TWI842635B - Method, computer program, computer-readable medium, and device for monitoring displacement of medical duct by labeling based on artificial intelligence technology - Google Patents
Method, computer program, computer-readable medium, and device for monitoring displacement of medical duct by labeling based on artificial intelligence technology Download PDFInfo
- Publication number
- TWI842635B TWI842635B TW112137504A TW112137504A TWI842635B TW I842635 B TWI842635 B TW I842635B TW 112137504 A TW112137504 A TW 112137504A TW 112137504 A TW112137504 A TW 112137504A TW I842635 B TWI842635 B TW I842635B
- Authority
- TW
- Taiwan
- Prior art keywords
- label
- artificial intelligence
- tag
- displacement
- medical
- Prior art date
Links
Images
Landscapes
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Description
本發明係關於一種透過標籤以人工智慧監測醫療管路移位的方法、電腦程式、電腦可讀取媒體及裝置,別是指一種在醫療管路上附加定距離的二個標籤,同時在醫療管路外另設置一標籤,透過人工智慧對包含有上述標籤的影像進行實時辨識,計算各標籤之間的畫素距離變化,而自動判斷醫療管路是否產生移位的方法、電腦程式、電腦可讀取媒體及裝置。 The present invention relates to a method, computer program, computer-readable medium and device for monitoring the displacement of medical tubes through artificial intelligence using tags, particularly a method, computer program, computer-readable medium and device for automatically determining whether the medical tube is displaced by attaching two tags at a fixed distance to the medical tube and setting another tag outside the medical tube, and performing real-time recognition of images containing the above tags through artificial intelligence, calculating the change in pixel distance between each tag, and performing real-time recognition of images containing the above tags, and calculating the change in pixel distance between each tag.
在醫療過程中,透過醫療管路傳遞氣體、流體、食物等至體內為常見之方式,例如利用氣管內管輔助維持呼吸道通暢、利用鼻胃管或口胃管協助將流體食物注入胃部、利用胸管引流肋膜腔的空氣與血水、利用引流管將體內血水、分泌物或腔室內積存液體排出等。這些醫療管路插入人體後,應保持在一固定位置,如果過度的移動可能對人體造成嚴重的傷害,例如利用氣管內管輔助呼吸時,如果氣管內管移位,可能導致病人呼吸衰竭、缺氧,並可能引發肺臟塌陷或心肺停止等。一般而言,氣管內管如果從安裝位置意外抽出超過1公分,視為氣管內管移位(Endotracheal Tube Displacement,ETD);氣管內管如果從安裝位置意外抽出超過4公分,則可能使病人產生生命危險。 During medical treatment, it is common to deliver gas, fluid, food, etc. into the body through medical tubes, such as using an endotracheal tube to assist in maintaining airway patency, using a nasogastric tube or orogastric tube to assist in injecting fluid food into the stomach, using a chest tube to drain air and blood from the pleural cavity, and using a drainage tube to drain blood, secretions, or fluid accumulated in the body cavity. After these medical tubes are inserted into the human body, they should be kept in a fixed position. Excessive movement may cause serious harm to the human body. For example, when using an endotracheal tube to assist breathing, if the endotracheal tube is displaced, it may cause respiratory failure and hypoxia in the patient, and may also cause lung collapse or cardiopulmonary arrest. Generally speaking, if the endotracheal tube is accidentally pulled out from the installation position by more than 1 cm, it is considered endotracheal tube displacement (ETD); if the endotracheal tube is accidentally pulled out from the installation position by more than 4 cm, it may put the patient's life in danger.
對於氣管內管移位的檢測,Elaanba等人在2021 IEEE世界人工智慧物聯網大會(IEEE World AI IoT Congress)文獻的第7頁至第12頁中發表了Automatic detection Using Deep Convolutional Neural Net works for 11 Abnormal Positioning of Tubes and Catheters in Chest X-ray Images,揭示了應用X射線掃描患者的胸部並使用卷積神經網路(CNN)確定位移胸部X射線圖像中氣管插管的位置。Ullah等人則在2020年的Biosensors,vol.10第1頁至第10頁的Real-Time Optical Monitoring of Endotracheal Tube Displacement文獻中提出了一種靈敏、非侵入性、免操作員且經濟高效的光學氣管插管。Lederman等人於2010年在Journal of Clinical Monitoring and Computing,vol.24的335-340頁發表了新型自動氣管內定位確認系統,使用微型的CMOS感應器安裝在氣管內管的前端,配合使用人體模型演算法,識別任何氣管內管的移動。世界智慧財產權組織(WIPO)所公布的WO2019113536A1專利中,揭露一種具有任選的保持系統和任選的感測器的氣管內管防護裝置,主要設置一氣管內管保持器與一感測器,其中感測器在氣管內管防護裝置移動超出預設運動閾值時發出警報。
For the detection of endotracheal tube displacement, Elaanba et al. published Automatic detection Using Deep Convolutional Neural Networks for 11 Abnormal Positioning of Tubes and Catheters in Chest X-ray Images on
雖然上述方法可以檢測氣管內管發生任何移位,但需要改變現有氣管內管的結構,也要獲得醫療設備主管機關的審核批准,或者需要增加複雜的穿戴設備。此外,任何修改氣管內管的構造將增加醫療費用或收取額外費用,增加病人的負擔。 Although the above method can detect any displacement of the endotracheal tube, it requires changing the structure of the existing endotracheal tube and obtaining approval from the medical device authority, or adding complex wearable equipment. In addition, any modification of the structure of the endotracheal tube will increase medical expenses or charge additional fees, increasing the burden on patients.
為了解決上述問題,本發明提供一種有效且準確地監測醫療管路的位移,且不更動醫療管路現有構造的監測方法。本發明利用簡單有效的標示方法,透過人工智慧的影像辨識,實時偵測醫療管路的位移。本發明是一種透過標籤以人工智慧監測醫療管路移位的方法,包含下列步驟:拍攝一工作空間的複數影像;利用經訓練的一人工智慧辨識所述複數影像中的一第一標籤、一第二標籤與一第三標籤,其中該第一標籤與該第二標籤固定於可移動的一醫療管路上,該第一標籤與該第二標籤在該工作空間中沿著一路徑相距有一標定距離,該第三標籤固定於該醫療管路之外,該人工智慧係基於卷積神經網路以複數原始標籤影像使用標籤識別演算法進行訓練;持續計算所述複數影像中的該第一標籤與該第二標籤之間的畫素距離,定義該畫素距離為一基準線;持續計算所述複數影像中的該第三標籤與該第一標籤或該第三標籤與該第二標籤之間的畫素距離,定義該畫素距離為一參考線;從所述複數影像中,持續計算一參考線移動值,該參考線移動值為該參考線在所述複數影像中的畫素距離上的變化結果;當該參考線移動值大於該基準線、該基準線的比例值或該基準線的倍數值時,判斷為該醫療管路在該工作空間的該路徑上產生移位。 In order to solve the above problems, the present invention provides a monitoring method for effectively and accurately monitoring the displacement of medical tubes without changing the existing structure of the medical tubes. The present invention uses a simple and effective marking method and artificial intelligence image recognition to detect the displacement of medical tubes in real time. The present invention is a method for monitoring the displacement of medical tubes by using artificial intelligence through labels, comprising the following steps: taking a plurality of images of a workspace; using a trained artificial intelligence to identify a first label, a second label and a third label in the plurality of images, wherein the first label and the second label are fixed on a movable medical tube, the first label and the second label are separated by a calibrated distance along a path in the workspace, and the third label is fixed outside the medical tube, the artificial intelligence is trained by using a label recognition algorithm based on a convolution neural network with a plurality of original label images; continuously calculating the plurality of labels; The pixel distance between the first label and the second label in the plurality of images is defined as a baseline; the pixel distance between the third label and the first label or between the third label and the second label in the plurality of images is continuously calculated, and the pixel distance is defined as a reference line; a reference line movement value is continuously calculated from the plurality of images, and the reference line movement value is the result of the change of the reference line in the pixel distance in the plurality of images; when the reference line movement value is greater than the baseline, the ratio value of the baseline or the multiple value of the baseline, it is determined that the medical tube is displaced on the path of the working space.
在本發明中,每一時間單位係拍攝相同幀數的所述影像,在任一時間單位所獲取的連續影像中,該第三標籤在畫素上的位移結果定義為一第三標籤位移值,當該任一時間單位的該第三標籤位移值小於一閾值且前一時間單位的該第三標籤位移值大於該閾值,判斷為該第三標籤為一安定狀態,該人工智慧辨係在該第三標籤被判斷為該安定狀態時開始執行辨識與計算。 In the present invention, each time unit is used to shoot the image with the same number of frames. In the continuous images obtained in any time unit, the displacement result of the third tag on the pixel is defined as a third tag displacement value. When the third tag displacement value of any time unit is less than a threshold value and the third tag displacement value of the previous time unit is greater than the threshold value, it is judged that the third tag is in a stable state. The artificial intelligence recognition starts to perform recognition and calculation when the third tag is judged to be in the stable state.
前述的人工智慧係基於卷積神經網路以複數原始標籤影像使用標籤識別演算法(Marker Identification Algorithm,MIA)進行訓練。其中該人 工智慧係對複數影像中符合標籤特徵的目標分別以第一矩形標示該第一標籤、以第二矩形標示該第二標籤,以第三矩形標示該第三標籤,並分別以所述第一矩形、第二矩形與第三矩形的中心點計算前述基準線與前述參考線。 The aforementioned artificial intelligence is trained based on a convolutional neural network using a marker identification algorithm (MIA) with multiple original label images. The artificial intelligence marks the first label with a first rectangle, the second label with a second rectangle, and the third label with a third rectangle for the target that meets the label characteristics in the multiple images, and calculates the aforementioned baseline and the aforementioned reference line with the center points of the first rectangle, the second rectangle, and the third rectangle, respectively.
在上述第一標籤、一第二標籤與一第三標籤分別具有不同的顏色特徵或不同的形狀特徵。 The first label, the second label and the third label have different color characteristics or different shape characteristics respectively.
在判定該醫療管路發生移位後,本發明係進一步發出一警示訊息。當該人工智慧在所述複數影像中無法辨識該第一標籤、該第二標籤或該第三標籤時,也發出一警示訊息。警示訊息可以是以聲音、光或數位警示圖案等的方式呈現。警示訊息的傳遞方式則可以是有線傳輸或無線傳輸。 After determining that the medical tube is displaced, the present invention further issues a warning message. When the artificial intelligence cannot identify the first label, the second label or the third label in the plurality of images, a warning message is also issued. The warning message can be presented in the form of sound, light or digital warning pattern. The transmission method of the warning message can be wired transmission or wireless transmission.
上述的醫療管路可以是下列之一:氣管內管、胸管、引流管、鼻胃管、口胃管、葉克膜管路等。 The above-mentioned medical tubes can be one of the following: endotracheal tube, chest tube, drainage tube, nasogastric tube, orogastric tube, ECMO tube, etc.
本發明也是一種電腦程式,供執行於一電腦,該電腦程式執行上述透過標籤以人工智慧監測醫療管路移位的方法。 The present invention is also a computer program for execution on a computer, which executes the above-mentioned method of monitoring the displacement of medical tubes by artificial intelligence through tags.
本發明也是一種電腦可讀取媒體,該電腦可讀取媒體記錄前述電腦程式。 The present invention is also a computer-readable medium, which records the aforementioned computer program.
本發明也是一種透過標籤以人工智慧監測醫療管路移位的裝置,包含:一第一標籤,設置於該醫療管路上;一第二標籤,設置於該醫療管路上,與該第一標籤沿著一路徑相距有一標定距離;一第三標籤,設置於該醫療管路以外的一基準位置;一攝影單元,拍攝複數影像,每一所述影像均包含該該第一標籤、該第二標籤與該第三標籤;一人工智慧模組,連接該攝影單元,該人工智慧係基於卷積神經網路以複數原始標籤影像使用標籤識別演算法進行訓練;該人工智慧模組接收所述複數影像,並辨識該第一標籤、該第二標 籤與該第三標籤;該人工智慧模組持續計算所述複數影像中的該第一標籤與該第二標籤之間的畫素距離,定義該畫素距離為一基準線;該人工智慧模組持續計算所述複數影像中的該第三標籤與該第一標籤或該第三標籤與該第二標籤之間的畫素距離,並定義該畫素距離為一參考線;從所述複數影像中,該人工智慧模組持續計算一參考線移動值,該參考線移動值為在所述複數影像中的畫素距離上的變化結果;當該參考線移動值大於該基準線、該基準線的比例值或該基準線的倍數值時,判斷為該醫療管路在一工作空間的該路徑上產生移位。 The present invention is also a device for monitoring the displacement of medical tubes by artificial intelligence through tags, comprising: a first tag, which is arranged on the medical tube; a second tag, which is arranged on the medical tube and is separated from the first tag by a calibrated distance along a path; a third tag, which is arranged at a reference position outside the medical tube; a camera unit, which takes a plurality of images, each of which includes the first tag, the second tag and the third tag; an artificial intelligence module, which is connected to the camera unit, and the artificial intelligence is trained by a tag recognition algorithm based on a convolution neural network with a plurality of original tag images; the artificial intelligence module receives the plurality of images and identifies the first tag, the second tag and the third tag. three labels; the artificial intelligence module continuously calculates the pixel distance between the first label and the second label in the plurality of images, and defines the pixel distance as a baseline; the artificial intelligence module continuously calculates the pixel distance between the third label and the first label or the third label and the second label in the plurality of images, and defines the pixel distance as a reference line; from the plurality of images, the artificial intelligence module continuously calculates a reference line movement value, and the reference line movement value is the result of the change in the pixel distance in the plurality of images; when the reference line movement value is greater than the baseline, the ratio value of the baseline, or the multiple value of the baseline, it is determined that the medical tube is displaced on the path of a working space.
上述第一標籤、該第二標籤與該第三標籤係分別具有不同的顏色特徵或不同的形狀特徵。 The first label, the second label and the third label have different color characteristics or different shape characteristics respectively.
本發明進一步包含有一顯示單元,該顯示單元與該人工智慧模組連接,該顯示單元顯示所述複數影像與該第一標籤、該第二標籤與該第三標籤。 The present invention further includes a display unit, which is connected to the artificial intelligence module, and the display unit displays the plurality of images and the first label, the second label and the third label.
本發明進一步包含有一警示單元,該警示單元與該人工智慧模組信號相連,該人工智慧模組判斷該醫療管路發生移位後,該人工智慧模組發出一警示訊息,以有線或無線方式傳輸該警示訊息至該警示單元。 The present invention further includes a warning unit, which is connected to the artificial intelligence module signal. After the artificial intelligence module determines that the medical tube is displaced, the artificial intelligence module sends a warning message and transmits the warning message to the warning unit by wire or wireless means.
根據上述技術特徵,本發明具有以下功效: According to the above technical features, the present invention has the following effects:
1.適用於需要監測移位的各種醫療管路,不受限於不同廠牌的醫療管路的樣式、尺寸等差異,也不會影響現有醫療管路的構造或配置,只需在現有的醫療管路上設置第一標籤、第二標籤及在該醫療管路以外的一基準位置設置第三標籤,然後拍攝影像,利用人工智慧模組持續辨識第一標籤、第二標籤與第三標籤,並持續計算第一標籤與第二標籤之間的畫素距 離,以及持續計算該第二標籤與第三標籤之間的畫素距離,藉由所述畫素距離的變化情形,即時且準確判斷醫療管路是否產生位移。 1. Applicable to various medical tubes that need to monitor displacement. It is not limited by the differences in styles and sizes of medical tubes from different brands, nor will it affect the structure or configuration of existing medical tubes. It only needs to set the first tag and the second tag on the existing medical tube and set the third tag at a reference position outside the medical tube, and then take pictures. The artificial intelligence module is used to continuously identify the first tag, the second tag and the third tag, and continuously calculate the pixel distance between the first tag and the second tag, and the pixel distance between the second tag and the third tag. By the change of the pixel distance, it can instantly and accurately determine whether the medical tube has been displaced.
2.不需額外客製化醫療管路,所附加的第一標籤、第二標籤與第三標籤容易結合、卸除、替換及調整距離,且第一標籤、第二標籤與第三標籤的成本極低,能有效降低監測的成本及人力,節省醫療費用的支出。 2. No additional customized medical tubes are required. The attached first label, second label and third label are easy to combine, remove, replace and adjust the distance. The cost of the first label, second label and third label is extremely low, which can effectively reduce the cost and manpower of monitoring and save medical expenses.
3.對於醫療管路的移位,不需仰賴看護人力的人工監測,能提供全時且準確的監測。 3. For the displacement of medical tubes, there is no need to rely on manual monitoring by nursing staff, and it can provide full-time and accurate monitoring.
4.醫療管路一旦發生異常移位,人工智慧模組能即時判斷並發出近端或遠端的警示訊息,使護理人員能即時排除醫療管路的異常移位,有效避免因醫療管路移位對病人造成的傷害。 4. Once the medical circuit is abnormally displaced, the artificial intelligence module can immediately judge and send a near-end or far-end warning message, so that the nursing staff can immediately eliminate the abnormal displacement of the medical circuit and effectively avoid the harm to the patient caused by the displacement of the medical circuit.
5.攝影單元與人工智慧模組完全不需接觸病人,即可監測醫療管路的移位,可以有效避免監測器材對病人所造成的不適感。 5. The camera unit and artificial intelligence module can monitor the displacement of medical tubes without any contact with the patient, which can effectively avoid the discomfort caused by the monitoring equipment to the patient.
1:第一標籤 1: First label
11:第一矩形 11: First rectangle
110:中心點 110: Center point
2:第二標籤 2: Second label
21:第二矩形 21: Second rectangle
210:中心點 210: Center point
3:第三標籤 3: Third label
31:第三矩形 31: The third rectangle
31:基準位置 31: Base position
310:中心點 310: Center point
311:第一端點 311: First endpoint
312:第二端點 312: Second endpoint
313:第三端點 313: The third endpoint
314:第四端點 314: The fourth endpoint
4:攝影單元 4: Photography unit
41:影像 41: Image
5:人工智慧模組 5: Artificial intelligence module
51:無線傳輸單元 51: Wireless transmission unit
6:顯示單元 6: Display unit
7,7A,7B:警示單元 7,7A,7B: Warning unit
71A,71B:警示圖案 71A, 71B: Warning pictures
8:醫療管路 8: Medical pipeline
81:軸心 81: Axis
9:電子裝置 9: Electronic devices
D12:基準線 D 12 : Baseline
D23:參考線 D 23 : Reference line
L:標定距離 L: Calibration distance
Dtotal:第三標籤位移值 D total : displacement value of the third label
THtotall:閾值 TH totall : threshold
:n+k幀基準線 :n+k frame baseline
:n幀參考線 :n frame reference line
:n+k幀參考線 :n+k frame reference line
Doffset:參考線移動值 D offset : reference line shift value
:n+k幀參考線移動值 :n+k frame reference line shift value
P:病人假體 P: Patient prosthesis
S1:第一階段
S1:
S2:第二階段 S2: The second stage
S3:第三階段 S3: The third stage
S4:第四階段 S4: The fourth stage
[第一圖]係本發明透過標籤以人工智慧監測醫療管路移位的裝置的硬體配置示意圖。 [Figure 1] is a schematic diagram of the hardware configuration of the device of the present invention that uses artificial intelligence to monitor the displacement of medical tubes through tags.
[第一A圖]係本發明透過標籤以人工智慧監測醫療管路移位的方法,在醫療管路與基準位置附加第一標籤、第二標籤與第三標籤的示意圖。 [Figure 1A] is a schematic diagram of the method of the present invention for monitoring the displacement of medical tubes by artificial intelligence through tags, and attaching the first tag, the second tag and the third tag to the medical tube and the reference position.
[第二圖]係本發明攝影單元與人工智慧模組配置於工作空間中的示意圖,其中攝影單元用於拍攝包含有第一標籤、第二標籤與第三標籤的影像。 [Figure 2] is a schematic diagram of the camera unit and the artificial intelligence module of the present invention configured in a workspace, wherein the camera unit is used to capture images containing the first label, the second label, and the third label.
[第三圖]係本發明透過標籤以人工智慧監測醫療管路移位的方法的人工智慧辨識影像中的第一標籤、第二標籤與第三標籤的示意圖。 [Figure 3] is a schematic diagram of the first label, the second label and the third label in the artificial intelligence recognition image of the method of the present invention for monitoring the displacement of medical tubes by artificial intelligence through labels.
[第四圖]係本發明透過標籤以人工智慧監測醫療管路移位的方法的操作步驟示意圖。 [Figure 4] is a schematic diagram of the operating steps of the method of the present invention for monitoring the displacement of medical tubes through artificial intelligence using tags.
[第五圖]係本發明透過標籤以人工智慧監測醫療管路移位的方法的人工智慧在影像中計算第一標籤、第二標籤與第三標籤的中心點的示意圖。 [Fifth Figure] is a schematic diagram of the method of the present invention for monitoring the displacement of medical tubes through artificial intelligence using labels, in which artificial intelligence calculates the center points of the first label, the second label, and the third label in the image.
[第六圖]係本發明透過標籤以人工智慧監測醫療管路移位的方法計算第一標籤與第二標籤之間的畫素距離,以及計算第二標籤與第三標籤之間的畫素距離的示意圖。 [Figure 6] is a schematic diagram of the present invention's method of using artificial intelligence to monitor the displacement of medical tubes through tags to calculate the pixel distance between the first tag and the second tag, and the pixel distance between the second tag and the third tag.
[第七圖]係本發明透過標籤以人工智慧監測醫療管路移位的方法中攝影單元所拍攝的影像之一,顯示病人假體插入氣管內管且病人假體處於仰臥的示意圖。 [Figure 7] is one of the images taken by the camera unit in the method of monitoring the displacement of medical tubes by artificial intelligence through tags of the present invention, showing a schematic diagram of a patient's prosthesis inserted into an endotracheal tube and the patient's prosthesis in a supine position.
[第七A圖]本發明透過標籤以人工智慧監測醫療管路移位的方法中,病人假體仰臥,在模擬的四個階段中,基準線D12、參考線D23、n+k幀參考線與n+k幀參考線移動值之間的畫素距離與影像幀數關係圖。 [Figure 7A] In the method of the present invention for monitoring the displacement of medical tubes by artificial intelligence through tags, the patient's prosthesis is supine. In the four stages of the simulation, the baseline D 12 , the reference line D 23 , the n+k frame reference line The reference line shift value of n+k frames The relationship between the pixel distance and the number of image frames.
[第七B圖]本發明透過標籤以人工智慧監測醫療管路移位的方法中,病人假體仰臥,醫療管路在移位前與移位後,有關基準線D12、參考線D23、n+k幀參考線與n+k幀參考線移動值的示意圖。 [Figure 7B] In the method of the present invention for monitoring the displacement of medical tubes by artificial intelligence through tags, the patient's prosthesis is lying on his back, and the medical tubes are before and after displacement, and the baseline D 12 , reference line D 23 , and n+k frame reference line The reference line shift value of n+k frames Schematic diagram of .
[第八圖]係本發明透過標籤以人工智慧監測醫療管路移位的方法中攝影單元所拍攝的影像之二,顯示病人假體插入氣管內管且病人假體處於側臥的示意圖。。 [Figure 8] is the second image captured by the camera unit in the method of monitoring the displacement of medical tubes by artificial intelligence through tags of the present invention, showing a schematic diagram of a patient's prosthesis inserted into an endotracheal tube and the patient's prosthesis lying on its side. .
[第八A圖]係本發明透過標籤以人工智慧監測醫療管路移位的方法中,病人假體由仰臥轉至側臥,在模擬的四個階段中,基準線D12、參考線D23、 n+k幀參考線與n+k幀參考線移動值之間的畫素距離與影像幀數關係圖。 [Figure 8A] shows the method of monitoring the displacement of medical tubes by artificial intelligence through tags in the present invention. The patient's prosthesis is turned from supine to side-lying. In the four stages of the simulation, the baseline D 12 , the reference line D 23 , and the n+k frame reference line The reference line shift value of n+k frames The relationship between the pixel distance and the number of image frames.
[第九圖]係本發明警示單元顯示警示圖案的示意圖。 [Figure 9] is a schematic diagram of the warning unit of the present invention displaying a warning pattern.
[第十圖]係本發明另一警示單元顯示警示圖案的示意圖。 [Figure 10] is a schematic diagram of another warning unit of the present invention displaying a warning pattern.
本發明所稱的醫療管路包括但不限於氣管內管、胸管、引流管、鼻胃管、口胃管、葉克膜管路等。本發明所稱的第一標籤、第二標籤與該第三標籤,目的在於供人工智慧從影像中進行辨識,其中的第一標籤、第二標籤未必是各自獨立的物件,例如將第一標籤與第二標籤以不同顏色的色環型態定距離印製於一張標籤紙上,以供人工智慧從影像中辨識出第一標籤、第二標籤,也是本發明所界定的第一標籤與第二標籤。本發明將以病人假體插入氣管內管並以膠帶固定後,監測該氣管內管是否被拔動而造成移位作為實施例進行說明。 The medical tubes referred to in the present invention include but are not limited to endotracheal tubes, chest tubes, drainage tubes, nasogastric tubes, orogastric tubes, ECMO tubes, etc. The first label, second label and third label referred to in the present invention are intended for artificial intelligence to identify from images. The first label and second label are not necessarily independent objects. For example, the first label and the second label are printed on a label paper with different color rings at a fixed distance so that artificial intelligence can identify the first label and the second label from the image. These are also the first label and the second label defined in the present invention. The present invention will be explained by an example of inserting a patient's prosthesis into an endotracheal tube and fixing it with tape to monitor whether the endotracheal tube is pulled out and causes displacement.
請參閱第一圖與第一A圖,本發明在硬體上包括有第一標籤1、第二標籤2、第三標籤3、攝影單元4、人工智慧模組5、顯示單元6與警示單元7。上述硬體用以執行本發明透過標籤以人工智慧監測醫療管路移位的方法。執行本發明的方法時,前置作業係將第一標籤1、第二標籤2、第三標籤3進行黏貼固定。
Please refer to the first figure and the first A figure. The present invention includes a
第一標籤1為定寬的一紅色貼紙,其長度足以環繞醫療管路8的外緣一圈,定寬的第一標籤1的寬度例如是0.5公分。該第一標籤1環繞醫療管路8的外緣黏貼固定,第一標籤1採用環繞式的黏貼,第一標籤1在環繞交疊處,其上緣與下緣均保持對齊,以使醫療管路8無論如何沿著醫療管路8的軸
心81旋轉,第一標籤1被拍攝時均能包持高度上的一致。較佳是該第一標籤1的顏色與醫療管路8的顏色有明顯區別,與病人膚色、髮色、衣著等顏色有區別,也與病床周圍物件的顏色有所區別,以利於該第一標籤1在拍攝後容易被人工智慧所辨識。第一標籤1除了具備顏色特徵,也可以具備形狀特徵,較佳是該形狀特徵與與病人穿戴物的形狀有區別,也與病床周圍物件的形狀有所區別
The
第二標籤2為定寬的一藍色貼紙,其長度足以環繞醫療管路8的外緣一圈,定寬的第二標籤2的寬度例如是0.5公分。該第二標籤2環繞醫療管路8的外緣黏貼固定,第二標籤2在環繞交疊處,其上緣與下緣均保持對齊,以使醫療管路8無論如何沿著醫療管路8的軸心81旋轉,第二標籤2被拍攝時均能包持高度上的一致。第二標籤2的中心點與前述第一標籤1的中心點在該軸心81方向上相距有一標定距離L,本實施例的該標定距離L為1公分。較佳是該第二標籤2的顏色與第一標籤1的顏色有區別,與醫療管路8的顏色也有明顯區別,與病人膚色、髮色、衣著等顏色也有區別,另與病床周圍物件的顏色也有所區別,以利於該第二標籤2在拍攝後容易被人工智慧所辨識。第二標籤2除了具備顏色特徵,也可以具備形狀特徵,較佳是該形狀特徵與與病人穿戴物的形狀有區別,也與病床周圍物件的形狀有所區別。
The
第三標籤3為定寬的一綠色貼紙,其長度足以橫向黏貼於醫療管路8以外的一基準位置31,定寬的第三標籤2的寬度例如是0.5公分。本實施例的基準位置31是病人假體P的鼻尖位置,藉此使得病人假體P無論仰臥或側臥,第三標籤3均能被拍攝。較佳是該第三標籤3的顏色與第一標籤1及第二標籤2的顏色均有區別,與醫療管路8的顏色也有明顯區別,與病人膚色、髮
色、衣著等顏色也有區別,另與病床周圍物件的顏色也有所區別,以利於該第三標籤3在拍攝後容易被人工智慧所辨識。第三標籤3除了具備顏色特徵,也可以具備形狀特徵,較佳是該形狀特徵與與病人穿戴物的形狀有區別,也與病床周圍物件的形狀有所區別。
The
請參閱第一圖、第二圖與第三圖,攝影單元4架設在前述病人假體P所臥病床的床頭,實時拍攝前述第一標籤1、第二標籤2與第三標籤3,使該第一標籤1、第二標籤2與第三標籤3能同時呈現在所拍攝的影像41中。本實施例的攝影單元4為一攝影機,鏡頭對準該病人假體P的頭部,實時拍攝所述影像41。所拍攝的影像41例如是每秒20幀,並將影像41傳遞至人工智慧模組5,以進行辨識及運算。
Please refer to the first, second and third figures. The
人工智慧模組5與上述攝影單元4信號連接,攝影單元4所拍攝的影像41傳輸至該人工智慧模組5,透過人工智慧進行辨識。本實施例的人工智慧模組5包含一人工智慧邊緣平台,能使經深度學習後的人工智慧準確辨識前述影像41中的第一標籤1、第二標籤2與第三標籤3。人工智慧模組5可以另內建無線傳輸單元52,用於以藍牙、WiFi等無線方式傳輸訊號至其他電子裝置9,例如手機、智慧手錶、平板電腦、筆記型電腦、個人電腦、伺服器、雲端資料庫等。所述的電子裝置9例如是由護理人員、看護人員、病人家屬所攜行或配戴,或者是配置在護理站或護理車上。人工智慧的深度學習係基於卷積神經網路以複數原始標籤影像使用標籤識別演算法(Marker Identification Algorithm,MIA)進行訓練,上述複數原始標籤影像可以由攝影單元4所拍攝前述臥床病人或病人假體P的200張影像41作為來源,這些影像41來自於不同的拍攝角度與照明條件,並進一步採用數據增強方法,包括隨機縮放、隨機旋
轉、隨機裁剪、隨機擦除,隨機移位等,將上述200張的原始標籤影像擴增為2000張,並透過影像標註工具將有影像中的第一標籤1、第二標籤2與第三標籤3標示出來,作為人工智慧的訓練資料。接著透過卷積神經網路使用標籤識別演算法進行人工智慧的訓練,配合上述訓練資料的拆分,例如70%的訓練資料用於訓練,30%的訓練資料用於驗證,以建立人工智慧的預測模型。
The
顯示單元6與人工智慧模組5信號連接,用於顯示攝影單元4所拍攝的影像41及顯示人工智慧模組5的運算結果。
The display unit 6 is connected to the
警示單元7與人工智慧模組5信號連接,用於接受工智慧模組5所發出的警示訊息,以發出警告。本實施例的警示單元7為一蜂鳴器,發出聲音作為警示。但本發明的警示單元7也可以是其他元件,例如利用LED發光作為警示。或者,利用前述的顯示單元6作為警示單元7A,利用警示單元7A的顯示螢幕顯示警示圖案並發出警示聲音作為警示,警示單元7也可以是遠端的電子裝置7B,例如手機、電子手錶、平板電腦或電腦等。
The
請參閱第二圖、第三圖與第四圖,本發明透過標籤以人工智慧監測醫療管路移位的方法,包含下列步驟:
利用攝影單元4持續拍攝一工作空間的複數影像41,影像41中包含該臥床病人假體P的頭部,以及經口插入病人假體P氣管中的醫療管路8的外露段,影像41中還包含第一標籤1、第二標籤2與第三標籤3。
Please refer to the second, third and fourth figures. The method of the present invention for monitoring the displacement of medical tubes by artificial intelligence through tags includes the following steps:
Use the
請參閱第二圖、第四圖、第五圖與第六圖,人工智慧模組5利用人工智慧將所有影像41中符合標籤特徵的第一標籤1、第二標籤2與第三標籤3分別辨識出來,以第一矩形標11標示第一標籤1、以第二矩形21標示第二標籤2,以第三矩形31標示第三標籤3。該第一矩形11、第二矩形21與第三矩形31
均具有有四個端點。將每一影像41的畫素作為座標單位,橫向訂為X,縱向訂為Y,並選定一座標原點(0,0),例如以畫面的左上角作為座標原點(0,0),將影像41界定為一直角座標平面。如此,上述第一矩形11、第二矩形21與第三矩形31的各自四個端點在該直角座標平面中均會有一座標點。以上述第三矩形31的第三矩形31為例,該第三矩形31的四個端點分別為第一端點311、第二端點312、第三端點313與第四端點314,其中第一端點311的座標為(X311,Y311),第二端點312的座標為(X312,Y312),第三端點313的座標為(X313,Y313),第四端點314的座標為(X314,Y314)。該第三矩形31的中心點310的座標(X310,Y310)可以由下列算式獲得:X310=(X311+X314)/2
Please refer to the second, fourth, fifth and sixth figures. The
Y310=(Y311+Y314)/2同理可以算出該第一矩形11中心點110的座標(X110,Y110)與第二矩形21中心點210的座標(X210,Y210)。
Y 310 =(Y 311 +Y 314 )/2 Similarly, the coordinates (X 110 , Y 110 ) of the
確認上述第一矩形11中心點110的座標(X110,Y110)、第二矩形21中心點210的座標(X210,Y210)與第三矩形31中心點310的座標(X310,Y310)後,藉由畢氏定理可以獲得中心點110與中心點210之間的畫素距離D12,以及中心點210與中心點310之間的畫素距離D23。亦即:
在任一影像41中,當參考線D23的一參考線移動值Doffset大於該影像41中的基準線D12時,代表該醫療管路8已經沿著軸心81方向移位超過1公分。計算該參考線移動值Doffset之前,本發明先確認病人處於一安定狀態,例如以一秒鐘作為時間單位,該一秒鐘將拍攝20幀影像41,將第三標籤3在該一秒鐘內的畫素線性位移總和定義為第三標籤位移值Dtotal,另設定一閾值THtotal用於確認病人頭部的移動,例如閾值THtotal設定為200畫素。比較該一秒與前一秒之間該第三標籤位移值Dtotal的變化,例如該一秒的Dtotal<THtotal且前一秒的Dtotal>THtotal,則判定病人頭部由前一秒的移動狀態轉為該一秒的安定狀態。較佳是本發明根據上述判斷方式,在確定病人頭部為安定狀態時,開始辨識第一標籤1、與第二標籤2與第三標籤3,並計算基準線D12、參考線D23與參考線移動值Doffset。在病人處於前述的安定狀態時,攝影單元4開始拍攝,所拍攝第n幀影像41中的參考線D23的畫素長度定義為一n幀參考線,其中n為正整數;所拍攝第n+k幀影像41中的參考線D23的畫素長度定義為一n+k幀參考線,其中k為正整數。根據下列算式:
一旦參考線移動值Doffset大於該基準線D12,人工智慧模組5中的人工智慧將發出一警示訊息傳遞至警示單元7。
Once the reference line shift value D offset is greater than the baseline D 12 , the artificial intelligence in the
請參閱第一圖、第一A圖、第二圖,本發明在病人假體P的口中插入醫療管路8,模擬將插入氣管內經口插入病人氣管中的狀態,醫療管路8的外露部分貼有第一標籤1、第二標籤2,且彼此沿著醫療管路8的軸心81方向維持有1公分的標定距離L,並於病人假體9的鼻尖貼上第三標籤3。以攝影單元4持續拍攝該病人假體P,並將拍攝的影像41傳送至人工智慧模組5,另以顯示單元6實時顯示影像41及人工智慧的監測結果。藉由下列的四個模擬階段,測試本發明的監測效果,所述四個階段包括:
Please refer to the first figure, the first A figure, and the second figure. The present invention inserts a
第一階段S1:最初在醫療管路8的插管期間,病人假體P仰臥並保持靜止一段時間。
第二階段S2:搖晃病人假體P以模擬能獨立行動的病人進入移動狀態。 The second stage S2: Shake the patient prosthesis P to simulate the patient entering a mobile state who can move independently.
第三階段S3:病人假體P停止搖晃,病人假體P恢復到安定狀態,病人假體P仰臥或側臥。 The third stage S3: The patient's prosthesis P stops shaking, the patient's prosthesis P returns to a stable state, and the patient's prosthesis P lies on its back or side.
第四階段S4:短暫停頓後,醫療管路8被手動拉出超過1公分。
請參閱第七圖、第七A圖,病人假體P在第一階段S1、第三階段S3與第四階段S4均安定的仰臥,第七A圖為第一階段S1至第四階段S4的偵測結果,第七A圖的X軸為影像幀數,Y軸為畫素距離。第七A圖顯示在上述第一
階段S1、第二階段S2、第三階段S3與第四階段S4過程中,該基準線D12參考線D23、n+k幀參考線與n+k幀參考線移動值在畫素距離上的變化結果。在第一階段S1的20~125幀中,基準線D12的畫素距離保持不變,參考線D23的畫素距離也保持不變,n+k幀參考線的畫素距離與上述參考線D23的畫素距離相同,參考線n+k幀移動值的畫素距離為零。在第二階段S2的126~205幀中,病人假體P非處於安定狀態,人工智慧暫停監測,基準線D12、參考線D23、n+k幀參考線與n+k幀參考線移動值的畫素距離均為零。在第三階段S3的205~268幀中,病人假體P處於安定狀態,人工智慧恢復監測,基準線D12、參考線D23、n+k幀參考線與n+k幀參考線移動值的畫素距離與第一階段S1相同。在第四階段S4的269~358幀中,請配合參閱第七圖、第七A圖與第七B圖,其中第七B圖為在偵測過程中該第一標籤1、第二標籤2與第三標籤3的相對移動示意圖,第七B圖中的虛線表示第一標籤1與第二標籤2移動路徑及移動後的結果。在第四階段S4中,基準線D12與參考線D23的畫素距離均維持不變,但隨著醫療管路8的被抽動而移位,n+k幀參考線在每一幀中均開始變大,同時n+k幀參考線移動值在每一幀中也都開始有變大,該n+k幀參考線移動值在第282~358幀之間均大於該基準線D12或n+k幀基準線,人工智慧判定在該282~358幀的時間內,該醫療管路8產生移位。在本實施例中,上述基準線D12與n+k幀基準線相同,但如果在第四階段S4中,除了醫療管路8產生移位之外,病人假體P同時也在該第四階段S4有頭部搖擺或仰傾的動作,則基準線D12與n+k幀基準線可能會不同,因此,較佳是以n+k幀參考線移動值大於n+k幀基準線來判斷醫療管路8產生移位。
Please refer to FIG. 7 and FIG. 7A. The patient's prosthesis P is in a stable supine position in the first stage S1, the third stage S3 and the fourth stage S4. FIG. 7A is the detection result from the first stage S1 to the fourth stage S4. The X axis of FIG. 7A is the image frame number and the Y axis is the pixel distance. FIG. 7A shows that during the first stage S1, the second stage S2, the third stage S3 and the fourth stage S4, the baseline D 12 reference line D 23 and the n+k frame reference line The reference line shift value of n+k frames The result of the change in pixel distance. In the first stage S1, the pixel distance of the baseline D12 remains unchanged, the pixel distance of the reference line D23 also remains unchanged, and the pixel distance of the reference line n+k frame remains unchanged. The pixel distance of the
請參閱第八圖與第八A圖,第八圖顯示病人假體P在第三階段S3轉為側臥,第八A圖為第一階段S1至第四階段S4的偵測結果,第八A圖的X軸為影像幀數,Y軸為畫素距離。第八A圖顯示在上述第一階段S1、第二階段S2、第三階段S3與第四階段S4過程中,該基準線D12、參考線D23、n+k幀參考線與n+k幀參考線移動值在畫素距離上的變化結果。在第一階段S1的20~100幀中,基準線D12的畫素距離保持不變,參考線D23的畫素距離也保持不變,n+k幀參考線的畫素距離與上述參考線D23的畫素距離相同,n+k幀參考線移動值的畫素距離為零。在第二階段S2的101~180幀中,病人假體P非處於安定狀態,人工智慧暫停監測,基準線D12、參考線D23、n+k幀參考線與n+k幀參考線移動值的畫素距離均為零。在第三階段S3的180~242幀中,病人假體P轉為側臥並處於安定狀態,人工智慧恢復監測,由於病人假體P由仰臥轉為側臥,第三階段S3的基準線D12、參考線D23、n+k幀參考線與n+k幀參考線移動值的畫素距離與第一階段S1大致相同,但其中n+k幀參考線因影像41的拍攝角度不同而在第三階段S3中略有變小。在第四階段S4的243~358幀中,基準線D12與參考線D23的畫素距離均維持不變,但隨著醫療管路8的被抽動,n+k幀參考線在每一幀中均開始有變化,同時n+k幀參考線移動值在每一幀中也都開始有變化,其中該n+k幀參考線移動值在第254~358幀之間均大於該基準線D12,人工智慧判定在254~358幀的時間內,該醫療管路8產生移位。
Please refer to Figure 8 and Figure 8A. Figure 8 shows that the patient prosthesis P turns to side-lying in the third stage S3. Figure 8A is the detection result from the first stage S1 to the fourth stage S4. The X axis of Figure 8A is the image frame number and the Y axis is the pixel distance. Figure 8A shows that in the process of the first stage S1, the second stage S2, the third stage S3 and the fourth stage S4, the baseline D 12 , the reference line D 23 , the n+k frame reference line The reference line shift value of n+k frames The result of the change in pixel distance. In the first stage S1, the pixel distance of the baseline D12 remains unchanged, the pixel distance of the reference line D23 also remains unchanged, and the pixel distance of the reference line n+k frame The pixel distance of the
請參閱第一A圖、第五圖與第六圖,第一標籤1與第二標籤2在工作空間中的實際距離雖然恆保持不變,但在影像41的直角坐標平面中,第一矩形11與第二矩形21之間的畫素距離即基準線D12,卻會隨著醫療管路8的因
移動、擺動或仰傾所造成的成像結果而有變化。同樣的,第二矩形21與第三標籤13之間的畫素距離即參考線D23,也會隨著病人頭部的擺動或仰傾,以及醫療管路8因拔動而造成的成像結果而有變化。在實際的工作空間中,第一標籤1與第二標籤2恆隨著醫療管路8同步移動,因此第一標籤1與第二標籤2在工作空間中的實際距離將恆保持為1公分。病人頭部的擺動而帶動醫療管路8隨之移動時,鼻尖的第三標籤3與醫療管路8上的第一標籤1、第二標籤2三者也是同步移動。病人頭部處於安定狀態即病人頭部不移動時,第一標籤1、第二標籤2與第三標籤3均不移動。病人頭部處於安定狀態,但醫療管路8自病人氣管中被抽出一段距離時,醫療管路8上的第一標籤1與第二標籤2之間的標定距離L仍保持為1公分,但鼻尖的第三標籤3與醫療管路8上第二標籤2之間的距離將會改變,或者鼻尖的第三標籤3與醫療管路8上第一標籤1之間的距離將會改變。通常醫療管路8自病人氣管中被抽出時,醫療管路8是沿著醫療管路8的軸心81方向移動,因此較佳是將前述的第一標籤1與第二標籤2沿著醫療管路8的軸心81方向設定該標定距離L。
Please refer to the first A, fifth and sixth figures. Although the actual distance between the
在上述實施例中,將第一標籤1與第二標籤2在該軸心81方向上的標定距離L設定為1公分,是因為病人插入氣管內管後,如果氣管內管被拉出而移位1公分以上將被判訂為氣管內管移位,氣管內管被拉出而移位4公分以上則將對病人造成危害。實施例中以參考線移動值Doffset大於該基準線D12作為判斷移位的基準,因為影像41中的基準線D12的代表著上述標定距離L,一旦參考線移動值Doffset大於基準線D12,代表氣管內管已在軸心81方向上移動超過標定距離L的1公分。本發明的實施例選擇在氣管內管的移位尚未達到4公分之前即發出警示,有助於醫護人員在第一時間排除氣管內管的移位問題。對氣管內管而
言,上述的標定距離L也可以設定為0.5公分,則當參考線移動值Doffset大於基準線D12的二倍,判斷為氣管內管移位,也是可行的實施例。或者將上述的標定距離L設定為2公分,則當參考線移動值Doffset大於基準線D12的二分之一,判斷為氣管內管移位,也屬可行的實施例。亦即,標定距離L不一定要實際等於移位警示距離,在設定某標定距離L後,根據參考線移動值Doffset與基準線D12之間的比例值或倍數值作為判斷氣管內管移位的一個比較值,亦屬可行。
In the above embodiment, the calibration distance L between the
對於氣管內管以外的醫療管路8,例如胸管、引流管、鼻胃管、口胃管、葉克膜管路等,可以根據臨床醫療的需求自由設定上述標定距離L,再藉由人工智慧判斷醫療管路8是否移位。
For
請參閱第一圖、第九圖與第十圖,一旦人工智慧判定醫療管路8產生移位,人工智慧模組5將送出一警示訊息,該警示訊息可以使用由線或無線方式傳遞至警示單元7,7A,7B。在醫療管路8產生移位時,警示單元7中的蜂鳴器將發出警示音;近端的警示單元7A也將立即顯示一警示圖案71A,提醒護理人員或看護人員注意;同時遠端的警示單元7B也將同時顯示一警示圖案71B。
Please refer to the first, ninth and tenth figures. Once the artificial intelligence determines that the
在第六圖中,本實施例的參考線D23是第二標籤2與第三標籤3之間的畫素距離。但如果改用第一標籤1與第三標籤3之間的畫素距離作為參考線,也可以實施本發明。
In FIG. 6 , the reference line D 23 of this embodiment is the pixel distance between the
如果前述的第一標籤1、第二標籤2或第二標籤3被遮蔽或脫落,人工智慧無法從影像41中同時辨識出該第一標籤1、第二標籤2或第二標籤3,人工智慧模組5也將發出另一警示訊息,以提醒醫護人員排除該障礙。
If the aforementioned
本發明也是一種電腦程式,供執行於一電腦,該電腦程式執行上述透過標籤以人工智慧監測醫療管路移位的方法。 The present invention is also a computer program for execution on a computer, which executes the above-mentioned method of monitoring the displacement of medical tubes by artificial intelligence through tags.
本發明也是一種電腦可讀取媒體,記錄有上述電腦程式。 The present invention is also a computer-readable medium that records the above-mentioned computer program.
請參閱第一圖、第一A圖、第五圖第七B圖,本發明也是一種透過標籤以人工智慧監測醫療管路移位的裝置,包括有前述的第一標籤1、第二標籤2、第三標籤3、攝影單元4、人工智慧模組5、顯示單元6與警示單元7。其中:第一標籤1,供設置於一醫療管路8上。第二標籤2,供設置於該醫療管路8上,與第一標籤1沿著一路徑相距有一標定距離L,該路徑例如是該醫療管路8的軸心81的延伸方向。第三標籤3,供設置於該醫療管路8以外的一基準位置31,例如病人的鼻尖。攝影單元4,用於拍攝複數影像41,每一所述影像41均包含該該第一標籤1、該第二標籤2與該第三標籤3。人工智慧模組5,連接該攝影單元4,該人工智慧模組5接收所述複數影像41,並辨識該第一標籤1、該第二標籤2與該第三標籤3。顯示單元6與該人工智慧模組5信號連接。警示單元7與該人工智慧模組5信號連接。
Please refer to the first figure, the first figure A, the fifth figure and the seventh figure B. The present invention is also a device for monitoring the displacement of medical tubes by artificial intelligence through tags, including the aforementioned
利用該人工智慧模組5持續計算所述複數影像41中的該第一標籤1與該第二標籤2之間的畫素距離,定義該畫素距離為一基準線D12。該人工智慧模組5持續計算所述複數影像41中的該第二標籤2與該第三標籤3之間的畫素距離,並定義該畫素距離為一參考線D23。從所述複數影像41中的連續影像41中,該人工智慧模組持續計算該參考線在長度上的一參考線移動值Doffset(第七B圖中標示為)。當該參考線移動值Doffset大於該基準線D12、該基準線D12的比例值或該基準線D12的倍數值時,判斷為該醫療管路8在該工作空間的該路徑上產生移位。
The
綜合上述實施例之說明,當可充分瞭解本發明之操作、使用及本發明產生之功效,惟以上所述實施例僅係為本發明之較佳實施例,當不能以此 限定本發明實施之範圍,即依本發明申請專利範圍及發明說明內容所作簡單的等效變化與修飾,皆屬本發明涵蓋之範圍內。 Combined with the description of the above embodiments, the operation, use and effects of the present invention can be fully understood. However, the above embodiments are only the preferred embodiments of the present invention and cannot be used to limit the scope of implementation of the present invention. That is, simple equivalent changes and modifications made according to the scope of the patent application and the content of the invention description are all within the scope of the present invention.
Claims (13)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW112137504A TWI842635B (en) | 2023-09-28 | 2023-09-28 | Method, computer program, computer-readable medium, and device for monitoring displacement of medical duct by labeling based on artificial intelligence technology |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW112137504A TWI842635B (en) | 2023-09-28 | 2023-09-28 | Method, computer program, computer-readable medium, and device for monitoring displacement of medical duct by labeling based on artificial intelligence technology |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TWI842635B true TWI842635B (en) | 2024-05-11 |
| TW202514640A TW202514640A (en) | 2025-04-01 |
Family
ID=92077070
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW112137504A TWI842635B (en) | 2023-09-28 | 2023-09-28 | Method, computer program, computer-readable medium, and device for monitoring displacement of medical duct by labeling based on artificial intelligence technology |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI842635B (en) |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110573071A (en) * | 2016-12-27 | 2019-12-13 | 明智医疗创新有限公司 | method and system for Radio Frequency (RF) tissue monitoring |
| TWI727464B (en) * | 2019-10-17 | 2021-05-11 | 翔安生醫科技股份有限公司 | Pipeline abnormality risk prediction method, device and related system |
| US20210151164A1 (en) * | 2015-01-13 | 2021-05-20 | Delos Living Llc | Methods of operating a wellness monitoring system |
| CN116777962A (en) * | 2023-07-07 | 2023-09-19 | 深圳市光影智融科技有限公司 | Two-dimensional medical image registration method and system based on artificial intelligence |
-
2023
- 2023-09-28 TW TW112137504A patent/TWI842635B/en active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20210151164A1 (en) * | 2015-01-13 | 2021-05-20 | Delos Living Llc | Methods of operating a wellness monitoring system |
| CN110573071A (en) * | 2016-12-27 | 2019-12-13 | 明智医疗创新有限公司 | method and system for Radio Frequency (RF) tissue monitoring |
| TWI727464B (en) * | 2019-10-17 | 2021-05-11 | 翔安生醫科技股份有限公司 | Pipeline abnormality risk prediction method, device and related system |
| CN116777962A (en) * | 2023-07-07 | 2023-09-19 | 深圳市光影智融科技有限公司 | Two-dimensional medical image registration method and system based on artificial intelligence |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202514640A (en) | 2025-04-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11490821B2 (en) | Non-contact neck-based respiratory and pulse signal detection method, apparatus, and imaging device | |
| CN105942959B (en) | Capsule endoscope system and its three-D imaging method | |
| US10143364B2 (en) | Controlled image capturing method including position tracking and system used therein | |
| US20160250432A1 (en) | Method and apparatus for multi-camera intubation | |
| US20230267609A1 (en) | Temperature monitoring with a thermal camera | |
| Kim et al. | Current status of interpretation of small bowel capsule endoscopy | |
| CN105078426A (en) | System, method and device for diagnosing sleep apnea | |
| TWI842635B (en) | Method, computer program, computer-readable medium, and device for monitoring displacement of medical duct by labeling based on artificial intelligence technology | |
| WO2024108225A2 (en) | Intelligent laryngeal mask airway device with visualization | |
| CN111432773B (en) | Device for stomach examination by capsule camera | |
| CN202386667U (en) | Capsule endoscope structure | |
| Gaitini et al. | A feasibility study using the VivaSight Single Lumen™ to intubate the trachea through the Fastrach laryngeal mask airway: a preliminary report of 50 cases | |
| CN118105590B (en) | Automatic laryngoscope intubation system | |
| CN201418736Y (en) | Medical video laryngoscope | |
| CN114451848A (en) | Endoscope capsule track guiding method, device and system | |
| US20230098579A1 (en) | Mask sizing tool using a mobile application | |
| CN117291899A (en) | Alimentary canal hemorrhage image detection method for capsule endoscope | |
| CN210203559U (en) | Image acquisition assembly for diabetic foot and diabetic foot measuring device | |
| CN115024679A (en) | Visual trachea cannula endoscope guide wire structure and management method of intelligent module thereof | |
| Güngörer et al. | USB-endoscope laryngoscope is as effective as video laryngoscope in difficult intubation | |
| US20250177671A1 (en) | Intubation mode and integration with patient electronic medical record | |
| WO2006037946A1 (en) | Endoscopic procedure simulation | |
| CN204636379U (en) | Shoulder joint motions track record system | |
| CN223809834U (en) | Novel unplanned tube drawing alarm device based on Internet of things module | |
| JP2003290193A (en) | Radiation image processing apparatus, radiation image apparatus, radiation image system, program, computer-readable storage medium, and radiation image processing method |