interface of the query system of Figure 1 to present the state of a user entering a portion of a keyword in a field; FIG. 5B is a schematic diagram of a graphical user interface of the query system of FIG. 1, showing a state of providing query tag recommendations based on a selection of keyword recommendations; FIG. 5C is a schematic diagram of a graphical user interface of the query system of FIG. 1, showing a state of providing query tag combination recommendations based on a selection of query tag recommendations; FIG. 5D is a schematic diagram of a graphical user interface of the query system of FIG. 1, showing a state of providing a field for setting a condition parameter belonging to an additional condition part; FIG. 5E is a schematic diagram of a graphical user interface of the query system of FIG. 1, showing a state of setting a condition parameter belonging to an additional condition part; FIG. 5F is a schematic diagram of a graphical user interface of the query system of FIG. 1, showing the state of providing fields for setting condition parameters belonging to the additional condition part; FIG. 5G is a schematic diagram of a graphical user interface of the query system of FIG. 1, showing the state of setting condition parameters belonging to the additional condition part; FIG. 5H is a schematic diagram of a graphical user interface of the query system of FIG. 1, showing the state of completing the setting of the query condition; FIG. 6 is a flow chart of a method for generating at least a part of the query condition using a text string according to an embodiment of the present invention; and FIG. 7 is a flow chart of a method for generating at least a part of the query condition using a file according to an embodiment of the present invention.
11:係數資料庫 11: Coefficient database
21:搜尋單元 21:Search unit
22:人工智慧學習單元 22: Artificial Intelligence Learning Unit
23:推薦單元 23: Recommended Units
24:識別單元 24: Identification unit
30:圖形使用者介面 30: Graphical User Interface
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW113108768A TWI850189B (en) | 2024-03-11 | 2024-03-11 | Inquiry system for greenhouse gas emission factors |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW113108768A TWI850189B (en) | 2024-03-11 | 2024-03-11 | Inquiry system for greenhouse gas emission factors |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TWI850189B true TWI850189B (en) | 2024-07-21 |
| TW202536689A TW202536689A (en) | 2025-09-16 |
Family
ID=92929703
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW113108768A TWI850189B (en) | 2024-03-11 | 2024-03-11 | Inquiry system for greenhouse gas emission factors |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI850189B (en) |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20210109958A1 (en) * | 2019-10-14 | 2021-04-15 | Stacks LLC | Conceptual, contextual, and semantic-based research system and method |
| CN114417255A (en) * | 2021-12-21 | 2022-04-29 | 新奥数能科技有限公司 | Carbon emission quantification platform and carbon emission quantification system |
| TWI773414B (en) * | 2021-07-01 | 2022-08-01 | 致理學校財團法人致理科技大學 | Real estate valuating system and method using machine learning |
| TW202349325A (en) * | 2022-06-02 | 2023-12-16 | 睿加科技股份有限公司 | A system of semantic analysis-based trademark class recommendation and the method thereof |
-
2024
- 2024-03-11 TW TW113108768A patent/TWI850189B/en active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20210109958A1 (en) * | 2019-10-14 | 2021-04-15 | Stacks LLC | Conceptual, contextual, and semantic-based research system and method |
| TWI773414B (en) * | 2021-07-01 | 2022-08-01 | 致理學校財團法人致理科技大學 | Real estate valuating system and method using machine learning |
| CN114417255A (en) * | 2021-12-21 | 2022-04-29 | 新奥数能科技有限公司 | Carbon emission quantification platform and carbon emission quantification system |
| TW202349325A (en) * | 2022-06-02 | 2023-12-16 | 睿加科技股份有限公司 | A system of semantic analysis-based trademark class recommendation and the method thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202536689A (en) | 2025-09-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN112948547B (en) | Logging knowledge graph construction query method, device, equipment and storage medium | |
| US7584188B2 (en) | System and method for searching and matching data having ideogrammatic content | |
| CN110516047A (en) | Retrieval method and retrieval system based on knowledge graph in packaging field | |
| CN111274267A (en) | Database query method and device and computer readable storage medium | |
| CN119557424B (en) | Data analysis method, system and storage medium | |
| CN119025552A (en) | A natural language intelligent number asking method, device and storage medium | |
| CN120297242A (en) | Bid generation method based on retrieval-enhanced generation and large language model | |
| TWI850189B (en) | Inquiry system for greenhouse gas emission factors | |
| CN115470319A (en) | Structured document demand rapid identification and entry organization management method | |
| CN117993876B (en) | Resume evaluation system, method, device and medium | |
| CN120256600A (en) | A method for querying exploration and development data based on knowledge graph and large language model | |
| CN119597863A (en) | Data processing method and system of intelligent organization construction system | |
| WO2021250094A1 (en) | A computer-implemented method of searching large-volume un-structured data with feedback loop and data processing device or system for the same | |
| CN114462659A (en) | A method and device for correcting an industry category | |
| CN120523828B (en) | A Method and System for Automatic Modeling of Digital Main Lines Based on Large Language Model | |
| CN119830891B (en) | Computing device, method, computer-readable storage medium, and computer program product for document element analysis | |
| CN121093946B (en) | A Method for Regulatory Differentiation Analysis Based on a Large Language Model | |
| CN120031026A (en) | A method and system for checking archive information | |
| CN120523889A (en) | A method, device and equipment for checking duplicates of product standard documents | |
| CN119718925A (en) | Software test case sharing and multiplexing method and system based on semantic understanding search | |
| CN119884167A (en) | Method for converting natural language into SQL (structured query language) sentence | |
| CN120892450A (en) | A banking business indicator query system and method combining knowledge graphs | |
| CN121413607A (en) | A Method for Extracting and Structured Processing Multi-Source Heterogeneous Information Based on Natural Gas Business Data | |
| CN120704673A (en) | A low-code-based dynamic process engine method, system, product, and medium | |
| CN117877039A (en) | Data identification and data management method for periodic inspection report of oil refining chemical equipment |