[go: up one dir, main page]

TWI848850B - Customized financial product recommendation method and system - Google Patents

Customized financial product recommendation method and system Download PDF

Info

Publication number
TWI848850B
TWI848850B TW112143371A TW112143371A TWI848850B TW I848850 B TWI848850 B TW I848850B TW 112143371 A TW112143371 A TW 112143371A TW 112143371 A TW112143371 A TW 112143371A TW I848850 B TWI848850 B TW I848850B
Authority
TW
Taiwan
Prior art keywords
fund
customer
data
fund type
financial product
Prior art date
Application number
TW112143371A
Other languages
Chinese (zh)
Other versions
TW202520185A (en
Inventor
謝信誠
Original Assignee
第一商業銀行股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第一商業銀行股份有限公司 filed Critical 第一商業銀行股份有限公司
Priority to TW112143371A priority Critical patent/TWI848850B/en
Application granted granted Critical
Publication of TWI848850B publication Critical patent/TWI848850B/en
Publication of TW202520185A publication Critical patent/TW202520185A/en

Links

Landscapes

  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)

Abstract

一種客製化金融產品推薦系統包含一處理單元,其執行以下操作:根據有關於M個客戶的客戶資料的第一顯性偏好資料和第二顯性偏好資料產生該等M個客戶對N種不同基金類型的顯性偏好的 稀疏矩陣;根據由該稀疏矩陣與經由奇異值分解演算法獲得其中多個缺值元素的預測值構成的 補值矩陣中每列的N個值,排序該等N種基金類型以獲得每一客戶的基金類型排序結果;調整每一客戶的該基金類型排序結果以使當前熱門基金類型具有最高優先順序;及根據自每一客戶調整後的基金類型排序結果擷取出的前P個基金類型產生該客戶的金融產品推薦結果。 A customized financial product recommendation system includes a processing unit that performs the following operations: generating explicit preferences of the M customers for N different fund types based on first explicit preference data and second explicit preference data of customer data about M customers; A sparse matrix; a matrix composed of the sparse matrix and the predicted values of the plurality of missing elements obtained by the singular value decomposition algorithm; The N values in each column of the matrix are filled, and the N fund types are sorted to obtain a fund type sorting result for each customer; the fund type sorting result for each customer is adjusted so that the currently popular fund types have the highest priority; and the financial product recommendation result for each customer is generated based on the top P fund types extracted from the adjusted fund type sorting result.

Description

客製化金融產品推薦方法及系統Customized financial product recommendation method and system

本發明是有關於金融產品推薦,特別是指一種客製化金融產品推薦方法及系統。The present invention relates to financial product recommendation, and more particularly to a customized financial product recommendation method and system.

現有的金融產品推薦系統大多是以簡單的統計分析結果,例如指示出最多人購買的產品、報酬率最高的產品等,作爲金融產品推薦的標準。上述的推薦方式不僅無法同時滿足具有不同產品偏好的客戶,而且更無法有效地幫助客戶篩選合適的金融產品。Most existing financial product recommendation systems use simple statistical analysis results, such as indicating the products that are purchased by the most people, the products with the highest return rate, etc., as the criteria for financial product recommendation. The above recommendation method not only cannot satisfy customers with different product preferences at the same time, but also cannot effectively help customers screen suitable financial products.

因此,如何發明出一種客製化金融產品推薦方式已成為相關技術領域所欲解決的議題之一。Therefore, how to invent a customized financial product recommendation method has become one of the issues that the relevant technical fields want to solve.

因此,本發明之目的,即在提供一種客製化金融產品推薦方法及系統,其能克服現有技術至少一個缺點。Therefore, the purpose of the present invention is to provide a customized financial product recommendation method and system, which can overcome at least one shortcoming of the prior art.

於是,本發明所提供的一種客製化金融產品推薦方法,用於推薦與N( )種不同基金類型相關的金融產品,利用一電腦系統來執行。該客製化金融產品推薦方法包含以下步驟:(A)獲得M( )筆分別對應於M個客戶的客戶資料,每筆客戶資料包括該等M個客戶其中一個對應客戶在一第一最近歷史期間內的基金交易紀錄資料、及該對應客戶在一第二最近歷史期間內瀏覽一有關於該等N種基金類型之金融產品網路平臺的數位足跡資料;(B)利用現有RFM模型分析該等M筆客戶資料所含的所有基金交易紀錄資料並對分析結果進行標準化處理,以獲得有關於該等M個客戶在最近一次購買距離當前日的天數、總購買筆數和總購買金額方面的第一顯性偏好資料,該第一顯性偏好資料包含與每一客戶曾經購買的每一基金類型對應的第一偏好值;(C)分析該等M筆客戶資料所含的所有數位足跡資料並對分析結果進行標準化處理,以獲得有關於該等M個客戶在瀏覽時間方面的第二顯性偏好資料,該第二顯性偏好資料包含與每一客戶曾經瀏覽的每一基金類型對應的第二偏好值;(D)根據該第一顯性偏好資料和該第二顯性偏好資料產生一代表該等M個客戶對該等N種基金類型的顯性偏好的 稀疏矩陣;(E)利用奇異值分解演算法分析該 稀疏矩陣所含的所有偏好值,以獲得多個分別對應於該 稀疏矩陣中多個缺值元素的預測值;(F)根據由該 稀疏矩陣和該等預測值所構成的一 補值矩陣中每列的N個值的大小,將該等N種基金類型進行排序,以獲得對應於每一客戶的基金類型排序結果,其中對應有較大值的基金類型具有較高的優先順序;(G)根據一當前熱門基金類型,調整每一客戶的基金類型排序結果,以使該當前熱門基金類型具有最高優先順序;及(H)根據自每一客戶調整後的基金類型排序結果擷取出的前P( )個基金類型,產生對應於該客戶的金融產品推薦結果,其指示出P個分別屬於該前P個基金類型且具有較高投資報酬率的金融產品。 Therefore, the present invention provides a customized financial product recommendation method for recommending N( ) different types of financial products related to funds are implemented using a computer system. The customized financial product recommendation method comprises the following steps: (A) obtaining M ( ) customer data corresponding to M customers, each customer data including fund transaction record data of one of the M customers in a first recent historical period, and digital footprint data of the corresponding customer browsing a financial product network platform related to the N types of funds in a second recent historical period; (B) using the existing RFM model to analyze all fund transaction record data contained in the M customer data and perform standardization on the analysis results to obtain information about the number of days from the last purchase to the current day, the total number of purchases and the total purchase amount of the M customers. (C) analyzing all digital footprint data contained in the M customer data and performing standardization on the analysis results to obtain second explicit preference data on browsing time of the M customers, the second explicit preference data comprising a second preference value corresponding to each fund type that each customer has browsed; (D) generating, based on the first explicit preference data and the second explicit preference data, a matrix representing the explicit preferences of the M customers for the N fund types. Sparse matrix; (E) Analyze the All preference values contained in the sparse matrix are obtained to obtain multiple values corresponding to the The predicted values of multiple missing elements in the sparse matrix; (F) according to the The sparse matrix and the predicted values constitute a (G) adjusting the fund type ranking result of each customer according to a currently popular fund type so that the currently popular fund type has the highest priority; and (H) extracting the top P( ) fund types, and generates a financial product recommendation result corresponding to the customer, which indicates P financial products that belong to the first P fund types and have a higher investment return rate.

在一些實施例中,在步驟(H)之後,還包含以下步驟:(I)當該等M個客戶其中一個目標客戶所使用的一用戶端連接該電腦系統時,將對應於該目標客戶的金融產品推薦結果傳送至該用戶端,以供該目標客戶參考。In some embodiments, after step (H), the following steps are further included: (I) when a client terminal used by a target customer among the M customers is connected to the computer system, the financial product recommendation result corresponding to the target customer is transmitted to the client terminal for reference by the target customer.

在一些實施例中,在步驟(G)中,該當前熱門基金類型是利用已知大型語言模型分析在一第三最近歷史期間的經濟新聞資訊而產生。In some embodiments, in step (G), the current popular fund types are generated by analyzing economic news information in a third recent historical period using a known large language model.

在一些實施例中,在步驟(A)中,對於每筆客戶資料,該基金交易記錄資料包含每次交易的基金類型、交易日期和交易金額,並且該數位足跡資料包含有關於每次瀏覽的瀏覽總時間和所瀏覽過基金類型各自的瀏覽時間;在步驟(B)中,對應於每一客戶曾經購買的每一基金類型的第一偏好值是與最近一次購買該基金類型之產品的購買日距離當前日的天數對應的一第一標準化值,以及分別與購買該基金類型之產品的總筆數和總金額對應的一第二標準化值和一第三標準化值的總和;及在步驟(C)中,對應於每一客戶曾經瀏覽的每一基金類型的第二偏好值是與該基金類型的總瀏覽時間和無關於任何基金類型的總瀏覽時間的時間總和對應的標準化值。In some embodiments, in step (A), for each customer data, the fund transaction record data includes the fund type, transaction date and transaction amount of each transaction, and the digital footprint data includes the total browsing time of each browsing and the browsing time of each browsed fund type; in step (B), the first preference value corresponding to each fund type purchased by each customer is the product of the most recent purchase of the fund type. a first standardized value corresponding to the number of days from the purchase date of the product to the current day, and a second standardized value and a third standardized value corresponding to the total number and total amount of products of the fund type purchased, respectively; and in step (C), the second preference value corresponding to each fund type browsed by each customer is a standardized value corresponding to the sum of the total browsing time of the fund type and the total browsing time unrelated to any fund type.

於是,本發明所提供的一種客製化金融產品推薦系統,適於一提供有一有關於N( )種不同基金類型之金融產品網路平臺的金融機構,用於推薦與該等N種不同基金類型相關的金融產品,並包含一接收模組及一處理單元。 Therefore, the customized financial product recommendation system provided by the present invention is suitable for providing a system with information about N( ) financial institutions that have a financial product network platform for N different fund types, used to recommend financial products related to the N different fund types, and including a receiving module and a processing unit.

該接收模組組配來接收M( )筆分別對應於該金融機構的M個客戶的客戶資料。每筆客戶資料包括該等M個客戶其中一個對應客戶在一第一最近歷史期間內的基金交易紀錄資料、及該對應客戶在一第二最近歷史期間內瀏覽該金融產品網路平臺的數位足跡資料。 The receiving module is configured to receive M( ) pieces of customer data corresponding to M customers of the financial institution. Each piece of customer data includes fund transaction record data of one of the M customers during a first recent historical period, and digital footprint data of the corresponding customer browsing the financial product online platform during a second recent historical period.

該處理單元電連接該接收模組以接收該等M筆客戶資料,並包括一第一分析模組、一第二分析模組、一稀疏矩陣產生模組、一第三分析模組、一排序模組、一調整模組及一推薦模組。The processing unit is electrically connected to the receiving module to receive the M pieces of customer data, and includes a first analysis module, a second analysis module, a sparse matrix generation module, a third analysis module, a sorting module, an adjustment module and a recommendation module.

該第一分析模組組配來利用現有RFM模型分析該等M筆客戶資料所含的所有基金交易紀錄資料並對分析結果進行標準化處理,以獲得有關於該等M個客戶在最近一次購買距離當前日的天數、總購買筆數和總購買金額方面的第一顯性偏好資料。該第一顯性偏好資料包含與每一客戶曾經購買的每一基金類型對應的第一偏好值。The first analysis module is configured to analyze all fund transaction record data contained in the M customer data using an existing RFM model and perform standardization on the analysis results to obtain first explicit preference data on the number of days from the last purchase to the current day, the total number of purchases, and the total purchase amount of the M customers. The first explicit preference data includes a first preference value corresponding to each fund type that each customer has purchased.

該第二分析模組組配來分析該等M筆客戶資料所含的所有數位足跡資料並對分析結果進行標準化處理,以獲得有關於該等M個客戶在瀏覽時間方面的第二顯性偏好資料。該第二顯性偏好資料包含與每一客戶曾經瀏覽的每一基金類型對應的第二偏好值。The second analysis module is configured to analyze all digital footprint data contained in the M customer data and perform standardization on the analysis results to obtain second explicit preference data about the browsing time of the M customers. The second explicit preference data includes a second preference value corresponding to each fund type that each customer has browsed.

該稀疏矩陣產生模組組配來根據該第一顯性偏好資料和該第二顯性偏好資料產生一代表該等M個客戶對該等N種基金類型的顯性偏好的 稀疏矩陣。 The sparse matrix generation module is configured to generate a matrix representing the explicit preferences of the M customers for the N fund types according to the first explicit preference data and the second explicit preference data. Sparse matrix.

該第三分析模組組配來利用奇異值分解演算法分析該 稀疏矩陣所含的所有偏好值,以獲得多個分別對應於該 稀疏矩陣中多個缺值元素的預測值。 The third analysis module is configured to analyze the All preference values contained in the sparse matrix are obtained to obtain multiple values corresponding to the Predicted values for multiple missing elements in a sparse matrix.

該排序模組組配來根據由該 稀疏矩陣和該等預測值所構成的一 補值矩陣中每列的N個值的大小,將該等N種基金類型進行排序,以獲得對應於每一客戶的基金類型排序結果,其中對應有較大值的基金類型具有較高的優先順序。 The sorting module is configured to The sparse matrix and the predicted values constitute a The N fund types are sorted according to the size of the N values in each column of the complement matrix to obtain a fund type sorting result corresponding to each customer, wherein the fund type with a larger value has a higher priority.

該調整模組組配來根據一當前熱門基金類型,調整每一客戶的基金類型排序結果,以使該當前熱門基金類型具有最高優先順序。The adjustment module is configured to adjust the fund type ranking result of each client according to a currently popular fund type so that the currently popular fund type has the highest priority.

該推薦模組組配來根據自每一客戶調整後的基金類型排序結果擷取出的前P( )個基金類型,產生對應於該客戶的金融產品推薦結果,其指示出P個分別屬於該前P個基金類型且具有較高投資報酬率的金融產品。 The recommendation module is configured to extract the top P ( ) fund types, and generates a financial product recommendation result corresponding to the customer, which indicates P financial products that belong to the first P fund types and have a higher investment return rate.

在一些實施例中,該客製化金融產品推薦系統還包含一通訊模組,電連接該處理單元。當該等M個客戶其中一個目標客戶所使用的一用戶端通訊連接該通訊模組時,該處理單元將對應於該目標客戶的金融產品推薦結果傳送至該用戶端,以供該目標客戶參考。In some embodiments, the customized financial product recommendation system further includes a communication module electrically connected to the processing unit. When a client terminal used by a target customer among the M customers is connected to the communication module, the processing unit transmits the financial product recommendation result corresponding to the target customer to the client terminal for reference by the target customer.

在一些實施例中,該當前熱門基金類型是利用已知大型語言模型分析在一第三最近歷史期間的經濟新聞資訊而產生。In some embodiments, the current popular fund types are generated by analyzing economic news information over a third recent historical period using a known large language model.

在一些實施例中,對於每筆客戶資料,該基金交易記錄資料包含每次交易的基金類型、交易日期和交易金額,並且該數位足跡資料包含有關於每次瀏覽的瀏覽總時間和所瀏覽過基金類型各自的瀏覽時間;對應於每一客戶曾經購買的每一基金類型的第一偏好值是與最近一次購買該基金類型之產品的購買日距離當前日的天數對應的一第一標準化值,以及分別與購買該基金類型之產品的總筆數和總金額對應的一第二標準化值和一第三標準化值的總和;及對應於每一客戶曾經瀏覽的每一基金類型的第二偏好值是與該基金類型的總瀏覽時間和無關於任何基金類型的總瀏覽時間的時間總和對應的標準化值。In some embodiments, for each customer data, the fund transaction record data includes the fund type, transaction date and transaction amount of each transaction, and the digital footprint data includes the total browsing time of each browsing and the browsing time of each browsed fund type; the first preference value corresponding to each fund type purchased by each customer is the purchase of the product of the fund type purchased most recently. a first standardized value corresponding to the number of days from the current day to the previous day, and the sum of a second standardized value and a third standardized value corresponding to the total number and total amount of products of the fund type purchased respectively; and a second preference value corresponding to each fund type that each customer has browsed is a standardized value corresponding to the sum of the total browsing time of the fund type and the total browsing time unrelated to any fund type.

本發明之功效在於:根據每一客戶的基金交易記錄資料及數位足跡資料分析出該客戶對於該N種基金類型其中部分基金類型的顯性偏好,利用奇異值分解演算法分析由該等M個客戶的顯性偏好構成的 稀疏矩陣來獲得每一客戶對於該N種基金類型中其他基金類型的隱性偏好的預測值,並根據該當前熱門基金類型調整對應於每一客戶的基金類型排序結果,從而獲得對應於每一客戶的金融產品推薦結果。如此推薦方式不僅滿足了客戶本身對部分基金類型的金融產品的已知偏好,也幫助客戶分析出對於其他基金類型的金融產品的潛在偏好,同時更考量了當前市場重大資訊,藉此達到客製化的基金產品推薦,並且有效地提升客戶篩選基金的效率。 The utility of the present invention is to analyze the explicit preferences of each customer for some of the N types of funds based on the fund transaction record data and digital footprint data of each customer, and to analyze the explicit preferences of the M customers using the singular value decomposition algorithm. The sparse matrix is used to obtain the predicted value of each customer's implicit preference for other fund types among the N fund types, and the fund type ranking result corresponding to each customer is adjusted according to the current popular fund type, thereby obtaining the financial product recommendation result corresponding to each customer. This recommendation method not only satisfies the customer's known preference for some fund types of financial products, but also helps the customer analyze the potential preference for other fund types of financial products. At the same time, it also considers the current important market information, thereby achieving customized fund product recommendations and effectively improving the efficiency of customer fund screening.

在本發明被詳細描述之前,應當注意在以下的説明內容中,類似的元件是以相同的編號來表示。Before the present invention is described in detail, it should be noted that similar elements are represented by the same reference numerals in the following description.

參閱圖1,本發明實施例的一種客製化金融產品推薦系統1適於一提供有一有關於N( )種不同基金類型之金融產品網路平臺(圖未示)的金融機構,並用於推薦與該等N種不同基金類型相關的金融產品。舉例來說,該金融機構透過該金融產品網路平臺所提供的金融產品包含例如與基金類型代碼513899999有關的金融產品,如“第一金全球水電瓦斯及基礎建設收益基金”、“ 第一金全球AI人工智慧基金”及“第一金全球大趨勢基金”,以及與基金類型代碼523088899有關的金融產品,如“野村優質基金”及“野村成長基金”等。在本實施例中,該客製化金融產品推薦系統1可實施成一電腦系統,並例如包含一接收模組11、一電連接該接收模組11的處理單元12、及一電連接該處理單元12的通訊模組13。 Referring to FIG. 1 , a customized financial product recommendation system 1 according to an embodiment of the present invention is suitable for providing a system having information about N( ) different fund types of financial product network platforms (not shown), and used to recommend financial products related to these N different fund types. For example, the financial products provided by the financial institution through the financial product network platform include, for example, financial products related to fund type code 513899999, such as "First Financial Global Water, Electricity, Gas and Infrastructure Income Fund", "First Financial Global AI Artificial Intelligence Fund" and "First Financial Global Trend Fund", and financial products related to fund type code 523088899, such as "Nomura Quality Fund" and "Nomura Growth Fund". In this embodiment, the customized financial product recommendation system 1 can be implemented as a computer system, and for example includes a receiving module 11, a processing unit 12 electrically connected to the receiving module 11, and a communication module 13 electrically connected to the processing unit 12.

在本實施例中,該接收模組11組配來接收例如由該金融機構所提供的M( )筆分別對應於該金融機構的M個客戶的客戶資料。每筆客戶資料包括該等M個客戶其中一個對應客戶在一第一最近歷史期間(例如,但不限於最近三年)內的基金交易紀錄資料、及該對應客戶在一第二最近歷史期間(例如,但不限於最近半年)內瀏覽該金融產品網路平臺的數位足跡資料。 In this embodiment, the receiving module 11 is configured to receive, for example, M( ) pieces of customer data corresponding to M customers of the financial institution. Each piece of customer data includes fund transaction record data of one of the M customers in a first recent historical period (for example, but not limited to the last three years), and digital footprint data of the corresponding customer browsing the financial product online platform in a second recent historical period (for example, but not limited to the last six months).

在本實施例中,該通訊模組13連接一通訊網路100。In this embodiment, the communication module 13 is connected to a communication network 100 .

該處理單元12包括一第一分析模組121、一第二分析模組122、一稀疏矩陣產生模組123、一第三分析模組124、一排序模組125、一調整模組126及一推薦模組127,其中每一者的運作將詳細說明於下文中。The processing unit 12 includes a first analysis module 121, a second analysis module 122, a sparse matrix generation module 123, a third analysis module 124, a sorting module 125, an adjustment module 126 and a recommendation module 127, the operation of each of which will be described in detail below.

以下,將參閱圖1及圖2,示例性地説明該處理單元12如何執行一客製化金融產品推薦程序。該客製化金融產品推薦程序包含以下步驟S21~步驟S29。1 and 2 are referred to to illustrate how the processing unit 12 executes a customized financial product recommendation program. The customized financial product recommendation program includes the following steps S21 to S29.

在步驟S21中,該處理單元12經由該接收模組11接收該等M筆客戶資料。In step S21 , the processing unit 12 receives the M pieces of customer data via the receiving module 11 .

在步驟S22中,該第一分析模組121利用現有RFM(Recency(最近一次交易) Frequency(交易頻率) Monetary(交易金額))模型分析該等M筆客戶資料所含的所有基金交易紀錄資料並對分析結果進行標準化處理,以獲得有關於該等M個客戶在最近一次購買距離當前日的天數、總購買筆數和總購買金額方面的第一顯性偏好資料。該第一顯性偏好資料包含與每一客戶曾經購買的每一基金類型對應的第一偏好值。在本實施例中,對應於每一客戶曾經購買的每一基金類型的第一偏好值是與最近一次購買該基金類型之產品的購買日距離當前日的天數對應的一第一標準化值,以及分別與購買該基金類型之產品的總筆數和總金額對應的一第二標準化值和一第三標準化值的總和。In step S22, the first analysis module 121 uses the existing RFM (Recency Frequency Monetary) model to analyze all fund transaction record data contained in the M customer data and standardize the analysis results to obtain the first explicit preference data about the number of days from the last purchase to the current day, the total number of purchases, and the total purchase amount of the M customers. The first explicit preference data includes a first preference value corresponding to each fund type that each customer has purchased. In this embodiment, the first preference value corresponding to each fund type that each customer has purchased is a first standardized value corresponding to the number of days from the last purchase date of the product of that fund type to the current day, and the sum of a second standardized value and a third standardized value corresponding to the total number and total amount of purchases of products of that fund type, respectively.

具體而言,該第一分析模組121先分析該等M筆客戶資料所含的所有交易記錄資料以獲得一交易紀錄分析結果。該交易紀錄分析結果,對於每一客戶,例如可包含與該客戶曾經購買的每一基金類型對應的最近一次購買日距離當前日的天數、總購買筆數、總購買金額等資訊。舉例來說,若該等M個客戶包含三個客戶(即,M=3,且分別以#1,#2,#3來表示),且該等N種基金類型包含兩種不同基金類型(即,N=2,且分別以A,B來表示)時,該交易紀錄分析結果例如可如以下表1所示: 表1 客戶 基金類型 最近一次購買日距離當前日的天數 總購買筆數 總購買金額/元 #1 A 30 5 200,000 #2 A 90 10 1,000,000 #2 B 30 5 2,000,000 #3 B 15 1 500,000 然後,該第一分析模組121對該交易紀錄分析結果中的各數值進行標準化處理以獲得一標準化結果。值得注意的是,在本實施例中,該標準化處理是根據以下式(1)來獲得該標準化結果中的每一標準化數值: ······(1) 舉例來說,根據表1所獲得的標準化結果例如可如以下表2所示: 表2 客戶 基金類型 最近一次購買日距離當前日的天數 總購買筆數 總購買金額 第一偏好值 #1 A 0.2 0.4 0.0 0.6 #2 A 1.0 1.0 0.4 2.4 #2 B 0.2 0.4 1.0 1.6 #3 B 0.0 0.0 0.16 0.16 之後,該第一分析模組121將該標準化結果中與每一客戶曾經購買的每一基金類型對應的所有標準化數值加總起來作爲對應於該客戶曾經購買的該基金類型的第一偏好值,從而獲得該第一顯性偏好資料。舉例來說,根據表2所獲得的該第一顯性偏好資料例如可如以下表3所示: 表3 客戶 第一偏好值 基金類型A 基金類型B 基金類型C #1 0.6 - - #2 2.4 1.6 - #3 - 0.16 - Specifically, the first analysis module 121 first analyzes all transaction record data contained in the M customer data to obtain a transaction record analysis result. The transaction record analysis result, for each customer, may include, for example, information such as the number of days from the last purchase date corresponding to each fund type purchased by the customer to the current day, the total number of purchases, and the total purchase amount. For example, if the M customers include three customers (i.e., M=3, and are represented by #1, #2, and #3 respectively), and the N fund types include two different fund types (i.e., N=2, and are represented by A and B respectively), the transaction record analysis result may be, for example, as shown in the following Table 1: Table 1 customer Fund Type The number of days between the last purchase date and the current day Total purchases Total purchase amount/yuan #1 A 30 5 200,000 #2 A 90 10 1,000,000 #2 B 30 5 2,000,000 #3 B 15 1 500,000 Then, the first analysis module 121 performs a standardization process on each value in the transaction record analysis result to obtain a standardized result. It is worth noting that in this embodiment, the standardization process is performed according to the following formula (1) to obtain each standardized value in the standardized result: ······(1) For example, the standardized results obtained according to Table 1 can be shown in the following Table 2: Table 2 customer Fund Type The number of days between the last purchase date and the current day Total purchases Total purchase amount First preference value #1 A 0.2 0.4 0.0 0.6 #2 A 1.0 1.0 0.4 2.4 #2 B 0.2 0.4 1.0 1.6 #3 B 0.0 0.0 0.16 0.16 Afterwards, the first analysis module 121 adds up all the standardized values corresponding to each fund type purchased by each customer in the standardized result as the first preference value corresponding to the fund type purchased by the customer, thereby obtaining the first explicit preference data. For example, the first explicit preference data obtained according to Table 2 can be shown in the following Table 3: Table 3 customer First preference value Fund Type A Fund Type B Fund Type C #1 0.6 - - #2 2.4 1.6 - #3 - 0.16 -

然後,在步驟S23中,該第二分析模組122分析該等M筆客戶資料所含的所有數位足跡資料並對分析結果進行標準化處理,以獲得有關於該等M個客戶在瀏覽時間方面的第二顯性偏好資料。該第二顯性偏好資料包含與每一客戶曾經瀏覽的每一基金類型對應的第二偏好值。在本實施例中,對應於每一客戶曾經瀏覽的每一基金類型的第二偏好值是與該基金類型的總瀏覽時間和無關於任何基金類型的總瀏覽時間的時間總和對應的標準化值。Then, in step S23, the second analysis module 122 analyzes all digital footprint data contained in the M customer data and performs standardization processing on the analysis results to obtain second explicit preference data about the browsing time of the M customers. The second explicit preference data includes a second preference value corresponding to each fund type that each customer has browsed. In this embodiment, the second preference value corresponding to each fund type that each customer has browsed is a standardized value corresponding to the sum of the total browsing time of the fund type and the total browsing time of no fund type.

具體而言,該第二分析模組122先分析該等M筆客戶資料所含的所有數位足跡資料以獲得一數位足跡分析結果。該數位足跡分析結果,對於每一客戶,例如可包含與該客戶曾經瀏覽的每一基金類型對應的總瀏覽時間資訊及無關於任何基金類型的總瀏覽時間資訊。舉例來説,在沿用上例中的,客戶#1,#2,#3並且該等N種基金類型例如包含三種不同基金類型(即,N=3,且分別以A,B,C來表示)的情況下,該數位足跡分析結果例如可如以下表4所示: 表4 客戶 基金類型A總瀏覽時間 基金類型B總瀏覽時間 基金類型C總瀏覽時間 無關於任何基金類型的總瀏覽時間 #1 5 25 0 10 #2 30 30 0 0 #3 80 10 0 0 然後,該第二分析模組122根據該數位足跡分析結果獲得一加總後時間資訊結果。該加後時間資訊結果包含與每一客戶曾經瀏覽的每一基金類型對應的加總後瀏覽時間資訊。在本實施例中,對應於每一客戶曾經瀏覽的每一基金類型的加總後瀏覽時間資訊是對應於該客戶的該基金類型的總瀏覽時間資訊及對應於該客戶的無關於任何基金類型的總瀏覽時間資訊的總和。舉例來説,根據表4所獲得的加總後時間資訊結果例如可如以下表5所示: 表5 客戶 基金類型A加總後瀏覽時間 基金類型B加總後瀏覽時間 基金類型C加總後瀏覽時間 #1 15(5+10) 35(25+10) 10(0+10) #2 30(30+0) 30(30+0) 0(0+0) #3 80(80+0) 10(10+0) 0(0+0) 最後,該第二分析模組122對該加總後時間資訊結果中的各數值進行標準化處理,以獲得每一加總後瀏覽時間資訊所對應的標準化值,並將每一標準化值作爲一第二偏好值以獲得該第二顯性偏好資料。在本實施例中,該標準化處理是根據式(1)來獲得每一標準化數值。舉例來説,根據表5所獲得的第二顯性偏好資料例如可如以下表6所示: 表6 客戶 第二偏好值 基金類型A 基金類型B 基金類型C #1 0.0 1.0 1.0 #2 0.23 0.8 - #3 1.0 0.0 - Specifically, the second analysis module 122 first analyzes all digital footprint data contained in the M customer data to obtain a digital footprint analysis result. The digital footprint analysis result, for each customer, may include, for example, the total browsing time information corresponding to each fund type that the customer has browsed and the total browsing time information not related to any fund type. For example, in the above example, in which customers #1, #2, #3 and the N fund types include, for example, three different fund types (i.e., N=3, and represented by A, B, and C respectively), the digital footprint analysis result may be, for example, as shown in the following Table 4: Table 4 customer Fund Type A Total View Time Fund Type B Total View Time Fund Type C Total View Time Total browsing time for no fund type #1 5 25 0 10 #2 30 30 0 0 #3 80 10 0 0 Then, the second analysis module 122 obtains a summed time information result based on the digital footprint analysis result. The summed time information result includes the summed browsing time information corresponding to each fund type that each customer has browsed. In this embodiment, the summed browsing time information corresponding to each fund type that each customer has browsed is the sum of the total browsing time information of the fund type corresponding to the customer and the total browsing time information of the customer that is not related to any fund type. For example, the summed time information result obtained according to Table 4 can be shown in the following Table 5: Table 5 customer Fund Type A Total browsing time Fund Type B Total browsing time Fund Type C Total browsing time #1 15(5+10) 35(25+10) 10(0+10) #2 30(30+0) 30(30+0) 0(0+0) #3 80(80+0) 10(10+0) 0(0+0) Finally, the second analysis module 122 performs standardization processing on each value in the summed time information result to obtain a standardized value corresponding to each summed browsing time information, and uses each standardized value as a second preference value to obtain the second explicit preference data. In this embodiment, the standardization processing is performed according to formula (1) to obtain each standardized value. For example, the second explicit preference data obtained according to Table 5 can be shown in the following Table 6: Table 6 customer Second preference value Fund Type A Fund Type B Fund Type C #1 0.0 1.0 1.0 #2 0.23 0.8 - #3 1.0 0.0 -

在步驟S24中,該稀疏矩陣產生模組123根據該第一顯性偏好資料和該第二顯性偏好資料產生一代表該等M個客戶對該等N種基金類型的顯性偏好的 稀疏矩陣。該 稀疏矩陣包含 個偏好值。在本實施例中,對應於每一客戶的每一基金類型的偏好值是將對應於該客戶的該基金類型的第一偏好值及第二偏好值相加而得的,並且若該第一偏好值及該第二偏好值其中一者為一缺值時,將該缺值視作“0”進行計算。舉例來説,根據表3示例的第一顯性偏好資料及表6示例的第二顯性偏好資料,可獲得如下表7所示的 稀疏矩陣(M=3,N=3)。 表7 客戶 偏好值 基金類型A 基金類型B 基金類型C #1 0.6(0.6+0.0) 1.0(0+1.0) 1.0(0+1.0) #2 2.63(2.4+0.23) 2.4(1.6+0.8) 0(0+0) #3 1.0(0+1.0) 0.16(0.16+0.0) 0(0+0) In step S24, the sparse matrix generation module 123 generates a matrix representing the explicit preferences of the M customers for the N fund types according to the first explicit preference data and the second explicit preference data. Sparse matrix. Sparse matrices contain In this embodiment, the preference value corresponding to each fund type of each customer is obtained by adding the first preference value and the second preference value corresponding to the fund type of the customer, and if one of the first preference value and the second preference value is a missing value, the missing value is regarded as "0" for calculation. For example, according to the first explicit preference data in Table 3 and the second explicit preference data in Table 6, the following table 7 can be obtained: Sparse matrix (M=3, N=3). Table 7 customer Preference value Fund Type A Fund Type B Fund Type C #1 0.6(0.6+0.0) 1.0(0+1.0) 1.0(0+1.0) #2 2.63(2.4+0.23) 2.4(1.6+0.8) 0(0+0) #3 1.0(0+1.0) 0.16(0.16+0.0) 0(0+0)

在步驟S25中,該第三分析模組124利用奇異值分解(Singular Value Decomposition,以下簡稱SVD)演算法分析該 稀疏矩陣所含的所有偏好值,以獲得多個分別對應於該 稀疏矩陣中多個缺值元素的預測值。更具體地説,該第三分析模組124利用SVD演算法分解該 稀疏矩陣以獲得一對應於該等M個客戶的低維度矩陣及一對應於該等N個基金類型的低維度矩陣,並將該等低維度矩陣相乘後獲得該等缺值元素的預測值,並以該等預測值填補,從而獲得一 補值矩陣。舉例來説,表7示例的該 稀疏矩陣在以預測值填補完其中缺值後,獲得如下表8所示的 補植矩陣。 表8 客戶 偏好值 基金類型A 基金類型B 基金類型C #1 0.6 1.0 1.0 #2 2.63 2.4 0.5(SVD預測) #3 1.0 0.16 0.8(SVD預測) In step S25, the third analysis module 124 uses a singular value decomposition (SVD) algorithm to analyze the All preference values contained in the sparse matrix are obtained to obtain multiple values corresponding to the More specifically, the third analysis module 124 uses the SVD algorithm to decompose the The sparse matrix is constructed to obtain a low-dimensional matrix corresponding to the M customers and a low-dimensional matrix corresponding to the N fund types, and the predicted values of the missing elements are obtained by multiplying the low-dimensional matrices, and the predicted values are filled in to obtain a For example, the value matrix in Table 7 After filling the missing values in the sparse matrix with the predicted values, we get the following table 8: Table 8 customer Preference value Fund Type A Fund Type B Fund Type C #1 0.6 1.0 1.0 #2 2.63 2.4 0.5 (SVD prediction) #3 1.0 0.16 0.8 (SVD prediction)

在步驟S26中,該排序模組125根據該 補值矩陣中每列的N個值的大小,將該等N種基金類型進行排序,以獲得對應於每一客戶的基金類型排序結果,其中對應有較大值的基金類型具有較高的優先順序。以表8中客戶#3爲例,對應於該客戶#3的基金類型排序結果如表9所示。 表9 客戶#3的基金類型排序結果 順序 基金類型 偏好值 1 A 1.0 2 C 0.8 3 B 0.16 In step S26, the sorting module 125 sorts the The N values in each column of the complement matrix are used to sort the N fund types to obtain the fund type sorting result corresponding to each customer, where the fund type with a larger value has a higher priority. Taking customer #3 in Table 8 as an example, the fund type sorting result corresponding to customer #3 is shown in Table 9. Table 9 Fund type ranking results for client #3 Sequence Fund Type Preference value 1 A 1.0 2 C 0.8 3 B 0.16

在步驟S27中,該調整模組126根據一當前熱門基金類型,調整每一客戶的基金類型排序結果,以使該當前熱門基金類型具有最高優先順序。在本實施例中,該當前熱門基金類型是利用一已知大型語言模型(Large Language Model),分析過去一週之每日經濟新聞資訊而產生出來的。舉例來説,假設該大型語言模型預測出基金類型C為該當前熱門基金類型模型,該客戶#3的基金類型排序結果會被調整為如下表10所示。 表10 客戶#3的基金類型排序結果 順序 基金類型 偏好值 1 C 0.8 2 A 1.0 3 B 0.16 In step S27, the adjustment module 126 adjusts the fund type ranking result of each customer according to a currently popular fund type so that the currently popular fund type has the highest priority. In this embodiment, the currently popular fund type is generated by analyzing the daily economic news information of the past week using a known large language model. For example, assuming that the large language model predicts that fund type C is the currently popular fund type model, the fund type ranking result of customer #3 will be adjusted as shown in Table 10 below. Table 10 Fund type ranking results for client #3 Sequence Fund Type Preference value 1 C 0.8 2 A 1.0 3 B 0.16

在步驟S28中,該推薦模組127根據自每一客戶調整後的基金類型排序結果擷取出的前P( )個基金類型,產生對應於該客戶的金融產品推薦結果。該金融產品推薦結果指示出P個分別屬於該前P個基金類型且具有較高投資報酬率的金融產品。延續表10之例,假設P=2時,該推薦模組127便會分別從基金類型C的所有金融產品(例如,金融產品c1及金融產品c2)及基金類型A的所有金融產品(例如,金融產品a1、金融產品a2及金融產品a3)中選取具有較高投資報酬率的金融產品。若基金類型C中具有較高投資報酬率的金融產品為金融產品c2,基金類型A中具有較高投資報酬率的金融產品為金融產品a1,則該客戶#3的金融產品推薦結果如下表11所示。 表11 客戶#3的金融產品推薦結果 順序 金融產品 1 c2 2 a1 In step S28, the recommendation module 127 extracts the top P ( ) fund types, and generates a financial product recommendation result corresponding to the customer. The financial product recommendation result indicates P financial products that belong to the first P fund types and have a higher investment return rate. Continuing with the example of Table 10, assuming that P=2, the recommendation module 127 will select financial products with a higher investment return rate from all financial products of fund type C (for example, financial product c1 and financial product c2) and all financial products of fund type A (for example, financial product a1, financial product a2 and financial product a3). If the financial product with a higher investment return rate in fund type C is financial product c2, and the financial product with a higher investment return rate in fund type A is financial product a1, then the financial product recommendation results for customer #3 are shown in Table 11 below. Table 11 Customer #3's financial product recommendation results Sequence Financial Products 1 c2 2 a1

在步驟S29中,當該等M個客戶其中一個目標客戶所使用的一用戶端200通過一通訊網路100通訊連接該通訊模組13時,該處理單元12將對應於該目標客戶的金融產品推薦結果傳送至該用戶端200,以供該目標客戶參考。In step S29, when a client terminal 200 used by a target customer among the M customers is connected to the communication module 13 via a communication network 100, the processing unit 12 transmits the financial product recommendation result corresponding to the target customer to the client terminal 200 for reference by the target customer.

綜上所述,根據每一客戶的基金交易記錄資料及數位足跡資料分析出該客戶對於該N種基金類型其中部分基金類型的顯性偏好,利用奇異值分解演算法分析由該等M個客戶的顯性偏好構成的 稀疏矩陣來獲得每一客戶對於該N種基金類型中剩餘基金類型的隱性偏好的預測值,並根據該當前熱門基金類型調整對應於每一客戶的基金類型排序結果,從而獲得對應於每一客戶的金融產品推薦結果。如此推薦方式不僅滿足了客戶本身對金融產品的已知偏好,也幫助客戶分析出對於其他金融產品的潛在偏好,同時還貼合了市場的現況,達到更有效地幫助客戶篩選合適的金融產品的效果。故確實能達成本發明之目的。 In summary, the explicit preferences of each customer for some of the N fund types are analyzed based on the fund transaction record data and digital footprint data of each customer, and the singular value decomposition algorithm is used to analyze the explicit preferences of the M customers. The sparse matrix is used to obtain the predicted value of each customer's implicit preference for the remaining fund types among the N fund types, and the fund type ranking result corresponding to each customer is adjusted according to the current popular fund type, thereby obtaining the financial product recommendation result corresponding to each customer. This recommendation method not only satisfies the customer's known preference for financial products, but also helps the customer analyze the potential preference for other financial products. At the same time, it also fits the current market situation and achieves the effect of more effectively helping customers screen suitable financial products. Therefore, the purpose of this invention can indeed be achieved.

惟以上所述者,僅為本發明之實施例而已,當不能以此限定本發明實施之範圍,凡是依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。However, the above is only an example of the implementation of the present invention, and it cannot be used to limit the scope of the implementation of the present invention. All simple equivalent changes and modifications made according to the scope of the patent application of the present invention and the content of the patent specification are still within the scope of the patent of the present invention.

1:客製化金融產品推薦系統 11:接收模組 12:處理單元 121:第一分析模組 122:第二分析模組 123:稀疏矩陣產生模組 124:第三分析模組 125:排序模組 126:調整模組 127:推薦模組 13:通訊模組 100:通訊網路 200:用戶端 S21~S29:步驟 1: Customized financial product recommendation system 11: Receiving module 12: Processing unit 121: First analysis module 122: Second analysis module 123: Sparse matrix generation module 124: Third analysis module 125: Sorting module 126: Adjustment module 127: Recommendation module 13: Communication module 100: Communication network 200: Client S21~S29: Steps

本發明之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是一方塊圖,示例性地說明本發明實施例的一種客製化金融產品推薦系統,以及協同使用的一用戶端;及 圖2是一流程圖,示例性地説明該實施例的一處理單元如何執行一客製化金融產品推薦程序。 Other features and functions of the present invention will be clearly presented in the implementation method with reference to the drawings, wherein: FIG. 1 is a block diagram, which exemplarily illustrates a customized financial product recommendation system of an embodiment of the present invention, and a client used in conjunction therewith; and FIG. 2 is a flow chart, which exemplarily illustrates how a processing unit of the embodiment executes a customized financial product recommendation program.

1:客製化金融產品推薦系統 1: Customized financial product recommendation system

11:接收模組 11: Receiving module

12:處理單元 12: Processing unit

121:第一分析模組 121: First analysis module

122:第二分析模組 122: Second analysis module

123:稀疏矩陣產生模組 123: Sparse matrix generation module

124:第三分析模組 124: The third analysis module

125:排序模組 125: Sorting module

126:調整模組 126: Adjustment module

127:推薦模組 127: Recommended modules

13:通訊模組 13: Communication module

100:通訊網路 100: Communication network

200:用戶端 200: Client

Claims (8)

一種客製化金融產品推薦方法,用於推薦與N( )種不同基金類型相關的金融產品,利用一電腦系統來執行,該客製化金融產品推薦方法包含以下步驟: (A)獲得M( )筆分別對應於M個客戶的客戶資料,每筆客戶資料包括該等M個客戶其中一個對應客戶在一第一最近歷史期間內的基金交易紀錄資料、及該對應客戶在一第二最近歷史期間內瀏覽一有關於該等N種基金類型之金融產品網路平臺的數位足跡資料; (B)利用現有RFM模型分析該等M筆客戶資料所含的所有基金交易紀錄資料並對分析結果進行標準化處理,以獲得有關於該等M個客戶在最近一次購買距離當前日的天數、總購買筆數和總購買金額方面的第一顯性偏好資料,該第一顯性偏好資料包含與每一客戶曾經購買的每一基金類型對應的第一偏好值; (C)分析該等M筆客戶資料所含的所有數位足跡資料並對分析結果進行標準化處理,以獲得有關於該等M個客戶在瀏覽時間方面的第二顯性偏好資料,該第二顯性偏好資料包含與每一客戶曾經瀏覽的每一基金類型對應的第二偏好值; (D)根據該第一顯性偏好資料和該第二顯性偏好資料產生一代表該等M個客戶對該等N種基金類型的顯性偏好的 稀疏矩陣; (E)利用奇異值分解演算法分析該 稀疏矩陣所含的所有偏好值,以獲得多個分別對應於該 稀疏矩陣中多個缺值元素的預測值; (F)根據由該 稀疏矩陣和該等預測值所構成的一 補值矩陣中每列的N個值的大小,將該等N種基金類型進行排序,以獲得對應於每一客戶的基金類型排序結果,其中對應有較大值的基金類型具有較高的優先順序; (G)根據一當前熱門基金類型,調整每一客戶的基金類型排序結果,以使該當前熱門基金類型具有最高優先順序;及 (H)根據自每一客戶調整後的基金類型排序結果擷取出的前P( )個基金類型,產生對應於該客戶的金融產品推薦結果,其指示出P個分別屬於該前P個基金類型且具有較高投資報酬率的金融產品。 A customized financial product recommendation method for recommending and N( ) different types of financial products related to funds, using a computer system to execute, the customized financial product recommendation method comprises the following steps: (A) obtaining M( ) customer data corresponding to M customers respectively, each customer data including fund transaction record data of one of the M customers in a first recent historical period, and digital footprint data of the corresponding customer browsing a financial product network platform related to the N types of funds in a second recent historical period; (B) using an existing RFM model to analyze all fund transaction record data contained in the M customer data and perform standardization on the analysis results to obtain first explicit preference data on the number of days from the last purchase to the current day, the total number of purchases and the total purchase amount of the M customers, the first explicit preference data including a first preference value corresponding to each fund type purchased by each customer; (C) analyzing all digital footprint data contained in the M customer data and performing standardization on the analysis results to obtain second explicit preference data on the browsing time of the M customers, wherein the second explicit preference data includes a second preference value corresponding to each fund type that each customer has browsed; (D) generating a data representing the explicit preferences of the M customers for the N fund types based on the first explicit preference data and the second explicit preference data; (E) Analyze the sparse matrix using the singular value decomposition algorithm All preference values contained in the sparse matrix are obtained to obtain multiple values corresponding to the The predicted values of multiple missing elements in the sparse matrix; (F) according to the The sparse matrix and the predicted values constitute a (G) adjusting the fund type ranking result of each customer according to a currently popular fund type so that the currently popular fund type has the highest priority; and (H) extracting the top P( ) fund types, and generates a financial product recommendation result corresponding to the customer, which indicates P financial products that belong to the first P fund types and have a higher investment return rate. 如請求項1所述的客製化金融產品推薦方法,在步驟(H)之後,還包含以下步驟: (I)當該等M個客戶其中一個目標客戶所使用的一用戶端連接該電腦系統時,將對應於該目標客戶的金融產品推薦結果傳送至該用戶端,以供該目標客戶參考。 The customized financial product recommendation method as described in claim 1, after step (H), further comprises the following steps: (I) When a client terminal used by one of the M target customers is connected to the computer system, the financial product recommendation result corresponding to the target customer is transmitted to the client terminal for reference by the target customer. 如請求項1所述的客製化金融產品推薦方法,在步驟(G)中,該當前熱門基金類型是利用已知大型語言模型分析在一第三最近歷史期間的經濟新聞資訊而產生。In the customized financial product recommendation method as described in claim 1, in step (G), the current popular fund type is generated by analyzing economic news information in a third recent historical period using a known large language model. 如請求項1所述的客製化金融產品推薦方法,其中: 在步驟(A)中,對於每筆客戶資料,該基金交易記錄資料包含每次交易的基金類型、交易日期和交易金額,並且該數位足跡資料包含有關於每次瀏覽的瀏覽總時間和所瀏覽過基金類型各自的瀏覽時間; 在步驟(B)中,對應於每一客戶曾經購買的每一基金類型的第一偏好值是與最近一次購買該基金類型之產品的購買日距離當前日的天數對應的一第一標準化值,以及分別與購買該基金類型之產品的總筆數和總金額對應的一第二標準化值和一第三標準化值的總和;及 在步驟(C)中,對應於每一客戶曾經瀏覽的每一基金類型的第二偏好值是與該基金類型的總瀏覽時間和無關於任何基金類型的總瀏覽時間的時間總和對應的標準化值。 A customized financial product recommendation method as described in claim 1, wherein: In step (A), for each customer data, the fund transaction record data includes the fund type, transaction date and transaction amount of each transaction, and the digital footprint data includes the total browsing time of each browsing and the browsing time of each browsed fund type; In step (B), the first preference value corresponding to each fund type purchased by each customer is a first standardized value corresponding to the number of days from the last purchase date of the product of the fund type to the current day, and the sum of a second standardized value and a third standardized value corresponding to the total number and total amount of the products of the fund type purchased respectively; and In step (C), the second preference value corresponding to each fund type that each customer has browsed is a normalized value corresponding to the sum of the total browsing time of the fund type and the total browsing time irrelevant to any fund type. 一種客製化金融產品推薦系統,適於一提供有一有關於N( )種不同基金類型之金融產品網路平臺的金融機構,用於推薦與該等N種不同基金類型相關的金融產品,並包含: 一接收模組,組配來接收M( )筆分別對應於該金融機構的M個客戶的客戶資料,每筆客戶資料包括該等M個客戶其中一個對應客戶在一第一最近歷史期間內的基金交易紀錄資料、及該對應客戶在一第二最近歷史期間內瀏覽該金融產品網路平臺的數位足跡資料;及 一處理單元,電連接該接收模組以接收該等M筆客戶資料,並包括: 一第一分析模組,組配來利用現有RFM模型分析該等M筆客戶資料所含的所有基金交易紀錄資料並對分析結果進行標準化處理,以獲得有關於該等M個客戶在最近一次購買距離當前日的天數、總購買筆數和總購買金額方面的第一顯性偏好資料,該第一顯性偏好資料包含與每一客戶曾經購買的每一基金類型對應的第一偏好值; 一第二分析模組,組配來分析該等M筆客戶資料所含的所有數位足跡資料並對分析結果進行標準化處理,以獲得有關於該等M個客戶在瀏覽時間方面的第二顯性偏好資料,該第二顯性偏好資料包含與每一客戶曾經瀏覽的每一基金類型對應的第二偏好值; 一稀疏矩陣產生模組,組配來根據該第一顯性偏好資料和該第二顯性偏好資料產生一代表該等M個客戶對該等N種基金類型的顯性偏好的 稀疏矩陣; 一第三分析模組,組配來利用奇異值分解演算法分析該 稀疏矩陣所含的所有偏好值,以獲得多個分別對應於該 稀疏矩陣中多個缺值元素的預測值; 一排序模組,組配來根據由該 稀疏矩陣和該等預測值所構成的一 補值矩陣中每列的N個值的大小,將該等N種基金類型進行排序,以獲得對應於每一客戶的基金類型排序結果,其中對應有較大值的基金類型具有較高的優先順序; 一調整模組,組配來根據一當前熱門基金類型,調整每一客戶的基金類型排序結果,以使該當前熱門基金類型具有最高優先順序;及 一推薦模組,組配來根據自每一客戶調整後的基金類型排序結果擷取出的前P( )個基金類型,產生對應於該客戶的金融產品推薦結果,其指示出P個分別屬於該前P個基金類型且具有較高投資報酬率的金融產品。 A customized financial product recommendation system is suitable for a system that provides a ) different fund types of financial products network platform for financial institutions, for recommending financial products related to the N different fund types, and comprising: a receiving module, configured to receive M ( ) pieces of customer data corresponding to M customers of the financial institution, each piece of customer data including fund transaction record data of one of the M customers in a first recent historical period, and digital footprint data of the corresponding customer browsing the financial product network platform in a second recent historical period; and a processing unit electrically connected to the receiving module to receive the M pieces of customer data, and comprising: a first analysis module configured to analyze all fund transaction record data contained in the M customer data using an existing RFM model and perform standardization processing on the analysis results to obtain first explicit preference data on the number of days from the last purchase to the current day, the total number of purchases and the total purchase amount of the M customers, wherein the first explicit preference data includes a first preference value corresponding to each fund type that each customer has purchased; a second analysis module configured to analyze all digital footprint data contained in the M customer data and perform standardization processing on the analysis results to obtain second explicit preference data on the browsing time of the M customers, wherein the second explicit preference data includes a second preference value corresponding to each fund type that each customer has browsed; a sparse matrix generation module configured to generate a matrix representing the explicit preferences of the M customers for the N fund types according to the first explicit preference data and the second explicit preference data; A sparse matrix; a third analysis module, configured to analyze the All preference values contained in the sparse matrix are obtained to obtain multiple values corresponding to the The predicted values of multiple missing elements in the sparse matrix; a sorting module, assembled according to the The sparse matrix and the predicted values constitute a The N fund types are sorted according to the size of the N values in each column of the fill-in matrix to obtain a fund type sorting result corresponding to each customer, wherein the fund type with a larger value has a higher priority; an adjustment module is configured to adjust the fund type sorting result of each customer according to a current popular fund type so that the current popular fund type has the highest priority; and a recommendation module is configured to extract the top P ( ) fund types, and generates a financial product recommendation result corresponding to the customer, which indicates P financial products that belong to the first P fund types and have a higher investment return rate. 如請求項5所述的客製化金融產品推薦系統,還包含: 一通訊模組,電連接該處理單元; 其中,當該等M個客戶其中一個目標客戶所使用的一用戶端通訊連接該通訊模組時,該處理單元將對應於該目標客戶的金融產品推薦結果傳送至該用戶端,以供該目標客戶參考。 The customized financial product recommendation system as described in claim 5 further comprises: A communication module electrically connected to the processing unit; Wherein, when a client terminal used by one of the M target customers is connected to the communication module, the processing unit transmits the financial product recommendation result corresponding to the target customer to the client terminal for reference by the target customer. 如請求項5所述的客製化金融產品推薦系統,其中,該當前熱門基金類型是利用已知大型語言模型分析在一第三最近歷史期間的經濟新聞資訊而產生。A customized financial product recommendation system as described in claim 5, wherein the current popular fund type is generated by analyzing economic news information in a third recent historical period using a known large language model. 如請求項5所述的客製化金融產品推薦系統,其中: 對於每筆客戶資料,該基金交易記錄資料包含每次交易的基金類型、交易日期和交易金額,並且該數位足跡資料包含有關於每次瀏覽的瀏覽總時間和所瀏覽過基金類型各自的瀏覽時間; 對應於每一客戶曾經購買的每一基金類型的第一偏好值是與最近一次購買該基金類型之產品的購買日距離當前日的天數對應的一第一標準化值,以及分別與購買該基金類型之產品的總筆數和總金額對應的一第二標準化值和一第三標準化值的總和;及 對應於每一客戶曾經瀏覽的每一基金類型的第二偏好值是與該基金類型的總瀏覽時間和無關於任何基金類型的總瀏覽時間的時間總和對應的標準化值。 A customized financial product recommendation system as described in claim 5, wherein: For each customer data, the fund transaction record data includes the fund type, transaction date and transaction amount of each transaction, and the digital footprint data includes the total browsing time of each browsing and the browsing time of each browsed fund type; The first preference value corresponding to each fund type purchased by each customer is a first standardized value corresponding to the number of days from the last purchase date of the product of the fund type to the current day, and the sum of a second standardized value and a third standardized value corresponding to the total number and total amount of the products of the fund type purchased respectively; and The second preference value corresponding to each fund type that each customer has browsed is a normalized value corresponding to the sum of the total browsing time for that fund type and the total browsing time for any fund type.
TW112143371A 2023-11-10 2023-11-10 Customized financial product recommendation method and system TWI848850B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW112143371A TWI848850B (en) 2023-11-10 2023-11-10 Customized financial product recommendation method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW112143371A TWI848850B (en) 2023-11-10 2023-11-10 Customized financial product recommendation method and system

Publications (2)

Publication Number Publication Date
TWI848850B true TWI848850B (en) 2024-07-11
TW202520185A TW202520185A (en) 2025-05-16

Family

ID=92929485

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112143371A TWI848850B (en) 2023-11-10 2023-11-10 Customized financial product recommendation method and system

Country Status (1)

Country Link
TW (1) TWI848850B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100324985A1 (en) * 2005-10-21 2010-12-23 Shailesh Kumar Method and apparatus for recommendation engine using pair-wise co-occurrence consistency
CN110599336A (en) * 2018-06-13 2019-12-20 北京九章云极科技有限公司 Financial product purchase prediction method and system
CN111400613A (en) * 2020-03-17 2020-07-10 苏宁金融科技(南京)有限公司 Article recommendation method, device, medium and computer equipment
TW202133089A (en) * 2020-02-20 2021-09-01 台灣財金科技股份有限公司 Method for optimally promoting decisions and computer program product thereof
CN116308615A (en) * 2023-01-04 2023-06-23 中国工商银行股份有限公司 Product recommendation method and device, electronic equipment and storage medium
CN116340644A (en) * 2021-12-22 2023-06-27 中国农业银行股份有限公司上海市分行 Financial product recommendation method and device based on collaborative filtering algorithm
TWM654419U (en) * 2023-11-10 2024-04-21 第一商業銀行股份有限公司 Customized financial product recommendation system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100324985A1 (en) * 2005-10-21 2010-12-23 Shailesh Kumar Method and apparatus for recommendation engine using pair-wise co-occurrence consistency
CN110599336A (en) * 2018-06-13 2019-12-20 北京九章云极科技有限公司 Financial product purchase prediction method and system
TW202133089A (en) * 2020-02-20 2021-09-01 台灣財金科技股份有限公司 Method for optimally promoting decisions and computer program product thereof
CN111400613A (en) * 2020-03-17 2020-07-10 苏宁金融科技(南京)有限公司 Article recommendation method, device, medium and computer equipment
CN116340644A (en) * 2021-12-22 2023-06-27 中国农业银行股份有限公司上海市分行 Financial product recommendation method and device based on collaborative filtering algorithm
CN116308615A (en) * 2023-01-04 2023-06-23 中国工商银行股份有限公司 Product recommendation method and device, electronic equipment and storage medium
TWM654419U (en) * 2023-11-10 2024-04-21 第一商業銀行股份有限公司 Customized financial product recommendation system

Also Published As

Publication number Publication date
TW202520185A (en) 2025-05-16

Similar Documents

Publication Publication Date Title
Liu et al. The adoption and impact of E-commerce in rural China: Application of an endogenous switching regression model
Banerjee et al. Some cautions on the use of panel methods for integrated series of macroeconomic data
CN112785397A (en) Product recommendation method, device and storage medium
US7840482B2 (en) Method and system for high speed options pricing
Ross et al. A multicriteria approach to the location of public facilities
US11651315B2 (en) Intelligent diversification tool
CN111738805B (en) Behavior log-based search recommendation model generation method, device and storage medium
CN106127525A (en) A kind of TV shopping Method of Commodity Recommendation based on sorting algorithm
CN110009503A (en) Finance product recommended method, device, computer equipment and storage medium
CN107423442A (en) Application recommendation method and system based on user portrait behavior analysis, storage medium and computer equipment
CN106649890A (en) Data storage method and device
CN102542474A (en) Method for sorting inquiry results and device
CN108960922A (en) The replacement prediction technique and device of terminal
US20140180799A1 (en) Techniques for optimizing the impact of video content on electronic commerce sales
KR102121294B1 (en) Global networking system for real-time creation of global business rankings based on globally retrieved data
TWM654419U (en) Customized financial product recommendation system
CN109697203A (en) Index unusual fluctuation analysis method and equipment, computer storage medium, computer equipment
CN107885886A (en) To the method, apparatus and server of information recommendation sort result
CN111275485A (en) Power grid customer grade division method and system based on big data analysis, computer equipment and storage medium
CN110555749A (en) credit behavior prediction method and device based on neural network
CN118014653A (en) An advertising system based on real-time interaction
Bohara et al. An AI based web portal for cotton price analysis and prediction
CN115080868A (en) Product push method, apparatus, computer equipment, storage medium and program product
Keeney et al. Yield response to prices: implications for policy modeling
CN105303447A (en) Method and device for carrying out credit rating through network information