TWI845871B - Data pre-processing method and exercise vital signs radar - Google Patents
Data pre-processing method and exercise vital signs radar Download PDFInfo
- Publication number
- TWI845871B TWI845871B TW110140492A TW110140492A TWI845871B TW I845871 B TWI845871 B TW I845871B TW 110140492 A TW110140492 A TW 110140492A TW 110140492 A TW110140492 A TW 110140492A TW I845871 B TWI845871 B TW I845871B
- Authority
- TW
- Taiwan
- Prior art keywords
- target
- signal
- phase
- distance
- map
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 45
- 238000007781 pre-processing Methods 0.000 title claims abstract description 29
- 230000000694 effects Effects 0.000 claims abstract description 13
- 238000012545 processing Methods 0.000 claims description 47
- 238000001514 detection method Methods 0.000 claims description 30
- 238000010801 machine learning Methods 0.000 claims description 21
- 238000004364 calculation method Methods 0.000 claims description 10
- 238000001914 filtration Methods 0.000 claims description 9
- 230000009466 transformation Effects 0.000 claims description 4
- 230000008030 elimination Effects 0.000 claims description 3
- 238000003379 elimination reaction Methods 0.000 claims description 3
- 238000007619 statistical method Methods 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims 2
- 238000010586 diagram Methods 0.000 description 34
- 239000011159 matrix material Substances 0.000 description 17
- 238000001228 spectrum Methods 0.000 description 5
- 238000010989 Bland-Altman Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 238000012549 training Methods 0.000 description 3
- 238000003491 array Methods 0.000 description 2
- 230000035565 breathing frequency Effects 0.000 description 2
- 230000029058 respiratory gaseous exchange Effects 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
Images
Landscapes
- Radar Systems Or Details Thereof (AREA)
Abstract
Description
本發明關於雷達訊號處理技術,特別是一種雷達訊號資料前處理方法與應用該方法進行偵測的運動生理感測雷達。The present invention relates to radar signal processing technology, in particular to a radar signal data pre-processing method and a sports physiological sensing radar using the method for detection.
現在有許多可穿戴或直接接觸的生理參數量測設備能夠在日常生活活動中監測生理參數(如心率)。然而,長時間配戴穿戴或接觸式設備,會讓受測者感到不舒適。雖然,仍有非接觸的量測方式,然而當受測者處於運動狀態下,其身體的晃動容易對量測造成干擾,影響量測準確度。There are many wearable or direct contact physiological parameter measurement devices that can monitor physiological parameters (such as heart rate) in daily life activities. However, wearing wearable or contact devices for a long time will make the subjects feel uncomfortable. Although there are still non-contact measurement methods, when the subject is in motion, the shaking of his body is likely to interfere with the measurement and affect the measurement accuracy.
有鑑於此,依據一些實施例,一種資料前處理方法,由一訊號處理裝置中之一處理器執行,包括:獲得經由波束成形掃描而得的一能量分布參數集及一數位訊號,數位訊號對應於一運動生理感測雷達的一反射雷達訊號;利用能量分布參數集,透過過濾背景雜訊方式搜尋一目標;依據能量分布參數集,加權數位訊號而獲得一優化訊號;分析優化訊號,以從優化訊號中取出對應於目標之一或多目標相位資料;及輸入該一或多目標相位資料至一機器學習模型中,以獲得一生理參數預測結果。In view of this, according to some embodiments, a data pre-processing method is performed by a processor in a signal processing device, including: obtaining an energy distribution parameter set and a digital signal obtained by beamforming scanning, the digital signal corresponding to a reflected radar signal of a motion physiological sensing radar; using the energy distribution parameter set to search for a target by filtering background noise; according to the energy distribution parameter set, weighting the digital signal to obtain an optimized signal; analyzing the optimized signal to extract one or more target phase data corresponding to the target from the optimized signal; and inputting the one or more target phase data into a machine learning model to obtain a physiological parameter prediction result.
依據一些實施例,一種運動生理感測雷達,包括:發射單元、接收單元及訊號處理模組。發射單元發送一入射雷達訊號。接收單元接收一反射雷達訊號。訊號處理模組控制發射單元及接收單元以進行波束成形掃描,以獲得一能量分布參數集,並依據反射雷達訊號獲得對應之一數位訊號,且利用能量分布參數集,透過過濾背景雜訊方式搜尋一目標,並依據能量分布參數集,加權數位訊號而獲得一優化訊號,而分析優化訊號,以從優化訊號中取出對應於目標之一或多目標相位資料,以及輸入該一或多目標相位資料至一機器學習模型中,以獲得一生理參數預測結果。According to some embodiments, a motion physiological sensing radar includes: a transmitting unit, a receiving unit and a signal processing module. The transmitting unit transmits an incident radar signal. The receiving unit receives a reflected radar signal. The signal processing module controls the transmitting unit and the receiving unit to perform beamforming scanning to obtain an energy distribution parameter set, and obtains a corresponding digital signal according to the reflected radar signal, and uses the energy distribution parameter set to search for a target by filtering background noise, and weights the digital signal according to the energy distribution parameter set to obtain an optimized signal, and analyzes the optimized signal to extract one or more target phase data corresponding to the target from the optimized signal, and inputs the one or more target phase data into a machine learning model to obtain a physiological parameter prediction result.
依據一些實施例,一種資料前處理方法,由一訊號處理裝置中之一處理器執行,包括:獲得經由波束成形掃描而得的一能量分布參數集及一數位訊號,數位訊號對應於一運動生理感測雷達的一反射雷達訊號;利用能量分布參數集,透過過濾背景雜訊方式搜尋一目標;分析數位訊號,以從數位訊號取出對應於目標之一或多目標相位資料;透過小波轉換將該一或多目標相位資料分成複數子頻帶;對每一子頻帶進行統計分析,以獲得一統計特徵集;及輸入統計特徵集至一機器學習模型中,以獲得一生理參數預測結果。According to some embodiments, a data pre-processing method is performed by a processor in a signal processing device, including: obtaining an energy distribution parameter set and a digital signal obtained by beamforming scanning, wherein the digital signal corresponds to a reflected radar signal of a motion physiological sensing radar; using the energy distribution parameter set to search for a target by filtering background noise; analyzing the digital signal to extract one or more target phase data corresponding to the target from the digital signal; dividing the one or more target phase data into a plurality of sub-bands by wavelet transform; performing statistical analysis on each sub-band to obtain a statistical feature set; and inputting the statistical feature set into a machine learning model to obtain a physiological parameter prediction result.
依據一些實施例,統計一期間內的能量分布參數集,以決定出涵蓋目標活動範圍的一偵測距離區域,進而對於位於偵測距離區域內的優化訊號進行分析。According to some embodiments, a set of energy distribution parameters within a period is statistically calculated to determine a detection distance area covering the target activity range, and then the optimized signal located in the detection distance area is analyzed.
依據一些實施例,在將目標相位資料輸入至機器學習模型之前,還對目標相位資料進行包括相位差計算與移除脈衝雜訊的訊號處理。According to some embodiments, before the target phase data is input into the machine learning model, the target phase data is further subjected to signal processing including phase difference calculation and pulse noise removal.
依據一些實施例,依據優化訊號獲得一相位地圖及一振動頻率地圖;並從振動頻率地圖中選出具有能量強度超出一能量閾值的至少一候選位置;而從候選位置中選定一目標位置,目標位置為候選位置中具有符合一生理參數範圍的一振動頻率且具有最大的能量強度者;續而依據目標位置,取得相位地圖中一距離範圍內的一或多目標相位資料。其中,相位地圖呈現隨相對於運動生理感測雷達的距離變化與相位變化之能量分布,振動頻率地圖呈現隨相對於運動生理感測雷達的距離變化與振動頻率變化的能量分布。According to some embodiments, a phase map and a vibration frequency map are obtained according to the optimization signal; at least one candidate position having an energy intensity exceeding an energy threshold is selected from the vibration frequency map; and a target position is selected from the candidate positions, the target position being one of the candidate positions having a vibration frequency that meets a physiological parameter range and has the largest energy intensity; and then one or more target phase data within a distance range in the phase map are obtained according to the target position. The phase map presents energy distribution with distance changes and phase changes relative to the motion physiological sensing radar, and the vibration frequency map presents energy distribution with distance changes and vibration frequency changes relative to the motion physiological sensing radar.
依據一些實施例,統計一期間內的能量分布參數集,以決定出涵蓋目標活動範圍的一偵測距離區域,其中選出候選位置之步驟是從振動頻率地圖中偵測距離區域選取。According to some embodiments, a set of energy distribution parameters within a period is statistically calculated to determine a detection distance area covering the target activity range, wherein the step of selecting a candidate position is to select the detection distance area from the vibration frequency map.
依據一些實施例,對優化訊號進行快速傅立葉轉換,以獲得一距離形貌地圖;對距離形貌地圖之每一距離延時間變化進行消除直流偏壓、IQ不平衡補償、反正切及相位展開,以獲得相位地圖;並對相位地圖之每一距離上的相位分布進行快速傅立葉轉換,以獲得振動頻率地圖。其中,距離形貌地圖呈現隨相對於運動生理感測雷達的距離變化與時間變化之能量分布。According to some embodiments, the optimized signal is fast Fourier transformed to obtain a distance profile map; each distance delay change of the distance profile map is subjected to DC bias elimination, IQ imbalance compensation, inverse tangent and phase unfolding to obtain a phase map; and the phase distribution at each distance of the phase map is fast Fourier transformed to obtain a vibration frequency map. The distance profile map presents energy distribution with distance changes and time changes relative to the motion physiological sensing radar.
依據一些實施例,對於相位地圖中的每一距離條狀塊分別計算能量閾值,能量閾值是依據對應的距離條狀塊的一能量平均值或一能量最大值來決定。並且,將每一距離條狀塊上每一相位的能量值與對應距離條狀塊的能量閾值相比,以選出超過能量閾值的候選位置。According to some embodiments, an energy threshold is calculated for each distance bar in the phase map, and the energy threshold is determined based on an energy average or an energy maximum of the corresponding distance bar. Furthermore, the energy value of each phase on each distance bar is compared with the energy threshold of the corresponding distance bar to select a candidate position that exceeds the energy threshold.
依據一些實施例,依據優化訊號獲得一相位地圖及一振動頻率地圖,並從振動頻率地圖中選出具有能量強度超出一能量閾值的至少一候選位置;而從候選位置中選定N個目標位置且N大於1,其中該N個待測目標位置為候選位置中具有符合一生理參數範圍的一振動頻率且具有前N大能量強度者;續而依據每一目標位置,取得相位地圖中相對應一距離範圍內的一或多目標相位資料。其中,相位地圖呈現隨相對於運動生理感測雷達的距離變化與相位變化之能量分布,振動頻率地圖呈現隨相對於運動生理感測雷達的距離變化與振動頻率變化的能量分布。According to some embodiments, a phase map and a vibration frequency map are obtained according to the optimization signal, and at least one candidate position with energy intensity exceeding an energy threshold is selected from the vibration frequency map; and N target positions are selected from the candidate positions, and N is greater than 1, wherein the N target positions to be measured are those having a vibration frequency that meets a physiological parameter range and having the top N energy intensities among the candidate positions; and then according to each target position, one or more target phase data corresponding to a distance range in the phase map are obtained. The phase map presents energy distribution with distance changes relative to the motion physiological sensing radar and phase changes, and the vibration frequency map presents energy distribution with distance changes relative to the motion physiological sensing radar and vibration frequency changes.
綜上所述,依據一些實施例的資料前處理方法與運動生理感測雷達,能對於運動狀態下的受測者精準感測生理參數並偵測其運動激烈程度。於一些實施例中,透過加權數位訊號,可提高訊雜比。於一些實施例中,透過自動生成偵測距離區域,可減少運算複雜度並提升物件追蹤效果。於一些實施例中,透過訊號處理以降低雜訊,可減少雜訊干擾。於一些實施例中,透過以統計特徵集進行機器學習預測,可加速模型訓練與預測速度。In summary, according to the data pre-processing method and sports physiological sensing radar of some embodiments, the physiological parameters of the subject in motion can be accurately sensed and the intensity of the exercise can be detected. In some embodiments, the signal-to-noise ratio can be improved by weighting the digital signal. In some embodiments, the computational complexity can be reduced and the object tracking effect can be improved by automatically generating the detection distance area. In some embodiments, the noise interference can be reduced by reducing the noise through signal processing. In some embodiments, the model training and prediction speed can be accelerated by using statistical feature sets for machine learning prediction.
關於本文中所使用之「連接」術語,其係指二或多個元件相互直接作實體或電性接觸,或是相互間接作實體或電性接觸。As used herein, the term “connected” means that two or more elements are in direct physical or electrical contact with each other, or are in indirect physical or electrical contact with each other.
參照圖1,係為依據一些實施例的運動生理感測雷達10的使用狀態示意圖。運動生理感測雷達10發射雷達訊號(後稱「入射雷達訊號FH」)。入射雷達訊號FH發射至目標90會受到目標90(如受測者)之運動而調變並反射回運動生理感測雷達10。於後稱反射的雷達訊號為「反射雷達訊號FN」。於是,可透過分析反射雷達訊號FN來偵測目標90的一種或多種資訊。資訊可例如是速度、距離、方位、生理資訊(如,心跳、呼吸)等。Referring to FIG. 1 , it is a schematic diagram of the use status of the sports
在一些實施例中,運動生理感測雷達10可以是頻率調變連續波(Frequency Modulated Continuous Wave,FMCW)雷達、連續波(Continuous Wave,CW)雷達或超寬頻(Ultra-wideband,UWB)雷達。以下將以頻率調變連續波雷達為例進行說明。In some embodiments, the sports
參照圖2,圖2為例示雷達訊號的示意圖,上半部呈現入射雷達訊號FH的振幅對時間的變化,下半部呈現入射雷達訊號FH的頻率對時間的變化。入射雷達訊號FH包括複數啁啾(chirp)訊號SC。為了圖式清晰,圖2僅呈現一個啁啾脈衝SC。在此,啁啾脈衝SC為線性調頻脈衝訊號,指頻率隨時間以線性方式增加的正弦波。在一些實施例中,啁啾脈衝SC的頻率是以非線性方式增加。為了方便說明,後續以線性方式來說明。如圖2所示,在一持續時間Tc(如40微秒)內,啁啾脈衝SC根據一斜率S由一起始頻率(如77GHz)線性增加至一終止頻率(如81GHz)。起始頻率與終止頻率可選自毫米波頻段(即30GHz至300GHz)。起始頻率與終止頻率之差為脈衝帶寬B。Referring to FIG. 2 , FIG. 2 is a schematic diagram of an example radar signal, wherein the upper half shows the change of the amplitude of the incident radar signal FH over time, and the lower half shows the change of the frequency of the incident radar signal FH over time. The incident radar signal FH includes a complex chirp signal SC. For the sake of clarity, FIG. 2 only shows one chirp pulse SC. Here, the chirp pulse SC is a linear frequency modulated pulse signal, which refers to a sine wave whose frequency increases linearly with time. In some embodiments, the frequency of the chirp pulse SC increases in a nonlinear manner. For the sake of convenience, the following description is given in a linear manner. As shown in FIG2 , within a duration Tc (e.g., 40 microseconds), the chirped pulse SC increases linearly from a starting frequency (e.g., 77 GHz) to an ending frequency (e.g., 81 GHz) according to a slope S. The starting frequency and the ending frequency can be selected from the millimeter wave band (i.e., 30 GHz to 300 GHz). The difference between the starting frequency and the ending frequency is the pulse bandwidth B.
合併參照圖3及圖4。圖3為依據一些實施例的頻率調變連續波雷達10’的方塊示意圖。圖4為例示入射雷達訊號FH與反射雷達訊號FN的示意圖。頻率調變連續波雷達10’包括發射單元11、接收單元12、解調單元13、類比數位轉換器14及處理單元15。發射單元11用以發射入射雷達訊號FH,包括發射天線和訊號合成器。訊號合成器用以產生包括啁啾脈衝Ct的入射雷達訊號FH,並經由發射天線發射。接收單元12包括接收天線,用以接收包括至少一啁啾脈衝Cr的反射雷達訊號FN。啁啾脈衝Cr可視為啁啾脈衝Ct的延遲版本。解調單元13、類比數位轉換器14及處理單元15用以處理接收到的反射雷達訊號FN,可合稱為訊號處理模組16。解調單元13連接發射單元11及接收單元12,包括混頻器及低通濾波器。混頻器將入射雷達訊號FH的啁啾脈衝Ct和反射雷達訊號FN相對應的啁啾脈衝Cr耦合,可產生兩啁啾脈衝Ct、Cr的頻率之和以及頻率之差等兩種耦合訊號。低通濾波器將耦合後的訊號進行低通濾波以去除高頻成分,而獲得兩啁啾脈衝Ct、Cr的頻率之差的耦合訊號,於後稱「中頻(Intermediate Frequency)訊號SI」。類比數位轉換器14將中頻訊號SI轉換為數位訊號。處理單元15對數位訊號進行數位訊號處理。處理單元15可以例如是中央處理單元(Central Processing Unit,CPU)、圖形處理器(Graphics Processing Unit,GPU),或是其他可程式化之一般用途或特殊用途的微處理器(Microprocessor)、數位訊號處理器(Digital Signal Processor,DSP)、可程式化控制器、特殊應用積體電路(Application Specific Integrated Circuits,ASIC)、可程式化邏輯裝置(Programmable Logic Device,PLD)或其他類似裝置、晶片、積體電路及其組合。Please refer to FIG. 3 and FIG. 4. FIG. 3 is a block diagram of a frequency modulated continuous wave radar 10' according to some embodiments. FIG. 4 is a schematic diagram illustrating an incident radar signal FH and a reflected radar signal FN. The frequency modulated continuous wave radar 10' includes a
參照圖4,中頻訊號SI的頻率
可表示為式1,S為斜率,τ為發送入射雷達訊號FH至接收反射雷達訊號FN之間的延遲時間。因此,τ可表示為式2,d為雷達發射天線至目標90間的距離,c為光速。將式2代入式1可獲得式3。由式3可以知道,中頻訊號SI的頻率
隱含有距離資訊(即頻率調變連續波雷達10’與目標90之間的距離)。
Referring to Figure 4, the frequency of the intermediate frequency signal SI It can be expressed as formula 1, S is the slope, τ is the delay time between sending the incident radar signal FH and receiving the reflected radar signal FN. Therefore, τ can be expressed as formula 2, d is the distance from the radar transmitting antenna to the
…式1 …Formula 1
…式2 ...Formula 2
…式3 ...Formula 3
參照圖5,係為依據一些實施例的訊號處理示意圖。在此,將啁啾脈衝SC分別依序編號為C1、C2、C3、…、Cn,n為正整數。類比數位轉換器14將所收到的對應各啁啾脈衝C1~Cn的中頻訊號SI轉換為數位訊號SD(分別表示成數列D1、D2…、Dn,n為正整數),各啁啾脈衝Cx(x=1~n)皆有對應的數列Dx(x=1~n)。數位訊號SD的數列Dx(x=1~n)可分別表示為一維陣列(橫列(Row)矩陣)。將此些橫向陣列Dx(x=1~n)依序縱向排列而可成為二維矩陣A1。可以理解的是,也可以將數位訊號SD排列成直行(Column)陣列,並將該些直行陣列依序橫向排列,同樣可以得到另一二維矩陣。二維矩陣A1的值代表訊號強度(振幅)。二維矩陣A1的直行的索引值x對應於啁啾脈衝SC的次序。二維矩陣A1的橫列的索引值具有時間的含意,亦即二維矩陣A1的橫列陣列為時域訊號(與時間相關的一組數位資料)。Refer to FIG5 , which is a schematic diagram of signal processing according to some embodiments. Here, the chirp pulses SC are numbered C1, C2, C3, ..., Cn in sequence, where n is a positive integer. The analog-to-
處理單元15對二維矩陣A1(即數位訊號SD形成的二維矩陣A1)的各個橫列矩陣執行快速傅立葉轉換(Fast Fourier Transform,FFT)(後稱「距離傅立葉轉換」)而可取得頻域訊號SP(分別表示為P1、P2…、Pn,n為正整數),即二維矩陣A2。因此,二維矩陣A2的橫列矩陣相當於響應於一啁啾脈衝Cx的頻譜分布。如前述,中頻訊號SI的頻率隱含有距離資訊。亦即,二維矩陣A2的橫列的索引值具有距離含意。二維矩陣A2的值代表頻譜上各頻率的強度,可呈現相距頻率調變連續波雷達10’不同距離所反射的雷達訊號強度。如圖5所示,二維矩陣A2中的填色框為峰值處(即數值超過一閾值),表示在此頻率對應距離處有目標90。從峰值處的頻率可以計算出頻率調變連續波雷達10’與該目標90之間的距離。進一步地,根據不同時點所計算出的特定目標90的距離變化,可計算得大範圍運動資訊(如平均速度)。The
上述雖是以發射單元11具有一個發射天線、接收單元12具有一個接收天線為例來說明。然而,發射單元11具有多個發射天線,以發射多個入射雷達訊號FH,接收單元12具有多個接收天線,以分別接收反射雷達訊號FN,以進行波束成形。Although the above description is based on an example that the transmitting
合併參照圖6及圖7。圖6為依據一些實施例的雷達訊號資料前處理方法的流程圖,說明了可用於使用機器學習模型進行生理參數預測之資料前處理過程。圖7為依據一些實施例的訊號處理裝置60的方塊示意圖。訊號處理裝置60包含處理器61及儲存裝置62。儲存裝置62為電腦可讀取儲存媒體,供儲存供處理器61執行的程式63,以執行資料前處理方法。於一些實施例中,訊號處理裝置60為前述頻率調變連續波雷達10’,處理器61為前述處理單元15。於一些實施例中,訊號處理裝置60為邊緣裝置或是雲端伺服器,亦即頻率調變連續波雷達10’獲得數位訊號SD之後,數位訊號SD將被傳送至邊緣裝置或雲端伺服器,由邊緣裝置或雲端伺服器進行數位訊號處理。Please refer to Figures 6 and 7 together. Figure 6 is a flow chart of a radar signal data preprocessing method according to some embodiments, which illustrates a data preprocessing process that can be used to predict physiological parameters using a machine learning model. Figure 7 is a block diagram of a signal processing device 60 according to some embodiments. The signal processing device 60 includes a processor 61 and a storage device 62. The storage device 62 is a computer-readable storage medium for storing a program 63 executed by the processor 61 to execute the data preprocessing method. In some embodiments, the signal processing device 60 is the aforementioned frequency modulated continuous wave radar 10', and the processor 61 is the
在步驟S200中,如前所述,類比數位轉換器14可將所收到的對應各啁啾脈衝Cx的中頻訊號SI轉換為數位訊號SD,因而處理器61可獲得對應於反射雷達訊號FN的數位訊號SD。此外,在接收到數位訊號SD之後,頻率調變連續波雷達10’以波束成形(beamforming)方式對場域進行掃描,計算不同距離和方位角的信號強度,以獲得能量分布參數集。能量分布參數集包括角度、距離、功率等參數,據此可建立二維空間的頻譜訊號強度圖。如圖8所示,係為依據一些實施例的二維空間頻譜訊號強度圖。橫軸為距離,縱軸為角度,在此以顏色深淺呈現功率大小(能量強度)。波束成形演算法除了使用快速傅立葉之外,也可以採用其他如自我調整波束成形方法,例如多訊號分類(MUltiple SIgnal Classification; MUSIC)、Capon、ESPRIT、CBF演算法等。In step S200, as described above, the analog-to-
在步驟S202中,利用能量分布參數集,透過過濾背景雜訊方式搜尋場域中是否存在目標90。所述過濾背景雜訊方式可例如固定錯誤警報率過濾法(Constant False Alarm Rate,CFAR),透過此演算若發現有峰值(如圖8之虛線框所示),即表示存在目標90。In step S202, the energy distribution parameter set is used to filter the background noise to search whether the
在步驟S204中,依據能量分布參數集,加權數位訊號SD而獲得一優化訊號,如式4所示。Y k為優化訊號,Xs為數位訊號,w k( )為依據距離r與角度 參數所計算得的權重。加權權重之計算方式可將能量分布參數集中的距離r與角度 參數代入Capon Beamforming權重公式來計算。藉此,可對特定區域(即鄰近目標90之區域)的訊號進行優化,提高訊雜比。 In step S204, the digital signal SD is weighted according to the energy distribution parameter set to obtain an optimized signal, as shown in Formula 4. Y k is the optimized signal, Xs is the digital signal, w k ( ) is based on the distance r and angle The weight calculated by the parameter. The weighted weight is calculated by combining the distance r and angle of the energy distribution parameter. The parameters are substituted into the Capon Beamforming weight formula to calculate. In this way, the signal in a specific area (i.e. the area close to the target 90) can be optimized to improve the signal-to-noise ratio.
…式4 ...Formula 4
在步驟S206中,可利用優化訊號進行分析,以取出對應於目標90的目標相位資料。取得目標相位資料後,可用於輸入至機器學習模型64,以預測生理參數(步驟S208)。例如預測對應呼吸頻率或心跳頻率。在一些實施例中,目標相位資料是經過正規化,再輸入至機器學習模型64中。在一實施例中,機器學習模型64採用MobileNetV3模型。使用樣本是採集二種運動器材(腳踏車及橢圓機)之使用資料。每種運動器材收集30人次雷達資料,共計60人次雷達資料,其中50筆作為訓練用,10筆做預測用。每一筆雷達資料包括四種運動強度(休息、慢、中、快)的資料,每種運動強度時長兩分鐘。頻率調變連續波雷達10’架設高度在1~2.5公尺,距離受測者0.5~1.5公尺,但不限定於此。收集過程中,受測者配戴心率計,以同步獲取實時心率作為標記樣本。接下來先說明如何分析優化訊號,以取得目標相位資料。In step S206, the optimized signal can be used for analysis to extract the target phase data corresponding to the
參照圖9,係為依據一些實施例的訊號分析流程圖。首先,在步驟S701中,對優化訊號執行前述之距離傅立葉轉換,可獲得距離形貌地圖(Range profile map)(步驟S702)。如圖10所示,係為依據一些實施例的距離形貌地圖的示意圖。距離形貌地圖呈現隨相對於頻率調變連續波雷達10’的距離變化(橫軸)與時間變化(縱軸)之能量分布,於此係由顏色深淺呈現能量差異。Referring to FIG9 , a signal analysis flow chart according to some embodiments is shown. First, in step S701, the optimized signal is subjected to the aforementioned range Fourier transform to obtain a range profile map (step S702). As shown in FIG10 , a schematic diagram of a range profile map according to some embodiments is shown. The range profile map presents the energy distribution of the range change (horizontal axis) and the time change (vertical axis) of the frequency modulated continuous wave radar 10 'relative to the frequency modulated continuous wave radar 10 ', where the energy difference is presented by the depth of the color.
依據優化訊號,除了可以獲得距離形貌地圖之外,還可進一步獲得相位地圖及振動頻率地圖。在步驟S703中,對距離形貌地圖進行消除直流偏壓(DC removal)、IQ不平衡補償(ellipse correction)、反正切(arctangent)及相位展開(phase unwrapping),以獲得相位地圖(步驟S704)。如圖11所示,係為依據一些實施例的相位地圖的示意圖。相位地圖呈現隨相對於頻率調變連續波雷達10’的距離變化(橫軸)與相位變化(縱軸)之能量分布,於此係由顏色深淺呈現能量差異。接著,在步驟S705中,對相位地圖之每一距離上的相位分布(即距離條狀塊,range bin)進行快速傅立葉轉換而取得振動頻率地圖(步驟S706)。如圖12所示,係為依據一些實施例的振動頻率地圖的示意圖。振動頻率地圖呈現隨相對於頻率調變連續波雷達10’的距離變化(橫軸)與振動頻率變化(縱軸)的能量分布,於此係由顏色深淺呈現能量差異。In addition to obtaining a distance profile map, a phase map and a vibration frequency map can be further obtained based on the optimized signal. In step S703, the distance profile map is subjected to DC removal, ellipse correction, arctangent and phase unwrapping to obtain a phase map (step S704). As shown in FIG11 , it is a schematic diagram of a phase map according to some embodiments. The phase map presents the energy distribution of the distance change (horizontal axis) and the phase change (vertical axis) of the frequency modulated continuous wave radar 10 'relative to the frequency modulation, and the energy difference is presented here by the depth of the color. Next, in step S705, the phase distribution at each distance of the phase map (i.e., range bin) is fast Fourier transformed to obtain a vibration frequency map (step S706). As shown in FIG12, it is a schematic diagram of a vibration frequency map according to some embodiments. The vibration frequency map presents the energy distribution of the distance change (horizontal axis) and the vibration frequency change (vertical axis) of the frequency modulated continuous wave radar 10' relative to the frequency modulation, and the energy difference is presented here by the depth of color.
取得振動頻率地圖之後,在步驟S707中,從振動頻率地圖中選出具有能量強度超出一能量閾值的至少一候選位置(步驟S708)。如圖13所示,係為依據一些實施例的距離條狀塊的振動頻率分布示意圖。圖13中呈現一個超過能量閾值V th的波峰,因此該距離條狀塊被選擇為候選位置。換言之,步驟S707是將相位地圖中的每一距離條狀塊和能量閾值V th進行比較,若超過能量閾值V th,則將對應之距離條狀塊選作為候選位置。 After the vibration frequency map is obtained, in step S707, at least one candidate position having an energy intensity exceeding an energy threshold is selected from the vibration frequency map (step S708). As shown in FIG. 13, it is a schematic diagram of the vibration frequency distribution of the distance bar block according to some embodiments. FIG. 13 shows a peak exceeding the energy threshold Vth , so the distance bar block is selected as the candidate position. In other words, step S707 compares each distance bar block in the phase map with the energy threshold Vth , and if it exceeds the energy threshold Vth , the corresponding distance bar block is selected as the candidate position.
在一些實施例中,能量閾值V th為浮動閾值。對於相位地圖中的每一距離條狀塊分別計算各別的能量閾值V th。能量閾值V th是依據對應的該距離條狀塊的能量平均值或能量最大值來決定。舉例來說,能量閾值V th為a倍能量平均值與b倍能量最大值之總和,其中a+b=1,a與b為正數。再舉另一例,能量閾值V th為a倍能量平均值,其中a為正數。 In some embodiments, the energy threshold V th is a floating threshold. A respective energy threshold V th is calculated for each distance strip in the phase map. The energy threshold V th is determined based on the energy average or energy maximum of the corresponding distance strip. For example, the energy threshold V th is the sum of a times the energy average and b times the energy maximum, where a+b=1, and a and b are positive numbers. For another example, the energy threshold V th is a times the energy average, where a is a positive number.
前述步驟S708所獲得的候選位置可能為複數,因此需要進一步判定應選用何者,以排除干擾訊號。在步驟S709中,從候選位置中選定其中一個或多個,以獲得一個或多個目標位置(步驟S710)。此目標位置為候選位置中具有符合一生理參數範圍的振動頻率之一者。所述生理參數範圍可例如是呼吸頻率範圍(如每分鐘10~20次)、心跳頻率範圍(如每分鐘60~100次)等。The candidate positions obtained in the aforementioned step S708 may be multiple, so it is necessary to further determine which one should be selected to eliminate the interference signal. In step S709, one or more of the candidate positions are selected to obtain one or more target positions (step S710). The target position is one of the candidate positions that has a vibration frequency that meets a physiological parameter range. The physiological parameter range can be, for example, a breathing frequency range (e.g., 10 to 20 beats per minute), a heart rate range (e.g., 60 to 100 beats per minute), etc.
具體來說,在一些實施例中,偵測場域中存在一個目標90。找出每一具有符合生理參數範圍的振動頻率的候選位置,並選出其中具有最大的震盪頻率範圍的能量大小者。此選出的候選位置(距離)即為目標90所在位置(即目標位置)。Specifically, in some embodiments, there is a
在一些實施例中,偵測場域中存在多個目標90。從候選位置中選定N個目標位置且N大於1,其中此N個目標位置為候選位置中具有符合生理參數範圍的振動頻率且具有前N大能量強度者。此些目標位置即為目標90所在位置(即目標位置)。In some embodiments, there are
確定了一個或多個目標所在位置之後,便可據以取出相應的一個或多個目標相位資料(步驟S711)。考量運動狀態下的物件偵測可能會產生誤判而有偏差。在步驟S711中,依據每一目標位置,取得相位地圖中相對應距離範圍內的一目標相位資料(步驟S712)。在一些實施例中,依據每一目標位置,取得相位地圖中相對應距離範圍內的一目標相位資料,其中該目標相位資料包括目標位置的距離條狀塊。在另一些實施例中,依據每一目標位置,取得相位地圖中相對應距離範圍內的多個目標相位資料,其中此些目標相位資料除了包括目標位置的距離條狀塊之外,也包括目標位置相鄰的一個或多個距離條狀塊。例如,以目標位置的距離條狀塊為中心,向兩旁各取兩個距離條狀塊,則目標相位資料包括有五個距離條狀塊。After determining the location of one or more targets, the corresponding one or more target phase data can be retrieved (step S711). Considering that object detection in motion may result in misjudgment and deviation. In step S711, according to each target location, a target phase data within a corresponding distance range in the phase map is obtained (step S712). In some embodiments, according to each target location, a target phase data within a corresponding distance range in the phase map is obtained, wherein the target phase data includes a distance bar block of the target location. In other embodiments, based on each target position, multiple target phase data within a corresponding distance range in the phase map are obtained, wherein these target phase data include not only the distance bar block of the target position, but also one or more distance bar blocks adjacent to the target position. For example, taking the distance bar block of the target position as the center and taking two distance bar blocks on both sides, the target phase data includes five distance bar blocks.
於此說明前述步驟S208之內容。在步驟S208中,將每一待測目標位置的目標相位資料輸入至機器學習模型64中,以獲得生理參數預測結果。例如預測對應呼吸頻率或心跳頻率。在一些實施例中,目標相位資料是經過正規化,再輸入至機器學習模型64中。The content of the aforementioned step S208 is explained here. In step S208, the target phase data of each target position to be measured is input into the machine learning model 64 to obtain the physiological parameter prediction result. For example, the corresponding breathing frequency or heart rate is predicted. In some embodiments, the target phase data is normalized and then input into the machine learning model 64.
參照圖14,係為依據一些實施例的另一資料前處理方法的流程圖。相較於圖6,在步驟S206之前還包括步驟S205。在步驟S205中,可持續收集並統計一期間(例如10~20秒)內的能量分布參數集,以分析目標90的活動狀態,據以決定出涵蓋目標90活動範圍的一偵測距離區域(bounding box),如圖8所示之虛線框。據此,在步驟S206中,便可僅針對偵測距離區域(特定範圍內)的優化訊號進行分析。也就是說,在前述步驟S707中,僅需監測偵測距離區域範圍內的距離條狀塊,而從振動頻率地圖中偵測距離區域內選取候選位置。如此,可節省運算量與運算時間。偵測距離區域可定時(例如30秒)更新。更新週期可視所分析出的目標90在偵測距離區域內的擾動速率動態調整。例如,當目標90活動擺動劇烈時可縮短更新週期;相對地,當目標90活動擺動和緩時可延長更新週期,以降低計算複雜度。在本揭露之另一些實施例中,可選取複數個偵測距離區域,以因應多目標偵測的需求。Referring to FIG. 14 , it is a flow chart of another data pre-processing method according to some embodiments. Compared with FIG. 6 , step S205 is further included before step S206. In step S205, a set of energy distribution parameters within a period (e.g., 10 to 20 seconds) can be continuously collected and counted to analyze the activity state of the
在一些實施例中,如圖14所示,相較於圖6,在執行步驟S208之前,還先對目標相位資料進行訊號處理(步驟S207)。參照圖15,係為依據一些實施例之訊號處理示意圖。圖15上方圖式為一距離條狀塊之示意圖,經相位差計算之後,呈現圖15中間圖式。相位差計算是指將兩相鄰的前後數值相減。接著,去除脈衝雜訊之後,呈現圖15下方圖式。具體做法可例如是,當相位差太大,超出一預設閾值時,則以0取代之。如此,可降低雜訊干擾。In some embodiments, as shown in FIG. 14 , compared to FIG. 6 , before executing step S208, the target phase data is further subjected to signal processing (step S207). Referring to FIG. 15 , it is a schematic diagram of signal processing according to some embodiments. The upper diagram of FIG. 15 is a schematic diagram of a distance bar block, and after the phase difference is calculated, the middle diagram of FIG. 15 is presented. Phase difference calculation refers to subtracting the previous and subsequent values of two adjacent phases. Then, after removing the pulse noise, the lower diagram of FIG. 15 is presented. The specific method may be, for example, that when the phase difference is too large and exceeds a preset threshold, it is replaced by 0. In this way, noise interference can be reduced.
參照圖16,係為執行圖14所示流程的生理參數預測結果示意圖。準確率為90.49%,均方根誤差為12.72(次/分,bpm),標準誤差為7.43(次/分,bpm)。可以看到,預測之心率數值變化與實際心率變化是一致的,可有效判斷運動激烈程度。作為對照,若不使用優化訊號而使用數位訊號SD來執行圖9所示之流程便輸入至機器學習模型64(不執行步驟S207之訊號處理),則準確率為86.88%,均方根誤差為20.04(次/分,bpm),標準誤差為14.69(次/分,bpm)。可以看到本揭露一些實施例之預測結果提昇約4%準確率。參照圖17,係為依據一些實施例的Bland-Altman圖,以比較此兩種作法的預測結果之差異。Referring to FIG. 16 , it is a schematic diagram of the physiological parameter prediction results of executing the process shown in FIG. 14 . The accuracy is 90.49%, the root mean square error is 12.72 (times/minute, bpm), and the standard error is 7.43 (times/minute, bpm). It can be seen that the predicted heart rate value change is consistent with the actual heart rate change, which can effectively judge the intensity of exercise. As a comparison, if the optimization signal is not used and the digital signal SD is used to execute the process shown in FIG. 9 and input it into the machine learning model 64 (the signal processing of step S207 is not executed), the accuracy is 86.88%, the root mean square error is 20.04 (times/minute, bpm), and the standard error is 14.69 (times/minute, bpm). It can be seen that the prediction results of some embodiments of the present disclosure are improved by about 4% accuracy. Referring to FIG. 17 , it is a Bland-Altman diagram based on some embodiments to compare the difference in prediction results of these two methods.
參照圖18,係為依據一些實施例的又一資料前處理方法的流程圖。相較於圖14,步驟S300~S307與前述步驟S200~S207大致相同,差異在於,本實施例不直接將目標相位資料輸入至機器學習模型64。在步驟S308中,透過小波轉換將目標相位資料中的每個距離條狀塊分成複數子頻帶(sub-band),並對每一子頻帶進行統計分析,以獲得一統計特徵集。舉例來說,對於每一子頻帶統計:熵(entropy)、偏度(skewness)、峰度(kurtosis)、變異數(variance)、標準差(standard deviation)、平均數(mean)、中位數(median)、第5百分位数(5th percentile value)、第25百分位数(25th percentile value)、第75百分位数(75th percentile value)、第95百分位数(95th percentile value)、平方平均数(root mean square value)、過零率(zero crossing rate)及過平均率(mean crossing rate)等共14個統計特徵。若進行五階小波分解共取得6個子頻帶,則一個距離條狀塊之資料量可從500筆縮減至84筆特徵參數。如此,可減少運算負擔。Referring to FIG. 18 , it is a flow chart of another data pre-processing method according to some embodiments. Compared with FIG. 14 , steps S300 to S307 are substantially the same as the aforementioned steps S200 to S207, except that the present embodiment does not directly input the target phase data into the machine learning model 64. In step S308 , each distance strip block in the target phase data is divided into a plurality of sub-bands by wavelet transformation, and statistical analysis is performed on each sub-band to obtain a statistical feature set. For example, for each sub-band, there are 14 statistical features: entropy, skewness, kurtosis, variance, standard deviation, mean, median, 5th percentile value, 25th percentile value, 75th percentile value, 95th percentile value, root mean square value, zero crossing rate, and mean crossing rate. If a fifth-order wavelet decomposition is performed to obtain a total of 6 sub-bands, the amount of data for a distance strip block can be reduced from 500 to 84 feature parameters. In this way, the computational burden can be reduced.
在步驟S309中,將統計特徵集輸入至機器學習模型中,以獲得一生理參數預測結果。參照圖19,係為執行圖18所示流程的生理參數預測結果示意圖。準確率為88.76%,均方根誤差為15.02(次/分,bpm),標準誤差為8.58(次/分,bpm)。參照圖20,係為依據一些實施例的Bland-Altman圖,以對照執行圖15及圖18所示流程的結果。可以看到雖然準確率略差一些,但預測表現並沒有太多差異。In step S309, the statistical feature set is input into the machine learning model to obtain a physiological parameter prediction result. Referring to FIG. 19, it is a schematic diagram of the physiological parameter prediction result of executing the process shown in FIG. 18. The accuracy is 88.76%, the root mean square error is 15.02 (times/minute, bpm), and the standard error is 8.58 (times/minute, bpm). Referring to FIG. 20, it is a Bland-Altman diagram according to some embodiments, which is used to compare the results of executing the processes shown in FIG. 15 and FIG. 18. It can be seen that although the accuracy is slightly worse, the prediction performance is not much different.
上述非接觸運動生理感測方法是以滑動視窗(sliding window)方式來取得數位訊號SD並進行處理。在一些實施例中,視窗大小為10秒,時步(time steps)為一秒。The non-contact motion physiological sensing method is to obtain and process the digital signal SD in a sliding window manner. In some embodiments, the window size is 10 seconds and the time steps are 1 second.
綜上所述,依據一些實施例的雷達訊號資料前處理方法與運動生理感測雷達10,能對於運動狀態下的受測者精準感測生理參數並偵測其運動激烈程度。於一些實施例中,透過加權數位訊號,可提高訊雜比。於一些實施例中,透過自動生成偵測距離區域,可減少運算複雜度並提升物件追蹤效果。於另一些實施例中,透過自動生成複數個偵測距離區域,以因應多目標偵測的需求。於一些實施例中,透過訊號處理以降低雜訊,可減少雜訊干擾。於一些實施例中,透過以統計特徵集進行機器學習預測,可加速模型訓練與預測速度。
In summary, according to the radar signal data pre-processing method and the sports
10:運動生理感測雷達 10’:頻率調變連續波雷達 11:發射單元 12:接收單元 13:解調單元 14:類比數位轉換器 15:處理單元 16:訊號處理模組 60:訊號處理裝置 61:處理器 62:儲存裝置 63:程式 64:機器學習模型 90:目標 FH:入射雷達訊號 FN:反射雷達訊號 A1,A2:二維矩陣 B:脈衝帶寬 Ct,Cr:啁啾脈衝 C1,C2,C3,Cn:啁啾脈衝 D1,D2,Dn:數列 P1,P2,Pn:頻域訊號 S200~S208:步驟 S300~S309:步驟 S701~S712:步驟 S:斜率 SC:啁啾脈衝 SD:數位訊號 SI:中頻訊號 SP:頻域訊號 Tc:持續時間 τ:延遲時間 V th:能量閾值 10: Sports physiological sensing radar 10': Frequency modulation continuous wave radar 11: Transmitter 12: Receiver 13: Demodulator 14: Analog digital converter 15: Processor 16: Signal processing module 60: Signal processing device 61: Processor 62: Storage device 63: Program 64: Machine learning model 90: Target FH: Incident radar signal FN: Reflected radar signal A1, A2: Two-dimensional matrix Array B: pulse bandwidth Ct, Cr: chirp pulse C1, C2, C3, Cn: chirp pulse D1, D2, Dn: sequence P1, P2, Pn: frequency domain signal S200~S208: steps S300~S309: steps S701~S712: step S: slope SC: chirp pulse SD: digital signal SI: intermediate frequency signal SP: frequency domain signal Tc: duration τ: delay time V th : energy threshold
[圖1]為依據一些實施例的運動生理感測雷達的使用狀態示意圖。 [圖2]為例示雷達訊號的示意圖。 [圖3]為依據一些實施例的頻率調變連續波雷達的方塊示意圖。 [圖4]為例示入射雷達訊號與反射雷達訊號的示意圖。 [圖5]為依據一些實施例的訊號處理示意圖。 [圖6]為依據一些實施例的資料前處理方法的流程圖。 [圖7]為依據一些實施例的訊號處理裝置的方塊示意圖。 [圖8]為依據一些實施例的二維空間頻譜訊號強度圖。 [圖9]為依據一些實施例的訊號分析流程圖。 [圖10]為依據一些實施例的距離形貌地圖的示意圖。 [圖11]為依據一些實施例的相位地圖的示意圖。 [圖12]為依據一些實施例的振動頻率地圖的示意圖。 [圖13]為依據一些實施例的距離條狀塊的振動頻率分布示意圖。 [圖14]為依據一些實施例的另一資料前處理方法的流程圖。 [圖15]為依據一些實施例之訊號處理示意圖。 [圖16]為執行圖14所示流程的生理參數預測結果示意圖。 [圖17]為依據一些實施例的Bland-Altman圖。 [圖18]為依據一些實施例的又一資料前處理方法的流程圖。 [圖19]為執行圖18所示流程的生理參數預測結果示意圖。 [圖20]為依據一些實施例的Bland-Altman圖。 [Figure 1] is a schematic diagram of the use status of a sports physiological sensing radar according to some embodiments. [Figure 2] is a schematic diagram of an example radar signal. [Figure 3] is a block diagram of a frequency modulated continuous wave radar according to some embodiments. [Figure 4] is a schematic diagram of an incident radar signal and a reflected radar signal. [Figure 5] is a schematic diagram of signal processing according to some embodiments. [Figure 6] is a flow chart of a data pre-processing method according to some embodiments. [Figure 7] is a block diagram of a signal processing device according to some embodiments. [Figure 8] is a two-dimensional spatial spectrum signal intensity diagram according to some embodiments. [Figure 9] is a signal analysis flow chart according to some embodiments. [Figure 10] is a schematic diagram of a distance topography map according to some embodiments. [Figure 11] is a schematic diagram of a phase map according to some embodiments. [Figure 12] is a schematic diagram of a vibration frequency map according to some embodiments. [Figure 13] is a schematic diagram of the vibration frequency distribution of a distance strip block according to some embodiments. [Figure 14] is a flow chart of another data pre-processing method according to some embodiments. [Figure 15] is a schematic diagram of signal processing according to some embodiments. [Figure 16] is a schematic diagram of the physiological parameter prediction results of executing the process shown in Figure 14. [Figure 17] is a Bland-Altman diagram according to some embodiments. [Figure 18] is a flow chart of another data pre-processing method according to some embodiments. [Figure 19] is a schematic diagram of the physiological parameter prediction results of executing the process shown in Figure 18. [Figure 20] is a Bland-Altman plot according to some embodiments.
S200~S208:步驟 S200~S208: Steps
Claims (21)
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW110140492A TWI845871B (en) | 2021-10-29 | 2021-10-29 | Data pre-processing method and exercise vital signs radar |
| CN202111457522.0A CN116068513A (en) | 2021-10-29 | 2021-12-01 | Data preprocessing method and exercise physiological sensing radar |
| US17/678,492 US12403358B2 (en) | 2021-10-29 | 2022-02-23 | Data pre-processing method and exercise vital sign detection radar |
| EP22172256.4A EP4174515A1 (en) | 2021-10-29 | 2022-05-09 | Data pre-processing method and exercise vital sign detection radar |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW110140492A TWI845871B (en) | 2021-10-29 | 2021-10-29 | Data pre-processing method and exercise vital signs radar |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TW202318246A TW202318246A (en) | 2023-05-01 |
| TWI845871B true TWI845871B (en) | 2024-06-21 |
Family
ID=87378807
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW110140492A TWI845871B (en) | 2021-10-29 | 2021-10-29 | Data pre-processing method and exercise vital signs radar |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI845871B (en) |
Citations (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI495451B (en) * | 2011-10-12 | 2015-08-11 | Ind Tech Res Inst | Non-contact vital sign sensing system and sensing method using the same |
| CN110007366A (en) * | 2019-03-04 | 2019-07-12 | 中国科学院深圳先进技术研究院 | A kind of life searching method and system based on Multi-sensor Fusion |
| US20190374126A1 (en) * | 2017-01-26 | 2019-12-12 | Wrt Lab Co., Ltd. | Method and device for measuring biometric signal by using radar |
| TW202038141A (en) * | 2019-04-02 | 2020-10-16 | 緯創資通股份有限公司 | Living body detection method and living body detection system |
| CN111812633A (en) * | 2019-11-27 | 2020-10-23 | 谷歌有限责任公司 | Detecting Reference Frame Changes in Smart Device-Based Radar Systems |
| US20210093203A1 (en) * | 2019-09-30 | 2021-04-01 | DawnLight Technologies | Systems and methods of determining heart-rate and respiratory rate from a radar signal using machine learning methods |
| US20210106234A1 (en) * | 2018-12-18 | 2021-04-15 | Movano Inc. | Methods and systems for monitoring blood pressure using stepped frequency radar with spectral agility |
| TW202114600A (en) * | 2019-10-09 | 2021-04-16 | 國立中山大學 | Multi-target vital sign detector and detection method thereof |
| TW202117745A (en) * | 2019-10-23 | 2021-05-01 | 國立中山大學 | Non-contact method of physiological characteristic detection |
| US20210150873A1 (en) * | 2017-12-22 | 2021-05-20 | Resmed Sensor Technologies Limited | Apparatus, system, and method for motion sensing |
| CN112826462A (en) * | 2020-12-31 | 2021-05-25 | 安徽理工大学 | A method for monitoring vital signs of underground personnel based on spectrum sensing and ultra-wideband radar |
| US20210197834A1 (en) * | 2016-11-21 | 2021-07-01 | George Shaker | System and method for sensing with millimeter waves for sleep position detection, vital signs monitoring and/or driver detection |
| CN113281739A (en) * | 2020-02-19 | 2021-08-20 | 英飞凌科技股份有限公司 | Radar vital signal tracking using kalman filter |
| WO2021202677A1 (en) * | 2020-03-31 | 2021-10-07 | Arizona Board Of Regents On Behalf Of Arizona State University | Vital sign monitoring via remote sensing on stationary exercise equipment |
| CN113520344A (en) * | 2020-04-20 | 2021-10-22 | 英飞凌科技股份有限公司 | Radar-based vital sign estimation |
-
2021
- 2021-10-29 TW TW110140492A patent/TWI845871B/en active
Patent Citations (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI495451B (en) * | 2011-10-12 | 2015-08-11 | Ind Tech Res Inst | Non-contact vital sign sensing system and sensing method using the same |
| US20210197834A1 (en) * | 2016-11-21 | 2021-07-01 | George Shaker | System and method for sensing with millimeter waves for sleep position detection, vital signs monitoring and/or driver detection |
| US20190374126A1 (en) * | 2017-01-26 | 2019-12-12 | Wrt Lab Co., Ltd. | Method and device for measuring biometric signal by using radar |
| US20210150873A1 (en) * | 2017-12-22 | 2021-05-20 | Resmed Sensor Technologies Limited | Apparatus, system, and method for motion sensing |
| US20210106234A1 (en) * | 2018-12-18 | 2021-04-15 | Movano Inc. | Methods and systems for monitoring blood pressure using stepped frequency radar with spectral agility |
| CN110007366A (en) * | 2019-03-04 | 2019-07-12 | 中国科学院深圳先进技术研究院 | A kind of life searching method and system based on Multi-sensor Fusion |
| TW202038141A (en) * | 2019-04-02 | 2020-10-16 | 緯創資通股份有限公司 | Living body detection method and living body detection system |
| US20210093203A1 (en) * | 2019-09-30 | 2021-04-01 | DawnLight Technologies | Systems and methods of determining heart-rate and respiratory rate from a radar signal using machine learning methods |
| TW202114600A (en) * | 2019-10-09 | 2021-04-16 | 國立中山大學 | Multi-target vital sign detector and detection method thereof |
| TW202117745A (en) * | 2019-10-23 | 2021-05-01 | 國立中山大學 | Non-contact method of physiological characteristic detection |
| CN111812633A (en) * | 2019-11-27 | 2020-10-23 | 谷歌有限责任公司 | Detecting Reference Frame Changes in Smart Device-Based Radar Systems |
| CN113281739A (en) * | 2020-02-19 | 2021-08-20 | 英飞凌科技股份有限公司 | Radar vital signal tracking using kalman filter |
| WO2021202677A1 (en) * | 2020-03-31 | 2021-10-07 | Arizona Board Of Regents On Behalf Of Arizona State University | Vital sign monitoring via remote sensing on stationary exercise equipment |
| CN113520344A (en) * | 2020-04-20 | 2021-10-22 | 英飞凌科技股份有限公司 | Radar-based vital sign estimation |
| CN112826462A (en) * | 2020-12-31 | 2021-05-25 | 安徽理工大学 | A method for monitoring vital signs of underground personnel based on spectrum sensing and ultra-wideband radar |
Non-Patent Citations (2)
Also Published As
| Publication number | Publication date |
|---|---|
| TW202318246A (en) | 2023-05-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US12403358B2 (en) | Data pre-processing method and exercise vital sign detection radar | |
| CN111352102B (en) | Multi-target number detection method and device based on frequency modulation continuous wave radar | |
| US8142361B2 (en) | Method and apparatus for automatic optimization of doppler imaging parameters | |
| KR102221839B1 (en) | Real-time cardiac rate detection apparatus in noisy environment and method thereof | |
| CN112754441A (en) | Millimeter wave-based non-contact heartbeat detection method | |
| US12399254B2 (en) | Radar-based single target vital sensing | |
| CN115460980A (en) | Non-contact respiration monitoring method based on Doppler radar | |
| CN119291630A (en) | A human fall recognition method based on millimeter wave radar perception | |
| EP4244647B1 (en) | Optimization of dataset | |
| KR101902760B1 (en) | Method and Device for Measuring Biometric Data using Radar | |
| CN114847931A (en) | Human motion tracking method, device and computer-readable storage medium | |
| TWI845871B (en) | Data pre-processing method and exercise vital signs radar | |
| CN116840805B (en) | Human vital sign detection method based on MIMO radar and beam forming | |
| US12235382B2 (en) | Method for removing random noise of radar collection signal in biometric signal measurement radar, and apparatus for same | |
| KR20180137690A (en) | A bio-information determination apparatus and method using time series data analysis of radar signal | |
| CN113892929A (en) | Non-contact heartbeat monitoring method, monitoring system, electronic device and storage medium | |
| Xie et al. | A measurement study of fmcw radar configurations for non-contact vital signs monitoring | |
| WO2024058226A1 (en) | Electronic apparatus, method for controlling electronic apparatus, and program | |
| Peng et al. | Design and evaluation of remote tracking heart rate measurement based on millimeter-wave FMCW radar | |
| TWI833125B (en) | Non-contact exercise vital signs detection method and exercise vital signs radar | |
| JP2021179323A (en) | Attribute identification device and identification method | |
| KR102270544B1 (en) | Real time wireless breath measurement system and method | |
| Abhijith et al. | Vital sign detection and parameter estimation using fmcw radar | |
| CN116609755B (en) | Vital sign detection method and system based on ultra-wideband radar | |
| US20250258276A1 (en) | Methods and system for object detection in a radar system |