TWI739481B - 虛擬使用者裝置訊號合成系統及其方法 - Google Patents
虛擬使用者裝置訊號合成系統及其方法 Download PDFInfo
- Publication number
- TWI739481B TWI739481B TW109120574A TW109120574A TWI739481B TW I739481 B TWI739481 B TW I739481B TW 109120574 A TW109120574 A TW 109120574A TW 109120574 A TW109120574 A TW 109120574A TW I739481 B TWI739481 B TW I739481B
- Authority
- TW
- Taiwan
- Prior art keywords
- channel
- virtual user
- physical field
- field
- geographic information
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 17
- 230000002194 synthesizing effect Effects 0.000 title abstract 2
- 238000012549 training Methods 0.000 claims abstract description 43
- 238000012360 testing method Methods 0.000 claims abstract description 11
- 230000015572 biosynthetic process Effects 0.000 claims description 32
- 238000003786 synthesis reaction Methods 0.000 claims description 32
- 238000004088 simulation Methods 0.000 claims description 26
- 238000013473 artificial intelligence Methods 0.000 claims description 22
- 238000005259 measurement Methods 0.000 claims description 22
- 238000001308 synthesis method Methods 0.000 claims description 10
- 238000012986 modification Methods 0.000 claims description 5
- 230000004048 modification Effects 0.000 claims description 5
- 238000013527 convolutional neural network Methods 0.000 claims description 3
- 238000000605 extraction Methods 0.000 claims 1
- 230000003287 optical effect Effects 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 6
- 238000013528 artificial neural network Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/0252—Radio frequency fingerprinting
- G01S5/02528—Simulating radio frequency fingerprints
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/391—Modelling the propagation channel
- H04B17/3913—Predictive models, e.g. based on neural network models
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/06—Testing, supervising or monitoring using simulated traffic
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/10—Scheduling measurement reports ; Arrangements for measurement reports
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/391—Modelling the propagation channel
- H04B17/3912—Simulation models, e.g. distribution of spectral power density or received signal strength indicator [RSSI] for a given geographic region
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本發明提供一種虛擬使用者裝置訊號合成系統及其方法。此系統包括一實體層通道建模器以及一實體層通道訓練模組。實體層通道建模器接收一待測場域的一地理資訊以及一稀疏真實實體場域通道特徵,以建立一實體層通道模型。實體層通道建模器利用實體層通道模型對地理資訊中多個指定位置進行推算,以獲得對應這些指定位置的多個模擬實體場域通道特徵。實體層通道訓練模組接收並利用一人工智慧演算法對地理資訊、稀疏真實實體場域通道特徵以及這些模擬實體場域通道特徵進行訓練,以推論出一完整真實實體場域通道特徵。
Description
本發明是有關於一種訊號合成系統及其方法,且特別是有關於一種虛擬使用者裝置訊號合成系統及其方法。
一般而言,當基地台設備商需要對一實體待測場域中的每一個地理位置,進行基地台效能測試之功能及效能時,現存作法有二。一種作法是利用大量終端裝置或單一裝置不斷地進行逐點量測,以得到完整真實實體場域通道特徵。前者造成大量的量測設備及人力浪費,後者則造成量測時間浪費與人力浪費。並且,量測結果亦可能因為實體場域內設施更動、氣候、溫度等環境變化因素導致過時或者失準情況之發生。如此一來,將導致必須重新進行量測、無法推算或更新的情況。
另一種作法則是利用實體層通道建模器,根據實體待測場域進行通道建模,以得到模擬實體場域通道特徵。然而,此種方法是在假設理想狀態下進行通道建模。在排除所有非完美現象的前提下,亦可能導致模擬結果大幅失準。
本發明提供一種虛擬使用者裝置訊號合成系統及其系統,能夠提供快速且準確度高的模擬結果。
本發明提供一種虛擬使用者裝置訊號合成系統,包括一實體層通道建模器(Physical Channel Modeler)以及一實體層通道訓練模組(Physical Channel Training module)。實體層通道建模器接收一待測場域的一地理資訊以及一稀疏真實實體場域通道特徵(Sparse Real Physical Field Channel Feature),以建立一實體層通道模型。實體層通道建模器利用實體層通道模型對地理資訊中多個指定位置進行推算,以獲得對應這些指定位置的多個模擬實體場域通道特徵(Simulated Physical Field Channel Feature)。稀疏真實實體場域通道特徵包括在地理資訊中多個量測位置上所分別量測的多個真實實體場域通道特徵(Real Physical Field Channel Feature)。實體層通道訓練模組連接至實體通道建模器。實體層通道訓練模組接收並利用一人工智慧演算法對地理資訊、稀疏真實實體場域通道特徵以及這些模擬實體場域通道特徵進行訓練,以推論出涵蓋這些指定位置與這些量測位置的一完整真實實體場域通道特徵。
在本發明的一實施例中,虛擬使用者裝置訊號合成系統更包括多個收發模擬單元(Emulator Unit)。這些收發模擬單元設於待測場域中的這些量測位置上,並連接一待測電信系統(Telecommunication system Under Test)。這些收發模擬單元對待測電信系統收發訊號,而提供稀疏真實實體場域通道特徵至實體層通道建模器。
在本發明的一實施例中,虛擬使用者裝置訊號合成系統更包括一地理資訊擷取單元(Geometry Information Fetch Unit)。地理資訊擷取單元連接至實體層通道建模器,以擷取地理資訊,並提供給實體層通道建模器。
在本發明的一實施例中,地理資訊擷取單元為一光達(Lidar),用以掃描待測場域而獲得地理資訊。
在本發明的一實施例中,虛擬使用者裝置訊號合成系統,更包括:
一控制單元(Controller)以及一虛擬使用者裝置排程模組(Virtual UE Scheduler)。控制單元連接至實體層通道建模器、實體層通道訓練模組以及虛擬使用者裝置排程模組,以進行開始、結束、執行指定流程或步驟以及要求回報資料至少其中之一的控制。控制單元配置待測場域所需的多個虛擬使用者裝置的數量以及位置。虛擬使用者裝置排程模組進行這些虛擬使用者裝置之資源區塊調度、排程、管理、訊息之指配或修改。
在本發明的一實施例中,實體層通道訓練模組包括一產生器(Generator)以及一分類器(Discriminator)。產生器利用人工智慧演算法推論出完整真實實體場域通道特徵。分類器利用另一人工智慧演算法評斷產生器生成之完整真實實體場域通道特徵之真實性,並進行產生器與分類器之對抗訓練,直到達到一納許均衡(Nash Equilibrium)。
在本發明的一實施例中,人工智慧演算法為一卷積神經網路演算法(CNN,Convolution Neural Network,-based Algorithm)。
本發明再提供一種虛擬使用者裝置訊號合成方法,包括以下步驟。接收一待測場域的一地理資訊以及一稀疏真實實體場域通道特徵,以建立一實體層通道模型;利用實體層通道模型對地理資訊中多個指定位置進行推算,以獲得對應這些指定位置的多個模擬實體場域通道特徵;以及接收並利用一人工智慧演算法對地理資訊、稀疏真實實體場域通道特徵以及這些模擬實體場域通道特徵進行訓練,以推論出涵蓋這些指定位置與這些量測位置的一完整真實實體場域通道特徵。上述稀疏真實實體場域通道特徵包括在地理資訊中多個量測位置上所分別量測的多個真實實體場域通道特徵。
在本發明的一實施例中,推論出完整真實實體場域通道特徵的步驟包括以下子步驟。利用人工智慧演算法推論出完整真實實體場域通道特
徵;以及利用另一人工智慧演算法評斷產生器生成之完整真實實體場域通道特徵之真實性,並進行產生器與分類器之對抗訓練,直到達到一納許均衡。
在本發明的一實施例中,虛擬使用者裝置訊號合成方法,更包括以下步驟。配置待測場域所需的多個虛擬使用者裝置的數量以及位置。進行這些虛擬使用者裝置之資源區塊調度、排程、管理、訊息之指配或修改。
基於上述,本發明實施例的虛擬使用者裝置訊號合成系統及其方法,僅需在少量量測位置上量測出真實實體場域通道特徵,就能夠利用人工智慧演算法來推論出完整真實實體場域通道特徵。因此,能夠提供快速且準確度高的模擬結果。
底下藉由具體實施例配合所附的圖式詳加說明,當更容易瞭解本發明之目的、技術內容、特點及其所達成之功效。
50:基地台
100、200:虛擬使用者裝置訊號合成系統
110:實體層通道建模器
120:實體層通道訓練模組
130:地理資訊擷取單元
140:收發模擬單元
150:控制單元
160:虛擬使用者裝置排程模組
222:產生器
224:分類器
226:真實資料庫
G:地理資訊
D1:真實實體場域通道特徵
D2:模擬實體場域通道特徵
P:完整真實實體場域通道特徵
P1:量測位置
P2:指定位置
S:稀疏真實實體場域通道特徵
S110~S130、S210~S290:步驟
第1圖為示意本發明一實施例之虛擬使用者裝置訊號合成系統之概念圖。
第2圖為應用第1圖之虛擬使用者裝置訊號合成系統進行訊號合成方法的流程圖。
第3圖為第1圖之虛擬使用者裝置訊號合成系統的細部方塊圖。
第4圖為應用第3圖之虛擬使用者裝置訊號合成系統進行訊號合成方法的流程圖。
第5圖為示意本發明另一實施例之虛擬使用者裝置訊號合成系統之概念圖。
第1圖為示意本發明一實施例之虛擬使用者裝置訊號合成系統之概念圖,第2圖為應用第1圖之虛擬使用者裝置訊號合成系統進行訊號合成方法的流程圖。請配合參考第1圖與第2圖,虛擬使用者裝置訊號合成系統100包括一實體層通道建模器110以及一實體層通道訓練模組120。首先進行步驟S110,實體層通道建模器110接收一待測場域(未繪示)的一地理資訊G以及一稀疏真實實體場域通道特徵S,以建立一實體層通道模型(未繪示)。在本實施例中,稀疏真實實體場域通道特徵S包括在地理資訊G中多個量測位置P1上所分別量測的多個真實實體場域通道特徵D1。
接著進行步驟S120,實體層通道建模器110利用實體層通道模型對地理資訊G中多個指定位置P2進行推算,以獲得對應這些指定位置P2的多個模擬實體場域通道特徵D2。在本實施例,實體層通道模型例如可以僅考慮這些指定位置P2與這些量測位置P1的地理位置關係,並配合一線性內插法來實現,而推估出模擬實體場域通道特徵D2。之後,進行步驟S130,實體層通道訓練模組120接收並利用一人工智慧演算法對地理資訊G、稀疏真實實體場域通道特徵S以及這些模擬實體場域通道特徵D2進行訓練,以推論出涵蓋這些量測位置P1與這些指定位置P2的一完整真實實體場域通道特徵P。在本實施例中,人工智慧演算法例如為一卷積神經網路演算法。實體層通道訓練模組120包含但不限於以軟體、硬體或其他已知可協助進行機器學習、人工智慧、深度學習、類神經網路、或其他等效可完成相同工作目標之演算法、數學式或人工評斷方式。
值得一提的是,本實施例僅需在少量的量測位置P1上量測出真實實體場域通道特徵D1,就能夠利用人工智慧演算法來推論出完整真實實體場域通道特徵P。因此,本實施例能夠提供快速且準確度高的模擬結果。特
別是,在進行訓練的過程中,除了考量到這些指定位置P2與這些量測位置P1的地理位置關係之外,還考量到這些指定位置P2與這些量測位置P1上是否有障礙物等環境條件。因此,所推論出來的完整真實實體場域通道特徵P更能符合真實狀況。
第3圖為第1圖之虛擬使用者裝置訊號合成系統的細部方塊圖。請參考第1圖及第3圖,虛擬使用者裝置訊號合成系統100更可包括一地理資訊擷取單元130、多個收發模擬單元140、一控制單元150以及一虛擬使用者裝置排程模組160。地理資訊擷取單元130連接至實體層通道建模器110,用以掃描待測場域以擷取地理資訊G,並提供給實體層通道建模器110。收發模擬單元140為可發送無線訊號之硬體裝置。舉例來說,收發模擬單元140可為通用軟體無線電週邊設備(Universal Software Radio Peripheral,USRP)、具有天線之LTE/5G數據機或是其他可達成相同能力之硬體裝置。地理資訊擷取單元130可為提供硬體資訊之裝置,如光達或其他可提供等效地理資訊之裝置。在另一未繪示的實施例中,虛擬使用者裝置訊號合成系統100更可包括一地理資料庫。地理資訊擷取單元130連接至地理資料庫,以從地理資料庫獲得地理資訊G。也就是說,除了利用前述光達或其他可提供等效地理資訊之裝置外,地理資訊擷取單元130亦可直接引用地理資料庫內的已經存放好的地理資訊G,而可省去每次都要量測地理資訊G的時間,使用上更為彈性。
控制單元150連接至實體層通道建模器110、實體層通道訓練模組120以及虛擬使用者裝置排程模組160,以進行開始、結束、執行指定流程或步驟以及要求回報資料至少其中之一的控制。亦即,實體層通道訓練模組120可透過控制單元150連接至實體通道建模器110,但在另一位繪示的實施例中,實體層通道訓練模組120亦可連接至實體通道建模器110。控制單
元150配置待測場域所需的多個虛擬使用者裝置(未繪示)的數量以及位置。虛擬使用者裝置排程模組160根據完整真實實體場域通道特徵P進行這些虛擬使用者裝置之資源區塊調度、排程、管理、訊息之指配或修改。
在本實施例中,實體層通道建模器110、實體層通道訓練模組120、控制單元150以及虛擬終端裝置排程模組160,包括但不僅限於以軟體或電子裝置、電腦等硬體方式實現。這些收發模擬單元140設於待測場域中的這些量測位置P1上,並連接一待測電信系統。這些收發模擬單元140對待測電信系統收發訊號,而提供稀疏真實實體場域通道特徵S至實體層通道建模器110。在本實施例中,待測電信系統可為一基地台50。
詳細來說,針對一給定之實體待測場域,可先進行特徵蒐集階段。使用者可先將K個收發模擬單元140擺放設於待測場域中的這些量測位置P1,並將待測基地台50放置於待測位置。接著,收發模擬單元140會自動連接基地台50開始通訊。然後,根據4G\5G標準規定,使用者可根據從基地台50回傳給收發模擬單元140的下行傳送訊框,得到多個真實實體場域通道特徵D1。在本實施例中,真實實體場域通道特徵D1例如為通道狀態資訊(Channel State Indicator,CSI)或是4G\5G規格中各項通道狀態指標)。
考量少量收發模擬單元140相對實體待測場域之稀疏性,使用者即可得到稀疏真實實體場域通道特徵S,再利用地理資訊擷取單元130配合實體層通道建模器110得到模擬實體場域通道特徵D2。值得注意的是,本發明提出之系統具備靈活性,使用者可以根據應用需求決定待測場域通道特徵之解析度,即任兩回報點之間隔距離。在決定解析度後,利用地理資訊擷取單元130配合實體層通道建模器110即可得到此解析度下之模擬實體場域通道特徵D2。之後,再透過實體層通道訓練模組120之AI輔助仿真階段進行操作後,即可得到此解析度下之完整真實實體場域通道特徵P。
第4圖為應用第3圖之虛擬使用者裝置訊號合成系統進行訊號合成方法的流程圖。請主要參考第4圖,並搭配參考第1圖以及第3圖。首先進行步驟S210,地理資訊擷取單元130擷取地理資訊G,並提供給實體層通道建模器110。在進行步驟S210的同時,還可進行步驟S240。亦即收發模擬單元140提供稀疏真實實體場域通道特徵S至實體層通道建模器110。在本實施例中,步驟S240可為週期性地執行,但不以此為限。
接著進行步驟S220,實體層通道建模器110接收地理資訊G以及稀疏真實實體場域通道特徵S,以建立一實體層通道模型。然後進行步驟S230,實體層通道建模器110利用實體層通道模型對地理資訊G中多個指定位置P2進行推算,以獲得對應這些指定位置P2的多個模擬實體場域通道特徵D2。
接著進行步驟S250,實體層通道訓練模組120利用一人工智慧演算法對地理資訊G、稀疏真實實體場域通道特徵S以及這些模擬實體場域通道特徵D2進行訓練,以推論出一完整真實實體場域通道特徵P。在本實施例中,步驟S250可為週期性地執行,但不以此為限。
此外,在進行步驟S240的同時,還可進行步驟S260,控制單元150初始化系統,並配置待測場域所需的多個虛擬使用者裝置(未繪示)的數量以及位置。然後,進行步驟S270,虛擬使用者裝置排程模組160根據所需的虛擬使用者裝置的數量,與待測電信系統(基地台50)進行上行與下行的同步(UL/DL)。接著,進行步驟S280,虛擬使用者裝置排程模組160根據完整真實實體場域通道特徵P進行這些虛擬使用者裝置之資源區塊調度,並接收來自控制單元150的訊息,且將來自實體層通道訓練模組120的完整真實實體場域通道特徵P傳送到待測電信系統(基地台50)。然後,進行步驟S290,判斷是否有尚未完成的任務(task)。若是,則回到步驟S280。
值得一提的是,虛擬使用者裝置與基地台50回報之CSI報告之內容(即,完整真實實體場域通道特徵P),便可藉由收發模擬單元140、地理資訊擷取單元130、實體層通道建模器110以及實體層通道訓練模組120搭配推算得知。此外,還可藉由每一次的訓練或週期性的更新,使虛擬使用者裝置之CSI報告之內容可符合3GPP 38.214之框架內容,並可推估或分配其他具備相依關係之參數,包含CQI、CRI、PMI、RI、LI等參數內容,並由控制單元150所控制。
除此之外,控制單元150也藉由收發模擬單元140,進行3GPP 36.211標準所定義之上行/下行同步流程,包含接收PSCH訊號確定Cell ID,與SCCH資料比對實現時間同步、檢查PBCH分析MIB以及SIB、並進行後續PCFICH、PDCCH、PDSCH、RACH等同步及設定階段。如此一來,將使得虛擬終端裝置排程模組160可以根據分析之資料,接受控制單元150之安排,於符合標準之資源區塊內傳送指定之訊息內容。並且,最終由NAS層完成RRC連線建立,與後續連線建立及資料傳送等行為,與待測電信系統(基地台50)溝通。
第5圖為示意本發明另一實施例之虛擬使用者裝置訊號合成系統之概念圖。請參考第1圖與第5圖,虛擬使用者裝置訊號合成系統100與200相類似,其差異在於實體層通道訓練模組220包括一產生器222、一分類器224以及一真實資料庫226。產生器222利用人工智慧演算法推論出完整真實實體場域通道特徵P。分類器224利用另一人工智慧演算法評斷產生器222生成之完整真實實體場域通道特徵P之真實性,並進行產生器222與分類器224之對抗訓練,直到達到一納許均衡。真實資料庫226提供真實資料給分類器224進行訓練判斷。
也就是說,本實施例以對抗式生成網路架構(Generative Adversarial Network,GAN)輔助說明之,但本發明應用之AI架構包含但不限於GAN網路架構。產生器222之工作目標即為根據稀疏真實實體場域通道特徵S推論完整真實實體場域通道特徵P。為幫助產生器222達此目標,配合另一AI演算法將來訓練分類器224,用以評斷產生器222生成之完整真實實體場域通道特徵之真實性。經過產生器222與分類器224之對抗訓練,達到納許均衡時,產生器222將擁有生成高度真實完整真實實體場域通道特徵能力,即完成AI輔助仿真階段訓練過程。
值得特別注意的是,真實資料庫226的真實樣本資料集(Ground truth Dataset)之生成亦存在靈活性。本實施例可以完整真實實體場域通道特徵P或模擬實體場域通道特徵P2進行後處理,而得到此資料集並視為樣本對應的標籤。總結而言,提出之AI輔助仿真階段模型訓練屬於一種監督式學習,最主要目的為訓練產生器222根據一稀疏且不完整樣本而模擬出對應完整樣本。而設計分類器224之目的為提供一特別之損失函數以引導產生器222生成符合實際狀況之完整真實實體場域通道特徵P。
在完成訓練過程之後,本實施例只需給定一新場景之樣本(含稀疏真實實體場域通道特徵、模擬實體場域通道特徵與實體場域地理資訊)並饋入實體層通道訓練模組中,實體層通道訓練模組即可推論完整真實實體場域通道特徵,並提供指定地理位置之通道特徵參數給與其他系統元件。值得特別注意的是,在測試階段並不需要提供完整真實實體場域通道特徵,經過訓練之AI模型即可根據不完整樣本推斷出其量測結果,如此一來,即可極大程度減輕完整樣本量測所需之人力物力,以達到本實施例之設計目的。
綜上所述,由於本發明引入AI演算法來實現實體層通道訓練模組,並橋接先前技術所述兩種方法。因此,本發明能夠利用少量收發模擬單元量測得到的稀疏真實實體場域通道特徵與通道建模得到的模擬實體場域通道特徵,使得實體層通道訓練模組推論出如同大量收發模擬單元真實量測得到的完整真實實體場域通道特徵的結果。此外,使用者還可透過本發明所提出之虛擬使用者裝置訊號合成方法,在極短時間內得到場域通道特徵量測結果。並且,隨著時間及訓練次數的增加還能不斷提升精準度。另外,在虛擬終端裝置排程模組接收到場域通道特徵量測結果後,藉由控制單元之上層參數控制及使用者裝置行為設計,以及虛擬終端裝置排程模組之時域/頻域之資源區塊排程,能夠發送虛擬使用者裝置之訊號,使待測電信系統辨識為指定地理位置之虛擬使用者裝置訊號。如此一來,最終實現以固定數量之收發模擬單元發送每一個地理位置之虛擬終端裝置訊號,完成待測場域測試。
100:虛擬使用者裝置訊號合成系統
110:實體層通道建模器
120:實體層通道訓練模組
G:地理資訊
D1:真實實體場域通道特徵
D2:模擬實體場域通道特徵
P1:量測位置
P2:指定位置
S:稀疏真實實體場域通道特徵
Claims (11)
- 一種虛擬使用者裝置訊號合成系統,包括:一實體層通道建模器,接收一待測場域的一地理資訊以及一稀疏真實實體場域通道特徵,以建立一實體層通道模型,且利用該實體層通道模型對該地理資訊中多個指定位置進行推算,以獲得對應該些指定位置的多個模擬實體場域通道特徵,其中該稀疏真實實體場域通道特徵包括在該地理資訊中多個量測位置上所分別量測的多個真實實體場域通道特徵;以及一實體層通道訓練模組,連接至該實體通道建模器,接收並利用一人工智慧演算法對該地理資訊、該稀疏真實實體場域通道特徵以及該些模擬實體場域通道特徵進行訓練,以推論出涵蓋該些指定位置與該些量測位置的一完整真實實體場域通道特徵。
- 如請求項1所述之虛擬使用者裝置訊號合成系統,更包括:多個收發模擬單元,設於該待測場域中的該些量測位置上,並連接一待測電信系統,其中該些收發模擬單元對該待測電信系統收發訊號,而提供該稀疏真實實體場域通道特徵至該實體層通道建模器。
- 如請求項1所述之虛擬使用者裝置訊號合成系統,更包括:一地理資訊擷取單元,連接至該實體層通道建模器,以擷取該地理資訊,並提供給該實體層通道建模器。
- 如請求項3所述之虛擬使用者裝置訊號合成系統,其中該地理資訊擷取單元為一光達,用以掃描該待測場域而獲得該地理資訊。
- 如請求項3所述之虛擬使用者裝置訊號合成系統,更包括: 一地理資料庫,其中該地理資訊擷取單元連接至該地理資料庫,以從該地理資料庫獲得該地理資訊。
- 如請求項1所述之虛擬使用者裝置訊號合成系統,更包括:一控制單元,連接至該實體層通道建模器以及該實體層通道訓練模組,以進行開始、結束、執行指定流程或步驟以及要求回報資料至少其中之一的控制,且配置該待測場域所需的多個虛擬使用者裝置的數量以及位置;以及一虛擬使用者裝置排程模組,連接至該控制單元,根據該完整真實實體場域通道特徵,進行該些虛擬使用者裝置之資源區塊調度、排程、管理、訊息之指配或修改。
- 如請求項1所述之虛擬使用者裝置訊號合成系統,其中該實體層通道訓練模組包括:一產生器,利用該人工智慧演算法推論出該完整真實實體場域通道特徵;以及一分類器,利用另一人工智慧演算法評斷該產生器生成之完整真實實體場域通道特徵之真實性,並進行該產生器與該分類器之對抗訓練,直到達到一納許均衡。
- 如請求項1所述之虛擬使用者裝置訊號合成系統,其中該人工智慧演算法為一卷積神經網路演算法。
- 一種虛擬使用者裝置訊號合成方法,包括:接收一待測場域的一地理資訊以及一稀疏真實實體場域通道特徵,以建立一實體層通道模型,其中該稀疏真實實體場域通道特徵包括在該地理資訊中多個量測位置上所分別量測的多個真實實體場域通道特徵; 利用該實體層通道模型對該地理資訊中多個指定位置進行推算,以獲得對應該些指定位置的多個模擬實體場域通道特徵;以及接收並利用一人工智慧演算法對該地理資訊、該稀疏真實實體場域通道特徵以及該些模擬實體場域通道特徵進行訓練,以推論出涵蓋該些指定位置與該些量測位置的一完整真實實體場域通道特徵。
- 如請求項9所述之虛擬使用者裝置訊號合成方法,其中該推論出該完整真實實體場域通道特徵的步驟包括:利用該人工智慧演算法推論出該完整真實實體場域通道特徵;以及利用另一人工智慧演算法評斷該產生器生成之完整真實實體場域通道特徵之真實性,並進行該產生器與該分類器之對抗訓練,直到達到一納許均衡(Nash Equilibrium)。
- 如請求項9所述之虛擬使用者裝置訊號合成方法,更包括:配置該待測場域所需的多個虛擬使用者裝置的數量以及位置;以及根據該完整真實實體場域通道特徵,進行該些虛擬使用者裝置之資源區塊調度、排程、管理、訊息之指配或修改。
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW109120574A TWI739481B (zh) | 2020-06-18 | 2020-06-18 | 虛擬使用者裝置訊號合成系統及其方法 |
| US17/028,786 US11309980B2 (en) | 2020-06-18 | 2020-09-22 | System for synthesizing signal of user equipment and method thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW109120574A TWI739481B (zh) | 2020-06-18 | 2020-06-18 | 虛擬使用者裝置訊號合成系統及其方法 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TWI739481B true TWI739481B (zh) | 2021-09-11 |
| TW202201918A TW202201918A (zh) | 2022-01-01 |
Family
ID=78778108
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW109120574A TWI739481B (zh) | 2020-06-18 | 2020-06-18 | 虛擬使用者裝置訊號合成系統及其方法 |
Country Status (2)
| Country | Link |
|---|---|
| US (1) | US11309980B2 (zh) |
| TW (1) | TWI739481B (zh) |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100075678A1 (en) * | 2008-09-23 | 2010-03-25 | Arda Akman | Methods, systems, and computer readable media for stress testing mobile network equipment using a common public radio interface (cpri) |
| US20110103504A1 (en) * | 2009-10-30 | 2011-05-05 | Futurewei Technologies, Inc. | System and Method for User Specific Antenna Down Tilt in Wireless Cellular Networks |
| TW201507486A (zh) * | 2013-05-16 | 2015-02-16 | Panasonic Ip Corp America | 資訊提供方法 |
| US9432859B2 (en) * | 2013-10-31 | 2016-08-30 | Ixia | Methods, systems, and computer readable media for testing long term evolution (LTE) air interface device using per-user equipment (per-UE) channel noise |
| WO2017196483A1 (en) * | 2016-05-13 | 2017-11-16 | Intel IP Corporation | Multi-user multiple input multiple ouput systems |
Family Cites Families (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7277395B2 (en) | 2002-04-25 | 2007-10-02 | Ixia | Method and apparatus for wireless network load emulation |
| FR2959894B1 (fr) * | 2010-05-07 | 2012-08-03 | Satimo Ind | Systeme de simulation d'environnements electromagnetiques comportant un reseau d'une pluralite de sondes |
| WO2014186747A1 (en) * | 2013-05-16 | 2014-11-20 | Ixia | Methods, systems, and computer readable media for frequency selective channel modeling |
| US9686702B2 (en) | 2015-07-06 | 2017-06-20 | Viavi Solutions Inc. | Channel emulation for testing network resources |
| US10356597B2 (en) * | 2016-05-03 | 2019-07-16 | Verizon Patent And Licensing Inc. | Testing and validation of user equipment for a cellular network |
| EP3505944B1 (en) * | 2016-07-28 | 2023-04-19 | ETS-Lindgren Inc. | Distributed system for radio frequency environment simulation |
| US10396919B1 (en) * | 2017-05-12 | 2019-08-27 | Virginia Tech Intellectual Properties, Inc. | Processing of communications signals using machine learning |
| US10757601B2 (en) * | 2017-12-13 | 2020-08-25 | At&T Intellectual Property I, L.P. | Physical layer procedures for user equipment in power saving mode |
| US11546925B2 (en) * | 2018-08-01 | 2023-01-03 | Lg Electronics Inc. | Method for transmitting and receiving channel state information in wireless communication system and apparatus therefor |
| US10841025B2 (en) * | 2018-08-30 | 2020-11-17 | Keysight Technologies, Inc. | Methods, systems, and computer readable media for testing a central unit using a distributed unit emulation |
| US10725080B2 (en) * | 2018-09-25 | 2020-07-28 | National Instruments Corporation | Correlation of device-under-test orientations and radio frequency measurements |
| US11153179B2 (en) * | 2019-09-09 | 2021-10-19 | Qualcomm Incorporated | Neural-network-based link-level performance prediction |
| WO2021201491A1 (en) * | 2020-03-29 | 2021-10-07 | Samsung Electronics Co., Ltd. | Method and system for beam alignment in wireless network |
| US11653243B2 (en) * | 2020-04-22 | 2023-05-16 | Qualcomm Incorporated | Distributed unit (DU) measurement and event reporting in disaggregated base station |
| US11950225B2 (en) * | 2020-05-07 | 2024-04-02 | Qualcomm Incorporated | Selective channel state measurement and report for small data transfer in power saving mode |
-
2020
- 2020-06-18 TW TW109120574A patent/TWI739481B/zh active
- 2020-09-22 US US17/028,786 patent/US11309980B2/en active Active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100075678A1 (en) * | 2008-09-23 | 2010-03-25 | Arda Akman | Methods, systems, and computer readable media for stress testing mobile network equipment using a common public radio interface (cpri) |
| US20110103504A1 (en) * | 2009-10-30 | 2011-05-05 | Futurewei Technologies, Inc. | System and Method for User Specific Antenna Down Tilt in Wireless Cellular Networks |
| TW201507486A (zh) * | 2013-05-16 | 2015-02-16 | Panasonic Ip Corp America | 資訊提供方法 |
| US9432859B2 (en) * | 2013-10-31 | 2016-08-30 | Ixia | Methods, systems, and computer readable media for testing long term evolution (LTE) air interface device using per-user equipment (per-UE) channel noise |
| WO2017196483A1 (en) * | 2016-05-13 | 2017-11-16 | Intel IP Corporation | Multi-user multiple input multiple ouput systems |
Also Published As
| Publication number | Publication date |
|---|---|
| US20210399816A1 (en) | 2021-12-23 |
| TW202201918A (zh) | 2022-01-01 |
| US11309980B2 (en) | 2022-04-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US12035421B2 (en) | Procedure for optimization of self-organizing network | |
| TWI500334B (zh) | 用以回報量測資料之方法與裝置 | |
| US7120432B2 (en) | Method of simulating operating conditions of a telecommunication system requiring a limited amount of computing power | |
| CN117241312A (zh) | 一种基于ai/ml时域波束预测的空口测试方法和系统 | |
| CN104113870B (zh) | 网络测试方法和移动终端 | |
| CN109548074A (zh) | 基于mr的上行干扰源波形定位方法、装置、设备及介质 | |
| CN114521012A (zh) | 定位方法、装置、终端设备、基站及位置管理服务器 | |
| CN107276785A (zh) | 一种无线局域网优化方法及装置 | |
| CN118509872A (zh) | 通信方法和装置 | |
| EP4597852A1 (en) | Test device, method and apparatus, and computer-readable storage medium | |
| TWI739481B (zh) | 虛擬使用者裝置訊號合成系統及其方法 | |
| CN118283639A (zh) | 一种网络优化的方法、电子设备及存储介质 | |
| CN106973400B (zh) | 一种测量结果的处理方法及ue | |
| EP4521695A1 (en) | Method and apparatus for network digital twin-based fault injection analysis | |
| CN117412327A (zh) | 一种基于ai/ml直接定位的空口测试方法和系统 | |
| CN113365302B (zh) | 等信号线/区域生成方法及装置、设备、计算机程序 | |
| WO2023143301A1 (zh) | 一种信息采集方法、终端及计算机可读存储介质 | |
| JP2025529666A (ja) | マルチ送受信点通信のための制御機構 | |
| CN120782006A (zh) | 数据处理方法、装置、设备、存储介质及程序产品 | |
| EP4626062A1 (en) | Reward simulation for reinforcement learning for wireless network | |
| EP4369808A1 (en) | Positioning method and apparatus | |
| US20250350993A1 (en) | Communication quality estimation system, communication quality estimation method and program | |
| CN113508614B (zh) | 通信装置、通信方法以及存储介质 | |
| CN120935613A (zh) | 一种通信方法及装置 | |
| CN119652372A (zh) | 一种配置方法、网络侧设备、终端及存储介质 |